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EFFECTS OF HEAT SOURCE/SINK ON

DARCIAN-BÈNARD-MAGNETO-MARANGONI CONVECTIVE

INSTABILITY IN A COMPOSITE LAYER SUBJECTED TO

NONUNIFORM TEMPERATURE GRADIENTS

N. MANJUNATHA1, R. SUMITHRA2, §

Abstract. The problem of Bènard-Magneto-Marangoni convection in a composite layer
which is infinite along x and y directions is considered for the Darcian case in the pres-
ence of constant heat source/sink in both the layers. This composite layer is subjected
to uniform and nonuniform temperature gradients. The eigenvalue, thermal Marangoni
number is obtained in closed form with the lower surface rigid and upper surface free
with surface tension effects for the velocity and isothermal temperature boundary combi-
nations. The influence of porous parameter, magnetic field and nonuniform temperature
gradients on the Eigen value problem are discussed. It is experiential that the effect of
heat source/sink in the fluid layer is dominant on the eigenvalue over the same in the
porous layer. The important parameters like Chandrasekhar number, modified internal
Rayleigh number and thermal ratio which control Bènard-Magneto-Marangoni convec-
tion are discussed in detail.

Keywords: Heat source (sink), Bènard-Magneto-Marangoni convection, Exact method,
Depth ratio, Temperature gradients, Isothermal boundaries.
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1. Introduction

The hydro-magnetic fluid flow problems combined with the effects of the heat transport
phenomenon in a porous system are one of the useful problems in the field of fluid engi-
neering because of their rheological implication and applied germaneness. Sheeting stuff
(paper, fiber and metallic sheets), glass blowing and manufacturing, casting and coating
of wires, synthetic fiber, purification of molten metals from a nonmetallic inclusion due to
magnetic field application, crystal growing, etc. Recently, various applied mathematicians
and researchers have proposed that the cooling rate is critical for the products to enhance
their quality. The study of the effect of the magnetic field on temperature distribution
with heat source/sink when fluid is capable of emitting and absorbing thermal radiations
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is of great importance in concerned with space applications and higher operating tem-
peratures. The study of heat generation or absorption in moving fluids is important in
several physical problems such as fluids undergoing exothermic or endothermic chemical
reactions. The effect of heat source/sink in thermal convection is considered where there
are high-temperature differences between surfaces such as spacecraft bodies. The study of
heat source/sink effects on heat transfer is very important because their effects are crucial
in controlling the heat transfer also used as an effective parameter to control convection.
The natural convection process in the presence of a heat source/sink is presented in various
physical phenomena such as fire engineering, combustion modeling, nuclear energy, heat
exchangers, petroleum reservoir, etc. Internal heat source (sink) may arise due to heat
released during chemical reactions in the fluid, radioactive decay, Ohmic heating by the
current in a conductive liquid, produced by radiation from the external medium thereby
helping in advancing or delaying convection. The several studies have been made on the
single layer, Sankar et al. [1, 2, 3] examined the effect of the magnetic field on natural
convection in a vertical cylindrical and the porous annulus in the presence of an internal
heat source. Swati Mukhopadhyay [4] studied the steady natural convection boundary-
layer flow in the neighbourhood of lower stagnation point of a heated sphere embedded
in a saturated porous medium in the presence of a heat source/sink using shooting tech-
nique. Mixed convection flow of conducting fluid in a vertical channel with boundary
conditions of the third kind in the presence of heat source/sink studied by Umavathi et
al. [5]. Brian Straughan [6] studied the linear instability and nonlinear stability analysis
of the situation of convection in a horizontal plane layer of fluid when there is a heat
sink/source which is linear in the vertical coordinate which is in the opposite direction
of gravity. The effect of mass transfer on unsteady hydromagnetic convective flow, of an
incompressible electrically conducting fluid, past an infinite vertical rotating porous plate
in the presence of constant injection and heat source has been investigated by Thomas
Mwathi Ngugi et al. [7]. Malvandi et al. [8] investigated the effect of thermal asymmetry
on forced convection of alumina/water nanofluid in a parallel-plate microchannel in the
presence of a heat source/sink is theoretically. Baag et al. [9] studied the effects of mass
buoyancy, uniform heat source/sink and first order chemical reaction using the shooting
technique with the help of the Runge-Kutta method of fourth order. Umavathi et al.
[10] studied the flow and heat transfer of couple stress fluid in a vertical channel in the
presence of heat source/sink analytically by the differential transform method and numer-
ically by the Runge-Kutta shooting method. Singh and Singh [11] studied the effect of
the heat source/sink parameter on the free convective flow of a polar fluid in open-ended
vertical concentric annuli. Ganesh Kumar et al. [12] examined the impact of the convec-
tive condition on Marangoni convection in Casson nanofluid with including the uniform
heat source/sink using the RKF-45 method. Anjali Devi et al. [13] analyzed the effects
of radiation on an MHD boundary layer flow and heat transfer over a nonlinear stretch-
ing surface with variable wall temperature and non-uniform heat source/sink using the
Nachtsheim Swigert shooting iteration technique together with the fourth order Runge
Kutta method. Ramachandramurthy and Aruna [14] deals with linear stability analy-
sis of Rayleigh-Bènard convection in a rotating Newtonian fluid with heat source/sink
confined between two parallel, infinitely extended horizontal surfaces. Using the Laplace
transformation technique, the effect of heat source or sink past an impulsively started
vertical and infinite vertical plate under the influence of the transverse magnetic field has
been investigated by Garg and Shipra [15, 16, 17]. They obtained the exact solution to
the problem. Shipra and Garg [18] studied the effects of heat source/sink and chemical
reaction with mass diffusion on free convective incompressible viscous fluid flow past an
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accelerated vertical plate with a magnetic field. They have used the Laplace transform
method to solve the system of linear partial differential equations. Girish et al. [19, 20]
deliberated numerically as well as analytically the fully developed mixed convective flow in
the vertical annuli having two annular passages with open upper and lower boundaries by
considering viscous dissipation also imposing unheated entry and unheated exit thermal
boundary conditions. Naveen Dwivedi and Singh [21] studied the fully developed laminar
magnetohydrodynamic free convection between two concentric vertical cylinders with hall
currents and heat source/sink, in the presence of the radial magnetic field. They found
that the influence of the hall parameter enhances the velocity fields in the appearance of
heat source and sink. Mebarek-Oudina et al. [22] deliberates the impacts of the location
of a thermal source of buoyant convection of nanofluids in an annular region are analyzed
numerically through the finite volume technique. Five different thermal source positions
along the inner cylinder of the annulus have been analyzed.

