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Abstract In particle filtering, dimensionality of the
state space can be reduced by tracking control (or fea-
ture) points as independent objects, which are tradi-
tionally named as partitions. Two critical decisions have
to be made in implementation of reduced state-space
dimensionality. First is how to construct a dynamic
(transition) model for partitions that are inherently de-
pendent. Second critical decision is how to filter parti-
tion states such that a viable and likely object state is
achieved. In this study, we present a correlation based
transition model and a proposal function that incor-
porate partition dependency in particle filtering in a
computationally tractable manner. We test our algo-
rithm on challenging examples of occlusion, clutter and
drastic changes in relative speeds of partitions. Our suc-
cessful results with as low as 10 particles per partition
indicate that the proposed algorithm is both robust and
efficient.

Keywords Particle filtering · condensation · factorized
likelihoods · deterministic drift · proposal function

1 Introduction

Stochastic approach to tracking is driven by a state–
space model of the tracking object. The state of the
object is estimated with a probability density func-
tion, which was for convenience assumed to be Gaus-
sian in earlier works. Kalman filter [1], the most popu-
lar tracking algorithm with Gaussian probability den-
sity assumption, is a provably optimal estimator for
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linear systems. However, Kalman filter fails in clut-
tered scenes, occlusions, and sudden changes of state,
for which the probability density of state is multimodal.

Particle filtering offers the possibility of propagating
arbitrary probability densities through sequential im-
portance sampling (SIS) technique. Introduced as the
condensation algorithm by Isard and Blake [2], this ap-
proach is shown to be capable of representing arbitrary
functions by propagating multiple hypotheses. Conden-
sation algorithm models state with a vector of control
points which define the contour of the tracking object
through B-spline curves. Pitt and Shephard [3] provide
an excellent survey of early works in particle filtering,
including the condensation algorithm. One disadvan-
tage of consolidating the state of an object (e.g. control
points) in vector representation is increased dimension-
ality of the state space [4], which in turn necessitates
exponential increase in the number of hypotheses.

The problem of high dimensionality can be observed
both in tracking of multiple similar objects and a single
object with complex variations in shape. MacCormick
[5] proposed weighted resampling and partitioned sam-
pling algorithms for tracking multiple similar objects.
Weighted resampling algorithm populates more likely
regions depending on an importance factor for gener-
ating more accurate posterior probability distributions.
Partitioned sampling reduces the search space by de-
composing the joint dynamics of multiple objects. This
study demonstrated the explosion in the number of par-
ticles required as the dimensionality of the search space
increases.

Tracking of multiple similar objects requires assign-
ment of observations to correct target models. The num-
ber of possible matches is combinatorial, which leads to
an NP–hard problem [6]. MacCormick and Blake [7] de-
veloped a probabilistic exclusion principle in tracking of
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two objects. Hue et al. [6] proposed a solution to the as-
sociation problem of posterior densities through Gibbs
sampler.

The principle of dimensionality reduction is appli-
cable to tracking of a single, deformable object. In this
approach the object is segmented into non-overlapping
partitions, which are tracked independently. Its inher-
ent problems are similar to tracking of multiple similar
objects, such as the proposal of more likely regions for
each partition and selection of a set of hypotheses from
partitions to obtain a viable state of the tracking object.

Partitioned sampling was proposed by MacCormick
and Isard [8] for tracking of an articulated object. It
is an effective method for reducing the computational
cost that is incurred by the dimensionality of the state–
space. They demonstrated the operation of partitioned
sampling via survival rate, which is a way to evaluate
the reliability of tracking. In this work association of
partitions was not addressed to, but mentioned in fu-
ture works with a proposed tree structure.

Deutscher and Ian [9] proposed a simulated anneal-
ing based optimization of a multi-model objective func-
tion through annealed particle filtering. The approach
was demonstrated on an articulated human body track-
ing problem. They implemented a soft partitioning strat-
egy which allows hierarchical search on partition states
with respect to tracking confidence. Wu and Nevatia
[10] implemented a boosting based method to learn
the shape features of articulated body parts, which is
termed by them as edgelet features. Responses of part
detectors are combined in a joint likelihood function
through a greedy algorithm.

Patras and Pantic [11] attempted to reduce the di-
mensionality of the state space through particle filter-
ing with factorized likelihoods (PFFL) algorithm. Fea-
ture points on an object are represented with parti-
tions, each of which is independently progressed during
the course of tracking. They reduced the number of
wasted particles by sampling particles based on their
likelihoods after a simulated transition. In the litera-
ture, RANSAC based [12] particle sampling procedures
were also proposed.

PFFL algorithm treats each partition as an inde-
pendent object with a state and a reference model. The
dependency between the partitions, hence the overall
object state is modeled with a factorized proposal func-
tion. One particle is sampled for each partition, such
that the proposal function is maximized. PFFL was
shown to be successful in tracking of facial features [11,
13] and gaze tracking [14].

