
TWMS J. App. and Eng. Math. V.12, N.4, 2022, pp. 1419-1429

PASCAL DISTRIBUTION SERIES RELATED TO STARLIKE

FUNCTIONS WITH RESPECT TO OTHER POINTS

C. RAMACHANDRAN1∗, G. MURUGUSUNDARAMOORTHY2, L. VANITHA1, §

Abstract. The aim of the present paper is to find the necessary and sufficient conditions
for subclasses of starlike functions with respect to symmetric points, starlike functions
with respect to conjugate points, starlike functions with respect to symmetric conjugate
points associated with Pascal distribution series and inclusion relations for such sub-
classes in the open unit disk U. Further, we consider an integral operator related to
Pascal distribution series..

Keywords: Analytic functions, Starlike functions with respect to symmetric points, Star-
like functions with respect to conjugate points, Starlike functions with respect to sym-
metric conjugate points, Pascal distribution series.

AMS Subject Classification: 30C45.

1. Introduction and Preliminary results

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and normalized by the
conditions f(0) = 0 = f ′(0)− 1.

Let S∗s be the subclass of A consisting of functions given by (1) satisfying

<
(

zf ′(z)

f(z)− f(−z)

)
> 0, z ∈ U.

These functions are called starlike with respect to symmetric points and were introduced
by Sakaguchi [22]. The class has also been considered in Robertson [19], Stankiewicz [26],
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Wu [28] and Owa et al. [15]. El-Ashwah and Thomas in [4], introduced two other classes
namely the class Sc consisting of functions starlike with respect to conjugate points and
Ssc consisting of functions starlike with respect to symmetric conjugate points.

Now, we denote T is a subclass of A consisting of functions of the form,

f(z) = z −
∞∑
n=2

anz
n, z ∈ U. (2)

where an is a non negative real number.
For f ∈ T Halim et al. [9] studied the class T S∗s(α, β), 0 ≤ α ≤ 1, 1

2 < β ≤ 1, consisting
of functions f ∈ T and starlike with respect to symmetric points. An analogous results
are also obtained for the class T S∗c(α, β), 0 ≤ α ≤ 1, 1

2 < β ≤ 1, consisting of functions
f ∈ T and starlike with respect to conjugate points and the class T S∗sc(α, β), 0 ≤ α ≤ 1,
1
2 < β ≤ 1, consisting of functions f ∈ T and starlike with respect to symmetric conjugate
points.

In [10], Halim et al. introducted the following subclasses consisting of functions f ∈ T
and starlike functions with respect to symmetric points, starlike functions with respect to
conjugate points, starlike functions with respect to symmetric conjugate points.

Definition 1.1. A function f ∈ T S∗s(α, β, σ, k) is said to be starlike functions with respect
to symmetric points if it satisfies∣∣∣∣ zf ′(z)

f(z)− f(−z)
− k
∣∣∣∣ < β

∣∣∣∣ αzf ′(z)

f(z)− f(−z)
− (2σ − k)

∣∣∣∣
for some 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ σ ≤ 1

2 < k ≤ 1 and z ∈ U.

Definition 1.2. A function f ∈ T S∗c(α, β, σ, k) is said to be starlike functions with respect
to conjugate points if it satisfies∣∣∣∣∣ zf ′(z)

f(z) + f(z)
− k

∣∣∣∣∣ < β

∣∣∣∣∣ αzf ′(z)

f(z) + f(z)
− (2σ − k)

∣∣∣∣∣
for some 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ σ ≤ 1

2 < k ≤ 1 and z ∈ U.

Definition 1.3. A function f ∈ T S∗sc(α, β, σ, k) is said to be starlike functions with respect
to symmetric conjugate points if it satisfies∣∣∣∣∣ zf ′(z)

f(z)− f(−z)
− k

∣∣∣∣∣ < β

∣∣∣∣∣ αzf ′(z)

f(z)− f(−z)
− (2σ − k)

∣∣∣∣∣
for some 0 ≤ α ≤ 1, 0 < β ≤ 1, 0 ≤ σ ≤ 1

2 < k ≤ 1 and z ∈ U.

We state the following necessary and sufficient conditions due to Halim et al. [10].

Lemma 1.1. [10] Let f ∈ T . A function f ∈ T S∗s(α, β, σ, k) if and only if
∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+
β(k − 2σ)(1− (−1)n)− k(1− (−1)n)

β(2(k − 2σ) + α)− (2k − 1)

)
an ≤ 1 (3)

where 0 ≤ α ≤ 1, 1
2 < β ≤ 1, 0 ≤ σ ≤ 1

2 < k ≤ 1.