For the composite layers, Sumithra and Manjunatha [23, 24, 25] considered the effect
of non-uniform temperature gradients on single and double-diffusive magneto-Marangoni
convection in a two-layer system and also in the presence of constant heat source. Sumithra
et al. [26] studied the effects of heat source/sink and non-uniform temperature gradients
on non-Darcian-Benard-Magneto-Marangoni convection in an infinite horizontal composite
layer. They obtained the closed-form of solution for three different thermal Marangoni
numbers.

So far no attempt has been made to analyze the effects in a composite layer with constant
heat source/sink and uniform and non-uniform temperature gradients in the presence of
a magnetic field and hence the present work is focused on this. In the present paper,
an attempt is made to study the effect of non-uniform temperature gradients on Darcy-
Bènard-Magneto-Marangoni convection in a composite layer in the presence of a constant
heat source (sink) in both the layers.

2. Mathematical Formulation

The composite layer system under investigation is shown in Figure 1. Consider a hor-
izontal single component, electrically conducting fluid saturated isotropic densely packed
porous layer of thickness dm underlying a single component fluid layer of thickness d with
an imposed magnetic field intensity H0 in the vertical Z-direction and with heat sources
Φm and Φ respectively. The lower isothermal surface of the porous layer rigid and the
upper isothermal surface of the fluid layer is free with surface tension effects depending
on temperature. A Cartesian coordinate system is chosen with the origin at the interface
between porous and fluid layers and the Z-axis, vertically upwards.
The basic equations for fluid and porous layer respectively governing such a system are,

∇ · ~q = 0 (1)

∇ · ~H = 0 (2)

ρ0[
∂~q

∂t
+ (~q · ∇)~q] = −∇P + µ∇2~q + µp( ~H · ∇) ~H (3)

∂T

∂t
+ (~q · ∇)T = κ∇2T + Φ (4)

∂ ~H

∂t
= ∇× ~q × ~H + νm∇2 ~H (5)
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            Figure 1. Physical configuration of the problem. 
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Figure 1. Geometry of the problem

∇m · ~qm = 0 (6)

∇m · ~H = 0 (7)

