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U oW

Abstract: Having access to ideal quantum mechanical resources, the prisoners’ dilemma can be
ceased. Here, we propose a distributed quantum circuit to allow spatially separated prisoners to
play the prisoners’ dilemma game. Decomposing the circuit into controlled-Z and single-qubit gates
only, we design a corresponding spin-photon-interaction-based physical setup within the reach of
current technology. In our setup, spins are considered to be the players” logical qubits, which can be
realized via nitrogen-vacancy centers in diamond or quantum dots coupled to optical cavities, and
the game is played via a flying photon realizing logic operations by interacting with the spatially
separated optical cavities to which the spin qubits are coupled. We also analyze the effect of the
imperfect realization of two-qubit gates on the game, and discuss the revival of the dilemma and the
emergence of new Nash equilibria.

Keywords: quantum game theory; prisoners’ dilemma; spin—photon interactions

1. Introduction

Utilizing quantum-mechanical resources in game theory has been attracting consid-
erable attention since the seminal work of Eisert et al. [1], where it was shown that the
dilemma of prisoners can be ceased if quantum strategies can be implemented in an ideal
setting. Another simple yet elegant example is the magic square game (MSG). While
the classically achievable average winning probability in the MSG is limited to 8/9, it is
possible to win every time if the players initially share entangled qubits [2]. It has also been
shown that the Samaritan’s dilemma can be resolved if quantum operations are allowed,
and the highest possible sum of payoffs can be achieved if entanglement is allowed [3].
As a result, in addition to super-dense coding [4,5], quantum teleportation [6-9], com-
putation [10,11], communication [12,13] and key distribution [14,15], networking [16-18],
metrology [19-22] and thermodynamics [23-25], games have appeared as an area where
quantum resources can enable advantages over classical resources.

Classical game theory [26,27], and arguably quantum game theory [1], might offer
great potential to advance our understanding of the quantum origins of biology [28,29] and
even consciousness [30]. Because decoherence induces the transition of quantum states into
classical states [31,32], analyzing not only physical models for realization of quantum games
but also the impact of the imperfections of initial states, operations and measurements on
the players’ payoffs appears to be of great importance in studying quantum games, which
could shed light on the quantum origins of biological evolution.

The presence of quantum resources does not always guarantee an advantage over
classical resources. Shimamura et al. studied classes of entangled states that cannot
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reproduce original classical games [33]. Considering the imperfections in preparing the
initial states to play the game, Ozdemir et al. showed a critical rate at which classical
strategies become more robust [34]. By deriving necessary and sufficient conditions for
playing games, Ozdemir et al. showed that it is not always possible to extend a 2-player
game to an N-player game by considering an N-party entangled extension of the bipartite
entangled state [35]. These findings have inspired more research into games in quantum
settings, taking into account physical realizations and imperfections.

Gawron et al. studied how environmental noise on the initial states affect [36], and Fi-
alik studied how imperfect operations and measurements affect the winning probability
of the MSG [37]. Ramzan and Khan showed that the MSG can be utilized for distinguish-
ing quantum communication channels [38]. Proposing a physical setup based on distant
quantum dots coupled to optical cavities, Bugu et al. studied the impact of imperfect
photon-spin interactions on the winning probability [39], and Ozaydin showed that while
playing the MSG with a thermal entangled state, exciting entanglement cannot always help
to increase the winning probability [40].

Limited to classical resources in the prisoners’ dilemma (PD) game, players find them-
selves in the following dilemma, which is explained in more detail in the next section.
Although they could both receive a greater payoff by cooperating, each chooses to defect
and receives a lower payoff. However, if they are granted access to ideal quantum me-
chanical resources, they can increase their payoffs by implementing a quantum strategy;,
which is considered as the cease of the dilemma. This quantum advantage and the pos-
sibility of the revival of the dilemma due to imperfections in quantum resources have
been attracting both experimental and theoretical attention. The game was experimentally
demonstrated on a nuclear magnetic resonance (NMR) quantum computer [41]. Proposing
a hybrid setup based on the quantum circuit approach and the cluster state model, Pater-
nostro et al. studied the impact of experimental imperfections on the game [42]. Designing
a linear-optics- [43] and a cavity-based system [43], Shuai et al. studied the game under
noise. A three-player extension of the game was also studied in detail considering noise
effects [44,45].

