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SPHERICAL FUZZY MATRICES

I. SILAMBARASAN?, §

ABSTRACT. In this paper, we introduce spherical fuzzy matrices (SFMs) which is an
advanced tool of the fuzzy matrices, intuitionistic fuzzy matrices and picture fuzzy ma-
trices. We investigate the basic properties of SFMs and compare the idea SFMs with
picture fuzzy matrices. Then some algebraic operations, such as max-min, min-max,
complement, algebraic sum, algebraic product are defined and investigated their alge-
braic properties. Further, scalar multiplication (nA) and exponentiation (A™) operations
of a SFM A using algebraic operations are constructed, and their desirable properties are
studied. Finally, we define a new operation(@) on spherical fuzzy matrices and discuss
distributive laws in the case where the operations of s, ®s,As and Vs are combined
each other.

Keywords: Intuitionistic fuzzy matrix, Pythagorean fuzzy matrix, Picture fuzzy ma-
trix. Spherical fuzzy matrix, Algebraic sum, Algebraic product, Scalar multiplication,
Exponentiation operations.
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1. INTRODUCTION AND PRELIMINARIES

The concept of an intuitionistic fuzzy matrix (IFM) was introduced by Khan et al. [4]
and simultaneously Im et al. [3] to generalize the concept of Thomason’s [17] fuzzy matrix.
Each element in an IFM is expressed by an ordered pair <uaij,1/aij> with pg,;, Va;; € [0, 1]
and 0 < fiq,; +Va;; < 1. Since the presence of IFM, a few analysts have significantly added
to the improvement of IFM hypothesis and its applications [2, 5, 6, 7, 8, 9, 10, 11]. Khan
et al. [4] development of IFMs is of excellent notoriety however chiefs are some way or
another limited in relegating esteems because of the condition on (,,;; and d,,;. Now and
again a portion of their participation degrees are better than 1. In such a circumstance,
to accomplish a sensible result IFM falls flat. In this way, managing such circumstance
[9] in 2020, established the concept of Pythagorean fuzzy matrices (PyFM) by assigning
membership degree say (,,; along with non-membership degree say d,,; with condition
that 0 < (32_]_ + 53“_ < 1. In [12, 13, 14, 15], the developed of PyFM theory.

In this paper we extend the concept of Pythagorean fuzzy matrix to Spherical fuzzy
natrix by assigning neutral membership degree say 7,,, along with positive and negative
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membership degrees say (4,; and d,,; with condition that 0 < Cag; 1y + 5%_ <1

Dogra and Pal [1] construction of picture fuzzy matrices (PFM) is of exceptional reputa-
tion but decision makers are some how restricted in assigning values due to the condition
on 7g,;, Gay; and dg,;. In [16], some algebraic operations of Picture fuzzy matrices are
defined and their desirable properties are proved. Sometimes sum of their membership
degrees are superior then 1. In such situation, to attain reasonable outcome PFM fails.
To describe this situation, we take an example, for provision and in contradiction of the
membership degrees. The alternatives are 0.2,0.6 and 0.6 respectively. This gratifies
the situation that their sum is superior then 1 and PFM fails to deal such type of data.
Dealing with such kind of circumstances, we proposed new structure by defining spherical
fuzzy matrices (SFMs) which enlarge the space of membership degrees 7,,;, (a,; and dq,;
somehow bigger than that of picture fuzzy matrices. In SFM, membership degrees are
satisfying the condition 0 < Ci.j + 7732,], + 562”], <1.

The part of this paper is as follows. In section 2, spherical fuzzy matrices and its
algebraic operations are defined and their desirable properties are developed. In section 3,
we define a new operation(@) on Spherical fuzzy matrices and their algebraic properties are
investigated. In section 4, spherical fuzzy matrix and algebraic structure on this matrix,
the results are applicable. We write the conclusion of the paper in the last section 5.

Definition 1.1. [4] An intuitionistic fuzzy matriz (IFM) of order m X n is defined as A =
(<Caij75a¢j>) where Cq;; € [0,1] and d4,; € [0,1] are the membership and non-membership
values of the ijt" element in A satisfying the condition

0 < Cay +0ay < 1
for all i, 3.