Modular algorithms that work independently on par-
tition level reduce the dimensionality of the problem,
offering simplicity and higher speed in tracking. These

algorithms also enable tracking of deformable objects
through suitable constraints for relative motion within
[15] or between [16] objects. Multi-scale systems that
propagate information from partition to object and vice
versa have also been proposed [17]. Multi-cue systems
utilize a voting based scheme to integrate the tracking
estimates of object partitions [18–20].

There are two challenges in implementation of par-
ticle filtering with reduced state-space dimensionality
through partitions. First is to model the transition dy-
namics of partitions which are inherently dependent.
When partitions are allowed to translate independent
of each other, their posterior distributions eventually
drift away to states that are incompatible with a viable
state of the object. On the other hand, partitions chosen
on an object indeed move in a pattern, and in varying
degrees of dependency with other partitions.In the lit-
erature partition dynamics has been modeled as Gaus-
sian noise [11,21] and independent speeds [14]. Graph
based models were proposed to incorporate temporal
and spatial relations between feature points [22].

We encounter the second difficulty in the final stage
of tracking; i.e. sampling a set of particles according to
a proposal function. This task is simpler to deal with
in the beginning stages of tracking where all partitions
exhibit a unimodal distribution of state. However, as
tracking progresses the posterior probability distribu-
tions of partition states become multimodal, approach-
ing uniform distribution in case of occlusion. In such
circumstances, selecting the maximum likelihood par-
ticle for each partition would not necessarily output a
maximized probability of state, or even a viable state
for the object. Since sampling from multimodal distri-
butions is an NP-hard problem, selection of particles
becomes significantly harder as the number of parti-
tions increases.

In this paper we tackle the problem of tracking gen-
eral deformable objects through factored particle fil-
tering. This task differs from tracking of articulated
objects in the sense that the partition hierarchy is un-
known and cannot be modeled offline, i.e. partition state
dependencies have to be extracted dynamically dur-
ing the progress of tracking. This model is required to
be agile and adaptive to the time-varying deformation
characteristics of the tracking object.

We present two contributions to particle filtering for
tracking deformable objects with multiple partitions.
First, we incorporate the dynamic dependencies of par-
titions in the transition model, with time-dependent
correlations. We show that this strategy provides a tran-
sition model that is robust to occlusion and clutter. Our
second contribution is a proposal function that pro-
vides a global estimate of viable states of the object.
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For each partition, the proposal function is an expo-
nential function of deviation from its original distances
with all other partitions. This smooth function favors
the original relative orientation of the partitions, but it
also enables elastic deformations in existence of obser-
vational evidence.

This paper is organized as follows. In Section 2 we
will introduce the original condensation algorithm and
its extension with PFFL. We will detail our algorithm
in Section 3, including the observation model, transition
model and the proposal function. We will present our
experimental results in Section 4 and conclude our work
in Section 5.

2 Particle Filtering

We aim to track regions chosen on an object in a se-
quence of image frames. The states of these regions will
be represented by partitions where the current state of
partition i is denoted by xi. In our implementation each
partition has a reference image (template) and a state
that consists of the partition’s coordinates in the 2D
image frame.

Probability density of state for partition i is approx-
imated by a set of particles, where each particle k is a
tuple of state and its probability {sik, πik}. Given an
observation sequence Zt = {z0, · · · , zt} up to frame at
time t, our goal is to estimate the posterior probability
for all partitions p(xt

i|Zt) at time t.
When we model state transition as a Markov chain

with independent observations, the posterior probabil-
ity of state for a particle is defined as:

p(xt
i|Zt) ∝ p(zt|xt

i)p(xt
i|Zt−1) (1)

p(xt
i|Zt−1) =

∑
xt−1
i

p(xt
i|xt−1

i )p(xt−1
i |Zt−1) (2)

Probability of the assumed state (1) xt
i is propor-

tional to the probability of reaching this state after ob-
servations Zt−1 = {z0, · · · , zt−1} and the probability
of the current observation in this state. Probability of
transition from the previous probability density to the
assumed state (2) is found over the dynamic transition
model and the posterior probabilities of this partition’s
particles from the previous time step. The reader is re-
ferred to [2] for a complete derivation of posterior prob-
ability of state.

Note that probability density of partition xt
i is ap-

proximated with a set of particles and their posterior
probabilities. That is, the summation term in (2) incor-
porates possible state transitions between particles. For

sake of implementation simplicity, we allow two par-
ticles to be at exactly the same state, and progress
particles independently. In that case particle filtering
equations (1) and (2) can be combined in one simple
expression:

p(xt
i|Zt) ∝ p(zt|xt

i)p(xt
i|xt−1

i )p(xt−1
i |Zt−1) (3)

2.1 Condensation algorithm

Condensation algorithm [2] extends posterior probabil-
ity density approximation to a sequence of frames. The
iteration capitalizes on Markov chain assumption, i.e.
the likelihood of a state depends on the probability den-
sity of the previous state, the probability of transition
into the current state using the dynamic model and the
current observation.