To play the PD game in the quantum domain, prisoners” qubits need to be entangled.
In the original circuit [1] and following proposals, to the best of our knowledge, we believe
an important issue is that the prisoners’ qubits need to be under the possession of the
party to implement the entangling operators. However, considering the real scenario in
this particular game, where prisoners are kept in separate rooms, and in general where
players should not be required to be in the same location to play an arbitrary quantum
game, a distributed setup is required that allows entangling the qubits of distant players.
Then, natural questions arise regarding how to transfer qubits between spatially separated
players or how to realize logic operations among distant qubits.

Electronic spins and two-level atoms constituting matter qubits are good for storing,
and photons traveling between sites or so-called flying photons are good for transferring
quantum information [46]. Therefore, realizing interactions between matter and photonic
qubits implementing logic operations plays a key role in quantum technologies. Numerous
works have been reported on spatially separated systems based on atom-photon and
spin—photon interactions, such as by creating entanglement among distant qubits [47-49],
preparing large-scale multipartite entanglement [50,51], observing entanglement sudden
death (ESD) in two separate Jaynes—Cummings nodes [52], manipulating separate qubits
in coupled resonators [53], experimentally demonstrating the entangling gate between a
flying photonic qubit and a stationary quantum dot spin qubit on a chip [54], playing the
MSG with distant players [39], deterministic expansion of W states [55], and a distributed
physical setup based on flying photons and atomic memories [56].

In light of these works, we chose to employ spin qubits as the logical qubits of distant
players, and a flying ancillary photonic qubit to travel between players. Spin qubits can
be considered as nitrogen vacancy (NV) center spins in diamond, or quantum dot spins
coupled to optical cavities, each requiring specific conditions such as ultra-low temperature
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in the latter. When the ancillary photonic qubit is incident to the cavity, the interaction
results in the implementation of a high-fidelity controlled-Z operation on the photonic and
spin qubits, constituting the basic building block of our proposal along with single-qubit
operations. We designed a distributed quantum circuit to play the game between spatially
separated players and we decomposed the circuit into basic building blocks so that we
could design a corresponding physical setup based on spin-photon interactions within the
reach of current technology despite cavity leaks and spin decoherence [47-49].

This paper is organized as follows. In the Materials and Methods Section, first we
briefly present the PD game. Next, we present how to decompose the two-qubit gates
into controlled-Z (CZ) and single-qubit gates, and finally how to realize the CZ gate via
spin—photon interaction towards designing the physical setup. In the Results Section, we
first present our design for the distributed quantum circuit to allow distant players to play
the game. Next, we present our design for the corresponding physical setup based on spin—
photon interactions each realizing a CZ operation. Taking into account the imperfections
in realizing the CZ operation, we study the dynamics of dilemma and Nash equilibrium.
Following the discussions, we present our conclusions.

2. Materials and Methods
2.1. Playing the Prisoners’ Dilemma Game

In this subsection, we briefly present how the prisoners’ dilemma game can be played
with separable or entangled resources and show how the dilemma can be ceased with
ideal quantum resources. Strategies of players to cooperate and to defect are assigned to two
basis vectors, |C) and |D), respectively. The associated strategy operators C = U(0,0) and
D = U(,0) are defined as instances of a 2 x 2 matrix

e'® cos6/2 sinf/2
ue.¢) = ( —sinf/2 e cosf/2 )' @)

where 0 < ¢ < /2 and 0 < 6 < 7. As explained in detail in ref. [1] and illustrated
in Figure 1, the game starts with the initial joint state of Alice and Bob, |C) @ |C). After
applying the global | operator on two qubits, Alice and Bob implement their strategies by
applying single-qubit operators U 4 and Up on their qubits, respectively. Next, applying the
global T operator, qubits are finally measured to obtain the payoffs based on the final state
lwe) = jt(U4 ® Up)J|CC), where the | operator can be found by considering a faithful
representation of the game as | = exp{iyD ® D/2} with € [0, 7/2]. The measurement
yields one of the results ab = {CC,DD, DC,CD} for Alice’s and Bob’s qubits, yielding
Alice’s payoff