Lemma 1.2. [10] Let f ∈ T . A function f ∈ T S∗c(α, β, σ, k) if and only if
∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+

2(β(k − 2σ)− k)

β(2(k − 2σ) + α)− (2k − 1)

)
an ≤ 1 (4)

where 0 ≤ α ≤ 1, 1
2 < β ≤ 1, 0 ≤ σ ≤ 1

2 < k ≤ 1.
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Lemma 1.3. [10] Let f ∈ T . A function f ∈ T S∗sc(α, β, σ, k) if and only if

∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+
β(k − 2σ)(1− (−1)n)− k(1− (−1)n)

β(2(k − 2σ) + α)− (2k − 1)

)
an ≤ 1 (5)

where 0 ≤ α ≤ 1, 1
2 < β ≤ 1, 0 ≤ σ ≤ 1

2 < k ≤ 1.

A variableX is said to be Pascal distribution if it takes the values 0, 1, 2, 3, · · · with prob-

abilities (1−q)m,
qm(1− q)m

1!
,

q2m(m+ 1)(1− q)m

2!
,

q3m(m+ 1)(m+ 2)(1− q)m

3!
, · · ·

respectively, where q and m are called the parameter, and thus

P (X = r) =

(
r +m− 1

m− 1

)
qr(1− q)m, m ≥ 1 0 ≤ q ≤ 1 r = 0, 1, 2, 3, · · ·

Very recently, El-Deeb et al [6] (see also [1, 14]) introduced a power series whose coef-
ficients are probabilities of Pascal distribution, that is

Ψm
q (z) = z +

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)mzn, z ∈ U,

where m ≥ 1; 0 ≤ q ≤ 1 and we note that, by ratio test the radius of convergence of above
series is infinity. In [1] , they defined the following series

Φm
q (z) = 2z −Ψm

q (z) = z −
∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)mzn, z ∈ U. (6)

and considered the linear operator Imq (z) : A → A defined by the convolution or Hadamard
product

Imq f(z) = Ψm
q (z) ∗ f(z) = z +

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)manzn, z ∈ U,

where m ≥ 1; 0 ≤ q ≤ 1.
Motivated by several earlier results on connections between various subclasses of analytic

and univalent functions by using hypergeometric functions (see for example, [2, 8, 11, 20,
23, 24, 25]) and by the recent investigations (see for example, [3, 5, 7, 12, 13, 16, 17, 18, 21]),
in the present paper we determine the necessary and sufficient conditions for Φm

q (z) to be in
the function classes T S∗s(α, β, σ, k), T S∗c(α, β, σ, k) and T S∗sc(α, β, σ, k).We also determine

the conditions for the integral operator Gmq (z) =
z∫
0

Φm
q (t)

t dt belonging to the these classes.

2. Necessary and Sufficient Conditions

For convenience throughout in the sequel, we use the following identities that hold at
least for m ≥ 2 and 0 ≤ q < 1:

∞∑
n=0

(
n+m− 1

m− 1

)
qn =

1

(1− q)m
∞∑
n=0

(
n+m

m

)
qn =

1

(1− q)m+1

∞∑
n=0

(
n+m+ 1

m+ 1

)
qn =

1

(1− q)m+2
(7)
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By simple calculation we derive the following relations:

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1 =

∞∑
n=0

(
n+m− 1

m− 1

)
qn − 1 =

1

(1− q)m
− 1 (8)

and
∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1 = qm

∞∑
n=0

(
n+m

m

)
qn =

qm

(1− q)m+1
(9)

Unless otherwise mentioned, we shall assume in this paper that 0 ≤ α ≤ 1, 1
2 < β ≤ 1,

0 ≤ σ ≤ 1
2 < k ≤ 1, while m ≥ 1 and 0 ≤ q < 1

Firstly, we obtain the necessary and sufficient conditions for Φm
q to be in class T S∗s(α, β, σ, k).