Given the posterior probability density for the pre-
vious time step p(xt−1

i |Zt−1), which is represented with
a set of particles and their probabilities {st−1

ik , πt−1
ik },

k = {1, · · · ,M}, condensation algorithm proceeds as
follows:

1. Sample M particles from {st−1
ik , πt−1

ik }.
2. Predict a new state for each particle using the dy-

namic model st
ik = p(xt

i|x
t−1
i = st−1

ik ).
3. Evaluate each particle with respect to the current

observation πt
ik ∝ p(zt|xt

i = st
ik).

The dynamic model in this algorithm consists of
drift and diffusion. Drift is deterministic motion defined
with velocity and acceleration, and is common for all
particles of a partition. Diffusion on the other hand is
Brownian motion; random movements that split parti-
cles at the identical state and enable search in the image
space through random walk.

2.2 Particle filtering with factorized likelihoods

The original condensation algorithm was demonstrated
on tracking control points of splines that define the con-
tours of the tracked objects [2]. The states of these con-
trol points are statistically related. Particle Filtering
with Factorized Likelihoods (PFFL) algorithm [11] re-
duces the dimensionality of the state-space by taking
this fact into account. Note that a tracking object is seg-
mented into N partitions, and the probability distribu-
tion of each partition is estimated by M particles. The
original PFFL algorithm estimates the overall state of
the tracking object by sampling each partition indepen-
dently, such that the proposal function is maximized;
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g(xt) =
∏

i

p(xt
i|Z) (4)

Patras and Pantic [11] constrained the transition
model using training data of relative positions of fa-
cial features. Particles from posterior density are evalu-
ated through Parzen density estimation. Translational
invariance is achieved by use of relative positions to a
stable feature in face (e.g. the nose tip). Scale invari-
ance is achieved by scaling factors, such as the width of
the mouth in the first image frame.

Pogalin [14] used the PFFL method and a 3D facial
feature model as prior for gaze direction tracking. The
head pose is estimated through tracked eye and mouth
corners. Overall, Pogalin tracks 8 points, including the
eye balls. Tracking process starts with an initial esti-
mation of 3D facial feature coordinates from a stereo
snapshot of the subject’s head. Relative positions of
the features are used as the reference shape model. Ob-
servation likelihood of a particle is decreased as the 3D
distance between partition coordinates and the refer-
ence shape model increases.

An advantage of the PFFL algorithm is an initial
simulation of dynamic transition. This stage enables
identification of the most promising particles, i.e. parti-
cles that end up in states of high likelihood. The simula-
tion stage is followed by evaluation, based on which the
sampling probabilities of more promising particles are
increased. This is followed by the stages of the classical
condensation algorithm for each iteration. The PFFL
algorithm is sketched with the following pseudocode.

Given probability density of partition xt−1
i which is rep-

resented by particles {st−1
ik , πt−1

ik },

1. Sample particles from the posterior p(xt−1
i |Zt−1)

2. Propagate sampled particles via p(xt
i|x

t−1
i ) to ob-

tain simulated, temporary particles s′ik. Note that
this step may incorporate only drift, or drift and
diffusion combined.

3. Evaluate the likelihood of s′ik; λik = p(zt|xt
i = s′ik).

4. Resample M particles from {st−1
ik , λikπ

t−1
ik } where

M is the number of particles for partition i.
5. Propagate chosen particles via p(xt

i|x
t−1
i ) through

drift and diffusion and obtain new particles st
ik. This

step involves both drift and diffusion. Particles are
typically upsampled during diffusion to expand the
coverage of random walk.

6. Evaluate and assign weights to new particles.

wik = p(zt|st
ik)πt−1

ik

πt
ik = wik/

∑
k wik (5)

Steps 1-6 are applied on each partition indepen-
dently to obtain a particle based representation of pos-
terior probability densities. When completed, we have
N posteriors. Assuming that the partitions are initial-
ized on an object, the next task is to choose particles
from these densities to define the object’s overall state.
If the proposal distribution (4) is constructed from in-
dividual posteriors, N particles can be independently
sampled from p(xt

i|Zt), i = {1, · · · , N}.

3 Proposed Method

The PFFL algorithm leverages the dependent behavior
of multiple partitions on a single object. In the gen-
eral sense, the interdependency of partitions can be in-
corporated either as constraints in the dynamic model
p(xt

i|x
t−1
i ), or in choosingN particles from the posterior

of N partitions through proposal function g(xt). In this
study we first propose a transition model that provides
an estimation for dependent drift of partitions. Second,
we relieve the factorization constraint in the proposal
function g(xt) and propose a simple and computation-
ally efficient model for modeling the joint probabilities
of partitions.