$4 = rPcc + pPpp + tPpc +sPcp ()

and Bob’s payoff $ 4 is obtained by interchanging s and t. Here, the parameters are chosen
asr =3,p =1, =5and s = 0, representing reward, punishment, temptation and suckers’
payoff, respectively, and Py, = |(ablyy) 2. The parameter 7 controls the entanglement of the
game. The game is separable for v = 0 and maximally entangled for v = 71/2, and Alice’s
payoff is plotted in each scenario in Figure 2 on the right and left panels, respectively. In
the classical game, the dominant strategy D ® D yields payoffs $4 = $p = 1, while the
dominant quantum strategy Q ® Q yields $4 = $3 = 3 showing the advantage of ideal
quantum resources.
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Figure 1. The original circuit for a two-qubit circuit for playing the prisoners’ dilemma game game [1].

Figure 2. Payoff function for Alice (left) in a separable game with v = 0 and (right) in an ideal
quantum game with maximal entanglement with v = 71/2 with a ceased dilemma as presented
in[1]. D® D and Q ® Q are Nash equilibria in a separable and quantum game with $4 = $5 =1
and $4 = $p = 3, respectively. Following the parametrization Uy = U(tr,0) for t € [0,1]
and U, = H(O,t —m/2) fort € [—1,0), strategies D, Cand O correspond tot = 1, ¢t = 0 and
t = —1, respectively.

2.2. Decomposition of SWAP and | Gates via Spin—Photon Interactions

In the original circuit, implementation of the | and Jt gates requires qubits of both
prisoners. However, in order to allow spatially separated prisoners to play the game, we
design a new, three-qubit circuit by introducing an ancillary qubit. We consider matter
qubits such as NV centers or quantum dot spins for the prisoners’ logical qubits, and a
photon as the ancillary qubit to travel back and forth between the prisoners. As will
be explained in detail in the Results section, in our design, implementing a two-qubit
SWAP gate on Alice’s logical qubit and the ancillary photonic qubit is required at each
visit, and we consider two-qubit [ and ! gates to be applied on the ancillary qubit and
Bob’s logical qubit. In our physical setup corresponding to the circuit model, as explained
the the next subsection, each spin—photon interaction between the logical and ancillary
qubits implements a controlled-Z (CZ) gate. Therefore, decomposition of SWAP and | into
CZ gates and single-qubit gates is required. A SWAP gate can be decomposed into three
controlled-NOT (CNOT) gates, and a CNOT gate can be decomposed into one CZ gate and
two Hadamard gates.

Following the decomposition of the | gate into CNOT and single-qubit gates in
refs. [43,57] and I, denoting the single-qubit identity operator, the decomposition of
the | gate into CZ and single-qubit gates can be found simply as

J=(L®H)CZy (L ®H)CZ15 (Re(0) ® ) CZ15 (L ® H) CZ1p (L© H)  (3)

for @ = 77/2, and the f' gate for § = —m/2. Note that in controlled gates, the first and
second indices denote the control and target qubits, respectively, and no index implies
CZ = CZ, for simplicity. Circuit models for the decomposition of SWAP and | gates into
CZ and single-qubit gates are shown in Figure 3, and in the next subsection we will present
how a CZ gate can be implemented through the interaction of a photonic qubit with the
optical cavity to which the logical spin qubit is coupled.
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Figure 3. (Top) Decomposing the SWAP gate into CZ and Hadamard gates. (Bottom) Decomposing
the J gate into CZ, Hadamard and Ry (6) gates. [ and f* gates can be implemented with 6 = 77/2 and
6 = —m/2, respectively.