ρ0[
1

ε

∂ ~qm
∂t

+
1

ε2
( ~qm · ∇m) ~qm] = −∇mPm −

µ

K
~qm + µp( ~H · ∇m) ~H (8)

A
∂Tm
∂t

+ ( ~qm · ∇m)Tm = κm∇2
mTm + Φm (9)

ε
∂ ~H

∂t
= ∇m × ~qm × ~H + νem∇2

m
~H (10)

where, for fluid layer, ~q is the velocity vector, ρ0 is the fluid density, t is the time, µ is

the fluid viscosity, P = p +
µpH

2

2
is the total pressure, ~H is the magnetic field, T is the

temperature, κ is the thermal diffusivity of the fluid, νm =
1

µpσ
is the magnetic viscosity

and µp is the magnetic permeability . For porous layer ε is the porosity, µ is the fluid
viscosity of the porous layer, K is the permeability of the porous medium, A is the ratio of

heat capacities, κm is the thermal diffusivity, νem =
νm
ε

is the effective magnetic viscosity

and the subscript ′m′ denotes the quantities in porous layer.
The aim of this paper is to investigate the stability of infinitesimal perturbations su-

perposed on the basic quiescent state. The basic state of the liquid being quiescent is
described by

~q = ~qb = 0, P = Pb(z), T = Tb(z), ~H = H0(z) (11)

~qm = ~qmb, Pm = Pmb(zm), Tm = Tmb(zm), ~H = H0(zm) (12)
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The basic state temperatures of Tb(z) and Tmb(zm) are obtained as

Tb(z) =
−Φz(z − d)

2κ
+

(Tu − T0)h(z)

d
+ T0 0 ≤ z ≤ d (13)

Tmb(zm) =
−Φmzm(zm + dm)

2κm
+

(T0 − Tl)hm(zm)

dm
+ T0

−dm ≤ zm ≤ 0 (14)

where T0 =
κdmTu + κmdTl
κdm + κmd

+
ddm(Φmdm + Φd)

2(κdm + κmd)
is the interface temperature, h(z) &

hm(zm) are the nondimensional temperature gradients in fluid and porous layer respec-
tively and subscript ′b′ denote the basic state.
We superimpose infinitesimal disturbances on the basic state for fluid and porous layer
respectively

~q = ~qb + ~q′, P = Pb + P ′, T = Tb(z) + θ, ~H = H0(z) + ~H ′ (15)

~qm = ~qmb + ~qm
′, Pm = Pmb + P ′m, Tm = Tmb(zm) + θm,

~H = H0(zm) + ~H ′ (16)

where the prime indicates the perturbations. Introducing (15) and (16) in (1) - (10),
operating curl twice and eliminate the pressure term from equations (3) and (8). The

variables are then nondimensionalised using d,
d2

κ
,
κ

d
, T0−Tu and H0 as the units of length,

time, velocity, temperature and the magnetic field in the fluid layer and dm,
d2
m

κm
,
κm
dm

, Tl−T0

as the corresponding characteristic quantities in the porous layer.
The dimensionless equations are then subjected to normal mode analysis as follows W

θ
H

 =

 W (z)
θ(z)
H(z)

 f(x, y)ent (17)

 Wm

θm
H

 =

 Wm(zm)
θm(zm)
H(zm)

 fm(xm, ym)enmt (18)

with ∇2
2f + a2f = 0 and ∇2

2mfm + a2
mfm = 0, where a and am are the horizontal wave

numbers, n and nm are the frequencies, W & Wm are the dimensionless vertical velocities,
θ & θm are temperature distributions in fluid and porous layer respectively and obtain the
following equations
in 0 ≤ z ≤ 1

(D2 − a2 +
n

Pr
)(D2 − a2)W = −QτfmD(D2 − a2)H (19)

(D2 − a2 + n)θ + [h(z) +R∗I(2z − 1)]W = 0 (20)

(τfm(D2 − a2) + n)H +DW = 0 (21)

in −1 ≤ zm ≤ 0

(1− β2nm
Prm

)(D2
m − a2

m)Wm = Qmτmmβ
2Dm(D2

m − a2
m)Hm (22)

(D2
m − a2

m +Anm)θm + [hm(zm) +R∗Im(2zm + 1)]Wm = 0 (23)

(τmm(D2
m − a2

m) + nmε)Hm +DmWm = 0 (24)
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where, for fluid layer Pr =
ν

