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SOLUTION OF INVERSE SOURCE PROBLEM IN
THERMOACOUSTIC IMAGING

ABSTRACT

This study aims to investigate and explore accurate analytical inverse solutions of ther-

moacoustic wave equation involved in microwave induced thermoacoustic imaging of

breast. Using boundary conditions, we aimed to find more realistic solutions. For

cross-sectional two-dimensional thermoacoustic imaging of breast, we explored solu-

tion of the wave equation using layered tissue model consisting of concentric annular

layers on a cylindrical cross-section. To obtain the forward and inverse solutions of

the thermoacoustic wave equation, we derived the Green’s function involving Bessel

and Hankel functions by employing the geometrical and acoustic parameters (densi-

ties and velocities) of layered media together with temporal initial condition, radiation

conditions and continuity conditions on boundaries of layers. The image reconstruction

based on this approach involves the layers parameters as the a priori information which

can be estimated from the acquired thermoacoustic data. To test and compare our lay-

ered solution with conventional solution based on homogeneous medium assumption,

we performed simulations using numerical test phantoms consisting of sources dis-

tributed in the layered structure. After then, we derived more general integral solution

for thermoacoustic wave equation in frequency domain for an arbitrary convex domain

in R3.

Keywords: Inverse source problem, Thermoacoustic wave equation, Green’s func-

tions, Integral equations, Nonhomogeneous medium
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TERMOAKUSTİK GÖRÜNTÜLEMEDE TERS PROBLEM
ÇÖZÜMÜ

ÖZET

Bu çalışma, tıbbi meme görüntülemede kullanılan mikrodalga uyarımlı termoakus- tik

görüntüleme sisteminin dayandığı termoakustik dalga denkleminin doğru ana-litik ters

çözümlerini araştırmayı ve keşfetmeyi amaçlamaktadır. Çalışmada, sınır koşullarını

kullanarak daha gerçekçi çözümler bulmak hedeflendi. Meme dokusunun kesitsel iki

boyutlu termoakustik görüntülemesi için, silindirik bir kesit üzerinde eşmerkezli daire-

sel katmanlardan oluşan katmanlı doku modeli kullanarak dalga denkleminin çözümü

araştırıldı ve elde edildi. Termoakustik dalga denkleminin ileri ve ters çözümlerini

elde etmek için, katmanlı ortamın geometrik ve akustik parametreleri (yoğunlukları ve

hızları) ile zamansal başlangıç koşulu, radyasyon koşulları ve süreklilik sınır koşulları

birlikte kullanılarak Bessel ve Hankel fonksiyonlarını içeren Green fonksiyonları bu-

lundu. Bu yaklaşıma dayalı görüntü oluşturma, elde edilen termoakustik verilerden

tahmin edilebilen katman parametrelerini ön bilgi olarak içerir. Katmanlı çözümümüzü

homojen ortam varsayımına dayalı geleneksel çözümle test etmek ve karşılaştırmak

için katmanlı yapıda dağılmış kaynaklardan oluşan sayısal test fantomları kullanarak

simülasyonlar gerçekleştirildi. Daha sonra, R3’deki rastgele bir dışbükey bölge için

termoakustik dalga denkleminin frekans uzayında daha genel bir integral çözüm elde

edildi.

Anahtar kelimeler: Ters kaynak problemi, Termoakustik dalga denklemi, Green fonksiy-

onları, İntegral denklemler, Homojen olmayan ortam
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CHAPTER 1

1. INTRODUCTION

1.1 Thermoacoustic Tomography

Thermoacoustic tomography (TAT) is defined as cross-sectional or three dimen-

sional imaging of biological tissues based on the thermoacoustic effect (Lihong, Xu,

& Wang, 2006). In thermoacoustic imaging, non-ionizing radio frequency (RF) or mi-

crowave pulses are delivered into biological tissues. Some of the delivered energy is

absorbed and converted into heat, leading to transient thermoelastic expansion, which

in turn leads to ultrasonic emission. The generated ultrasonic waves are then detected

by ultrasonic transducers located on the boundary of the object to form images of ab-

sorbtion properties of object. It is known that absorption is closely associated with

physiological properties, such as hemoglobin concentration and oxygen saturation and

that cancerous cells absorb several times more energy than the healthy ones. (Baranski

& Czerski, 1976; Foster & Arkhipov, 1974; M. Xu & Wang, 2002; L. V. Wang, 2003).

As a result, the magnitude of the thermoacoustic signal, which is proportional to the

local energy deposition, reveals physiologically specific absorption contrast. This con-

trast provides determination of cancerous locations if the distribution of the absorption

function is known.
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1.2 Breast Cancer and Breast Imaging Modalities

Breast cancer accounts for 22.9 % of all cancers in women and approximately

13.7 % of cancer deaths in women is caused by breast cancer. Risk of getting breast

cancer increases by age and the diagnosis ratio of breast cancer is almost 70 % (Boniol

et al., 2007; Boyle & Ferlay, 2005). Breast cancer is the most common cancer type

among women and is the second type of cancer with the highest mortality rate (Siegel,

Miller, Fuchs, & Jemal, 2021). Similar to all other cancer types early diagnosis has a

critical importance in dealing with breast cancer and to decrease the number of breast

cancer related deaths. Today, mammography and ultrasound are widely used medi-

cal imaging devices for breast cancer diagnosis and follow-up. Mammography is a

very cost-effective technique but the x-rays used for imaging have cancer-triggering

harmful side effects. Also there are some difficulties in diagnosing pathologies in the

glandular tissue with mammography. Computerized tomography which needs to be

performed using higher doses of x-ray when compared to mammography is not used

for diagnosis of breast cancer. Ultrasonic imaging is low-cost and has no harmful side-

effects. Point resolution of this technique is high but contrast resolution is poor, this

complicates early diagnosis of some cancers and distinguishing malignancy. In breast

imaging, magnetic resonance imaging (MRI), with contrast, is useful for the diagno-

sis, but this imaging technique is relatively expensive and has no standart application

protocols. RF and microwave breast tomography is a technique based on different

electrical properties of tissues, having potentially high contrast resolution and no ion-

izing harmful side effect, but having poor point resolution (Lihong et al., 2006; Guy

& Fytche, 2005). In recent years, imaging based on photoacoustic/theormoacoustic ef-

fect is an attractive research topic. Since TAT is a hybrid biomedical imaging modality,

which employs electromagnetic energy in excitation and ultrasound waves in sensing,

it combines high contrast due to electromagnetic absorption and high point resolution

of ultrasound without harmful side effects.
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1.3 Inverse Source Problem

Many imaging methods, for biological tissue, are based on the reconstruction of

source distribution from data collected by transducers over a surface enclosing the re-

gion to be imaged. In microwave induced thermoacoustic tomography, the biological

tissue is heated by microwaves for thermal expansion of a tissue. Then the tissue acts

as an acoustic wave source. This process is represented mathematically by the follow-

ing nonhomogeneous wave equation:

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
=

β

Cp

∂H(r, t)

∂t
, (1.1)

where p(r, t) is the acoustic pressure at position r and time t, c is the speed of sound,

β is the isobaric volume expansion coefficient, Cp is the specific heat and H(r, t) is

the heating function. The left hand side of this equation describes the acoustic wave

propagation and the right hand side represents the source term (Lihong et al., 2006;

Karabutov & Gusev, 1993; Olsen, 1982; Council, 1996).

1.3.1 Derivation of Thermoacoustic Wave Equation

The acoustic wave equation governs the propagation of acoustic waves through

a material medium. The equation describes the evolution of acoustic pressure p or

particle velocity of a fluid −→u = ux
−→
i + uy

−→
j + uz

−→
k as a function of position r and

time t.

The motion of the fluid can be described with its compression or expansion, by

defining the relation between the particle velocity −→u and the instantaneous density ρ.

Consider a small rectangular parallelepiped volume element dV = dx dy dz, which is

fixed in space and through fluid travels:
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Figure 1.1 A spatially fixed volume element

The net influx of mass in the x direction into this spatially fixed volume is given by

(
ρux −

(
ρux +

∂(ρux)

∂x
dx

))
dy dz = −∂(ρux)

∂x
dV. (1.2)

The net influx of mass in the y and z directions can be expressed similarly and thus the

total influx through the parallelepiped is given by the equation

−
(
∂(ρux)

∂x
+

∂(ρuy)

∂y
+

∂(ρuz)

∂z

)
dV = −∇.(ρux)dV. (1.3)

The net influx must be equal to the rate of temporal increase in the mass of the volume:

−∇.(ρux)dV =
∂ρ

∂t
dV, (1.4)

which gives the following equation of continuity:

∂ρ

∂t
+∇.(ρux) = 0. (1.5)

Now, if we write ρ = ρ0(1 + s) where s is condensation defined by s = (
ρ− ρ0
ρ0

) and

ρ0 is the equilibrium density, which should be sufficiently weak function of time, and

assume that s is very small, (1.5) becomes

ρ0
∂s

∂t
+∇.(ρ0

−→u ) = 0, (1.6)
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which is the linear continuity equation of mass.

Now, consider the fluid element dV = dxdydz which moves with the fluid and

contains a mass dm of a fluid. Let P be instantaneous pressure and P0 be equilibrium

pressure at given position so as the acoustic pressure p = P −P0. By Newton’s second

law, the net force d
−→
f = −→a dm on the element will give rise to acceleration.

Under the assumption of no thermal confinement and kinematic viscosity, the net

force experienced by the element in the x direction is

dfx =

(
P −

(
P +

∂P

∂x
dx

))
dydz = −∂P

∂x
dV. (1.7)

Again similar expressions can be written in both y and z directions and thus total force

can be written as

dfx + dfy + dfz = −∇PdV. (1.8)

On the other hand, on the infinitesimal element, gravitational force acts. Hence, the net

force on the element is

d
−→
f = −∇PdV +−→g ρdV. (1.9)

The acceleration −→a of the fluid element is the time derivative of the velocity function
−→u of it. Here, we must notice that −→u is a function of both space and time. So we can

calculate the acceleration by using the chain rule:

−→a =
∂ux

∂t
+

∂ux

∂x

∂x

∂t
+

∂ux

∂y

∂y

∂t
+

∂ux

∂z

∂z

∂t
(1.10)

+
∂uy

∂t
+

∂uy

∂x

∂x

∂t
+

∂uy

∂y

∂y

∂t
+

∂uy

∂z

∂z

∂t
(1.11)

+
∂uz

∂t
+

∂uz

∂x

∂x

∂t
+

∂uz

∂y

∂y

∂t
+

∂uz

∂z

∂z

∂t
. (1.12)

Here,
∂x

∂t
,
∂y

∂t
and

∂z

∂t
mean time derivative of displacement of a fluid in the direction

x, y and z, respectively. The time derivative of displacement is equal to the velocity.
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Hence, the acceleration is sum up to

−→a =
∂−→u
∂t

+ ux
∂−→u
∂x

+ uy
∂−→u
∂y

+ uz
∂−→u
∂z

. (1.13)

Then, −→a can be written as

−→a =
∂−→u
∂t

+ (−→u .∇)−→u . (1.14)

Now, d
−→
f = −→a dm gives

−∇P +−→g ρ = ρ

(
∂−→u
∂t

+ (−→u .∇)−→u
)
. (1.15)

In the case of no acoustic excitation in the medium, −→g ρ0 = ∇P0, and hence ∇P =

∇p+−→g ρ0 so that substituting this in the above equation gives

− 1

ρ0
∇p+−→g s = (1 + s)

(
∂−→u
∂t

+ (−→u .∇)−→u
)
. (1.16)

If we make the assumptions that |−→g s| ≪ |∇p|
ρ0

, |s| ≪ 1, and |(
−−→
u.∇)−→u | ≪

∣∣∣∣∂−→u∂dt
∣∣∣∣,

then

ρ0
∂−→u
∂t

= −∇p. (1.17)

This is so called linear Euler’s equation, valid for acoustic processes of small ampli-

tude. Now, taking the divergence of (1.17) and the time derivative of (1.6), we get the

following two equations, respectively:

∇.

(
ρ0

∂−→u
∂t

)
= −∇2p, (1.18)

ρ0
∂2s

∂t2
+∇.

(
ρ0

∂−→u
∂t

)
= 0. (1.19)

Elimination of the divergence between these two equations gives

∇2p = ρ0
∂2s

∂t2
. (1.20)
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Condensation s can be expressed as s =
p

c2ρ0
where c is the thermodynamic speed of

sound. So, (1.20) turns into the following acoustic wave equation

∇2p =
1

c2
∂2p

∂t2
. (1.21)

In thermoacoustic imaging, acoustic wave source inside the medium is caused by ther-

mal expansion. After heating the medium, the pressure on the fluid is increased by

acoustic pressure source, which in turn the total force change over the system. Hence,

by Newton’s second law, there would be an additional force in the equation (1.9) which

leads to source term
β

Cp

∂H(r, t)

∂t
(Karabutov & Gusev, 1993; Kruger et al., 2000;

Kuchment & Kunyansky, 2008) in the acoustic wave equation and it results in so called

thermoacoustic wave equation:

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
=

β

Cp

∂H(r, t)

∂t
. (1.22)
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CHAPTER 2

2. LITERATURE SURVEY

Thermoacoustic imaging is an attractive research topic in recent years. Ther-

moacoustic effect generating acoustic sound by absorbed wave energy was discovered

by Alexander Bell (Bell, 1880). Many studies developed mathematical methods for

inverse solution of thermoaocustic wave equation representing thermoacoustic effect.