In the next subsections we will describe our obser-
vation model, transition model, proposal function and
present the complete algorithm.

3.1 Observation model

Tracking starts with manual initialization of partitions
on 2D image plane. Initialization is setting of the states,
in our case the coordinates, and the reference templates
of partitions. A partition template is an image subre-
gion with fixed window size extracted from the first
frame of the video, and is fixed throughout tracking.
When initialization is complete, all particles of a parti-
tion are placed at the starting coordinates of the parti-
tion and they share a common reference template.

The reference template ri for partition i is a feature
vector of RGB values in the chosen subregion of the first
video frame. The current observation oik is the RGB
values within the subregion centered at the coordinates
of sik, the kth particle of partition i. We evaluate this
particle by quantifying the difference between ri and
oik. We adopt a measure that is invariant to global
changes of intensity [11]:

d(ri,oik) = ri

E[ri]
− oik

E[oik] (6)
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The distance measure is defined as the L2 norm of
the distance vector d(ri,oik). The likelihood of observa-
tion decreases exponentially with increasing distance:

p(zt|sik) = e
− ||d(ri,oik)||2

σ2
o (7)

where σo is a fixed scaling factor.

3.2 Transition model

Partitions exhibit correspondence in transition patterns.
This is observed whether the partitions are chosen on
a single object or on multiple objects. This situation
is expected when a single object is being tracked. In
the scenario of tracking multiple objects, we see that
objects (e.g. people) often ensemble and move in the
same direction or in a pattern.

In this study we are interested in tracking a sin-
gle object with multiple partitions. However, even for
a single object, correspondence of partition dynamics
may suddenly and drastically change. A change in cor-
respondences may be due to changes in the 3D orien-
tation of the object or deformations within the object.
Time dependency of correspondences in partition tran-
sitions becomes pronounced in facial feature tracking
where 3D orientation change of the head and deforma-
tions on the face are simultaneously observed.

Condensation algorithm models transition with drift
and diffusion components. Drift is stated to be deter-
ministic, and is common for all particles of a partition.
In our implementation drift for a partition is estimated
based on correspondences with other partitions, which
are represented as correlations of velocities, and dynam-
ically updated in every time step.

Let us assume that we know the coordinates of all
partitions in the last τ time steps. The dependency of
velocity of partition i on partition j is determined with:

ρij = αij
E[(vi − µi)(vj − µj)]

σiσj
(8)

where vi and vj are the velocities of partitions i and j, µ
and σ are the mean and standard deviation of velocities
in the last τ time steps. Note that the ratio in (8) is the
correlation of velocities between partitions i and j. The
velocity correlations for partition i are weighted with
αij such that;

∑
j 6=i

ρij = 1 (9)

We start dynamic transition with a simulated ran-
dom walk on a zero mean Gaussian distribution. This
step provides an initial, crude estimate of partition ve-
locities in the current time step. Next, drift for par-
tition i is predicted using a weighted sum of correla-
tions ρij and estimated velocities vj for all partitions
j = {1, · · · , N}, j 6= i. Note that drift is same for all
particles of a partition.

Drift based on correlations provides us an estimate
of partition states depending on their history of rela-
tive movements. We need to search further to account
for inaccuracy of this estimation and to allow further
deformations, i.e. relative motion of partitions within
the object. We refine the state of a partition through
diffusion, which is modeled with zero mean Gaussian
distribution G(0, σt). Overall, our transition model is
defined as;

st
ik = st−1

ik +
∑
j 6=i

ρijvj +G(0, σt) (10)

In words, transition of kth particle of partition i

from t− 1 to t is a weighted combination of estimated
partition velocities and a random search component.
This approach perturbs the posterior distribution of
partitions to comply better with the proposal function.
Thus, partitions are constrained in their drift to max-
imize the number of particles of high likelihood in the
proposal distribution.

3.3 Proposal function

Transition model progresses the particle clouds of each
partition. Utilizing the observation model (6,7), we eval-
uate each particle and assign posterior probabilities. At
this point, the probability density of state for each par-
tition is approximated with its particle cloud.

One of the harder challenges in object tracking with
multiple partitions is how to determine the state of the
object from posterior probability approximations of its
multiple partitions. The factorized likelihoods approach
constructs a proposal distribution from individual pos-
teriors (4) and attempts to sample particles that would
maximize this function.