κ
is the Prandtl number, Q =

µpH
2
0d

2

µκτfm
is the Chandrasekhar

number and τfm =
νmv

κ
is the diffusivity ratio. For porous layer, Prm =

ενm
κm

is the

Prandtl number, β2 =
K

d2
m

= Da is the Darcy number, β is the porous parameter, Qm =

µpH
2
0d

2
m

µκmτmm
= Qεd̂2 is the Chandrasekhar number and τmm =

νem
κm

is the diffusivity ratio

of fluid in porous layer.R∗I =
RI

2(T0 − Tu)
and R∗Im =

RIm

2(Tl − T0)
are the modified internal

Rayleigh numbers for fluid and porous layer and RI =
Φd2

κ
and RIm =

Φmd
2
m

κm
are the

internal Rayleigh numbers for fluid and porous layer respectively.
Substituting (21) in (19) & (24) in (22) and assume that the present problem satisfies the
principle of exchange of stability, so putting n = nm = 0. Now (19)-(24) becomes,
in 0 ≤ z ≤ 1

(D2 − a2)2W = QD2W (25)

(D2 − a2)θ + [h(z) +R∗I(2z − 1)]W = 0 (26)

in −1 ≤ zm ≤ 0

(D2
m − a2

m)Wm = −Qmβ
2D2

mWm (27)

(D2
m − a2

m)θm + [hm(zm) +R∗Im(2zm + 1)]Wm = 0 (28)

where R∗I =
RI

2(T0 − Tu)
and R∗Im =

RIm

2(Tl − T0)
are the modified internal Rayleigh numbers

for fluid and porous layer respectively.

3. Boundary Conditions

The boundary conditions are nondimensionalized and then subjected to normal mode
expansion and are

D2W (1) +Ma2θ(1) = 0,

W (1) = 0,Wm(−1) = 0, T̂W (0) = Wm(0),

T̂ d̂DW (0) = DmWm(0),

T̂ d̂3β2(D3W (0)− 3a2DW (0)) = −DmWm(0),

θ(1) = 0, θ(0) = T̂ θm(0),

Dθ(0) = Dmθm(0), θm(−1) = 0 (29)

where

T̂ =
Tl − T0

T0 − Tu
is the thermal ratio, M = −∂σt

∂T

(T0 − Tu)d

µκ
is the thermal Marangoni num-

ber, β =

√
K

d2
m

is the porous parameter and d̂ =
dm
d

is the depth ratio.
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4. Method of Solution

The solutions W and Wm are obtained by solving (25) and (27) using the velocity
boundary conditions of (29), we get

W (z) = A1[cosh δz + a1 sinh δz + a2 cosh ζz + a3 sinh ζz] (30)

Wm(zm) = A1[a4 cosh δmzm + a5 sinh δmzm] (31)

where

δ =

√
Q−

√
Q+ 4a2

2
, ζ =

√
Q+

√
Q+ 4a2

2
, δm =

√
a2
m

1 +Qmβ2

a1 = −∆2a3

∆1
, a2 =

∆5∆7 −∆8∆4

∆3∆7 −∆6∆4
, a3 =

∆5∆6 −∆8∆3

∆4∆6 −∆7∆3
,

a4 = T̂ (1 + a2), a5 =
1

δm
(T̂ d̂a1δ + a3ζ) ∆1 = d̂2β2(δ3 − 3a2δ) + δ,

∆2 = d̂2β2(ζ3 − 3a2ζ) + ζ,∆3 = T̂ cosh δm,

∆4 = − d̂T̂ sinh δm
δm

(ζ − ∆2δ

∆1
),∆5 = −∆3,

∆6 = cosh ζ,∆7 = sinh ζ − (∆2
∆1

) sinh δ,∆8 = − cosh δ

4.1. Linear temperature profile. Consider the linear profile

h(z) = 1 and hm(zm) = 1 (32)

substituting equation (32) into (26) and (28), the temperature distributions θ and θm are
obtained using the temperature boundary conditions, as follows

θ(z) = A1[c1 cosh az + c2 sinh az + g1(z)] (33)

θm(zm) = A1[c3 cosh amzm + c4 sinh amzm + gm1(zm)] (34)

where
g1(z) = A1[δ1 − δ2 + δ3 − δ4], gm1(zm) = A1[δ5 − δ6]

δ1 =
(E2z + E1)

(δ2 − a2)
(cosh δz + a1 sinh δz)