Most of the research studies reported in the literature were based on homogeneous

medium assumption (M. Xu & Wang, 2002; Y. Xu, Xu, & Wang, 2002b, 2002a; M. Xu

& Wang, 2005; İdemen & Alkumru, 2012). These researchs includes analytic solutions

using method of Green’s functions, surface integrals and series expansions. But there

are studies taking acoustic heterogeneties into account and using numerical methods,

iterative approachs and operator theory (Agranovsky & Kuchment, 2007; Hristova,

Kuchment, & Nyugen, 2008; Stefanov & Uhlman, 2009; Qian, Stefanov, Uhlman,

& Zhao, 2011; Anastasio, Zhang, & Pan, 2005). The boundary conditions for ther-

moacoustic imaging have been investigated by Wang and Yang (L. V. Wang & Yang,

2007). In a more recent study, Schoonover and Anastasio (Schoonover & Anastasio,

2011) have presented an inverse solution based on piecewise homogeneous planar lay-

ers structure consisting source distribution only in one certain layer. Also, there are

other studies combining conventional methods and acoustic speed distribution as apri-

ori information so that reducing effect of inhomogeneity and improving image quality

(Y. Xu & Wang, 2003; J. Wang et al., 2015; B. Wang, Zhao, Liu, Nie, & Liu, 2017;

Liu, Lu, Zhu, & Jin, 2017).
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CHAPTER 3

3. APPROACH

3.1 Problem Statement

In this study, our purpose is to find an inverse solution of thermoacoustic wave

equation in layered medium with taking boundary conditions into account.

The thermoacoustic wave propagation is governed by the nonhomogeneous wave

equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −p0(r).δ

′(t) (3.1)

with boundary conditions

p(r, t)
∣∣
r∈S− = p(r, t)

∣∣
r∈S+ (3.2)

and
1

ρ(r)

∂p(r, t)

∂n

∣∣∣∣∣
r∈S−

=
1

ρ(r)

∂pm+1(r, t)

∂n

∣∣∣∣∣
r∈S+

(3.3)

on each boundary S appearing in the space. Here, p(r, t) and ρ(r) are the acoustic

wave and the density functions at position r, respectively. −p0(r).δ
′(t) is the source

term corresponding the term
β

Cp

∂H(r, t)

∂t
.
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The outgoing wave function must satisfy the radiation condition∣∣∣∣ ∂P∂|r| − ikP

∣∣∣∣ = 0 as r → ∞ (3.4)

and the incoming wave function must satisfy the radiation condition∣∣∣∣ ∂P∂|r| + ikP

∣∣∣∣ = 0 as r → ∞. (3.5)

Also, as a nature of the problem, nonhomogeneous thermoacoustic wave equation must

satisfy the following initial conditions

p(r, 0+) = c2(r)p0(r) (3.6)

p(r, t) = 0 if t < 0 (3.7)

∂p(r, 0)

∂t
= 0. (3.8)

Inverse solution of thermoacoustic wave equation is determining source distrbu-

tion function (ratio of emision of microwave) inside medium from a known acoustic

pressure by a transducer. Inverse source problem in thermoacoustic imaging has been

studied for homogeneous medium by Xu and Wang (M. Xu & Wang, 2005) for spe-

cific measurement geometries: two parallel planes, an infinitely long circular cylinder

and a sphere, and this solution was extended to the arbitrary measurement geometry by

İdemen and Alkumru (İdemen & Alkumru, 2012). In these studies, in frequency do-

main, the source distribution inside the medium is determined by the following integral

equation:

p0(r) =
1

πc2

∫ ∞

−∞

∫
S

P (rs, w)
∂G

in

h(r, rs, w)

∂ns

dS dw, (3.9)

where S is a measurement surface, P (rs, w) is the acoustic pressure measured on the

surface S and Gh is a free space Green’s function. In our study, for the purpose of

thermoacoustic imaging of breast, we worked with cylidrically N -layered medium.

We extended the conventional solution and proved that the source distribution in each

10



layer of this medium can be determined as

p0(r) =
ρ(r)

πc2(r)

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)

∂G
in
(r, rs, w)

∂ns

dS dw, r ∈ Layer i (3.10)

for 1 ≤ i ≤ N , where P (rs, w) is the acoustic pressure measured on the surface

SN (located at outmost layer N th layer), G is the corresponding Green’s function of

N -layered medium and ρ(r) is a density function such that

ρ(r) = ρi, r ∈ Layer i (3.11)

for 1 ≤ i ≤ N . After that we derived more general integral solution to the inverse

problem of thermoacoustic wave equation in arbitrary convex medium as

p0(r
′) =

1

2πc2(r)

×
∫ ∞

−∞

∫
S

(
1

ρ(r)
∇P (r, w)Gin(r, r′, w)− P (r, w)

1

ρ(r)
∇Gin(r, r′, w)

)
.n dSr dw,

(3.12)

where P (r, w) is a pressure function known on the measurement surface S and Gin(r, r′, w)

is the Green’s function corresponding to nonhomogeneous media.
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CHAPTER 4

4. FORWARD SOLUTION AND INITIAL CONDITION

The Fourier transform is a useful tool to solve differential equations. We denote

the Fourier transform of a function f(t) with upper case of the letter f , that is

F (w) =

∞∫
−∞

f(t)e−iwtdt.

By taking Fourier transform of thermoacoustic wave equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −p0(r).δ

′(t), (4.1)

we obtain following nonhomogeneous Helmholtz equation

∇2P (r, w) + k2P (r, w) = iwp0(r) (4.2)

where k = w/c is the wave number, P (r, w) is the temporal Fourier Transform of

p(r, t).

In our derivations, we considered that w > 0 and P (r, w) is corresponding to

outgoing wave. After then, for the completeness in frequency domain, we defined

P (r,−w) = P (r, w)∗ for w < 0 as complex conjugate of pressure function for positive

frequency. The outgoing and incoming waves were represented by superscripts ’out’

and ’in’ for pressure function and we used the fact that P in(r, w) = (P out(r, w))
∗.
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4.1 Integral Representation of Forward Solution of Nonhomogeneous Wave Equa-

tion

In this study, we made use of Green’s function to solve nonhomogeneous wave

equation. Green’s function is the unit impulse response of a medium. When a point

source is located at r = r′, Green’s function is the solution of the equation

∇2P (r, w) + k2P (r, w) = δ(r − r′) (4.3)

where δ(.) is the Dirac delta function. The wave equation P (r, w) satisfies

∇2P (r, w) + k2P (r, w) = iwp0(r) (4.4)

and Green’s function G satisfies

∇2G(r, r′) + k2G(r, r′) = δ(r− r′). (4.5)

If we multiply the first equation by G and the second one by P (r, w) and subtract side

by side, we get

G∇2P − P∇2G = iwp0(r)G− P (r, w)δ(r− r′). (4.6)

If we integrate of the above equation in a very large disk of radius R, which involves

the source support V , we write

∫
|r|≤R

G∇2P − P∇2Gdr = iw

∫
V

p0(r)Gdr− P (r′, w). (4.7)

Now, we apply Green’s Theorem to the first integral:

∫
|r|=R

G
∂P

∂r
− P

∂G

∂r
dS = iw

∫
V

p0(r)Gdr− P (r′, w). (4.8)

If we add and subtract the term ikGP in the left integral and take the limit as R goes to

infinity, we easily see that the left integral goes to zero by radiation conditions (5.11).
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Hence, the solution of forward problem is obtained as follows:

P (r′, w) = iw

∫
V

p0(r)G(r, r′) dr. (4.9)

4.2 Result of Initial Condition

We know that the forward solution of the wave equation is given by

P (r, w) = iw

∫
R3

p0(r
′) G(r′, r, w) dvr′ .

When we take the inverse Fourier transform of both sides of the above equation, we

obtain

p(r, t) =
i

2π

∫
R2

p0(r
′)

(∫ ∞

−∞
wG(r′, r, w) e−iωt dw

)
dvr′ .

Now, by discontinuity at t = 0, we get the equality

1

2

(
p(r, 0−) + p(r, 0+)

)
=

i

2π

∫
R3

p0(r
′)

(∫ ∞

−∞
wG(r′, r, w) dw

)
dvr′ .

On the other hand, the left hand side of the above equation must be equal to source

function p0(r) by the initial conditions of the thermoacoustic wave equation (6.4) and

(6.5), therefore

p0(r) =
i

πc2

∫
R3

p0(r
′)

(∫ ∞

−∞
wG(r′, r, w) dw

)
dvr′ (4.10)

must be satisfied. p0(r) in the equation (4.10) is an arbitrary source function, hence

this equation gives

i

πc2(r)

∫ ∞

−∞
wG(r′, r, w) dw = δ(r′ − r) (4.11)

for any r′ and r.

We use the result (4.11) in the proof of inverse solution.
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CHAPTER 5

5. INVERSE SOLUTION IN TWO DIMENSIONAL

CIRCULARLY LAYERED MEDIUM

At the beginning of our study, we took nonhomogeneous region as circularly two

layered medium in two dimensional space to understand the problem in a simpler lay-

ered media. In this aspect, we characterized two layered media, stated inverse problem

and derived a solution of thermoacoustic wave equation on this layered medium as rep-

resented in this chapter:

Figure 5.1 Configuration of two layered medium

Consider two regions in R2 with different acoustic properties as depicted in Figure 5.1.

The interface of regions is the circle with center (0, 0) and radius r = a, denoted by

S1. We call the inside and the outside of the circle S1 as the Region 1 and Region

2, respectively. Suppose there is a circular transducer, called S2 in Region 2 enclosing

Region 1 as in the Figure 5.1. We call the area covered by S1 as V1 and the area between
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S1 and S2 as V2. We want to determine the source distribution in the region covered by

the transducer.

The acoustic waves are measured by the transducer for a sufficiently long time in-

terval so that the waves emitted from every source location reach the transducer. When

the two regions are different, there will be reflections and transmissions at the boundary

S1. The thermoacoustic wave propagation is governed by the nonhomogeneous wave

equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −p0(r).δ

′(t) (5.1)

with boundary conditions

p1(r, t) = p2(r, t)
∣∣
r∈S1

and
1

ρ1

∂p1(r, t)

∂n
=

1

ρ2

∂p2(r, t)

∂n

∣∣∣∣∣
r∈S1

on the boundary S1. Here, p1 and p2 are the acoustic waves and ρ1 and ρ2 are the

densities for Region 1 and Region 2, respectively. In an inverse source problem, p0(r)

is to be reconstructed given that acoustic field is measured by the transducer and known

on the surface S2. We know that (5.1) corresponds to following nonhomogeneous

Helmholtz equation in frequency domain:

∇2P (r, w) + k2P (r, w) = iwp0(r) (5.2)

where k = w/c is the wave number, P (r, w) is the temporal Fourier Transform of

p(r, t).

5.1 Green’s Function of Medium

Green’s function is the solution of homogeneous wave equation except the point

r′ where the point source located:
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∇2G(r, w) + k2G(r, w) = δ(r − r′) (5.3)

where δ(.) is the Dirac delta function.

Because of the circular symmetry of the configuration of regions and transducer,

we prefer to work in polar coordinates. The Helmholtz wave equation given in (3.4) is

expressed in polar coordinates (r, ϕ) as,

∂2G

∂r2
+

1

r

∂G

∂r
+

1

r2
∂2G

∂ϕ2 + k2G =
1

r
δ(r − r′)δ(ϕ− ϕ′). (5.4)

To solve above nonhomogeneous equation in layered medium we need to solve homo-

geneous one in homogeneous medium firstly:

Consider the two regions are identical that is the medium is homogeneous. Now,

suppose that there is a point source at (r′, ϕ′). Green’s function is the solution of

homogeneous wave equation except the point where the source located. We apply

separation of variables method to solve the following homogeneous equation

∂2G

∂r2
+

1

r

∂G

∂r
+

1

r2
∂2G

∂ϕ2 + k2G = 0. (5.5)

Let I(r, ϕ) be a solution of (5.5) and suppose

I(r, ϕ) = R(r)Φ(ϕ).

Substituting I in (5.5) yields

R′′Φ +
1

r
R′ϕ+

1

r2
RΦ′′ + k2RΦ = 0

which implies that
R′′

R
r2 + r

R′

R
+ k2r2 = −Φ′

Φ
(5.6)
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where primes refer to ordinary differentiation with respect to the independent variable,

r or ϕ. Since each side of (5.6) depends on different variable, they must be equal to

same constant, say λ:

R′′

R
r2 + r

R′

R
+ k2r2 = −Φ′

Φ
= λ. (5.7)

Hence, we obtain two ordinary differential equation from (5.7):

Φ′′ + λΦ = 0 (5.8)

and

r2R′′ + rR′ + (k2r2 − λ)R = 0. (5.9)

By periodicity of the function Φ, the fundamental solutions of first equation (5.8) are

einϕ and e−inϕ, where n is an integer and λ = n2.

Second equation (5.9) is known as Bessel differential equation. For the sake of

completeness, we rederived the solution of Bessel equation and state the derivation in

Appendix. Two independent solutions of Bessel equation are the first kind of Bessel

function Jn(kr) and the second kind of Bessel function Yn(kr). Alternatively, linear

combination of these two functions, Hankel functions of first kind H1
n(kr) = Jn(kr)+

iYn(kr) and of second kind H2
n(kr) = Jn(kr) − iYn(kr) can be used as fundamental

solutions. As a result, the homogeneous solution of (5.5) has the form

I(r, ϕ) =
∞∑

n=−∞

(AnJn(k1r) +BnYn(k1r)) e
inϕ.