2.3. Implementing the CZ Gate

In this subsection, denoting the right and left circular polarization states of the photon
as |R) and |L), respectively, we present how to implement a CZ gate performing

R)+) = IR)+), )
[R)=) = IR)=), ®)
D+ = D+, (6)
L= — —IL=) @)

between the electronic spin coupled to an optical cavity constituting the logical qubit of
Alice or Bob, and the incident ancillary photon, as illustrated in Figure 4. As explained
in [58-60], when the optical cavity meets the photon, assuming a weak assumption limit
() = —1, adiabatically eliminating the cavity mode and neglecting the vacuum input
field, the solution of the Langevin equations in the rotating frame yields the reflection
coefficient for the photon

li(we — wp) — Kli(wo — wp) + 3] + &
[i(we — wp) + §lli(wo — wp) + ] + 82

®)

r(wp) =

Here , wc and wy, are the frequencies of the cavity field and the incident photon,
respectively, wy is the transition frequency of the electronic energy levels, and g is the
coupling strength of the NV center to the cavity. The decay rate of the NV center and the
cavity are denoted as 7y and x, respectively. For the resonant condition w, = wp = wc,
the reflection coefficient reduces to

~7+g

-7 )
T8

r(wp) =
When the NV center is not coupled to the optical cavity implying ¢ = 0, the reflection
coefficient in the resonant condition becomes ro(wy) = —1. Due to optical Faraday rota-
tion [59,60] and optical transition rules [48,58] as illustrated in Figure 4, an |R)-polarized
photon receives a phase shift ¢/ whereas an |L)-polarized photon receives a phase shift
e'? (¢'0) depending on the spin state of the NV center |—) (|+)), where the the arguments
of the complex numbers 7(w)) and ry(wy) are denoted as ¢ and ¢, and are approximately
equal to ¢ = 0 and ¢y = 77, respectively, for the resonant condition and a sufficiently large
coupling strength, ¢ > 5,/x7.
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It is then straightforward to implement a CZ gate as defined in Equations (4)—(7)
between the incident photon and the electronic spin by placing a 7r-phase-shifter in the
reflection path of the photon [39,47—49,55]. Note that the implementation of single-qubit
gates for both the ancillary photon and logical qubits is straightforward by using half-wave
plates [61] and EM pulses [62], respectively.

Photon

le)

Optical Cavity T I+)
Figure 4. (Left): A photon is introduced to an optical cavity to which an NV center is coupled. Due
to the optical transition rules illustrated on the right, a CZ operation is realized between the incident
photon and the electronic spin. See the text for the details. (Right): A nitrogen-vacancy center’s
A-type optical transitions. The transition |—) > |e) (|+) > |e)) is associated with the left (right)
circular polarization of the photon, denoted as |L) (|R)).

3. Results
3.1. Distributed Quantum Circuit for Spatially Separated Players

In this subsection, we present our proposed distributed circuit to allow spatially
separated prisoners to play the game. The working principle of our proposal follows.
Spins coupled to optical cavities are considered to be Alice’s and Bob’s logical qubits,
and when an ancillary flying photon is incident to the cavity, a CZ gate is realized between
the photonic and the spin qubits. As shown in Figure 5, the ancillary qubit is prepared in
the |C) state and sent to the cavity to which Alice’s logical spin qubit is coupled. Applying
the single qubits to the photonic and spin qubit accordingly, the first SWAP gate is realized.
Now, the ancillary photonic qubit is in the initial state of Alice’s qubit, and it is sent to Bob’s
site. Interacting with the cavity to which Bob’s spin qubit is coupled, and with single-qubit
gates applied, the [ gate is realized and the photonic qubit is sent back to Alice’s site for
implementing the second SWAP gate. Next, to implement their choices, Alice and Bob
apply single-qubit gates U4 and Up defined in Equation (1), respectively. The photon
is sent back to Alice’s site for implementing the third SWAP gate, then to Bob’s site for
implementing the ! gate and finally back to Alice for implementing the last SWAP gate,
which completes the procedure. The overall operation O on three qubits is then