Definition 1.2. [4] A Pythagorean fuzzy matriz (PFM) of order m x n is defined as A =
((Cas;»0ay;)) where (o, € [0,1] and b, € [0,1] are the membership and non-membership
values of the ijt" element in A satisfying the condition

0<¢, +0;, <1
for all i, j.

Definition 1.3. [1] A Picture fuzzy matriz (PFM) A of the form, A = ({Ca,;Nai; s, ))
of a non negative real numbers (o, MNa;;,0a;; € [0, 1] satisfying the condition

0 S gaij + 77aij + 5aij S 1
for all i,j. Where (q,; € [0,1] is called the degree of membership, n,,; € [0,1] is called the
degree of neutral membership and 6,,; € [0,1] is called the degree of non-membership.

2. SPHERICAL FUZZY MATRICES AND THEIR BASIC OPERATIONS

In this section, spherical fuzzy matrix and their algebraic operations are defined. Then
some algebraic properties, such as idempotency, commutativity, associativity, absorption
law, distributivity and De Morgan’s laws over complement are proved.

Now, we are going to define Algebraic operations of Spherical fuzzy matrices by restrict-
ing the measure of positive, neutral and negative membership but keeping their sum in
the interval [0, 1].

Definition 2.1. A Spherical fuzzy matriz (SFM) A of the form, A = (<€aij7naij750ij>) of
a non negative real numbers o, Ma;;» a;; € [0, 1] satisfying the condition
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for all i,j. Where (q,; € [0,1] is called the degree of membership, n,,; € [0,1] is called the
degree of neutral membership and 6,,; € [0,1] is called the degree of non-membership.

Let Sy, xn denote the set of all the Spherical fuzzy matrices.

Example

(0.2,0.6,0.6) (0.2,0.4,0.2)

A= (0.3,0.4,0.2) (0.4,0.4,0.2)

is not a PFM, but it A is a SFM.

This development can be evidently recognized in Fig. 1. Each element in an PFM
is expressed by an ordered pair (Ca,;,7ay;,0a,;) With (a5 7a,; and g, € [0,1] and 0 <
Cay; t May; +0a;; < 1. It was clearly seen that 0.2+ 0.6 4+ 0.6 > 1, and thus it could not be
described by PFM. To describe such evaluation in this paper we have proposed spherical
fuzzy matrix (SFM)and its algebraic operations. Each element in an SFM is expressed by
an ordered pair (Ca;; ;s 0a,; ) With Cay, 7a,, and 8,4, € [0,1] and 0 < Cgij —Hﬁu —1—521.3. <1.
Also, we can get (0.2)2 + (0.6)% + (0.6)? = 0.04 + 0.36 + 0.36 = 0.76 < 1, which is good
enough to apply the SFM to control it. The order structure of the circular fuzzy matrix
is appeared in Fig. 1.

FIGURE 1. The structure between FM, IFM, PyFM, PFM and SFM.

Definition 2.2. The Spherical fuzzy matrices A and B of the form, A = (<Caij7/rlaij,6aij>)
and B = (<Cbij’nbij’6bij>)' Then

hd A < B Zﬁ Vi)j) Caij S Cbij7naij S nbi]’ or naij 2 anjj75az‘j Z 6bij

L AC - (<5aij y 77%- y Caij >)

o A \/8 B = (<max (Caij7 <b”) 7min (’r]ai]‘?nbij) amin (60,1']' ) 5b1j)>)

o AN B = ((min (Ca,, Cb,y) » min (naij’nbm) , lnax (5az‘j’5bij)>)
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e A®s B = (<\/<3u + Cgij -G ng‘j’naijnbij’ Oas, 5bij>)
e A ®3 B = <<C‘1ij Cbij’ \/77217- + nli] B ngijnliy \/5217' + 62” B 56%1’]’ 55 >) :

ij

Definition 2.3. The scalar multiplication operation over SFM A and is defined by
nA = (< 1- [1 - Cgij]n? [Uaij]na [5aij]n>>
Definition 2.4. The exponentiation operation over SFM A and is defined by

A = ((Gay I\ 1= =2 I 1= =32, ])).