Now, we can define the Green’s function for homogeneous medium as follows:
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G(r, ϕ; r′, ϕ′) =


∞∑

n=−∞
(AnJn(kr) +BnYn(kr)) e

inϕ, if r < r′

∞∑
n=−∞

(CnH
1
n(kr) +DnH

2
n(kr)) e

inϕ, if r′ < r.
(5.10)

Since Green’s functions must be defined for all r in the domain, and Yn has singularity

at r = 0, Bn must be identically zero. G must also satisfy Sommerfeld’s radiation

condition, that is

lim
r→∞

[
r

d−1
2 (

∂

∂r
− ik)G(r)

]
= 0. (5.11)

Since H1
n(kr) diverges when r goes to infinity, Cn must be zero. So,

G(r, ϕ; r′, ϕ′) =


∞∑

n=−∞
AnJn(kr)e

inϕ, if r < r′

∞∑
n=−∞

DnH
2
n(kr)e

inϕ, if r′ < r.
(5.12)

By continuity of Green’s function at r = r′,

∞∑
n=−∞

AnJn(kr
′)einϕ =

∞∑
n=−∞

DnH
2
n(kr

′)einϕ. (5.13)

Here,
{
einϕ

}
are orthogonal functions which satisfy

∫ 2π

0

einϕeimϕdϕ =

 0, if m = n

2π, if m ̸= n
(5.14)

on the interval [0, 2π]. If we take inner product of both sides of above equation (5.13)

by e−imϕ, we get

2π∫
0

(
∞∑

n=−∞

AnJn(kr
′)einϕ

)
eimϕdϕ =

2π∫
0

(
∞∑

n=−∞

DnH
2
n(kr

′)einϕ

)
eimϕdϕ
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which gives

∞∑
n=−∞

2π∫
0

AnJn(kr
′)einϕeimϕdϕ =

∞∑
n=−∞

2π∫
0

DnH
2
n(kr

′)einϕeimϕdϕ

implying

2πAmJm(kr) = 2πDmH
2
m(kr) (5.15)

by orthogonality of exponential functions. Since m is arbitrary in (5.15), we conclude

that

AnJn(kr)e
inϕ = DnH

2
n(kr)e

inϕ for all n. (5.16)

Now, let us call

an =


AnJn(kr), if r < r′

DnH
2
n(kr), if r > r′

(5.17)

so we can write G as in the series form

G =
∞∑

n=−∞

ane
inϕ.

Substituting the G in the polar Helmholtz equation (5.4) results in

∂2

∂r2

∞∑
n=−∞

an(r)e
inϕ +

1

r

∂

∂r

∞∑
n=−∞

an(r)e
inϕ

+
1

r2

∞∑
n=−∞

−n2an(r)e
inϕ + k2

∞∑
n=−∞

an(r)e
inϕ

=
1

r
δ(r − r′)δ(ϕ− ϕ′). (5.18)

Again taking inner product by e−imϕ, the above partial differential equation turns into

ordinary differential equation:
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d2an

dr2
+

1

r

dan
dr

− (k2 − n2

r2
)an =

1

r
δ(r − r′)

e−imϕ′

2π
. (5.19)

Now, by multiplying the equation (5.19) by r and integrating both sides with respect

to r from r′ − ε to r′ + ε, we obtain

r′+ε∫
r′−ε

(
r
d2an(r)

(dr)2
+

dan(r)

dr
+

(
k2 − n2

r2

)
an(r)

)
dr =

r′+ε∫
r′−ε

(
δ(r − r′)

e−imϕ′

2π

)
dr

which implies that

r′+ε∫
r′−ε

r
d2an(r)

(dr)2
dr +

r′+ε∫
r′−ε

dan(r)

dr
dr +

r′+ε∫
r′−ε

(
k2 − n2

r2

)
an(r) dr =

e−inϕ

2π
. (5.20)

We apply integration by parts to the first integral in (5.20) and obtain

r
dan(r)

dr

∣∣∣∣r′+ε

r′−ε

−
r′+ε∫

r′−ε

dan(r)

dr
dr +

r′+ε∫
r′−ε

dan(r)

dr
dr +

r′+ε∫
r′−ε

(
k2 − n2

r2

)
an(r) dr =

e−inϕ

2π

which gives

(r′+ε)
dan(r)

dr

∣∣∣∣
r′+ε

−(r′−ε)
dan(r)

dr

∣∣∣∣
r′−ε

+

r′+ε∫
r′−ε

(
k2 − n2

r2

)
an(r) dr =

e−inϕ

2π
. (5.21)

Now, when we take the limit of both sides of equation (5.21) as ε goes to zero, the

integral on the left goes to zero due to the continuity of an at r′. Hence, it yields that

r′ lim
r→r′+

dan(r)

dr
− r′ lim

r→r′−

dan(r)

dr
=

e−inϕ

2π
. (5.22)

This condition is called jump discontinuity condition of Green’s functions. By defini-

tion of an (5.17), jump discontinuity gives

d (DnH
2
n(kr))

dr

∣∣∣∣
r=r′

− d (AnJn(kr))

dr

∣∣∣∣
r=r′

=
e−inϕ

2πr′
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which implies

DnH
2
n
′
(kr′)− AnJ

′
n(kr

′) =
e−inϕ

2πkr′
for all n. (5.23)

Now, if we multiply the equation (5.16) by H2
n
′
(kr′) and the equation (5.23) by H2

n(kr
′)

and add the equations side by side, we obtain

An

(
Jn(kr

′)H2
n(kr

′)− J ′
n(kr

′)H2
n
′
(kr′)

)
=

e−inϕ

2πkr′
H2

n(kr
′). (5.24)

The Wronskian of Jn and H2
n can be computed as follows [1]

W (Jn(r), H
2
n(r)) = − 2i

πr
. (5.25)

Hence, we obtain the coefficient An from (5.24) as

An =
1

4i
H2

n(kr
′)e−inϕ. (5.26)

Subsituting An in (5.16), we get the coefficient Dn as

Dn = − 1

4i
Jn(kr

′)e−inϕ. (5.27)

Hence, the Green’s function representing the unit impulse response of the homoge-

neous medium is

G(r, ϕ; r′, ϕ′) =


1
4i

∞∑
n=−∞

H2
n(kr

′)Jn(kr)e
in(ϕ−ϕ′), if r < r′

− 1
4i

∞∑
n=−∞

Jn(kr
′)H2

n(kr)e
in(ϕ−ϕ′), if r > r′.

(5.28)

5.1.1 Green’s Function of Two Layered Medium

Suppose that two regions have different densities, respectively ρ1, ρ2 and there is a

point source at (r′, ϕ′) inside Region 1. There will be reflections and transmissions on

the interface circle. Hence, Green’s function must satisfy the boundary conditions. We
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can define Green’s function for layered medium as follows:

G(r, ϕ; r′, ϕ′) =



∞∑
n=−∞

(AnJn(k1r) +BnYn(k1r)) e
inϕ, if r < r′

∞∑
n=−∞

(CnJn(k1r) +DnYn(k1r)) e
inϕ, if r′ < r < a

∞∑
n=−∞

(EnH
1
n(k2r) + FnH

2
n(k2r)) e

inϕ, if r > a.

(5.29)

Since Green’s functions must be defined for all r in the domain, and Yn has singularity

at r = 0, Bn must be identically zero.

G must also satisfy Sommerfeld’s radiation condition (5.11). Hence, En = 0 due to

the divergence of H1
n at infinity. Thus,

G(r, ϕ; r′, ϕ′) =



∞∑
n=−∞

AnJn(k1r)e
inϕ, if r < r′

∞∑
n=−∞

(CnJn(k1r) +DnYn(k1r)) e
inϕ, if r′ < r < a

∞∑
n=−∞

FnH
2
n(k2r)e

inϕ, if r > a.

(5.30)

The Green’s function G must be continuous at r = r′, this gives

∞∑
n=−∞

AnJn(k1r
′) =

∞∑
n=−∞

CnJn(k1r
′) +DnYn(k1r

′). (5.31)

If we take the inner product of (5.31), we obtain the following equation by similar

calculations in homogeneous case:

AnJn(k1r
′) = CnJn(k1r

′) +DnYn(k1r
′). (5.32)

Secondly, the jump discontinuity condition (5.22) at r = r′ yields that

d (CnJn(k1r
′) +DnYn(k1r

′))

dr

∣∣∣∣
r=r′

− d (AnJn(k1r))

dr

∣∣∣∣
r=r′

=
e−inϕ

2πr′
for all n
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which implies

CnJ
′
n(k1r

′) +DnY
′
n(k1r

′)− AnJn(k1r
′) =

e−inϕ

2πkr′
for all n. (5.33)

Now, we apply the boundary conditions to Green’s function G. The continuity of acous-

tic pressure at the boundary r = a, that is

lim
r→a−

G = lim
r→a+

G,

provides
∞∑

n=−∞

CnJn(k1a) +DnYn(k1a) =
∞∑

n=−∞

FnH
2
n(k2a).

If we take inner product of (5.1.1) by eimφ, it results in

CnJn(k1a) +DnYn(k1a) = FnH
2
n(k2a) for all n (5.34)

by orthogonality of exponential functions, again. The normal derivative of the function

G at the boundary circle D corresponds to the derivative of G with respect to r since

the circle D is centered at the origin. Hence, the second boundary condition

1

ρ1
lim
r→a−

∂G

∂n
=

1

ρ2
lim
r→a+

∂G

∂n

gives

1

ρ1

∞∑
n=−∞

(Cnk1J
′
n(k1a) +Dnk1Y

′
n(k1a)) =

1

ρ2

∞∑
n=−∞

Fnk2H
2
n
′
(k2a)

which in turn leads to

k1
ρ1

(CnJ
′
n(k1a) +DnY

′
n(k1a)) =

k2
ρ2

FnH
2
n
′
(k2a) for all n (5.35)

by applying inner product operation, again. Now, we have four equations (5.32), (5.33),

(5.34) and (5.35) to obtain the coefficients of the Green’s function of nonhomogeneous

medium. If we multiply (5.32) by J ′
n(k1r

′) and (5.33) by Jn(k1r
′) and adding side by
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side, we get

Dn(Jn(k1r
′)Y ′

n(k1r
′)− J ′

n(k1r
′)Y ′

n(k1r
′)) =

e−inφ′

2πk1r′
Jn(k1r

′). (5.36)

The Wronskian of Jn and Yn can be derived as

W (Jn(r), Yn(r)) = Jn(r)Y
′
n(r)− J ′

n(r)Yn(r) =
2

πr
(5.37)

which yields

Dn =
e−inφ′

4
Jn(k1r

′). (5.38)

If we multiply (5.32) by Y ′
n(k1r

′) and (5.33) by Yn(k1r
′) and add side by side and using

the Wronskian (5.37), we get

An − Cn =
e−inφ′

4
Yn(k1r

′). (5.39)

Now, we multiply the equation (5.33) by (1/ρ1)J
′
n(k1a) and the equation (5.34) by

J ′
n(k1a) and subtract side by side. Then subsituting Dn in the derived equation and

using the Wronskian (5.37), we obtain

Fn =
2

πρ1a

 Jn(k1r
′)(

k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ

4
.

When we substitute Dn in (5.33) and (5.34) and multiply the equations by (k2/ρ2)H
2
n
′
(k2a)

and H2
n(k2a), respectively, and subtract side by side, we obtain Cn as

Cn =


(

k2
ρ2
Yn(k1a)H

2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

)
Jnk1r

′(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ

4
.

Finally, when we substitute Cn in (5.39), we obtain

An =


(

k2
ρ2
Yn(k1a)H

2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

)
Jnk1r

′(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

) + Yn(kr
′)

 e−inϕ

4
.
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Thus, the Green’s function representing the unit impulse response of nonhomogeneous

medium is

G(r, ϕ; r′, ϕ′) =



∞∑
n=−∞

AnJn(k1r)e
inϕ, if r < r′

∞∑
n=−∞

(CnJn(k1r) +DnYn(k1r)) e
inϕ, if r′ < r < a

∞∑
n=−∞

FnH
2
n(k2r)e

inϕ, if r > a

(5.40)

in which

An =


(

k2
ρ2
Yn(k1a)H

2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

)
Jnk1r

′(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

) + Yn(kr
′)

 e−inϕ

4
,

Cn =


(

k2
ρ2
Yn(k1a)H

2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

)
Jnk1r

′(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ

4
,

Dn =
Jn(k1r

′)

4
e−inϕ,

Fn =
2

πρ1a

 Jn(k1r
′)(

k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ

4
.

The Green’s function denoted by G1, representing the unit impulse response of the

layered medium when the source (r′, ϕ′) located in Region 1, is given by

G1(r
′, ϕ′; r, ϕ) =



∞∑
n=−∞

AnJn(k1r)e
inϕ, if r < r′

∞∑
n=−∞

(CnJn(k1r) +DnYn(k1r)) e
inϕ, if r′ < r < a

∞∑
n=−∞

FnH
2
n(k2r)e

inϕ, if r > a

(5.41)
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in which

An =


(

k2
ρ2
Yn(k1a)H

2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

)
Jn(k1r

′)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

) + Yn(k1r
′)

 e−inϕ′

4
,

Cn =


(

k2
ρ2
Yn(k1a)H

2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

)
Jn(k1r

′)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ′

4
,

Dn = Jn(k1r
′)
e−inϕ′

4
,

Fn =
2

πρ1a

 Jn(k1r
′)(

k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ′

4
.

The Green’s function denoted by G2 representing the unit impulse response of the

layered medium when the source (r′, ϕ′) located in Region 2, is given by

G2(r
′, ϕ′; r, ϕ) =



∞∑
n=−∞

AnJn(k1r)e
inϕ, if r < a

∞∑
n=−∞

(CnJn(k1r) +DnYn(k1r)) e
inϕ, if a < r < r′

∞∑
n=−∞

FnH
2
n(k2r)e

inϕ, if r > r′

(5.42)
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in which

An =
2

πρ2a

 H2
n(k2r

′)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ′

4
,

Cn =

−

(
k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)

)
H2

n(k2r
′)(

k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ′

4
,

Dn =


(

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)

)
H2

n(k2r
′)(

k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ′

4
,

Fn =

−

(
k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)

)
Jn(k2r

′)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)

+

(
k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)

)
Yn(k2r

′)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
 e−inϕ′

4
.