δ2 =
2δE2

(δ2 − a2)2
(a1 cosh δz + sinh δz)

δ3 =
(E2z + E1)

(ζ2 − a2)
(a2 cosh ζz + a3 sinh ζz)

δ4 =
2ζE2

(ζ2 − a2)2
(a3 cosh ζz + a2 sinh ζz)

δ5 =
(E1m + E2mzm)

(δ2
m − a2

m)
(a4 cosh δmzm + a5 sinh δmzm)

δ6 =
2E2mδm

(δ2
m − a2

m)2
(a5 cosh δmzm + a4 sinh δmzm)

E1 = R∗I − 1, E2 = −2R∗I , E1m = −(R∗Im + 1), E2m = −2R∗Im
c1 = c3T̂ + ∆10 −∆11, c2 = 1

a(c4am + ∆12 −∆13),

c3 =
∆16∆18 + ∆19∆15

∆15∆17 + ∆18∆14
, c4 =

∆19∆14 −∆16∆17

∆18∆14 + ∆17∆15
,

∆9 = −[δ7 − δ8 + δ9 − δ10],

δ7 =
(E2 + E1)

(δ2 − a2)
(cosh δ + a1 sinh δ),
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δ8 = [
2δE2

(δ2 − a2)2
](a1 cosh δ + sinh δ),

δ9 =
(E2 + E1)

(ζ2 − a2)
(a2 cosh ζ + a3 sinh ζ),

δ10 = [
2ζE2

(ζ2 − a2)2
](a3 cosh ζ + a2 sinh ζ),

∆10 = T̂ [
E1ma4

(δ2
m − a2

m)
− 2E2mδma5

(δ2
m − a2

m)2
],

∆11 =
E1

(δ2 − a2)
− 2δa1E2

(δ2 − a2)2
+

a2E1

(ζ2 − a2)
− 2ζa3E2

(ζ2 − a2)2
,

∆12 = [
E2m

(δ2
m − a2

m)
− 2δ2

mE2m

(δ2
m − a2

m)2
]a4 +

a5E1m

(δ2
m − a2

m)

∆13 =
E1δa1 + E2

(δ2 − a2)
− 2E2δ

2

(δ2 − a2)2
+
E1ζa3 + E2a2

(ζ2 − a2)
− 2a2E2ζ

2

(ζ2 − a2)2
,

∆14 = cosh am,∆15 = sinh am,

∆16 = −E1m − E2m

(δ2
m − a2

m)
(a4 cosh δm − a5 sinh δm) + ∆160,

∆160 =
2δmE2m

(δ2
m − a2

m)2
(a5 cosh δm − a4 sinh δm)

∆17 = T̂ cosh a,∆18 =
am sinh a

a
,

∆19 = ∆9 − (∆10 −∆11) cosh a− (∆12 −∆13) sinh a

a
From the boundary condition (29), we have

M =
−D2W (1)

a2θ(1)

The thermal Marangoni number for a linear temperature profile is as follows

M1 = − [δ2(cosh δ + a1 sinh δ) + ζ2(a2 cosh ζ + a3 sinh ζ)]

a2(c1 cosh a+ c2 sinh a+ Λ1 + Λ2)
(35)

where

Λ1 =
(E2 + E1)

(δ2 − a2)
(cosh δ + a1 sinh δ)− 2δE2

(δ2 − a2)2
(a1 cosh δ + sinh δ)

Λ2 =
(E2 + E1)

(ζ2 − a2)
(a2 cosh ζ + a3 sinh ζ)− 2ζE2

(ζ2 − a2)2
(a3 cosh ζ + a2 sinh ζ)

4.2. Parabolic temperature profile. For the parabolic temperature profile

h(z) = 2z and hm(zm) = 2zm (36)

Substituting (36) into (26) and (28), the temperature distributions θ and θm are obtained
using the temperature boundary conditions is as follows

θ(z) = A1[c5 cosh az + c6 sinh az + g2(z)] (37)

θm(zm) = A1[c7 cosh amzm + c8 sinh amzm + gm2(zm)] (38)

where
g2(z) = A1[δ11 − δ12 + δ13 − δ14], gm2(zm) = A1[δ15 − δ16]

δ11 =
(E4z + E3)

(δ2 − a2)
(cosh δz + a1 sinh δz)

δ12 =
2δE4

(δ2 − a2)2
(a1 cosh δz + sinh δz)
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δ13 =
(E4z + E3)