We encounter two pitfalls in practical implementa-
tion of the factorized likelihoods approach. First, parti-
cle distributions typically become multimodal as track-
ing progresses. The combinatorial nature of the prob-
lem makes it difficult to make the right choices for the
partition states, especially when there are more than
a few partitions to be tracked. Second, the proposal
distribution is dependent on reference point(s) in re-
ality, shifting in the state space with respect to their
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coordinates. Pogalin [14] chose partitions one by one,
using the selected partitions as reference points. Patras
[11] chose a simpler approach and exploited the nose
tip as the reference point for proposal distribution in
facial feature tracking. This approach requires an ini-
tialization to the subject’s face and estimation of head
orientation in each frame, as the relative distances of
face features to nose tip alter with the head model and
pose.

The state of each partition is represented by a cloud
of particles. We can use this approximation to deal with
the pitfalls of factorized likelihoods. We construct the
proposal function dynamically in each frame, using only
the L2 norms from the partition coordinates for the
given frame.

g(xt
i) =

∏
j 6=i

e
−

(||xt
i
−xt

j
||−dij)2

σ2
p (11)

When partition i is initialized, its distances to all
other partitions dij are kept as reference distances. The
probability of state of the partition decreases as its dis-
tance to other partitions deviates from the reference.
This enables us to avoid the combinatorial explosion
problem and the requirement of selecting a particular
reference point. We evaluate the proposal function inde-
pendently for partition i and choose particles from the
distribution g(xt

i)πt
ik, favoring the particles that con-

form to the shape topology of the object and with high
posterior probability.

Figure (1) presents a 2D plot of the magnitude of
the proposal function for the partition at the mouth of
a gourami. When the scaling factor σp is low, relative
motion between the partitions are more restricted and
the object is considered to be more rigid. The partitions
move more freely against each other as the scaling factor
increases.

3.4 The algorithm

Given the parameters for the observation model, tran-
sition model and the proposal function, we can sketch
the complete algorithm for tracking deformable objects
with the following pseudocode.

Given the states of partitions xt−1
i as approxima-

tions with particle clouds {st−1
ik , πt−1

ik };
1. Simulate transition of all partitions with diffusion;
s′ik = st−1

ik +G(0, σt).
2. Evaluate the likelihood of particles s′ik; λik = p(zt|xt

i =
s′ik) using the observation model (7).

3. Estimate simulated states x′i = E[s′ik] and velocities
of partitions v′i = x′i − x

t−1
i .

4. Apply correlation based drift and diffusion (10) to
particles st−1

ik and obtain new partitions st
ik. Dur-

ing diffusion, particles are upsampled to expand the
coverage of random walk.

5. Use the observation model (7) to evaluate the con-
ditional probability of observation p(zt|st

ik) and es-
timate posterior probabilities πt

ik (5).
6. Calculate the proposal function for each particle

(11) and update their posterior probabilities with
g(xt

i)πt
ik.

7. Sample M particles from {st
ik, π

t
ik} where M is the

number of particles for partition i.
8. Estimate the state of each partition as expected

value of particles xt
i = E[st

ik].
9. Update velocity statistics µi and σi.

4 Experiments And Results

We tested the proposed algorithm against two other
tracking algorithms. The first algorithm we chose for
comparison was PFFL as it is a factored particle filter-
ing method. We also tested our algorithm against Struc-
ture Preserving Object Tracking (SPOT) [23]. SPOT is
a very recent tracking algorithm that is not based on
particle filtering. It is a model-free tracker that lever-
ages histogram-of-gradient (HoG) features as observa-
tion model, relative locations of objects as a proposal
function and sliding-window exhaustive search to de-
termine transition between frames.

In the first two tracking scenarios we test the ca-
pabilities of these three algorithms (the proposed algo-
rithm, PFFL and SPOT) to deal with occlusion and
clutter. In both scenarios the task is to track an object
in a crowded scene of similar objects. As shown in Table
(1), platty is a publicly available high-definition video
of a crowded school of fish. Skydiving is a challenging
video as it is low resolution and the skydivers’ jump-
suits are very similar. In the third scenario we assess
the tracking algorithms on sudden changes in transi-
tion dependencies of partitions. In this scenario we use
a face video from the MMI facial expression database
[24]. This video is carefully selected to exhibit relative
motion and speed reversals (e.g. blinking, neutral-smile-
neutral) together with rigid body motion (e.g. head
movements) of the features.

Table (2) presents the values for all parameters that
are used in our experiments. Note that we used 10 parti-
cles per partition for our tracking algorithm in all exper-
iments. This figure is an order of magnitude lower than
100 particles used with the condensation algorithm [2]
and significantly fewer than minimum of 50 particles
suggested for tracking humans in open field [26,27].



Factored Particle Filtering with Dependent and Constrained Partition Dynamics for Tracking Deformable Objects 7

Fig. 1: Probability field for the partition at the mouth of a gourami. Top: The magnitude of the proposal function
is depicted with shades of gray. For demonstration purposes, the scaling factor is chosen higher than the actual
implementation. Bottom: 3D plot of the probability field.
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Video Resolution Frames
Platty [25] 1080×1920 110
Skydiving [23] 480×656 300
Face [24] 576×720 127

Table 1 We evaluated tracking algorithms on three scenarios;
platty, skydiving and face. The length of segment that is used
in experiments is indicated by the number of frames.