Theorem 2.1. Let Φm
q ∈ T S∗s(α, β, σ, k) if and only if(

1

β(2(k − 2σ) + α)− (2k − 1)

)[
(1 + βα)

(
mq

(1− q)m+1

)
+ (β(k − 2σ)− k)

(
1

(1 + q)m
− 1

(1− q)m

)]
≤ 1. (10)

Proof. Since

Φm
q (z) = z −

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)mzn (11)

in view of Lemma 1.1, it suffices to show that

∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+
β(k − 2σ)(1− (−1)n)− k(1− (−1)n)

β(2(k − 2σ) + α)− (2k − 1)

)
×
(
n+m−2
m−1

)
qn−1(1− q)m ≤ 1. (12)

Writing n = (n− 1) + 1 in (12) we have

P1(α, β, σ, k) =

∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+
β(k − 2σ)(1− (−1)n)− k(1− (−1)n)

β(2(k − 2σ) + α)− (2k − 1)

)
×

(
n+m− 2

m− 1

)
qn−1(1− q)m

=

∞∑
n=2

(
(n− 1)(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)
+

(1 + βα) + (1− (−1)n) [β(k − 2σ)− k]

β(2(k − 2σ) + α)− (2k − 1)

)
×

(
n+m− 2

m− 1

)
qn−1(1− q)m

=

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

) ∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

) ∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

+

(
β(k − 2σ)− k

β(2(k − 2σ) + α)− (2k − 1)

) ∞∑
n=2

(1− (−1)n)

(
n+m− 2

m− 1

)
qn−1(1− q)m.
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By using (7), (8) and (9), we get

P1(α, β, σ, k) =

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

)(
mq

1− q

)
+

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

)
(1− (1− q)m)

+

(
β(k − 2σ)− k

β(2(k − 2σ) + α)− (2k − 1)

)(
1− 2(1− q)m +

(
1− q
1 + q

)m)
=

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

)(
mq

1− q

)
+ (1− (1− q)m)

+

(
β(k − 2σ)− k

β(2(k − 2σ) + α)− (2k − 1)

)((
1− q
1 + q

)m
− 1

)
But P1(α, β, σ, k) is bounded above by 1 if and only if (10) holds. �

Theorem 2.2. A function Φm
q (z) is in T S∗c(α, β, σ, k) if and only if(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

)(
mq

(1− q)m+1

)
≤ 1. (13)

Proof. In view of Lemma 1.2, it suffices to show that

P2(α, β, σ, k) =

∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+

2(β(k − 2σ)− k)

β(2(k − 2σ) + α)− (2k − 1)

)
an ≤ 1

(14)
Writing n = (n− 1) + 1 in (14) we have

P2(α, β, σ, k) =

∞∑
n=2

(
(n− 1)(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)
+

(1 + βα) + 2 [β(k − 2σ)− k]

β(2(k − 2σ) + α)− (2k − 1)

)
×

(
n+m− 2

m− 1

)
qn−1(1− q)m

=

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

) ∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m.

=

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)

)(
mq

1− q

)
+ (1− (1− q)m)

Therefore, we see P2(α, β, σ, k) is bounded above by 1 if and only if (13) is satisfied. �

Applying Lemma 1.3 and using the same technique as in the proof of Theorem 2.1 we
have the following result:

Theorem 2.3. A function Φm
q (z) is in T S∗sc(α, β, σ, k) if and only if(
1

β(2(k − 2σ) + α)− (2k − 1)

)[
(1 + βα)

(
mq

(1− q)m+1

)
+ (β(k − 2σ)− k)

(
1

(1 + q)m
− 1

(1− q)m

)]
≤ 1. (15)
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3. Inclusion Properties

A function f ∈ A is said to be in the class Rτ (η, υ), (τ ∈ C\{0}, 0 < η ≤ 1; υ < 1), if
it satisfies the inequality

∣∣∣∣∣ (1− η)f(z)
z + ηf ′(z)− 1

2τ(1− υ) + (1− η)f(z)
z + ηf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ D).

The class Rτ (η, υ) was introduced earlier by Swaminathan [27](for special cases see the
references cited there in) and obtained the following estimate.

Lemma 3.1. [27] If f ∈ Rτ (η, υ) is of form (1), then

|an| ≤
2 |τ | (1− υ)

1 + η(n− 1)
, n ∈ N \ {1}. (16)

The bounds given in (16) are sharp.

Making use of Lemma 3.1, we will study the action of the Pascal distribution series on
the class T S∗s(α, β, σ, k), T S∗c(α, β, σ, k) and T S∗sc(α, β, σ, k).