(ζ2 − a2)
(a2 cosh ζz + a3 sinh ζz)

δ14 =
2ζE4

(ζ2 − a2)2
(a3 cosh ζz + a2 sinh ζz)

δ15 =
(E3m + E4mzm)

(δ2
m − a2

m)
(a4 cosh δmzm + a5 sinh δmzm)

δ16 =
2E4mδm

(δ2
m − a2

m)2
(a5 cosh δmzm + a4 sinh δmzm),

E3 = R∗I , E4 = −2(R∗I + 1), E3m = −R∗Im, E4m = −2(R∗Im + 1)

c5 = c7T̂ + ∆21 −∆22, c6 = 1
a(c8am + ∆23 −∆24),

c7 =
∆27∆29 + ∆30∆26

∆25∆29 + ∆26∆28
, c8 =

∆27∆28 −∆25∆29

−∆26∆28 −∆25∆29
,

∆20 = −[δ17 − δ18 + δ19 − δ20],

δ17 =
(E4 + E3)

(δ2 − a2)
(cosh δ + a1 sinh δ),

δ18 = [
2δE4

(δ2 − a2)2
](a1 cosh δ + sinh δ),

δ19 =
(E4 + E3)

(ζ2 − a2)
(a2 cosh ζ + a3 sinh ζ),

δ20 = [
2ζE4

(ζ2 − a2)2
](a3 cosh ζ + a2 sinh ζ),

∆21 = T̂ [
E3ma4

(δ2
m − a2

m)
− 2E4mδma5

(δ2
m − a2

m)2
],

∆22 =
E3

(δ2 − a2)
− 2δa1E4

(δ2 − a2)2
+

a2E3

(ζ2 − a2)
− 2ζa3E4

(ζ2 − a2)2
,

∆23 = [
E4m

(δ2
m − a2

m)
− 2δ2

mE4m

(δ2
m − a2

m)2
]a4 +

a5E3m

(δ2
m − a2

m)

∆24 =
E3δa1 + E4

(δ2 − a2)
− 2E4δ

2

(δ2 − a2)2
+
E3ζa3 + E4a2

(ζ2 − a2)
− 2a2E4ζ

2

(ζ2 − a2)2
,

∆25 = cosh am,∆26 = sinh am,

∆27 = −E3m − E4m

(δ2
m − a2

m)
(a4 cosh δm − a5 sinh δm) + ∆270,

∆270 =
2δmE4m

(δ2
m − a2

m)2
(a5 cosh δm − a4 sinh δm),

∆28 = T̂ cosh a,∆29 =
am sinh a

a
,

∆30 = ∆20 − (∆21 −∆22) cosh a− (∆23 −∆24) sinh a

a
From the boundary condition (29), the thermal Marangoni number for a parabolic tem-
perature profile is as follows

M2 = − [δ2(cosh δ + a1 sinh δ) + ζ2(a2 cosh ζ + a3 sinh ζ)]

a2(c5 cosh a+ c6 sinh a+ Λ3 + Λ4)
(39)

where

Λ3 =
(E4 + E3)

(δ2 − a2)
(cosh δ + a1 sinh δ)− 2δE4

(δ2 − a2)2
(a1 cosh δ + sinh δ)

Λ4 =
(E4 + E3)

(ζ2 − a2)
(a2 cosh ζ + a3 sinh ζ)− 2ζE4

(ζ2 − a2)2
(a3 cosh ζ + a2 sinh ζ)
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4.3. Inverted Parabolic temperature profile. Consider this profile

h(z) = 2(1− z) and hm(zm) = 2(1− zm) (40)

Substituting (40) into (26) and (28), the temperature distributions θ and θm are obtained
using the temperature boundary conditions, as follows

θ(z) = A1[c9 cosh az + c10 sinh az + g3(z)] (41)

θm(zm) = A1[c11 cosh amzm + c12 sinh amzm + gm3(zm)] (42)

where
g3(z) = A1[δ21 − δ22 + δ23 − δ24], gm3(zm) = A1[δ25 − δ26]

δ21 =
(E6z + E5)

(δ2 − a2)
(cosh δz + a1 sinh δz)

δ22 =
2δE6

(δ2 − a2)2
(a1 cosh δz + sinh δz)

δ23 =
(E6z + E5)

(ζ2 − a2)
(a2 cosh ζz + a3 sinh ζz)

δ24 =
2ζE6

(ζ2 − a2)2
(a3 cosh ζz + a2 sinh ζz)