Parameter Sym. Platty Skydiv. Face
Number of partitions N 12 7 18
Number of particles M 10 10 10
Obs. window size 21x21 21x21 21x21
Scaling factor (obs.) σo 0.1 0.1 0.1
Scaling factor (trans.) σt 10 5 5
Scaling factor (prop.) σp 0.01 0.01 0.01

Table 2 Parameters for the proposed algorithm. Note that the
same parameters are used for the PFFL algorithm with the
exception of number of particles which was raised to 50.

These parameters were determined by trial and er-
ror on various videos. We observe that the set of param-
eters are very similar for best tracking performance,
regardless of the nature of occlusion, clutter and mo-
tion of the object. The only parameter that is sensitive
to the tracking task is observed to be σt, which is the
scaling factor for transition. Note that this parameter
governs the neighborhood for random walk and needs
to be increased for tracking fast motion or tracking in
high resolution, as is the case for the platty video.

4.1 Occlusion and clutter

Occlusion and clutter could easily lead to catastrophic
results in tracking. Divergent drift due to occlusion
is more pronounced when derivatives of error are ex-
ploited, such as in optical flow. In particle filtering, par-
tition posterior probabilities resemble uniform distribu-
tion during occlusion. When other objects with similar
characteristics are present in the image, particles may
cling on nearest similar object and drift away from their
true locations.

Figure (2) presents the results of tracking platty us-
ing the three algorithms. Each yellow dot on the platty
represents a partition, whose posterior is estimated with
10 and 50 particles with the proposed algorithm and
PFFL, respectively. Partitions on the nose and eye of
the fish become occluded on frame 14 and stay occluded
until frame 45. Occlusion of dorsal fin starts in frame
32 and continues until frame 57. Out of 12 partitions
as many as 7 partitions are occluded in the progress of
this video.

With the proposed algorithm all occluded partitions
move with the rest of the partitions, resisting divergent
drift. Once the occlusion is over, all partitions converge

to their true positions. Convergence of partitions can be
clearly observed on the nose and eye of platty between
frames 60 and 90. All partitions are at their true coor-
dinates after 90 frames, with slight error on the dorsal
fin.

Divergent drift of partitions becomes noticeable as
early as frame 15 with the PFFL algorithm. The par-
tition on the dorsal fin attaches to the dorsal fin of a
passing fish and drifts away. Similarly, the eye partition
starts drifting away after frame 30. Only 7 out of 12 par-
titions are near their true coordinates at the end of the
video. Most occluded partitions could not be recovered
after the occlusion is over.

The benefit of exploiting relative locations of objects
in the proposal function becomes apparent in the third
experiment, in which we use the SPOT algorithm. This
algorithm tracks platty until the end of the video de-
spite occasional jumps produced by the sliding-window
exhaustive search.

Figure (3) depicts the relative error for the pro-
posed algorithm on selected features. We define error
as the 2D distance between the tracking point and the
true feature coordinates. True feature coordinates are
marked manually by visual inspection. Error in pixels is
divided by the approximate length of the fish to obtain
unitless relative error. Increase in tracking error on the
nose, eye and dorsal fin during occlusion are evident
(frames 5-70 for the nose, 20-65 for the eye, frames 35-
60 for the dorsal fin). Due to drift based on correlations,
these features converge back to their true positions and
are stable at the end of the experiment.

Figure (4) compares tracking performances of the
proposed algorithm, PFFL and SPOT. In this figure,
average relative error over 12 tracking points is plot-
ted against the frame numbers. Tracking error in PFFL
parts from the other two algorithms starting from frame
20. At the end of the experiment, average relative error
with PFFL is about an order of magnitude higher than
the other two algorithms. SPOT occasionally drifts due
to the imprecision of its observation model. Both pro-
posed algorithm and SPOT highly benefit from the con-
figuration based proposal function and manage to keep
the general structure of platty until the end of the ex-
periment.