O = (SWAP® L) (L, ® [T ) (SWAP® L) (U4 @ Up) (SWAP ® L) (I ® ) (SWAP ® I). (10)

In the circuit extended to three qubits, because both Alice’s qubit and the ancillary
qubit are prepared initially in the |C) state, the first SWAP gate can be omitted for reducing
the complexity. Moreover, if Alice can apply her choice operator U4 on the ancillary photon
instead of the spin qubit, the second and third SWAP gates can also be omitted. However,
for the sake of generality, we do not make such assumptions and keep the SWAP gates.
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Figure 5. In order to allow spatially separated prisoners to play the game, we design a three-qubit
circuit as an extension of the original two-qubit circuit proposed in [1]. Logical qubits of Alice and
Bob are considered to be spins of NV centers or quantum dots; for example, coupled to optical cavities.
Alice applies a SWAP gate to the ancillary photon and her logical qubit, then sends the photon to
Bob, who will apply the [ gate to the photon and his logical qubit, and send the photon back to
Alice. She applies another SWAP gate to the photon and her logical qubit. Their spatially separated
spin—qubit pair is now in the |¢) state as if the J operation was applied to them, leaving the ancillary
photon in its initial state. Applying single-qubit gates U4 and U corresponding to their choices, they
implement the same sequence, this time with a Jt gate.

3.2. Physical Setup Based on Spin—Photon Interactions

Although the circuit in Figure 5 can be implemented in an emerging distributed
quantum computer, for experimental demonstrations in lab, we designed a corresponding
setup based on spin—photon interactions. In our proposed setup is illustrated in Figure 6
where single-qubit operations and 7t-phase-shifters are not shown for simplicity. The spin
qubits of NV centers (as an example) in green and yellow colors coupled to optical cavities
correspond to the logical qubits of Alice and Bob, respectively. The sequence of operations
is enumerated; for example, the first two operations are “1: Swap” and “2: J”. Steps are
listed as follows:

STEP 1: Swap. Applying the single-qubit operations appropriately (these are not
shown in the figure and will not be mentioned in the following steps), the ancillary photon
is sent to Alice’s cavity three times to implement the first SWAP operation on the photon
and Alice’s NV center spin qubit. Then, the photon is sent to Bob’s site, which is shown
with dashed lines in the figure.

STEP 2: J. The photon is incident to Bob’s cavity four times to implement the |
operation, and then it is sent back to Alice.

STEP 3: Swap. The photon is incident to Alice’s cavity three times to implement the
second SWAP operation, yielding J|io), so that prisoners are now ready to apply their
choice operators U4 and Up.

The delay introduced in the photon’s path between STEP 3 and STEP 4 gives time to
prisoners to apply their choices.

STEP 4: U, and Up. Choices are implemented by applying U4 and U to the NV
center spins.

STEP 5: Swap. The photon is incident to Alice’s cavity to implement the third SWAP
operation, and is then sent to Bob.

STEP 6: J*. The photon is incident to Bob’s cavity for the last time to implement the
]A’f operation, and is then sent to Alice.
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STEP 7: Swap. Implementing the last SWAP operation, the spatially separated spin
qubits are now left in the final |¢;) = Jt (U ® Up)J|CC) state, before the measurement
yielding the payoffs.

Assuming perfect cavities, state preparations and gate realizations, this physical setup
implements the original circuit in Figure 1 for playing the game, resulting in the payoff
functions in Figure 2 in the separable and ideal quantum scenarios, with the dilemma
ceased in the latter. However, due to experimental imperfections, the payoff functions
are expected to deviate from the ideal quantum game, which will be considered in the
next subsection.

Alice

A
-
Photon

Bob € 4: U
NV

Figure 6. Physical setup for implementing the circuit in Figure 5 for spatially separated Alice and Bob
to play the prisoners’ dilemma game. Operations are applied in the enumerated order. As illustrated
in Figure 3, each SWAP operation is realized by sending the photon to the cavity three times, applying
a Hadamard gate to the photon and the spin before and after the interaction. f and ! operations are
realized by sending the photon to the cavity four times applying a Hadamard gate before and after
the interactions, and Ry (7r) and Ry (—r), respectively, in the middle.