In each case, we obtain the coefficient An, Cn, Dn and Fn using the boundary condi-

tions on S1 through the following equations, respectively:

CnJn(k1r
′) +DnYn(k1r

′)− AnJn(k1r
′) = 0

CnJ
′
n(k1r

′) +DnY
′
n(k1r

′)− AnJn(k1r
′) =

e−inϕ

2πkr′

FnH
2
n(k2a)− CnJn(k1a) +DnYn(k1a) = 0

k1
ρ1

(CnJ
′
n(k1a) +DnY

′
n(k1a)) =

k2
ρ2

FnH
2
n
′
(k2a) for all n
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FnH
2
n(k2r

′)− CnJn(k2r
′)−DnYn(k2r

′) = 0

FnH
2
n
′
(k2r

′)− (CnJ
′
n(k2r

′) +DnY
′
n(k2r

′)) =
e−inϕ

2πk2r′

CnJn(k2a) +DnYn(k2a)− AnJn(k1a) = 0

k1
ρ1

AnJ
′
n(k1a) =

k2
ρ2

(CnJ
′
n(k2a) +DnY

′
n(k2a)) for all n.

These equations can be expressed in the following matrix forms:



−Jn(k1r
′) Jn(k1r

′) Yn(k1r
′) 0

−J ′
n(k1r

′) J ′
n(k1r

′) Y ′
n(k1r

′) 0

0 Jn(k1a) Yn(k1a) −H2
n(k2a)

0 k1
ρ1
J ′
n(k1a)

k1
ρ1
Y ′
n(k1a)

k2
ρ2
FnH

2
n
′
(k2a)





An

Cn

Dn

Fn


=



0

e−inϕ

2πk1a

0

0


and 

−Jn(k1a) Jn(k1a) Yn(k1a) 0

−J ′
n(k1a) J ′

n(k1a) Y ′
n(k1a) 0

0 Jn(k1r
′) Yn(k1r

′) −H2
n(k2r

′)

0 k1
ρ1
J ′
n(k1r

′) k1
ρ1
Y ′
n(k1r

′) k2
ρ2
FnH

2
n
′
(k2r

′)





An

Cn

Dn

Fn


=



0

0

0

e−inϕ

2πk1a


.

The determinants of these coefficent matrices are identical, depends on n and equal to

βn =

(
k2
ρ2

Jn(k1a)H
2
n
′
(k2a)−

k1
ρ1

J ′
n(k1a)H

2
n(k2a)

)
. (5.43)

After that, we call the parts of G1 as G11 and G12 with respect to location of observation

point:
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G11 =



∞∑
n=−∞

(
k2
ρ2

Yn(k1a)H2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

βn
Jn(k1r

′)Jn(k1r)

+Yn(k1r
′)Jn(k1r)

)
ein(ϕ−ϕ′), when r < r′

∞∑
n=−∞

(
k2
ρ2

Yn(k1a)H2
n
′
(k2a)− k1

ρ1
Y ′
n(k1a)H

2
n(k2a)

βn
Jn(k1r

′)Jn(k1r)

+Jn(k1r
′)Yn(k1r)

)
ein(ϕ−ϕ′), when r′ < r

G12 =
∞∑

n=−∞

2

πρ1a

1

βn

Jn(k1r
′)H2

n(k2r)e
in(ϕ−ϕ′).

Similarly, we call the parts of G2 as G12 and G22 with respect to location of observation

point:

G21 =
∞∑

n=−∞

2

πρ2a

1

βn

H2
n(k2r

′)Jn(k1r)e
in(ϕ−ϕ′)

G22 =



∞∑
n=−∞

(
−

k2
ρ2

Jn(k1a)Yn
′(k2a)− k1

ρ1
J ′
n(k1a)Yn(k2a)

βn
H2

n(k2r
′)Jn(k2r)

+
k2
ρ2

Jn(k1a)Jn
′(k2a)− k1

ρ1
J ′
n(k1a)Jn(k2a)

βn
H2

n(k2r
′)Yn(k2r)

)
ein(ϕ−ϕ′),

when r < r′

∞∑
n=−∞

(
−

k2
ρ2

Jn(k1a)Yn
′(k2a)− k1

ρ1
J ′
n(k1a)Yn(k2a)

βn
Jn(k2r

′)H2
n(k2r)

+
k2
ρ2

Jn(k1a)Jn
′(k2a)− k1

ρ1
J ′
n(k1a)Jn(k2a)

βn
Yn(k2r

′)H2
n(k2r)

)
ein(ϕ−ϕ′),

when r′ < r.
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We notice that each G1(r
′, r) and G2(r

′, r) can be represented in the form

∞∑
n=−∞

gn(r
′, r)ein(ϕ−ϕ′).

Sometimes, for simplicity in notation, we write

G1(r
′, r) =

∞∑
n=−∞

G1(r
′, r)ein(ϕ−ϕ′)

and

G2(r
′, r) =

∞∑
n=−∞

G2(r
′, r)ein(ϕ−ϕ′)

keeping n dependence of G1(r
′, r) and G2(r

′, r) in mind.

5.2 Inverse Solution

Now, we examine our claim

p0(r) =



ρ(r)

πc2(r)

∫ ∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in

12(r, rs)

∂ns

dS dw, r ∈ R1

ρ(r)

πc2(r)

∫ ∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in

22(r, rs)

∂ns

dS dw, r ∈ R2.

(5.44)

Let us write our claim as independent of index set and call the integral expression as

q(r):

q(r) =

∫ ∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in
(r, rs)

∂ns

dS dw. (5.45)

The acoustic pressure measured on the surface S2 is given by forward solution of the

wave equation (4.9):

P (rs, w) = iw

∫
V ′

p0(r
′)G

out
(r′, rs)dVr′
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where V ′ = V1 ∪ V2. We substitute the forward solution in q(r):

q(r) =

∫ ∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in
(r, rs)

∂ns

dS dw

=

∫ ∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)
∇G

in
(r, rs).ns dS dw

=

∫ ∞

−∞
iw

∫
S2

(∫
V ′

p0(r
′)Gout(r′, rs)dVr′

)
∇ 1

ρ(rs)
G

in
(r, rs).ns dS dw

=

∫
V ′

p0(r
′)

(∫ ∞

−∞
iw

∫
S2

(
G

out
(r′, rs)

1

ρ(rs)
∇G

in
(r, rs)

)
.ns dS dw

)
dVr′ .

Let us call the term in outer integrals as follows:

P (r, r′) =

∫ ∞

−∞
iw

∫
S2

G
out
(r′, rs)

1

ρ(rs)
∇G

in
(r, rs).ns dS dw. (5.46)

We know that Green’s function is continuous on whole space. Also, the normal deriva-

tive of Green’s function with a scaling factor density function is also continuous.

Hence, the expression in the above integral is continuous which makes possible to

apply the divergence theorem as follows:

P (r, r′) =

∫ ∞

−∞
iw

∫
S2

G
out
(r′, rs)

1

ρ(rs)
∇sG

in
(r, rs).ns dS dw

=

∫ ∞

−∞
iw

∫
V1∪V2

1

ρ(rs)
∇s

(
G

out
(r′, rs)∇sG

in
(r, rs)

)
dVs dw

=

∫ ∞

−∞
iw

∫
V1∪V2

1

ρ(rs)

(
∇sG

out
(r′, rs)∇sG

in
(r, rs)

+ G
out
(r′, rs)∇2

sG
in
(r, rs)

)
dVs dw. (5.47)

The solutions Gin and G
out satisfy the Helmholtz equation:

∇2
sG

in

(r, rs, w) + k2
sG

in

(r, rs, w) = δ(r− rs), (5.48)

∇2
sG

out

(r′, rs, w) + k2
sG

out

(r′, rs, w) = δ(r′ − rs) (5.49)

in which ks = w/cs and cs is the acoustic speed in the region where rs in. If we

multiply (5.48) by G
out
(r′, rs, w) and (5.49) by G

in
(r, rs, w) and subtract each other,
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we get

G
out∇2

sG
in

= G
in∇2

sG
out

+ δ(r− rs)G
out − δ(r′ − rs)G

in

. (5.50)

By adding the term G
out∇2

sG
in
+ 2∇sG

out∇sG
in to both sides of (5.50), we obtain

2
(
G

out∇2
sG

in

+∇sG
out∇sG

in
)

=G
out∇2

sG
in

+ 2∇sG
out∇sG

in

+G
in∇2

sG
out

+ δ(r− rs)G
out − δ(r′ − rs)G

in

=∇s.
(
G

out∇sG
in
)
+∇s.

(
∇sG

in

G
out
)
+ δ(r− rs)G

out − δ(r′ − rs)G
in

=∇s.
(
G

out∇sG
in

+∇sG
in

G
out
)
+ δ(r− rs)G

out − δ(r′ − rs)G
in

=∇s.∇s(G
in

G
out

) + δ(r− rs)G
out − δ(r′ − rs)G

in

. (5.51)

When we substitute the last equality (5.51) instead of the integrand seen in the

integral (5.47), P (r, r′) can be written as

P (r, r′) =
1

2

∫ ∞

−∞
iw

∫
V1∪V2

1

ρ(rs)
∇s.

(
∇s(G

out
(r′, rs)G

in
(r, rs))

)
dVs dw (5.52)

+
1

2

∫ ∞

−∞
iw

∫
V1∪V2

1

ρ(rs)
δ(r− rs)G

out
(r′, rs)−

1

ρ(rs)
δ(r′ − rs)G

in
(r, rs) dVs dw.

(5.53)

We first deal with second term (5.53) of above expression. The Dirac delta function

has the following property:

∫
V

f(x)δ(x− a) =

 f(a), if a ∈ V

0, if a /∈ V
. (5.54)
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Therefore, we obtain

∫ ∞

−∞
iw

∫
V1∪V2

1

ρ(rs)
δ(r− rs)G

out
(r′, rs)−

1

ρ(rs)
δ(r′ − rs)G

in
(r, rs) dVs dw

=

∫ ∞

−∞
iw

(
1

ρ(r)
G

out
(r′, r)− 1

ρ(r′)
G

in
(r, r′)

)
dw

=
1

ρ(r)

∫ ∞

−∞
iwG

out
(r′, r) dw +

1

ρ(r′)

(∫ ∞

−∞
iwG

out
(r, r′) dw

)∗

=
1

ρ(r)
πc2(r)δ(r− r′) +

1

ρ(r′)
πc2(r′)δ(r′ − r)

= π
c2(r′)ρ(r) + c2(r)ρ(r′)

ρ(r)ρ(r′)
δ(r− r′) (5.55)

by using the result (4.11) obtained from the initial conditions. Now, to explore the first

term of P (r, r′), we substitute the Green’s functions in the expression for all location

combinations of r, r′ and rs in V1 ∪ V2. Through calculations, we realize that the

conditions rs > r and rs > r′ make it easier to deal with the given integral. To satisfy

these conditions, we again turn back to surface integral for the first part of P (r, r′).

∫ ∞

−∞
iw

∫
V1∪V2

1

ρ(rs)
∇s.

(
∇s(G

out
(r′, rs)G

in
(r, rs))

)
dVs dw∫ ∞

−∞
iw

∫
S2

1

ρ(rs)
∇s(G

out
(r′, rs)G

in
(r, rs)).ns dS dw

=
1

ρ2

∫ ∞

−∞
iw

∫
S2

∂

∂rs

(
G

out
(r′, rs)G

in
(r, rs)

)
dS dw

=
1

ρ2

∫ ∞

−∞
iw

∫ 2π

0

∂

∂rs

(
G

out
(r′, rs)G

in
(r, rs)

)
rs dϕs dw

=
rs
ρ2

∂

∂rs

(∫ ∞

−∞
iw

∫ 2π

0

(
∞∑

n=−∞

G
out
(r′, rs)e

−in(ϕ′−ϕs)

)

×

(
∞∑

m=−∞

G
in
(r, rs)e

im(ϕ−ϕs)

)
dϕs dw

)

=
rs
ρ2

∂

∂rs

(∫ ∞

−∞
iw

∫ 2π

0

(
∞∑

n=−∞

∞∑
m=−∞

G
out
(r′, rs)G

in
(r, rs)

× eimϕ′−inϕeiϕs(m−n)

)
dϕs dw

)
,
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since the normal derivative on circle is equal to the derivative with respect to the vari-

able r in polar coordinates. By the orthogonality of the exponential functions
{
einϕ

}
,

we obtain

rs
ρ2

∂

∂rs

(∫ ∞

−∞
iw

∫ 2π

0

(
∞∑

n=−∞

∞∑
m=−∞

G
out
(r′, rs)G

in
(r, rs)

× eimϕ′−inϕeiϕs(m−n)

)
dϕs dw

)

=
rs
ρ2

∂

∂rs

(
2π

∫ ∞

−∞
iw

(
∞∑

n=−∞

G
out
(r′, rs)G

in
(r, rs)e

in(ϕ′−ϕ)

)
dw

)

= 2π
rs
ρ2

∂

∂rs

(
∞∑

n=−∞

ein(ϕ
′−ϕ)

∫ ∞

−∞
iwG

out
(r′, rs)G

in
(r, rs) dw

)
. (5.56)

Earlier, we examined some properties of the integral in (5.56). We know that Green’s

function depends on frequency variable w. For simplicity, we eliminated this variable

in representation of Green’s function. Now, we use w dependence of Green’s function.

Let

H(w) = G
out
(r′, rs)G

in
(r, rs).