In the second experiment, we tested the three track-
ing algorithms on a cluttered scene and under low res-
olution. Figure (5) presents our results with the sky-
diving video, which also constitutes our longest experi-
ment with 300 frames. Figure (6) depicts relative error
for the head, left and right hand of the skydiver. For
the great majority of 300 frames, the relative error for
all three partitions is below 0.2, which corresponds to
approximately 15 pixels.
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Proposed Algorithm PFFL Algorithm SPOT Algorithm

Fig. 2: Tracking a fish in a school and under occlusion. Left column: Proposed algorithm (10 particles per partition).
Middle column: The PFFL algorithm (50 particles per partition). Right column: SPOT algorithm. From top to
bottom: Frames 0, 15, 30, 45, 60, 75 and 90.
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Fig. 3: Tracking error for significant features on platty with the proposed algorithm. The pixel error for each
feature is divided by the approximate length of the fish in pixels.
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Fig. 4: Comparison of average error on platty for the proposed algorithm (10 particles), PFFL (50 particles) and
SPOT. Data markers depict the average relative error for 12 partitions for each frame.
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Figure (7) presents relative error comparison for
the three tracking algorithms. With the proposed al-
gorithm, we observe increase in the relative error when
the background is cluttered (frames 50-80) and when
the object scale changes (after frame 200). However, av-
erage relative error does not exceed 0.25 (one fourth of
the skydiver body length) for the duration of the exper-
iment. PFFL algorithm diverges after frame 50. SPOT
algorithm cannot continue tracking beyond frame 75,
where the skydiver moves past the white cloud in the
background.

The proposed algorithm drives its robustness and
capability to deal with occlusion and clutter from two
contributions; drift with respect to correlated partition
velocities and the proposal function. Drift of a parti-
tion is computed through its correlation of velocities
with all other partitions. For that reason, under partial
occlusion or clutter the partition moves smoothly, to-
gether with the other partitions. Under full occlusion
of one or multiple partitions, the only implication for
the location of the occluded partitions comes from the
proposal function. The proposal function is modeled to
bring forth the relative distances of partitions when no
other evidence is available. Therefore under full occlu-
sion of a partition, diffusion becomes ineffective and
indifferent with approximately uniform distribution of
likelihoods and the proposal function takes over track-
ing.

4.2 Drastic changes in relative speeds

Facial expression databases constitute great test beds
for tracking algorithms. Relative motion of facial fea-
tures are markedly dissimilar during smiling, frowning,
surprise, anger, blinking, talking and so forth. We tested
our algorithm on a video from the MMI facial expres-
sion database [24]. This video is carefully selected to ex-
hibit relative motion and speed reversals (e.g. blinking,
neutral-smile-neutral) together with rigid body motion
(e.g. head movements) of the features.

Figure (8) demonstrates tracking of 18 facial fea-
tures on a smiling video. Rows present the snapshots
of tracking taken at frames 0, 30, 60, 90 and 120. Each
frame of the video captures both the front and profile
views of the subject. This situation makes the video a
particularly tough test bed since groups of features may
move in opposite directions, as observed with the tilt of
the head from frame 30 to frame 60. Note that in our
algorithm drift for each partition is determined through
correlations with other partitions. As such, the statis-
tics have to quickly adopt to the changes in partition
dynamics.

Proposed PFFL SPOT
Platty 3.01 ± 0.02 3.79 ± 0.04 0.16 ± 0.01
Skydiving 3.89 ± 0.02 4.47 ± 0.03 1.54 ± 0.01
Face 2.34 ± 0.02 3.39 ± 0.02 0.59 ± 0.01
Average 3.08 ± 0.64 3.88 ± 0.45 0.76 ± 0.59

Table 3 Frames per second for the proposed algorihtm, PFFL
and SPOT.

Drift with respect to correlated partition speeds and
distance-based proposal function handles drastic changes
in relative speeds of partitions extremely well. Particles
may momentarily drift away from their true coordinates
as seen on lip corners in frame 60. However the prob-
ability densities of particles quickly converge to their
true states and tracking continues stably until the end
of the video. With the PFFL algorithm (middle col-
umn), partitions on the left lip corner and the upper
lip drift away in frame 90 and do not converge back to
their true states. With SPOT (right column), eye cor-
ner in the profile view diverges towards the end of the
experiment.

The performance of the proposed algorithm can be
observed more clearly in Figure (9). Top and bottom
plots in this figure depict the relative error for selected
frontal and profile features, respectively. On the profile
of the subject (bottom), the eye corner, upper lip and
lower lip features are tracked precisely throughout the
experiment. On the frontal view, right lip corner is not
tracked accurately during smile (frames 56-95). This is
primarily due to the fact that its relative motion is not
correlated with any particular feature on the front or
profile of the subject. However, this error is handled by
the proposal function and the partition converges to its
true position towards the end of the smile. We observed
that three eye blinks were successfully handled by the
proposed algorithm.

Figure (10) compares the overall performance of the
proposed algorithm with the PFFL and SPOT algo-
rithms. Mean relative error is calculated over all 18
partitions for each frame. As observed in the figure,
the performance of the proposed algorithm parts from
the PFFL algorithm after frame 85. Our tracking re-
sults are consistently more accurate than both PFFL
and SPOT until the end of the experiment.

4.3 Time requirements

We measured running times of the three tracking algo-
rithms in each experiment. Table (3) presents approx-
imate speeds on a single core 2.2 GHz processor. The
implementations of the tracking algorithms were done
in MATLAB.