δ25 =
(E5m + E6mzm)

(δ2
m − a2

m)
(a4 cosh δmzm + a5 sinh δmzm)

δ26 =
2E6mδm

(δ2
m − a2

m)2
(a5 cosh δmzm + a4 sinh δmzm),

E5 = R∗I − 2, E6 = 2(1−R∗I), E5m = −2−R∗Im, E6m = 2(1−R∗Im)

c9 = c11T̂ + ∆32 −∆33, c10 = 1
a(c12am + ∆34 −∆35),

c11 =
∆38∆40 + ∆37∆41

∆40∆36 + ∆37∆39
, c12 =

∆38∆39 −∆36∆41

−∆39∆37 −∆36∆40
,

∆31 = −[δ27 − δ28 + δ29 − δ30],

δ27 =
(E6 + E5)

(δ2 − a2)
(cosh δ + a1 sinh δ),

δ28 = [
2δE6

(δ2 − a2)2
](a1 cosh δ + sinh δ),

δ29 =
(E6 + E5)

(ζ2 − a2)
(a2 cosh ζ + a3 sinh ζ),

δ30 = [
2ζE6

(ζ2 − a2)2
](a3 cosh ζ + a2 sinh ζ),

∆32 = T̂ [
E5ma4

(δ2
m − a2

m)
− 2E6mδma5

(δ2
m − a2

m)2
],

∆33 =
E5

(δ2 − a2)
− 2δa1E6

(δ2 − a2)2
+

a2E5

(ζ2 − a2)
− 2ζa3E6

(ζ2 − a2)2
,

∆34 = [
E6m

(δ2
m − a2

m)
− 2δ2

mE6m

(δ2
m − a2

m)2
]a4 +

a5E5m

(δ2
m − a2

m)

∆35 =
E5δa1 + E6

(δ2 − a2)
− 2E6δ

2

(δ2 − a2)2
+
E5ζa3 + E6a2

(ζ2 − a2)
− 2a2E6ζ

2

(ζ2 − a2)2
,

∆36 = cosh am,∆37 = sinh am,

∆38 = −E5m − E6m

(δ2
m − a2

m)
(a4 cosh δm − a5 sinh δm) + ∆380,

∆380 =
2δmE6m

(δ2
m − a2

m)2
(a5 cosh δm − a4 sinh δm),
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∆39 = T̂ cosh a,∆40 =
am sinh a

a
,

∆41 = ∆31 − (∆32 −∆33) cosh a− (∆34 −∆35) sinh a

a
From the boundary condition (29), the thermal Marangoni number for a inverted parabolic
temperature profile is as follows

M3 = − [δ2(cosh δ + a1 sinh δ) + ζ2(a2 cosh ζ + a3 sinh ζ)]

a2(c9 cosh a+ c10 sinh a+ Λ5 + Λ6)
(43)

where

Λ5 =
(E6 + E5)

(δ2 − a2)
(cosh δ + a1 sinh δ)− 2δE6

(δ2 − a2)2
(a1 cosh δ + sinh δ)

Λ6 =
(E6 + E5)

(ζ2 − a2)
(a2 cosh ζ + a3 sinh ζ)− 2ζE6

(ζ2 − a2)2
(a3 cosh ζ + a2 sinh ζ)

5. Results and Discussion

The thermal Marangoni numbers M1 for linear, M2 for parabolic and M3 for inverted
parabolic temperature profiles which are the Eigen values are obtained as an expression of
the horizontal wavenumbers a and am, the Chandrasekhar number Q, the porous param-
eter β, the thermal ratio T̂ , the modified internal Rayleigh numbers R∗I and R∗Im for the

fluid and porous layers respectively and the depth ratio d̂. These Marangoni numbers are
drawn as a function of depth ratio using Mathematica software. From the graphs it is clear
that, for lower values of depth ratios, there is no much change in the thermal Marangoni
numbers and increases for further increase in the values of the depth ratio. The effects of
the parameters a, β, Q, R∗I and T̂ on the thermal Marangoni numbers M1,M2 and M3

are shown in the following figures for linear, Parabolic and inverted parabolic temperature

profiles for fixed values of Q = 50, ε = 1, β = 0.1, a = 1.0, T̂ = 1.5, R∗I = −3 and R∗Im = 1.