Theorem 3.1. If f ∈ Rτ (η, υ), then Φm
q ∈ T S∗s(α, β, σ, k) if and only if

2 |τ | (1− υ)

η[β(2(k − 2σ) + α)− (2k − 1)]
×[

(1 + βα) (1− (1− q)m)

+ (β(k − 2σ)− k)

(
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

)]
≤ 1. (17)

Proof. In view of Lemma 1.1, it suffices to show that

P3(α, β, σ, k) =

∞∑
n=2

(
(1 + βα)n

β(2(k − 2σ) + α)− (2k − 1)
+
β(k − 2σ)(1− (−1)n)− k(1− (−1)n)

β(2(k − 2σ) + α)− (2k − 1)

)
×

(
n+m− 2

m− 1

)
qn−1(1− q)m|an| ≤ 1
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Since f ∈ Rτ (η, υ), then by Lemma 3.1, we have |an| ≤ 2|τ |(1−υ)
1+η(n−1) , n ∈ N \ {1} and also

we note that 1 + η(n− 1) ≥ nη, Thus, we have

P3(α, β, σ, k)

≤ 2|τ |(1− υ)

η
×[ ∞∑

n=2

(
(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)
+

(1− (−1)n)(β(k − 2σ)− k)

n (β(2(k − 2σ) + α)− (2k − 1))

)
×
(
n+m− 2

m− 1

)
qn−1(1− q)m

]
=

2|τ |(1− υ)(1− q)m

η[β(2(k − 2σ) + α)− (2k − 1)]

[
(1 + βα)

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1

+ (β(k − 2σ)− k)
∞∑
n=2

(1− (−1)n)

n

(
n+m− 2

m− 1

)
qn−1

]

=
2|τ |(1− υ)

η[β(2(k − 2σ) + α)− (2k − 1)]

[
(1 + βα) [1− (1− q)m] + (β(k − 2σ)− k)

×
(

(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

)]
But P3(α, β, σ, k) is bounded by 1, if (17) holds. This completes the proof of Theorem
3.1. �

Applying Lemma 1.2 and using the same method as in the proof of Theorem 3.1, we
have the following result.

Theorem 3.2. If f ∈ Rτ (η, υ), then Φm
q ∈ T S∗c(α, β, σ, k) if and only if

2|τ |(1− υ)

η[β(2(k − 2σ) + α)− (2k − 1)]
[(1 + βα) [1− (1− q)m]

+ 2 (β(k − 2σ)− k) [(1− q)− (1− q)m − q(m− 1)(1− q)m]] ≤ 1. (18)

Applying Lemma 1.3 and using the same technique as in the proof of Theorem 3.1, we
have the following result.

Theorem 3.3. If f ∈ Rτ (η, υ), then Φm
q ∈ T S∗sc(α, β, σ, k) if and only if

2|τ |(1− υ)

η[β(2(k − 2σ) + α)− (2k − 1)]
[(1 + βα) [1− (1− q)m]

+ (β(k − 2σ)− k)

(
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

)]
≤ 1.(19)

4. An integral operator

Theorem 4.1. If m > 1, then the integral operator

Gmq (z) =

z∫
0

Φm
q (t)

t
dt (20)
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is in T S∗s(α, β, σ, k) if and only if

1

β(2(k − 2σ) + α)− (2k − 1)
[(1 + βα) [1− (1− q)m]

+ (β(k − 2σ)− k)

(
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

)]
≤ 1.(21)

Proof. Since

Gmq (z) = z −
∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m z

n

n

then by Lemma 1.1, we need only to show that
∞∑
n=2

(
n(1 + βα)

β(2(k − 2σ) + α)− (2k − 1)
+

(1− (−1)n)(β(k − 2σ)− k)

(β(2(k − 2σ) + α)− (2k − 1))

)
×

1

n

(
n+m− 2

m− 1

)
qn−1(1− q)m

or, equivalently

(1− q)m

β(2(k − 2σ) + α)− (2k − 1)

×

[
(1 + βα)

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1 + (β(k − 2σ)− k)

∞∑
n=2

(1− (−1)n)

n

(
n+m− 2

m− 1

)
qn−1

]
.

(22)

The remaining part of the proof of Theorem 4.1 is similar to that of Theorem 3.1, and so
we omit the details. �

Theorem 4.2. If m > 1, then the integral operator Gmq (z) given by (20) is in T S∗c(α, β, σ, k)
if and only if

1

β(2(k − 2σ) + α)− (2k − 1)

[
(1 + βα) [1− (1− q)m]

+ 2 (β(k − 2σ)− k) [(1− q)− (1− q)m − q(m− 1)(1− q)m]] ≤ 1. (23)

The proof of Theorem 4.2 is lines similar to the proof of Theorem 4.1, so we omitted
the proof of Theorem 4.2.