Then,

∫ ∞

−∞
iwG

out
(r′, rs)G

in
(r, rs) dw =

∫ ∞

−∞
iwH(w) dw

=

∫ 0

−∞
iwH(w) dw +

∫ ∞

0

iwH(w) dw

=

∫ 0

∞
i− w′H(−w′)− dw′ +

∫ ∞

0

iwH(w) dw

=

∫ ∞

0

−iwH(−w) dw +

∫ ∞

0

iwH(w) dw

=

∫ ∞

0

−iwH(w)∗ dw +

∫ ∞

0

iwH(w) dw

=

∫ ∞

0

iw (H(w)−H(w)∗) dw

=

∫ ∞

0

iw2Im(H(w)) (5.57)

by substituting w = −w′ in the integral
∫ 0

−∞
iwH(w) dw and using the definition of
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negative frequency for wave functions. This result shows that the real part of the inte-

grand has no contribution to the integral. Now, we substitute the radial part of Green’s

function in (5.56). On S2, the second variable rs in G
out and G

in is an element of Region

2. But r and r′ are free to be in any region. Thus, we have four cases for the combina-

tion of product terms depending on locations of points r and r′: Gout

12(r
′, rs)G

in

12(r, rs),

G
out

22(r
′, rs)G

in

12(r, rs), G
out

12(r
′, rs)G

in

22(r, rs), and G
out

22(r
′, rs)G

in

22(r, rs). We show that

the products are purely real functions:

G
out

12(r
′, rs)G

in

12(r, rs)

=
2

πρ1a

Jn(k1r
′)H2

n(k2rs)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
× 2

πρ1a

Jn(k1r)H
1
n(k2rs)(

k2
ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a)

)
=

2

πρ1a

Jn(k1r
′)Jn(k1r) ∥ H1

n(k1rs) ∥
∥ k2

ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a) ∥

,

G
out

22(r
′, rs)G

in

12(r, rs)

=

(
−

k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)Jn(k2r

′)
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

+

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)Yn(k2r

′)
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
H2

n(k2rs)

× 2

πρ1a

Jn(k1r)H
1
n(k2rs)(

k2
ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a)

)
=

(
−

k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)Jn(k2r

′)

∥ k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a) ∥

+

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)Yn(k2r

′)

∥ k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a) ∥

)
Jn(k1r) ∥ H2

n(k2rs) ∥,
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G
out

12(r
′, rs)G

in

22(r, rs)

=
2

πρ1a

Jn(k1r
′)H2

n(k2rs)(
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
×

(
−

k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)Jn(k2r)

k2
ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a)

+

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)Yn(k2r)

k2
ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a)

)
H1

n(k2rs)

=

(
−

k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)Jn(k2r)

∥ k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a) ∥

+

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)Yn(k2r)

∥ k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a) ∥

)
Jn(k1r

′) ∥ H2
n(k2rs) ∥,

and

G
out

22(r
′, rs)G

in

22(r, rs)

=

(
−

k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)Jn(k2r

′)
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

+

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)Yn(k2r

′)
k2
ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a)

)
H2

n(k2rs)

×

(
−

k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)Jn(k2r)

k2
ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a)

+

k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)Yn(k2r)

k2
ρ2
Jn(k1a)H1

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

1
n(k2a)

)
H1

n(k2rs)

=

−

(
k2
ρ2
Jn(k1a)Yn

′(k2a)− k1
ρ1
J ′
n(k1a)Yn(k2a)

)2
∥ k2

ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a) ∥

Jn(k2r
′)Jn(k2r)

+

(
k2
ρ2
Jn(k1a)Jn

′(k2a)− k1
ρ1
J ′
n(k1a)Jn(k2a)

)2
∥ k2

ρ2
Jn(k1a)H2

n
′(k2a)− k1

ρ1
J ′
n(k1a)H

2
n(k2a) ∥

Yn(k2r
′)Yn(k2r)

 ∥ H2
n(k2rs) ∥ .

Bessel functions Jn’s, Yn’s and the modulus of any complex valued functions are real

valued functions which implies that all the above products are real. Therefore, the

integral (5.56) is equal to zero.
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Consequently, we obtained the function P (r, r′) as follows

P (r, r′) =

∫ ∞

−∞
iw

∫
S2

G
out
(r′, rs)∇sG

in
(r, rs).ns dS dw

=
1

2

∫ ∞

−∞
iw

∫
S2

∇s

(
G

out
(r′, rs)G

in
(r, rs)

)
.ns dS dw

+
1

2

∫ ∞

−∞
iw

∫
V1∪V2

δ(r− rs)G
out
(r′, rs)− δ(r′ − rs)G

in
(r, rs) dVs dw

=
π

2

c2(r′)ρ(r) + c2(r)ρ(r′)

ρ(r)ρ(r′)
δ(r− r′).

Hence,

q(r) =

∫
V ′

p0(r
′)P (r, r′) dV ′

=

∫
V ′

p0(r
′)
π

2

c2(r′)ρ(r) + c2(r)ρ(r′)

ρ(r)ρ(r′)
δ(r− r′) dV ′

=
πc2(r)

ρ(r)
p0(r)

where ρ(r) is a density function. Therefore,

p0(r) =
ρ(r)

πc2(r)

∫ ∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in
(r, rs)

∂ns

dS dw. (5.58)

that is

p0(r) =



ρ(r1)

πc2(r)

∫ −∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in

12(r, rs)

∂ns

dS dw, r ∈ R1

ρ(r2)

πc2(r)

∫ −∞

−∞
iw

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in

22(r, rs)

∂ns

dS dw, r ∈ R2.

(5.59)

38



CHAPTER 6

6. INVERSE SOLUTION IN THREE DIMENSIONAL

CYLINDRICALLY N -LAYERED MEDIUM

In this chapter, after examining and solving thermoacoustic equation in circularly

two layered medium in two dimension, we state and solve the thermoacoustic wave

equation in there dimensional space for cylindrically N -layered medium:

Figure 6.1 Z-Cross Section of N -Layered Medium

Consider a region having N -concentric annular cylindrical layers with different

acoustic properties in space R3 whose z-cross-section is as depicted in Figure 6.1. The

interface of consecutive mth and (m + 1)th layers is a cylinder with center (0, 0) and

radius r = rm, denoted by Sm. We call the volume between Sm−1 and Sm as Region

m. Suppose there is a cylindrical transducer, called SN in Region N enclosing the
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other regions as in the Figure 6.1. We call the volume covered by transducer SN as V .

We want to determine the source distribution of the region covered by transducer.

The acoustic waves are measured by the transducer for a sufficiently long time

interval so that the waves emitted from every source location reach to the transducer.

When the regions are different, there will be reflections and transmissions at the bound-

aries Sm for 1 ≤ m ≤ N . Thermoacoustic wave propagation in this layered medium

is governed by the nonhomogeneous wave equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −p0(r).δ

′(t) (6.1)

with 2(N-1) boundary conditions

pm(r, t) = pm+1(r, t)
∣∣
r∈Sm

(6.2)

and
1

ρm

∂pm(r, t)

∂n
=

1

ρm+1

∂pm+1(r, t)

∂n

∣∣∣∣∣
r∈Sm

(6.3)

on each boundary Sm for 1 ≤ m ≤ N . Here, pm and pm+1 are the acoustic waves and

ρm and ρm+1 are the densities for Region m and Region (m+1), respectively. Also, as

a nature of the problem, nonhomogeneous thermoacoustic wave equation must satisfy

the following initial condition as we stated earlier

p(r, 0+) = c2(r)p0(r) and
∂p(r, 0+)

∂t
= 0 (6.4)

p(r, t) = 0 if t < 0. (6.5)

In an inverse source problem, p0(r) is to be reconstructed given that acoustic field is

measured by the transducer and is known on the surface SN . We know that the equation

(6.1) in frequency domain correspondes to the nonhomogenous Helmholtz equation

∇2P (r, w) + k2P (r, w) = −iwp0(r), (6.6)
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where P (r, w) is the temporal Fourier Transform of p(r, t). In derivations as we did

in two dimensions for two layered medium, we again consider that w > 0 and P (r, w)

was corresponding to outgoing wave. After that, for the completeness in frequency

domain, we define P (r,−w) = P (r, w)∗ for w < 0 as complex conjugate of pressure

function for positive frequency. The outgoing and incoming waves were represented by

superscripts ’out’ and ’in’ for pressure function and we used the fact that P in(r, w) =

(P out(r, w))
∗. We again make use of Green’s functions:

6.1 Green’s Function of Medium

The Green’s function is the solution of homogeneous wave equation except the

point r′ where the point source located:

∇2Gout(r′, r, w) + k2Gout(r′, r, w) = −δ(r− r′) (6.7)

where δ(.) is the Dirac delta function. It is convenient to study using cylindrical coordi-

nates for the N -layered cylindrical configuration. Before transforming the Helmholtz

equation (6.7) to cylindrical system, we take the spatial Fourier transform in z-direction

to derive forward solution. We represent the spatial transform with a tilde symbol above

of a function name, that is

f̃(kz) =

∞∫
−∞

f(z)e−ikzzdz, (6.8)

and from equation (6.7), we obtain two dimensional Helmholtz equation

∇2G̃(r′, r, kz, w) + (k2 − k2
z)G̃(r′, r, kz, w) = δ(r− r′)e−ikzz′ (6.9)

where k = w/c is the wave number, kz is the spatial frequency. The wave equation

given in (6.9) is expressed in cylindrical coordinates (r, ϕ, z) as

∂2G̃

∂r2
+

1

r

∂G̃

∂r
+

1

r2
∂2G̃

∂ϕ2 + (k2 − k2
z)G̃ =

1

r
δ(r − r′)δ(ϕ− ϕ′)e−ikzz′ . (6.10)
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We previously showed that the homogeneous solution of above equation has a

series form consisting of Bessel’s functions and exponential functions. When the term√
(k2 − k2

z) is a real number, two independent solutions are the first kind of Bessel

function Jn(
√
(k2 − k2

z)r) and the second kind of Bessel function Yn(
√

(k2 − k2
z)r).

Alternatively, linear combination of these two functions, Hankel functions of first

kind H1
n(
√
(k2 − k2

z)r) = Jn(
√

(k2 − k2
z)r) + iYn(

√
(k2 − k2

z)r) and of second kind

H2
n(kr) = Jn(kr) − iYn(kr) can be used as fundamental solutions. On the other

hand, when
√

(k2 − k2
z) is not a real number, the two independent solutions are called

first and second kind modified Bessel functions and denoted by In(kr) and Kn(kr),

respectively.

As a result, the homogeneous solution of (5.5) has the form

I(r, ϕ) =



∞∑
n=−∞

(
AnJn(

√
(k2 − k2

z)r) +BnYn(
√

(k2 − k2
z)r)

)
einϕ,

if ∥ k ∥≥∥ kz ∥
∞∑

n=−∞

(
CnIn(

√
(k2

z − k2)r) +DnMn(
√

(k2
z − k2)r)

)
einϕ,

if ∥ k ∥≤∥ kz ∥ .

(6.11)

The Bessel functions Jn(r), Yn(r), In(r) and Mn(r) are real valued functions for pos-

itive real arguments. Hence all the terms except unknown coefficients in (6.11) are

all real. When ∥ k ∥≥∥ kz ∥, we apply Sommerfeld radiation condition and when

∥ k ∥≤∥ kz ∥, we choose evanescent waves for outer most layer, so that the waves

will not grow to infinity. In light of these, the derivations made for the argument√
(k2 − k2

z)r are the same as the derivations made for the argument
√
(k2

z − k2)r in

inverse solution proof. Therefore, we suppose ∥ k ∥≥∥ kz ∥ and progress under this

assumption. For simplicity in expressions, we represent
√

(k2 − k2
z) as k, keeping in

mind kz dependence of k.

When the point source r′ locates in Layer m, we denote Green’s function as Gm

(1 ≤ m ≤ N ). Each Green’s function Gm represents the unit impulse response of the
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layered medium and is partially defined with respect to observation point r:

Gm(r
′, r, w) =



∞∑
n=−∞

einϕ
∞∫

−∞

eikz(z−z′) (AnjJn(kjr) +BnjYn(kjr)) dkz,

if r < r
′and r in layer j

∞∑
n=−∞

einϕ
∞∫

−∞

eikz(z−z′) (CnjJn(kjr) +DnjYn(kjr)) dkz,

if r
′
< r and r in layer j.

(6.12)

We call the parts of Gm with respect to location of observation points as Gmj for

1 ≤ j ≤ N . In derivations of inverse problem, the observation points are on the

transducer, so we need to calculate only the last parts GmN of Green’s function Gm

wherever the source location m is.

The coefficients in each Green’s function Gm are obtained by (2N + 2) equali-

ties coming from the boundary conditions, Green’s function’s conditions and radiation

conditions:

The given boundary conditions (6.2) and (6.3) state that acoustic pressure func-

tion is continuous and its normal derivative is continuous with a scaling factor on the

layer boundaries r = ri:

An(i+1)Jn(ki+1ri) +Bn(i+1)Yn(ki+1ri)− An(i)Jn(kiri)−Bn(i)Yn(kiri) = 0,

ki+1

ρi+1

(
An(i+1)J

′
n(ki+1ri) +Bn(i+1)Y

′
n(ki+1ri)

)
− ki

ρi

(
An(i)J

′
n(k̄iri) +Bn(i)Y

′
n(kiri)

)
= 0 (6.13)

for 1 ≤ i ≤ m− 1,
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Cn(i+1)Jn(ki+1ri) +Dn(i+1)Yn(ki+1ri)− Cn(i)Jn(kiri)−Dn(i)Yn(kiri) = 0,

ki+1

ρi+1

(
Cn(i+1)J

′
n(ki+1ri) +Dn(i+1)Y

′
n(ki+1ri)

)
− ki

ρi

(
Cn(i)J

′
n(kiri) +Dn(i)Y

′
n(kiri)

)
= 0 (6.14)

for m ≤ i ≤ N − 1.