The effects of the horizontal wavenumber a on the thermal Marangoni number is exhib-
ited in the figures 2a,2b and 2c for linear, parabolic and inverted parabolic temperature
profiles respectively and they are for a = 0.9, 1.0 and 1.1. The effects of a are analogous
for all the three profiles and for a fixed value of depth ratio, the increase in the value
of the horizontal wavenumber for the fluid layer a , decreases the value of the thermal
Marangoni number. That is the Magneto-Marangoni convection sets in earlier favoring
the situations of demanding convection. Hence the increase in the value of a destabilizes
the system which is conducive for the situations which require convection namely heat
transfer problems.
The effects of the porous parameter β on the thermal Marangoni number are displayed in
the figures 3a,3b and 3c respectively for linear, parabolic and inverted parabolic tempera-
ture profiles for β = 0.1, 0.2 and 0.3. The effects of β are similar for all the three profiles
and for a fixed value of depth ratio, the increase in the value of the porous parameter β,
increases the value of the thermal Marangoni number. That is the Magneto-Marangoni
convection is delayed. Hence the increase in the value of β stabilizes the system which is
conducive for the situations where in the convection is to be controlled. Also the diverging
curves indicate that the effect of the porous parameter is drastic for the larger values of
depth ratios, hence this parameter plays an important role in the porous layer dominant
composite systems.
The effects of the Chandrasekhar number Q on the thermal Marangoni numbers is de-
picted in figures 4a, 4b and 4c for linear, parabolic and inverted parabolic temperature
profiles respectively and they are for Q = 50, 60 and 70. The effects of Q is same for
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(a) (b) (c)

Figure 2. M versus d̂ for different values of horizontal wave number a

(a) (b) (c)

Figure 3. M versus d̂ for different values of porous parameter β

(a) (b) (c)

Figure 4. M versus d̂ for different values of Chandrasekhar number Q

all the three profiles and for a fixed value of depth ratio, the increase in the value of
Chandrasekhar number Q, increases the value of the thermal Marangoni number. That
is the Magneto-Marangoni convection is delayed. Hence the presence of a magnetic field
stabilizes the system.
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(a) (b) (c)

Figure 5. M versus d̂ for different values of modified internal Rayleigh
number R∗I

(a) (b) (c)

Figure 6. M versus d̂ for different values of thermal ratio T̂

The effect of modified internal Rayleigh number R∗I on the Marangoni number is similar
for all the three temperature profiles depicted the figures 5a, 5b, 5c for R∗I = −3,−4 and
−5. Decreasing the values of R∗I , the Marangoni number increases, which is physically
reasonable as the absorption of heat stabilizes the system, hence the Magneto-Marangoni
convection can delayed by decreasing the values of R∗I . The effects of the thermal ratio T̂
on the thermal Marangoni numbers is presented in figures 6a, 6b and 6c for linear, para-
bolic and inverted parabolic temperature profiles respectively and they are for T̂ = 1.5, 2.0
and 2.5. The effects of T̂ is same for all the three profiles and for a fixed value of depth
ratio, the increase in the value of thermal ratio T̂ , increases the value of the thermal
Marangoni number. That is the Magneto-Marangoni convection is delayed. Hence the
system is stabilized. Since the curves are slightly diverging, the effect of this ratio is
prominent for larger values of depth ratios.

6. Conclusions

Text of the conclusion Following conclusions are drawn from this study

(i) The effects of the physical parameters is qualitatively similar for both uniform and
nonuniform temperature gradients considered in the study.
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(ii) The inverted parabolic profile is the highly stable of all the three temperature gra-
dients.

(iii) By declining the values of the horizontal wave number a and the modified internal
Rayleigh number R∗I , one can postpone the Darcy-Bènard-Magneto-Marangoni con-
vection. Hence these two parameters play an important role to control convection in
the manufacture of crystals.

(iv) By lessening the values of porous parameter β, the Chandrasekhar number Q and the

thermal ratio T̂ , Darcy-Bènard-Magneto–Marangoni convection can be preponed.
(v) There is no effect of modified internal Rayleigh number R∗Im for porous layer on the

Darcy-Bènard-Magneto-Marangoni convection.
(vi) The parameters β, Q and T̂ play an important role in the porous layer dominant

composite layer.
(vii) Smaller values of horizontal wave number, modified internal Rayleigh number and

larger values of porous parameter, Chandrasekhar number and thermal ratio can be
utilized to control convection in the manufacture of crystals. So, this study is very
much useful for crystal growth industries.
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