3.3. Imperfect Realization and the Revival of the Dilemma

What makes this game separable or quantum is the y parameter of the two-qubit |
operator. Therefore, the implementation of the two-qubit operations plays a vital role in
the payoff functions. What is more, when compared to two-qubit operations, experimental
imperfections in implementing single-qubit operations can be neglected. Because the
two-qubit CZ operation is the key in our designs for the implementation of f, J* and
SWAP operations, we have limited our analysis of the imperfections of implementing
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it. We consider that while the ideal implementation of the gate is CZ = CP(0) with
controlled-phase operation

CP(a) = , (11)

1

SO =R OO

0

0

0
T—

S O O =
O O = O

e 14

nonideal implementation results in & # 0. Replacing CZ with CP(a), we recalculate the
payoffs as a function of a.

We first restrict the quantum game to classical strategies with nonideal implementation
of two-qubit gates. For « = 0 corresponding to the ideal case, due to the restriction, payoffs
appear as in a classical game, resulting in the dominant strategy D ® D. This is a Nash
equilibrium because, assuming the other player’s choice is fixed, no player can be better
off by changing the choice. However, as depicted in Figure 7, when a becomes greater
than ~ 71/12, the payoff for C ® D (red curve) becomes greater than D®D (orange curve).
That is, assuming that Bob chooses D, Alice can be better off switching from Cto D, so the
Nash equilibrium disappears. However, in extreme cases with « > 107r/11, the initial order
of payoffs is restored, resulting in the emergence of a Nash equilibrium at D ® D, implying
the revival of the dilemma. Note that for « = 7, operations CP(7), f and f T become the
identity operator leaving no entanglement in the game.

$a(a)
5_
4 __ccC
3 [~ DD
)l DC
. ¢D
1r \_,/,
T T wr 4
12 2 11

Figure 7. Restricted to classical strategies in a quantum game, Alice’s payoff as a function of «
corresponding to nonideal implementation of the CZ gate as a CP(«) operation. When a becomes
greater than ~ 771/12, D ® D is not the dominant strategy anymore. As « approaches 7 in the extreme
case where no entanglement is left, Nash equilibrium is restored.

Having observed the cease and revival of the dilemma in the classical strategy space
due to experimental imperfections, let us now analyze the case where quantum strategies
are allowed. In the ideal quantum game, Q ® Q is a Nash equilibrium. This is because, by
fixing Bob’s choice at Q, Alice cannot be better off by deviating from Q. However, in the
nonideal quantum game with imperfect realization of CZ gates, i.e., implementing CP(«)
with non-zero &, by fixing Bob’s choice at Q, Alice can be better off by deviating from Q
towards C as shown in Figure 8 for « = 71/5. Nevertheless, new Nash equilibria appear in
the band between Q and C.

The nonideality with & # 0 affects the implementation not only of the f, f/* gates
corresponding to the entangling operators between the players’ qubits in the original
scheme, but also the SWAP gates required to allow spatially separated players to play
the game in our scheme. Therefore, our simulation is not limited to considering nonideal
entangling gates with oy # 71/2, but it also covers the influence of the nonindeal CZ gates
on the distributed scheme. This shows that imperfect implementation, not only of the
core gates for playing quantum games in their simplest form assuming the players are
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in the same room, but also gates required to design distributed versions, plays a role in
determining the games’ results with dominant strategies and Nash equilibria.

Sa (a=r11/5)
Q C D
DF -D
. 400
- / 2.0
- '
S g ‘
- bs
- |
! ‘ 1.0
o
Q Q i
o c 5 05

~

Un

Figure 8. (Left) Payoff function for Alice in quantum game with imperfect realization of two-qubit
CZ gate with « = 71/5. (Right) Density plot for better visualization. Unlike the ideal game, Q ® Q is
not a Nash equilibrium anymore because assuming Bob plays Q, Alice can be better off by deviating
from Q towards C. However, new Nash equilibria appear along the band between Q and C.