Theorem 4.3. If m > 1, then the integral operator Gmq (z) given by (20) is in T S∗sc(α, β, σ, k)
if and only if

1

β(2(k − 2σ) + α)− (2k − 1)

[
(1 + βα) [1− (1− q)m]

+ (β(k − 2σ)− k)

(
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

)]
≤ 1.(24)

The technique used for proving Theorem 4.3 is similar to that used in Theorem 4.1, so
we omitted the proof of Theorem 4.3.

5. Corollaries and consequences

By specializing the parameter σ = 0 and k = 1 in Theorems 2.1-2.3, Theorems 3.1-3.3
and Theorems 4.1-4.3 we obtain the following corollaries.
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Corollary 5.1. A function Φm
q ∈ T S∗s(α, β) if and only if(

1

β(2 + α)− 1

)[
(1 + βα)

(
mq

(1− q)m+1

)
+ (β − 1)

(
1

(1 + q)m
− 1

(1− q)m

)]
≤ 1. (25)

Corollary 5.2. A function Φm
q ∈ T S∗c(α, β), if and only if(
(1 + βα)

β(2 + α)− 1

)(
mq

(1− q)m+1

)
≤ 1. (26)

Corollary 5.3. A function Φm
q ∈ T S∗sc(α, β), if and only if(

1

β(2 + α)− 1

)[
(1 + βα)

(
mq

(1− q)m+1

)
+ (β − 1)

(
1

(1 + q)m
− 1

(1− q)m

)]
≤ 1. (27)

Corollary 5.4. If f ∈ Rτ (η, υ), then Φm
q is in T S∗s(α, β) if and only if

2|τ |(1− υ)

η[β(2 + α)− 1]
[(1 + βα) [1− (1− q)m]

+ (β − 1)

(
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

)]
≤ 1. (28)

Corollary 5.5. If f ∈ Rτ (η, υ), then Φm
q is in T S∗c(α, β) if and only if

2|τ |(1− υ)

η[β(2 + α)− 1]
[(1 + βα) [1− (1− q)m]

+ 2 (β − 1) [(1− q)− (1− q)m − q(m− 1)(1− q)m]] ≤ 1. (29)

Corollary 5.6. If f ∈ Rτ (η, υ), then Φm
q is in T S∗sc(α, β) if and only if

2|τ |(1− υ)

η[β(2 + α)− 1]
[(1 + βα) [1− (1− q)m]

+ (β − 1)

[
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

]]
≤ 1. (30)

Corollary 5.7. If m > 1, then the integral operator Gmq (z) given by (20) is in T S∗s(α, β)
if and only if

1

β(2 + α)− 1
[(1 + βα) [1− (1− q)m]

+ (β − 1)

[
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

]]
≤ 1. (31)

Corollary 5.8. If m > 1, then the integral operator Gmq (z) given by (20) is in T S∗c(α, β)
if and only if

1

β(2 + α)− 1
[(1 + βα) [1− (1− q)m]

+ 2 (β − 1) [(1− q)− (1− q)m − q(m− 1)(1− q)m]] ≤ 1. (32)

Corollary 5.9. If m > 1, then the integral operator Gmq (z) given by (20) is in T S∗sc(α, β)
if and only if

1

β(2 + α)− 1
[(1 + βα) [1− (1− q)m]

+ (β − 1)

[
(1− q)− (1 + q)

(
1− q
1 + q

)m
− 2q(m− 1)(1− q)m

]]
≤ 1. (33)



1428 TWMS J. APP. AND ENG. MATH. V.12, N.4, 2022

6. conclusion

In this article, we construct a new class of analytic function whose power series represen-
tation is associated with Pascal distribution. Such a new research paves a progressive path
to the young researchers for extending their investigation to approach a new dimension in
the field of geometric theory through probability distribution.

References

[1] Bulboaca, T. and Murugusundaramoorthy, G., (2020), Univalent functions with positive coefficients
involving Pascal distribution series, Commun. Korean Math. Soc.,35, (3), pp. 867-877.

[2] Cho, N. E., Woo, S. Y., Owa, S., (2002), Uniform convexity properties for hypergeometric functions,
Fract. Cal. Appl. Anal., 5, (3), pp. 303-313.

[3] El-Ashwah, R. M., Kota, W. Y., (2017), Some condition on a Poisson distribution series to be in
subclasses of univalent functions, Acta Universitatis Apulensis, (51), pp. 89 - 103.

[4] El-Ashwah, R. M., Thomas, D. K., (1987), Some subclasses of close-to-convex functions, J. Ramanujan
Math. Soc., 2, pp. 86-100.
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