On the other hand, Green’s function is continuous and its normal derivative has

jump discontinuity on a cylinder r = r′ where the point source locates (Stakgold,

1979). Hence, these conditions give us

Cn(m)Jn(kmr
′) +Dn(m)Yn(kmr

′)− An(m)Jn(kmr
′)−Bn(m)Yn(kmr

′) = 0,

kmr
′ ((Cn(m) − An(m))J

′
n(kmr

′) + (Dn(m) −Bn(m))Y
′
n(kmr

′)
)
= e−ikzz′

e−inϕ′

2π
.

(6.15)

Additionally, second kind of Bessel function Yn is undefined when r = 0. There-

fore in Layer 1, Green’s function cannot include Yn implying

Bn1 = 0. (6.16)

Lastly, the pressure function must satisfy Sommerfeld radiation condition

lim
|r|→∞

(
∂

∂|r|
− ik

)
P (r, w) = 0 (6.17)

which leads to

DnN − iCnN = 0. (6.18)
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This system of equations is represented in a matrix form as follows: If we call

the terms seen in the boundary conditions (6.13) and (6.14)

−Jn(kmrm) = am1, −Yn(kmrm) = am2,

Jn(km+1rm) = am3, Yn(km+1rm) = am4,

−km

ρm
J ′
n(kmrm) = bm1, −km

ρm
Y ′
n(kmrm) = bm2,

km+1

ρm+1
J ′
n(km+1rm) = bm3,

km+1

ρm+1
Y ′
n(km+1rm) = bm4

and in Green’s function’s conditions (6.15)

Jn(kmr
′) = k1, Yn(kmr

′) = k2,

kmr
′J ′

n(kmr
′) = l1, kmr

′Y ′
n(kmr

′) = l2

as given above, and if we let

Lm1 =

am1 am2

bm1 bm2

 and Lm2 =

am3 am4

bm3 bm4

 ,

we can write the system of equations in the matrix form as follows:

Bn.



An1

Bn1

...

Bn(m)

Cn(m)

Dn(m)

...

DnN



=



0

...

0

e−ikzz′ e
−inϕ′

2π

0
...



(6.19)
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in which Bn is the coefficient matrix of the system of equations is found as follows:

Bn =



0 1 0 0[
L11

] [
L12

]
[
L21

][
L22

]
0 . . .

− k1 − k2 k1 k2

− l1 − l2 l1 l2 0[
Lm1

][
Lm2

]
. . . [

L(N−1)1

][
L(N−1)2

]
0 0 i − 1



. (6.20)

We apply elementary row-column operations to coefficient matrix Bn to obtain its

determinant βn. If we add (2m + 1)th column to (2m − 1)th column and (2m + 2)th

column to (2m)th column, we obtain

Bn =



0 1 0 0[
L11

] [
L12

]
[
L21

][
L22

]
0 . . .

0 0 k1 k2

0 0 l1 l2 0[
Lm1

][
Lm1

][
Lm2

]
. . . [

L(N−1)1

][
L(N−1)2

]
0 0 i − 1



. (6.21)
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We firstly choose the row containing k1, k2 to calculate determinant Bn as:

(−1)2m−1+2m+1k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0[
L11

] [
L12

]
[
L21

][
L22

]
0 . . .

0 0 l2 0[
Lm1

]am2

bm2

[
Lm2

]
. . . [

L(N−1)1

][
L(N−1)2

]
0 0 i − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(−1)2m−1+2m+2k2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0[
L11

] [
L12

]
[
L21

][
L22

]
0 . . .

0 0 l1 0[
Lm1

]am1

bm1

[
Lm2

]
. . . [

L(N−1)1

][
L(N−1)2

]
0 0 i − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6.22)

Then we use the rows containing l1 and l2 and obtain
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(−1)2m−1+2m−1k1l2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0[
L11

] [
L12

]
[
L21

][
L22

]
0 . . . [

Lm1

][
Lm2

]
. . . 0[

L(N−1)1

][
L(N−1)2

]
0 0 i − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(−1)2m−1+2m−1k2l1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0[
L11

] [
L12

]
[
L21

][
L22

]
0 . . . [

Lm1

][
Lm2

]
. . . 0[

L(N−1)1

][
L(N−1)2

]
0 0 i − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6.23)

for derivation, respectively, hence we write the determinant as below:

βn = (k1l2 − k2l1).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0

L11 L12

L21L22

0 . . .

Lm1Lm2 0
. . .

L(N−1)1L(N−1)2

0 0 i − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.24)
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Here, we notice that the terms seen in the determinant brackets are coming from bound-

ary conditions, only the product term (k1l2 − k2l1) includes information about source

location (the region m). Now, we examine this term:

k1l2 − k2l1 =Jn(kmr
′)kmr

′Y ′
n(kmr

′)− Yn(kmr
′)kmr

′J ′
n(kmr

′)

=kmr
′ (Jn(kmr

′)Y ′
n(kmr

′)− Yn(kmr
′)J ′

n(kmr
′))

=kmr
′ 2

πkmr′

=
2

π

using the Wronskian properties of Bessel functions. Therefore the examined term is

independent of the source location. Hence, the determinant βn is the same for all n

(index set for Bessel functions’ order) and for all m (location of source point r′).

In the derivation of inverse solution, we need the last part of Green’s function

Gm. So, now, we obtain the coefficients of GmN , that is CnN and DnN : Firstly, we

know that CnN = −iDnN by radiation condition (6.18). To calculate the coefficient

DnN we apply Kramer’s rule:

DnN =
αn

βn

(6.25)

in which

αn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0[
L11

] [
L12

] ...[
L21

][
L22

]
0 . . .

− k1 − k2 k1 k2

− l1 − l2 l1 l2 Γ[
Lm1

][
Lm2

]
0

. . . ...[
L(N−1)1

][
L(N−1)2

]
0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.26)
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with Γ = e−ikzz′
e−inϕ′

2π
. We choose the row containing the term Γ to calculate the

determinant αn and obtain

αn = (−1)2m+2+2N+2e−ikzz′ e
−inϕ′

2π
.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0[
L11

] [
L12

]
[
L21

] [
L22

]
0 . . . 0

− k1 − k2 k1 k2[
Lm1

] [
Lm2

]
. . . [

L(N−1)1

] a(N−1)3

b(N−1)3

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6.27)

We call the determinant factor as Rm
n . The most important property of Rm

n used in

inverse problem derivation is that all the terms contained in Rm
n are real, hence the

determinant Rm
n is itself is real. At the end, the coefficent DnN is written in the form

DnN = e−ikzz′
e−inϕ′

2π

Rm
n

βn

. (6.28)

Hence,

CnN = −ie−ikzz′
e−inϕ′

2π

Rm
n

βn

(6.29)
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which implies that

GmN(r
′, r, kz)

=

∫ ∞

−∞
eikzz

∞∑
n=−∞

(
−ie−ikzz′

e−inϕ′

2π

Rm
n

βn

(r′, r)Jn(kNr) (6.30)

+e−ikzz′
e−inϕ′

2π

Rm
n

βn

(r′, r)Yn(kNr)

)
einϕ

′
dkz (6.31)

=

∫ ∞

−∞
eikzze−ikzz′

∞∑
n=−∞

Rm
n

βn

(r′, r) (−iJn(kNr) + Yn(kNr))
e−inϕ′

2π
einϕ

′
dkz

=

∫ ∞

−∞
eikz(z−z′)

∞∑
n=−∞

Rm
n

βn

(r′, r)
(
−iH1

n(kNr)
) ein(ϕ−ϕ′)

2π
dkz. (6.32)

6.2 Inverse Solution

In two dimensional space for circularly two layered medium, we proved that

inverse solution of thermoacoustic wave equation, thermoacoustic source distribution,

is given by

p0(r) =



ρ(r)

c2(r)π

∫ ∞

−∞

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in

1 (r, rs)

∂ns

dS dw, r ∈ R1

ρ(r)

c2(r)π

∫ ∞

−∞

∫
S2

P (rs, w)
1

ρ(rs)

∂G
in

2 (r, rs)

∂ns

dS dw, r ∈ R2

(6.33)

where P (rs, w) is the acoustic pressure measured on the surface S2, G1, G2 are the

corresponding Green’s function of the medium and ρ(r) is a density function

ρ(r) =

ρ1, r ∈ R1

ρ2, r ∈ R2.

Now, we prove our solution (6.33) can be extended for three dimensional N-layered

configuration as

p0(r) =
1

π

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)

∂G
in

iN(r, rs)

∂ns

dS dw, r ∈ Ri (6.34)
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where P (rs, w) is the acoustic pressure measured on the surface SN , GiN is the corre-

sponding Green’s function for 1 ≤ i ≤ N and ρ(r) is a density function such that

ρ(r) = ρi, r ∈ Ri (6.35)

for 1 ≤ i ≤ N . Let us write (6.34) as independent of index set and call the integral

expression as q(r):

q(r) =

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)

∂G
in
(r, rs)

∂ns

dS dw. (6.36)

The acoustic pressure measured on the surface SN is given by forward solution of the

wave equation (4.9):

P (rs, w) = iw

∫
V ′

p0(r
′)G

out
(r′, rs)dVr′ .

We substitute the forward solution in q(r):

q(r) =

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)

∂G
in
(r, rs)

∂ns

dS dw

=

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)
∇G

in
(r, rs).ns dS dw

=

∫ ∞

−∞
iw

∫
SN

(∫
V ′

p0(r
′)Gout(r′, rs)dVr′

)
∇ 1

ρ(rs)
G

in
(r, rs).ns dS dw

=

∫
V ′

p0(r
′)

(∫ ∞

−∞
iw

∫
SN

(
G

out
(r′, rs)

1

ρ(rs)
∇G

in
(r, rs)

)
.ns dS dw

)
dVr′ .

Let us call the term in outer integrals as follows:

P (r, r′) =

∫ ∞

−∞
iw

∫
SN

G
out
(r′, rs, w)

1

ρ(rs)
∇sG

in
(r, rs, w).ns dS dw. (6.37)

We know that the Green’s function is continuous on whole space. Also the normal

derivative of Green’s function with a scaling factor (the density function) is continuous,

too. Hence, the expression in the above integral is continuous which makes possible to
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apply the Divergence theorem as follows:

P (r, r′) =

∫ ∞

−∞
iw

∫
SN

G
out
(r′, rs, w)

1

ρ(rs)
∇sG

in
(r, rs, w).ns dS dw

=

∫ ∞

−∞
iw

∫
V

∇s

(
G

out
(r′, rs, w)∇s

1

ρ(rs)
G

in
(r, rs, w)

)
dVs dw. (6.38)

Since each layer is homogeneous in itself, the density function ρ(rs) is constant on

each volume Vi for 1 ≤ i ≤ N . Therefore

P (r, r′) =

∫ ∞

−∞
iw

∫
V

1

ρ(rs)

(
∇sG

out
(r′, rs, w)∇sG

in
(r, rs, w) (6.39)

+G
out
(r′, rs, w)∇2

sG
in
(r, rs, w)

)
dVs dw. (6.40)

The solutions Gin and G
out satisfy the Helmholtz equation:

∇2
sG

in

(r, rs, w) + k2
sG

in

(r, rs, w) = −δ(r− rs), (6.41)

∇2
sG

out

(r′, rs, w) + k2
sG

out

(r′, rs, w) = −δ(r′ − rs) (6.42)

in which ks = w/cs and cs is the acoustic speed in the region where rs in. If we

multiply (6.41) by G
out
(r′, rs, w) and (6.42) by G

in
(r, rs, w) and subtract each other,

we get

G
out∇2

sG
in

= G
in∇2

sG
out − δ(r− rs)G

out

+ δ(r′ − rs)G
in

. (6.43)

By adding the term G
out∇2

sG
in
+ 2∇sG

out∇sG
in to both sides of (6.43), we obtain

2
(
G

out∇2
sG

in

+∇sG
out∇sG

in
)

=G
out∇2

sG
in

+ 2∇sG
out∇sG

in

+G
in∇2

sG
out

+ δ(r− rs)G
out − δ(r′ − rs)G

in

=∇s.
(
G

out∇sG
in
)
+∇s.

(
∇sG

in

G
out
)
+ δ(r− rs)G

out − δ(r′ − rs)G
in

=∇s.
(
G

out∇sG
in

+∇sG
in

G
out
)
+ δ(r− rs)G

out − δ(r′ − rs)G
in

=∇s.∇s(G
in

G
out

) + δ(r− rs)G
out − δ(r′ − rs)G

in

. (6.44)
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When we substitute the last equality (6.44) instead of the integrand seen in the integral

(6.40), P (r, r′) can be written as

P (r, r′) =
1

2

∫ ∞

−∞
iw

∫
V

1

ρ(rs)
∇s.∇s

(
G

out
(r′, rs, w)G

in
(r, rs, w)

)
dVs dw (6.45)

+
1

2

∫ ∞

−∞
iw

∫
V

1

ρ(rs)
δ(r− rs)G

out
(r′, rs, w)−

1

ρ(rs)
δ(r′ − rs)G

in
(r, rs, w) dVs dw.

(6.46)

We first deal with second term (6.46) of above expression. The Dirac delta function

has the following property:

∫
V

f(x)δ(x− a) =

 f(a), if a ∈ V

0, if a /∈ V
. (6.47)

Therefore, we obtain

∫ ∞

−∞
iw

∫
V

1

ρ(rs)
δ(r− rs)G

out
(r′, rs)−

1

ρ(rs)
δ(r′ − rs)G

in
(r, rs) dVs dw (6.48)

=

∫ ∞

−∞
iw

(
1

ρ(r)
G

out
(r′, r)− 1

ρ(r′)
G

in
(r, r′)

)
dw (6.49)

=
1

ρ(r)

∫ ∞

−∞
iwG

out
(r′, r) dw +

1

ρ(r′)

(∫ ∞

−∞
iwG

out
(r, r′) dw

)∗

(6.50)

=
1

ρ(r)
πc2(r)δ(r− r′) +

1

ρ(r′)
πc2(r′)δ(r′ − r) (6.51)

= π
c2(r′)ρ(r) + c2(r)ρ(r′)

ρ(r)ρ(r′)
δ(r− r′) (6.52)

by using the result (4.11) obtained by the initial condition. Now, to explore the first

term of P (r, r′), we substitute the Green’s functions in the expression for all location

combinations of r, r′ and rs in V =
n⋃
i

Vi. Through calculations, we realize that the

conditions rs > r and rs > r′ make it easier to deal with the given integral. To satisfy

these conditions, we again turn back to surface integral for the first part of P (r, r′). We
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use again the argument that is the density function is constant on each layer and derive

∫ ∞

−∞
iw

∫
V

1

ρ(rs)
∇s.