4. Discussion

Here, we have assumed the same imperfection with the « value in realizing CZ gates
for implementing both SWAP gates on Alice’s site and [, [ gates on Bob’s site, which is not
strictly required in real scenarios, due to the technologies and capabilities of the players.
Because the experimental imperfections on players’ sites affect the Nash equilibrium, it
becomes important for each player to possess information on the experimental capabilities
of other players. Therefore, as discussed also in [39], it should be considered a factor in
determining whether it is a game with complete or incomplete information.

Because our main objective in this work was to propose a distributed quantum circuit
and a corresponding physical setup for distant prisoners, regarding the physical imperfec-
tions, we focused on limited scenarios. For example, regarding the nonideality in realizing
the CZ gate, rather than an arbitrary imperfection, we assumed a unitary controlled-phase
(CP(a)) gate, implying a deviation from the desired CZ = CP(0) operation by «, which
turns out to be sufficient for observing the cease and revival of the dilemma and the
change in Nash equilibrium points. However, more detailed noise scenarios might reveal
further results.

Considering the nonideal implementation of logic operators highlights an important
issue in quantum games. To prevent players from affecting or biasing the running of a
game, each player should be able to act only by implementing the choice operators in
general, and U4 and Up operators in the present game, which would actually jeopardize
the rationality of the game. However, in order to entangle players’ qubits in the original
proposal in [1], and implementing the two-qubit operators in the circuit model in Figure 5
and corresponding physical setup in Figure 6, players can choose to deviate from the
standard protocol. Thus, it would be interesting to extend the circuit model in Figure 5
by adding a trusted referee who implements the SWAP, Jand J* operators and sends the
ancillary photonic qubits to players for implementing their choice operators, only.

In addition to the construction of the distributed circuit in Figure 5 per se, the idea of
entangling the spin qubits belonging to spatially separated players in a specific way for
playing the PD game, and the design of the physical setup in Figure 6 for implementing
the distributed circuit, are the challenging steps in this work, which, to the best of our
knowledge, have not been addressed yet. The entangling gate that is not simply a CNOT
gate, as well as the single-qubit gates for implementing players’ choices and the impact
of imperfections on players’ payoffs in our work, are specific to the PD game. Therefore,



Photonics 2022, 9, 617

110f13

rather than a general distributed scheme, the presentation of our work is focused on the
PD game.

Despite recent advances in practical quantum computers, realizing a distributed
quantum computing task by transferring quantum information is yet to be achieved.
However, in quantum dot systems, Bodey et al. experimentally demonstrated full SU(2)
spin control with over 98% rm-rotation fidelity [63]. Very recently, Chan et al. reported
over 96% fidelity in realizing a spin—photon entangling gate [54]. Rong et al. reported
the experimental implementation of single- and two-qubit gates in NV centers at room
temperature with fidelities of 0.999 and 0.992, respectively [64]. The feasibility analyses
in [47-49,55] suggest that the implementation of a high-fidelity CZ operation on a photonic
and spin qubit is possible despite realistic effects such as cavity leaks, and that the proposed
physical setup is within the reach of current technology.

5. Conclusions

In the original proposal for the prisoners” dilemma game in a quantum setting [1],
two-qubit entangling operators are considered, requiring the possession of qubits of both
players. Here, by designing a distributed quantum circuit, we relaxed this requirement and
allowed distant players to play the game. In our circuit, each player possesses a qubit, and
an ancillary qubit travels between players for realizing the game. Considering that matter
qubits such as the spins of NV centers in diamond or quantum dots coupled optical cavities
constitute the players’ logical qubits, and a flying photon is employed as the ancillary
qubit, we also designed a spin—photon interaction-based physical setup for experimentally
realizing the game between distant players. Finally, we considered the nonideal game due
to imperfect realization of two-qubit gates, and analyzed the impact imperfections on the
game, in particular Nash equilibrium.
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