12 M. Taner Eskil

Proposed Algorithm PFFL Algorithm SPOT Algorithm

Fig. 5: Tracking a skydiver. Left column: Proposed algorithm (10 particles per partition). Middle column: The
PFFL algorithm (50 particles per partition). Right column: SPOT algorithm. From top to bottom: Frames 0, 50,
100, 150, 200, 250 and 300.
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Fig. 6: Tracking error for head, left hand and right hand for the skydiver. The pixel error for each feature is divided
by skydiver’s approximate length in pixels.
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Fig. 7: Comparison of average error on skydiver for the proposed algorithm (10 particles), PFFL (50 particles)
and SPOT. Data markers depict the average relative error for 7 partitions for each frame.
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Proposed Algorithm PFFL Algorithm SPOT Algorithm

Fig. 8: Tracking facial features. Left column: Proposed algorithm (10 particles per partition). Middle column: The
PFFL algorithm (50 particles per partition). Right column: SPOT algorithm. From top to bottom: Frames 0, 30,
60, 90 and 120.

The speed of the proposed algorithm varies between
2.3 and 3.6 fps. The major factor in speed variations
among experiments is the changing number of parti-
tions. Note that the number of particles per partition
is fixed (10 for the proposed algorithm, 50 for PFFL) in
all three experiments. The time cost of tracking a par-
tition of 10 particles is approximately 30 milliseconds
for the proposed algorithm.

The SPOT algorithm is considerably slower than
the other two algorithms. Running time of SPOT de-
pends mostly on the resolution of the video as it calcu-
lates HoG features for the entire frame. For that reason,
we see that SPOT is significantly slow on the high res-
olution platty video.

We observe that the proposed algorithm is consider-
ably faster than SPOT. However, the cost of calculation
of speed correlations, correlation based drift, and dis-
tance based proposal function makes our algorithm up
to 30% slower than PFFL.

5 Conclusion

In this paper we present two contributions to tracking
multiple partitions of a deformable object with parti-
cle filtering. Our first contribution is in drift; the de-
terministic motion of a partition with respect to other
partitions. The second contribution is in selection of
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Fig. 9: Tracking error for significant facial features. The pixel error for each feature is divided by the approximate
width of the face in pixels. Top: Frontal features. Bottom: Profile features.

particles from probability densities of partitions such
that the set of particles represent a viable and likely
current state of the object.

We propose an algorithm that extends particle fil-
tering to tracking of objects that deform or change 3D
orientation during their courses of motion. An itera-
tion of filtering starts with a simulated random walk
followed by an evaluation through observation model.
This stage is not meant to be precise or even close to

the actual solution, but only to provide an estimation
of velocity of the partitions. The outcome of the sim-
ulation stage is used in estimating the interdependent
motion (drift) of partitions.

The dependency of partition drift on deformable ob-
jects vary in space and time. We propose an online algo-
rithm that extracts this interdependency using correla-
tion statistics. The estimated velocities of partitions in
the last k frames are used for deriving the correlation of
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Fig. 10: Comparison of average error on facial features for the proposed algorithm (10 particles), PFFL (50
particles) and SPOT. Data markers depict the average relative error for 18 partitions for each frame.

velocities between each pair of partitions. For one parti-
tion, its normalized velocity correlations with all other
partitions are used as weights in determining its drift.
The dot product of the weights and the initial estimate
of partition velocities obtained through the simulation
stage provides the deterministic drift for the partition.

In modular or partitioned sampling, the state of the
tracking object can be estimated by selecting the par-
ticles with highest likelihood for each partition. It is
easy to visually verify this assumption in the beginning
stages of tracking, where all partitions exhibit a uni-
modal distribution of state. As the tracking proceeds,
probability densities of partitions become multimodal,
approaching uniform distribution when there is occlu-
sion. In this stage, selecting a set of particles that con-
structs a viable object state becomes a combinatorial
and NP-hard problem. This challenge is elevated as the
number of partitions increases and combinatorial explo-
sion becomes a concern.

Here we propose a computationally simple proposal
function that provides an estimate of viable states of
the object. The probability distribution of proposal for
each partition is modeled as an exponential function
of deviation of distance with all other partitions. This
smooth proposal function operates like a spring, allow-
ing non-rigid motion of partitions or the deformation of
the object when there is observational evidence, mean-
while favoring the original relative orientation of the
partitions.

The proposed algorithm displayed excellent perfor-
mance under occlusion, clutter and non-rigid deforma-
tions. Correlation based drift estimation provides ro-
bustness and efficiency when occlusion and clutter con-
fuses the tracker. Relative distance based proposal func-
tion handles deformations robustly, favoring the origi-
nal orientations of partitions meanwhile enabling non-
rigid motion in existence of observational evidence.
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