(
∇s(G

out
(r′, rs)G

in
(r, rs))

)
dVs dw∫ ∞

−∞
iw

∫
SN

1

ρ(rs)
∇s(G

out
(r′, rs)G

in
(r, rs)).ns dS dw

=
1

ρN

∫ ∞

−∞
iw

∫
SN

∂

∂rs

(
G

out
(r′, rs)G

in
(r, rs)

)
dS dw

=
1

ρN

∫ ∞

−∞
iw

∫ ∞

−∞

∫ 2π

0

∂

∂rs

(
G

out
(r′, rs)G

in
(r, rs)

)
rs dϕs dzs dw

=
rs
ρN

∂

∂rs

[∫ ∞

−∞
iw

∫ ∞

−∞

∫ 2π

0

(∫ ∞

−∞
e−ikz(z′−zs)

∞∑
n=−∞

G
out
(r′, rs, kz)e

−in(ϕ′−ϕs) dkz

)

×

(∫ ∞

−∞
eik

∗
z(z−zs)

∞∑
m=−∞

G
in
(r, rs, k

∗
z)e

im(ϕ−ϕs) dk∗
z

)
dϕs dzs dw

]

=
rs
ρN

∂

∂rs

[∫ ∞

−∞
iw

∫ ∞

−∞

∫ 2π

0

(
∞∑

n=−∞

∫ ∞

−∞
e−ikz(z′−zs)G

out
(r′, rs, kz) dkze

−in(ϕ′−ϕs)

)

×

(
∞∑

m=−∞

∫ ∞

−∞
eik

∗
z(z−zs)G

in
(r, rs, k

∗
z) dk

∗
ze

im(ϕ−ϕs)

)
dϕs dzs dw

]

=
rs
ρN

∂

∂rs

[∫ ∞

−∞
iw

∫ ∞

−∞

∞∑
n=−∞

∞∑
m=−∞

(∫ 2π

0

eimϕ′−inϕeiϕs(m−n) dϕs

)
×
∫ ∞

−∞

∫ ∞

−∞
e−ikz(z′−zs)G

out
(r′, rs, kz)e

ik∗z(z−zs)G
in
(r, rs, k

∗
z) dw

]
,

since the normal derivative on a cylinder is equal to the derivative with respect to the

variable rs in cylindrical coordinates and the partial derivative operator is independent

of integral variable w. By the orthogonality of exponential functions
{
einϕ

}
on the
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interval [0, 2π], we obtain

∫ ∞

−∞
iw

∫
S2

∇sG
out
(r′, rs)G

in
(r, rs) dw

= 2π
rs
ρN

∂

∂rs

∞∑
n=−∞

ein(ϕ
′−ϕ)

∫ ∞

−∞
iw

×
∫ ∞

−∞

∫ ∞

−∞
e−ikz(z′−zs)G

out
(r′, rs, kz)e

ik∗z(z−zs)G
in
(r, rs, k

∗
z) dkz dk

∗
z dw

= 2π
rs
ρN

∂

∂rs

∞∑
n=−∞

ein(ϕ
′−ϕ)

∫ ∞

−∞
iw

×
∫ ∞

−∞

∫ ∞

−∞
e−ikzz′eik

∗
zzG

out
(r′, rs, kz)G

in
(r, rs, k

∗
z)

∫ ∞

−∞
eizs(kz−k∗z) dkzs dkz dk

∗
z dw

= 2π
rs
ρN

∂

∂rs

∞∑
n=−∞

ein(ϕ
′−ϕ)

∫ ∞

−∞
iw

×
∫ ∞

−∞

∫ ∞

−∞
e−ikzz′eik

∗
zzG

out
(r′, rs, kz)G

in
(r, rs, k

∗
z)δ(kz − k∗

z) dkz dk
∗
z dw

= 2π
rs
ρN

∂

∂rs

∞∑
n=−∞

ein(ϕ
′−ϕ)

×
∫ ∞

−∞
iw

∫ ∞

−∞
e−ikzz′eikzzG

out
(r′, rs, kz)G

in
(r, rs, kz) dkz dw

= 2π
rs
ρN

∂

∂rs

∞∑
n=−∞

ein(ϕ
′−ϕ)

×
∫ ∞

−∞
e−ikz(z′−z)

∫ ∞

−∞
iwG

out
(r′, rs, kz)G

in
(r, rs, kz) dw dkz. (6.53)

We know that Green’s function depends on frequency variable w. For simplicity, we

eliminate this variable in representation of Green’s function. Now, we use w depen-

dence of Green’s function. Let

H(w) = G
out
(r′, rs, kz)G

in
(r, rs, kz),
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then

∫ ∞

−∞
iwG

out
(r′, rs, kz)G

in
(r, rs, kz) dw

=

∫ ∞

−∞
iwH(w) dw (6.54)

=

∫ 0

−∞
iwH(w) dw +

∫ ∞

0

iwH(w) dw

=

∫ 0

∞
i− w′H(−w′)− dw′ +

∫ ∞

0

iwH(w) dw

=

∫ ∞

0

−iwH(−w) dw +

∫ ∞

0

iwH(w) dw

=

∫ ∞

0

−iwH(w)∗ dw +

∫ ∞

0

iwH(w) dw

=

∫ ∞

0

iw (H(w)−H(w)∗) dw

=

∫ ∞

0

iw2Im(H(w)) (6.55)

by the substitution w = −w′ in the integral
∫ 0

−∞
iwH(w) dw and using the definition

of negative frequency for wave functions. This result shows that the real part of the

integrand has no contribution to the integral. Now, we substitute radial part of Green’s

function in (6.53). On SN , the second variable rs in G
out and G

in is an element of Region

N . But r and r′ are free to be in any region. Thus, we have N2 cases for the combina-

tion of product terms depending on locations of points r and r′: Gout

iN(r
′, rs)G

in

jN(r, rs),

for 1 ≤ i, j ≤ N . We show that the products are purely real functions:

G
out

iN(r
′, rs)G

in

jN(r, rs) =
Ri

n(r
′, rs) (−iH1

n(kNrs))

βn

.
Rj

n(r, rs) (−iH2
n(kNrs))

βn

= − 2

πρ1a

Ri
n(r

′, rs)R
j
n(r, rs) ∥ H1

n(kNrs) ∥
∥ βn ∥

.

In the derivation of Green’s function, we proved that the functions Ri
n(r, rs) and

Rj
n(r, rs) for any 1 ≤ i, j ≤ N are real and the modulus of any complex valued

functions are real valued functions, which implies that all above products are real.

Therefore, the integral (6.53) is equal to zero by (6.55).
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Consequently, we obtain the function P (r, r′) as follows

P (r, r′) =

∫ ∞

−∞
iw

∫
SN

G
out
(r′, rs)∇sG

in
(r, rs).ns dS dw

=
1

2

∫ ∞

−∞
iw

∫
SN

∇s

(
G

out
(r′, rs)G

in
(r, rs)

)
.ns dS dw

+
1

2

∫ ∞

−∞
iw

∫
V

δ(r− rs)G
out
(r′, rs)− δ(r′ − rs)G

in
(r, rs) dVs dw

=
π

2

c2(r′)ρ(r) + c2(r)ρ(r′)

ρ(r)ρ(r′)
δ(r− r′).

Hence,

q(r) =

∫
V ′

p0(r
′)P (r, r′) dV ′

=

∫
V ′

p0(r
′)
π

2

c2(r′)ρ(r) + c2(r)ρ(r′)

ρ(r)ρ(r′)
δ(r− r′) dV ′

=
πc2(r)

ρ(r)
p0(r)

where ρ(r) is a density function.

At the beginning, we suppose

q(r) =

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)

∂GiN
in
(r, rs)

∂ns

dS dw, (6.56)

and therefore the source distribution p0(r) is given by

p0(r) =
ρ(r)

πc2(r)

∫ ∞

−∞

∫
SN

P (rs, w)
1

ρ(rs)

∂GiN
in
(r, rs)

∂ns

dS dw. (6.57)
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CHAPTER 7

7. GENERAL INTEGRAL REPRESENTATION OF INVERSE

SOLUTION OF THERMOACOUSTIC WAVE EQUATION FOR

ANY NONHOMOGENEOUS MEDIUM

If ρ(r) is a density and κ(r) is a compressibilty function of the medium to be im-

aged respectively, then thermoacoustic imaging process is represented mathematically

by the following nonhomogeneous wave equation:

∇.

(
1

ρ(r)
∇p(r, t)

)
− κ(r)

∂2p

∂t2
= − 1

ρ(r)
p0(r).δ

′(t) (7.1)

called thermoacoustic wave equation (Kuchment & Kunyansky, 2008; M. Xu & Wang,

2005; Ammari, 2008; L. V. Wang & Wu, 2007), Here, p(r, t) is the acoustic pressure

at position r and time t and −p0(r).δ
′(t) is the source term.

Suppose there is a nonhomogeneous medium M in R3 containing thermoacoustic

sources and acoustic waves are known on an arbitrary smooth the surface S covering

M . Our aim is to determine source distribuiton in the medium from the information

known on surface S. Let P (r, w) be pressure function’s Fourier transform. Then the

thermoacoustic wave equation can be expressed in a frequency domain as given below

∇.

(
1

ρ(r)
∇P (r, w)

)
+ w2κ(r)P (r, w) = iw

1

ρ(r)
p0(r), (7.2)
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for any nonhomogeneous medium with continuity conditions

P (r, w)|r∈D− = P (r, w)|r∈D+ (7.3)

1

ρ(r)
∂P (r, w)

∂n

∣∣∣∣
r∈D−

=
1

ρ(r)
∂P (r, w)

∂n

∣∣∣∣
r∈D+

(7.4)

on each boundary D appearing in the space.

Radiation conditions must hold for a pressure function P (r, w):

P (r, w) = O
(

1

|r|

)
as |r| → ∞ (7.5)

∂P

∂|r|
− ikP = O

(
1

|r|2

)
as |r| → ∞. (7.6)

In addition, because of the nature of the problem, the pressure function p(r, t)

must satisfy the following initial conditions

p(r, 0+) = c2(r)p0(r) (7.7)

p(r, t) = 0 if t < 0 (7.8)

∂p(r, 0)

∂t
= 0. (7.9)

7.1 Forward Solution of Thermoacoustic Wave Equation for Nonhomogeneous

Media

Previously, we stated the forward solution of thermoacoustic wave equation.

Here, we again give the proof of forward solution since it has a key role for an inverse

solution. Suppose Gout(r, r′, w) is the outgoing Green’s function in frequency domain

describing existing nonhomogeneous smooth medium. Here, r and r′ are locations of

observation point and source point, respectively. The pressure function P (r, w) and
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the Green’s function Gout(r, r′, w) satisfy the following equations, respectively:

∇.

(
1

ρ(r)
∇P (r, w)

)
+ w2κ(r)P (r, w) = iw

1

ρ(r)
p0(r), (7.10)

∇.

(
1

ρ(r)
∇Gout(r, r’, w)

)
+ w2κ(r)Gout(r, w) = −δ(r − r′) (7.11)

where δ(.) is the Dirac delta function.

If we multiply the first equation by Gout(r, r′, w) and the second equation by

P (r, w) and subtract each other, we obtain

∇.

(
1

ρ(r)
∇P (r, w)

)
Gout(r, r′, w)−∇.

(
1

ρ(r)
∇Gout(r, r′, w)

)
P (r, w)

= iw
1

ρ(r)
p0(r)G

out(r, r′, w) + δ(r − r′)P (r, w). (7.12)

Now, we take the volume integral of both sides over the unit ball B(r) with radius r

big enough, so as it contains all possible sources in space:

∫
B(r)

∇.

(
1

ρ(r)
∇P (r, w)

)
Gout(r, r′, w)−∇.

(
1

ρ(r)
∇Gout(r, r′, w)

)
P (r, w) dV

=

∫
B(r)

iw
1

ρ(r)
p0(r)G

out(r, r′, w) + δ(r − r′)P (r, w) dV

which implies

∫
B(r)

∇.

(
1

ρ(r)
∇P (r, w)

)
Gout(r, r′, w)−∇.

(
1

ρ(r)
∇Gout(r, r′, w)

)
P (r, w) dV

= P (r′, w) +

∫
B(r)

iw
1

ρ(r)
p0(r)G

out(r, r′, w) dV. (7.13)
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By adding and subtracting the term
1

ρ(r)
∇P (r, w)∇Gout(r, r′, w) in left hand side of

above equation, we obtain

∫
B(r)

∇.

(
1

ρ(r)
∇P (r, w)

)
Gout(r, r′, w)−∇.

(
1

ρ(r)
∇Gout(r, r’, w)

)
P (r, w) dV

=

∫
B(r)

∇.

(
1

ρ(r)
∇P (r, w)

)
Gout(r, r′, w) +

1

ρ(r)
∇P (r, w)∇Gout(r, r′, w)

−∇P (r, w)
1

ρ(r)
∇Gout(r, r′, w)−∇.

(
1

ρ(r)
∇Gout(r, r′, w)

)
P (r, w) dV

=

∫
B(r)

∇
(

1

ρ(r)
∇P (r, w)Gout(r, r′, w)

)
−∇

(
P (r, w)∇ 1

ρ(r)
Gout(r, r′, w)

)
dV.

The integrand appearing in the last expression is continuous since the pressure

function and Green’s function must satisfy continuity boundary conditions (7.3) and

(7.4). Hence by using Green’s Theorem and the equality (7.19), we get

∫
S(r)

(
1

ρ(r)
∇P (r, w)Gout(r, w)− P (r, w)

1

ρ(r)
∇G(r, r’, w)

)
.n dS

= P (r′, w) + iw

∫
B(r)

1

ρ(r)
p0(r)G

out(r, r′, w) dV

where S(r) is the surface of unit ball.

Now, if we add and substract the term
1

ρ(r)
ikP (r, w)Gout(r, r′, w) in left hand

side of above expression and let the radius of unit ball goes to infinity, the left hand

side goes to zero by radiation condition (7.5). Thus, we obtain the forward solution

P (r′, w) = −iw

∫
V

1

ρ(r)
p0(r)G

out(r, r′, w) dV (7.14)

in which V is the support of source function.
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7.2 Inverse Solution of Thermoacoustic Wave Equation for Nonhomogeneous

Media

In an inverse problem, the source function p0(r) is to be determined by pressure

function P (r, w) known on a measurement surface S. Now, we suppose that P (r, w)

is known on an arbitrary smooth surface S and Gin is the incoming Green’s function

satisfying the Helmholtz equation (7.2) and the radiation condition (7.6).

To obtain the inverse solution, we follow the the similar steps used in deriving

the forward solution: The pressure function and incoming Green’s function satisfies

the following equations, respectively:

∇.

(
1

ρ(r)
∇P (r, w)

)
+ w2κ(r)P (r, w) = iw

1

ρ(r)
p0(r) (7.15)

∇.

(
1

ρ(r)
∇Gin(r, r′, w)

)
+ w2κ(r)Gin(r, r′, w) = −δ(r − r′). (7.16)

If we multiply first equation by Gin(r, r′, w) and the second equation by P (r, w)

and subtract each other, we obtain

∇.

(
1

ρ(r)
∇P (r, w)

)
Gin(r, r′, w)−∇.

(
1

ρ(r)
∇Gin(r, r′, w)

)
P (r, w) (7.17)

= iw
1

ρ(r)
p0(r)G

in(r, r′, w) + δ(r − r′)P (r, w). (7.18)

Now, rather than an arbitrary unit ball used in deriving forward solution, we take the

integral of both sides over the volume V covered by measurement surface S for inverse

solution:

∫
V

∇.

(
1

ρ(r)
∇P (r, w)

)
Gin(r, r′, w)−∇.

(
1

ρ(r)
∇Gin(r, r′, w)

)
P (r, w) dV

=

∫
V

iw
1

ρ(r)
p0(r)G

in(r, w) + δ(r − r′)P (r, w) dV
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which implies

∫
V

∇.

(
1

ρ(r)
∇P (r, w)

)
Gin(r, r′, w)−∇.

(
1

ρ(r)
∇Gin(r, r′, w)

)
P (r, w) dV

= P (r′, w) + iw

∫
V

1

ρ(r)
p0(r)G

in(r, r′, w) dV. (7.19)

By adding and subtracting the term
1

ρ(r)
∇P (r, w)∇Gin(r, r′, w) in left hand side of

above equation, we obtain

∫
V

∇.

(
1

ρ(r)
∇P (r, w)

)
Gin(r, w)−∇.

(
1

ρ(r)
∇Gin(r, r′, w)

)
P (r, w) dV

=

∫
V

∇.

(
1

ρ(r)
∇P (r, w)

)
Gout(r, r′, w) +

1

ρ(r)
∇P (r, w)∇Gin(r, r′, w)

−∇P (r, w)
1

ρ(r)
∇Gin(r, r′, w)−∇.

(
1

ρ(r)
∇Gin(r, r′, w)

)
P (r, w) dV

=

∫
V

∇
(

1

ρ(r)
∇P (r, w)Gin(r, r′, w)

)
−∇

(
P (r, w)∇ 1

ρ(r)
Gin(r, r′, w)

)
dV.

The integrand appearing in the last expression is continuous, since the pressure

function and Green’s function must satisfy continuity boundary conditions (7.3) and

(7.4). Hence by using Green’s theorem and the equality (7.19), we get

∫
S

(
1

ρ(r)
∇P (r, w)Gin(r, r′, w)− P (r, w)

1

ρ(r)
∇Gin(r, r′, w)

)
.n dS

= P (r′, w) + iw

∫
V

1

ρ(r)
p0(r)G

in(r, r′, w) dV

where S is the measurement surface. The main difference in solution of forward and

inverse solution starts at this step. Now, we know that incoming Green’s function is

a complex conjugate of outgoing Green’s function, that is Gin = (Gout)
∗ and also
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P (r, r′,−w) = P ∗(r, r′, w) for any frequency value w. Therefore, we obtain the fol-

lowing equalities

∫
S

(
1

ρ(r)
∇P (r, w)Gout(r, r′, w)− P (r, w)

1

ρ(r)
∇Gin(r, r′, w)

)
.n dS

= P (r′, w) + iw

∫
V

1

ρ(r)
p0(r)G

in(r, r′, w) dV

= P (r′, w) +

(
−iw

∫
V

1

ρ(r)
p0(r)G

out(r, r′, w) dV

)∗

= P (r′, w) + P (r′, w)∗

by expression of forward solution. Now, we multiply both sides by e−iwt and take the

integral of both sides with respcet to variable w:

∫ ∞

−∞

∫
S

(
1

ρ(r)
∇P (r, w)Gin(r, r′, w)− P (r, w)

1

ρ(r)
∇Gin(r, r′, w)

)
e−iwt.n dS dw

=

∫ ∞

−∞
P (r′, w)e−iwt dw +

∫ ∞

−∞
P (r′, w)∗e−iwt dw

=

∫ ∞

−∞
P (r′, w)e−iwt dw −

∫ −∞

∞
P (r′,−w)∗eiwt dw

=

∫ ∞

−∞
P (r′, w)e−iwt dw +

∫ ∞

−∞
P (r′, w)eiwt dw

by using the substitution w = −w in the integral including P (r′, w)∗. If we evaluate

t = 0 at both sides, we obtain

∫ ∞

−∞

∫
S

(
1

ρ(r)
∇P (r, w)Gin(r, r′, w)− P (r, w)

1

ρ(r)
∇Gin(r, r′, w)

)
.n dS dw

=

∫ ∞

−∞
P (r′, w) dw +

∫ ∞

−∞
P (r′, w) dw

= 2

∫ ∞

−∞
P (r′, w) dw

= 2π
(
p(r, 0−) + p(r, 0+)

)
= 2πc2(r)p0(r

′)
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by inverse Fourier transform properties and discontinuity at t = 0. Thus, we derive an

inverse solution as

p0(r
′) =

1

2πc2(r)

×
∫ ∞

−∞

∫
S

(
1

ρ(r)
∇P (r, w)Gin(r, r′, w)− P (r, w)

1

ρ(r)
∇Gin(r, r′, w)

)
.n dSr dw

(7.20)

where P (r, w) is a pressure function known on the measurement surface S, ρ(r) is a

density function and Gin(r, r′, w) is the Green’s function corresponding to nonhomo-

geneous media.

66



CHAPTER 8

8. RESULTS AND DISCUSSION

8.1 Numerical Simulations

We test and compare our layered solution with conventional solution based on ho-

Figure 8.1 Simulation Diagram

mogeneous medium assumption by performing simulations using numerical test phan-

toms. We firstly study on two dimensional two layered phantoms and after that we
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study on a cross section of three layered cylindrical region phantoms as an example of

N-layered structure in three dimensions. In the simulations, we generate synthetic data

by using layered medium Green’s function in forward solution (4.9) of thermoacoustic

wave equation. For this purpose, we choose 3 MHz temporal frequency band between

1.5 MHz and 4.5 MHz, and collect data by the 512 element transducer located on a

circle r = 7.5mm in outmost layer. Then we reconstruct the thermoacoustic source

distribution from this data using the existing homogeneous inverse solution (3.9) in-

cluding free space Green’s functions and our layered inverse solution (3.10) including

layered medium Green’s functions. Here we firstly present an illustrative test results for

a cross section of three layered cylindrical region in Figure 8.2 and Figure 8.3, where

the numerical phantom and the reconstructed inverse source distributions (thermoa-

coustic images of point targets) are displayed. Three layered phantoms are depicted

at first panels of figures. In Figure 8.2, first layer is the region 0mm ≤ r ≤ 2.5mm,

second layer is the region 2.5mm ≤ r ≤ 5mm and third layer is the region r ≥ 5mm.

Densities and acoustic speeds for layers are choosen as 1.06 g/m3, 0.95 g/m3, 1 g/m3

and 1000 m/s, 1500 m/s, 2000 m/s from inner to outer. This phantom consists of

thermoacoustic point sources at each layer, their polar coordinates are (1,25 mm, 0),

(3,75 mm, 5π/4) and (6,25 mm, 2π/3). In Figure 8.3, we model breast as three main

layers: Glandular tissue is the region 0mm ≤ r ≤ 6.75mm, fat tissue is the region

6.75mm ≤ r ≤ 7.35mm and skin is the region 7.35mm ≤ r ≤ 7.5mm considering

ratios of actual thicknesses of these breast layers. Densities and acoustic speeds for

breast layers are taken as 1 g/m3, 0.95 g/m3, 1.15 g/m3 and 1480 m/s, 1450 m/s,

1730 m/s respectively. This phantom consists of thermoacoustic point sources at glan-

dular tissue layer, their polar coordinates are (3,4 mm, 0) and (5,4 mm, 0). The middle

panel shows us that reflections and refractions on layer boundaries cause smearing and

morphological deformation of image because of homogeneous assumption in inversion

algorithm. Hence, the test results ensure us that the homogeneous medium assumption,

as expected, produces incorrect source locations and poor point-spread-functions with

severe side-lobes associated with the original point sources. Our layered solution pro-

duces source locations correctly and point-spread-functions with relatively narrower

main-lobe and lower side-lobes.
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Figure 8.2 (a) Test phantom (b) Numerical simulation obtained under homogeneous
medium assumption (c) Numerical simulation obtained for layered medium, showing

correct source locations

Figure 8.3 (a) Breast phantom (b) Numerical simulation obtained under
homogeneous medium assumption (c) Numerical simulation obtained for layered

medium, showing correct source locations

We also test our inverse solution for the capability in measuring the strength of

sources by using same layer properties, frequency band and sampling rates with above

simulation. We locate two point sources at coordinates (1,25 mm, 0) and (1,25 mm, π)

with amplitude values 1 and 10, respectively. In the simulations, again, we gener-

ate synthetic data by using layered medium Green’s function in forward solution (4.9)

of thermoacoustic wave equation and reconstruct the thermoacoustic source distribu-

tion from this data using layered inverse solution (6.34) including layered medium

Green’s functions. The test phantom and numerical simulation results are depicted in
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Figure 8.4. Simulation results show the inverse solution is accurate in distinguishing

different source strengths.

Figure 8.4 (a) Test phantom (b) Numerical simulation obtained by layered medium
inverse solution (c) Numerical simulation showing source strengths

Now, we mention about two layered phantoms test results comparing with three

layered phantoms. In simulations, we first get an inconsistency in radiation pattern of

point spread function for two layer and three layer mediums seen in Figure 8.5 and

Figure 8.6:

Figure 8.5 Radiation Pattern in Two Layer Media with fixed N value

In two layer’s simulation, point spread function seems to like arcly radiated, but in

three layer’s simulation, it seems to like circularly radiated. Green’s function in polar

and cylindrical coordinates consists of infinite sum of Bessel functions. The main

differences between two programs simulating two and three layered mediums are the
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Figure 8.6 Radiation Pattern in Three Layer Media

limit N of sum of Bessel functions used in Matlab program. In two layer, the number

N is fixed. But in three layer, N is determined with respect to the frequency value.

In simulations, we realize that the fixed number used in two layered medium is not

enough to get a good approximation of an infinite sum. At this point, in our layered

solution in Matlab program we take all parameters equal for each layer so that obtaining

homogeneous medium solution and look for a finite number N which satisfies a good

approximation to Bessel’s addition theorem. Then we run our two layer programs with

new N numbers and conclude that point spread function radiated circularly. Some

simulation results are given in Figure 8.7:

Figure 8.7 Radiation Pattern in Two Layer Media with adapted N value
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Also, we simulate the phantoms containing volume sources. The numerical test

results in Figure 8.8 show that the layered solution enable reconstruction of both low

and high contrast cyst-like structures with more accurate features compared to the ho-

mogenous solution.

Figure 8.8 Volume Sources Simulations

The limitation of the proposed inverse solution for thermoacoustic imaging is

need of tissue properties and structures as apriori information. But, these informations

can be obtained from acquired thermoacoustic data or additional transmission ultra-

sound scan. The error in apriori information of tissue structures will reduce the image

quality but this effect can be minimized by some iterative methods.
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CHAPTER 9

9. CONCLUSION

In this study, we have considered the inverse source problem for thermoacoustic

wave equation in layered circular and cylindrical models. We have derived an exact

analytic inverse solution in frequency domain under boundary conditions. Also, the

derived solution was tested in a three-layer numerical tissue models. The solution

presented here is a suitable approach for cross-sectional imaging of cylindrical and

spherical structures (such as breast) to get better image quality. The general integral

solution may not ease the application of tomography, since more complex media means

more complex Green’s function. But it represents an exact inverse solution to the

thermoacoustic wave equation.
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