Let Sy, xn denote the set of all the Spherical fuzzy matrices.
The following theorem relation between algebraic sum, and algebraic product of SFMs.

Theorem 2.1. For A,B € Syxn, then AQs B < A® B.
Proof. Let A®s B = <<\/ng + Cl?” - Cgij Cgijanaijnbijaéaij 5bij>> and
A ®5 B = <<Caij Cbij’ \/ngij + 775” B n(%ijngiﬁ \/527;]' + 513” o 521']' 513 >)

ij
Assume that,
Couyoy < \JC3, + G, — B2,
(i€)  CayCoy — /G, + G, G 20
(o) -G )+@(1-¢2)20
which is true as 0 < Ci,j <land0< Cli-j <1
And
My oy < \J02, + 0, =02,

. 2 2
(i.e) Nas; Moi; — \/ Mayy + M, = MMy, = 0
(ie)  mp,(L—mp )+ng (L—mz)=0
which is true as 0 < 772”_ <land0< nlij <1
And
2 2
5%‘3‘651‘]‘ < \/521']' + 5bij - 621'517

7 Yij

(i€) a0y, — \/53” +0p 02,87 >0

aij

(i.e) 0g,; (1 — 5@3_) + 55”,(1 —05,)>0

which is true as 0 < 62”_ <land 0< 55”, <1

Hence A ®; B < A @, B. O
Theorem 2.2. For any Spherical fuzzy matriz A, then

(i) Ads A> A,

(i) As A < A.

PT'OOf. (Z) Let A @5 A = (<Caij777aij7 6(11"7' >) 698 (<Cai]‘ ’ 77ai]v 5aij >)

Ay A= (/260 = (Ca)? (102, (0)?))

V2 = (€)= Gy + oy (1= o)) = Cayy for all i,

and  (1a;;)? < 1q,, for all 4, j

and  (8,,,)% < dq,, for all i, j

Hence A @, A > A.

Similarly, we can prove that (ii) A ®s A < A. O
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Theorem 2.3. For A,B,C € S,,xn, then
(i) A®ds B= B ®s A,

(ii) A®s B= B ®; B,

(1i1) (A®s B) ®s C = Ads (B @ O),

Proof. (i) Let A®s B
<<\/CalJ + Cb” -G, G 2 Mai; Moy 5 Oas; 5b”>>

= <<\/Cbz] + Cllz’j - Cb” Caij ) an]naU ) 5b” 5aij >>
— B, A
(i7) Let A gs B

- <<Caij<bij,\/77§ij + 0, — 2, 7\/‘5% + 05, ‘531]522]»

= <<Cbij Caij’ \/77?” + 77?1“ - nbijnaiy \/5217 + 53 52 ‘53U>>
= B ®, A.
(i71) Let (f ©s B) ®s C

= (((\/@, + @, = CaR, Mayos BaigB; ) B (G 0cs,) ) )

J(a e -aw) va - (& e -aq,) a
Mai; Mbi; Mei; s Oai; Oby; 6% _
= [\Ja,+&,+a, - GG, — GG, — 4,2, + 34,4,
Mai; Mbi; Mes; s Oai; Oby; 6%
= /@, + ¢, +a, -

nazg nbzg 770” ) 5a23 6blj 607,]
Let A®s (B ®s C)

\/ e+ (V@ +e-aa) ¢ (/g +e-aa)

T]aij nbij 7701-]- I 6(12'3' 6bij 5Ciji|
= |:\/C32] + C[i] + Ccz,u - Cc%mgg” - ngjgg” Cb CCZ] + Ca” Cb CC”
77aij 77bz-j 7701-]- 9 5aij 6bij 5Ciji|

Hence (A®s B) ®s C = A®, (B @5 C)
Similarly, we can prove that (iv)(A ®s B) ®s C = A®s (B ®, C).

Theorem 2.4. For A, B € Sy, xn, then
(1) Ads (A®s B) > A,
(1i) ARs (A®s B) < A.

Proof. (i) Let A @5 (A®s B)
= ((Cas;»Masy» 6asy ) © <<Ca” Cbi;» \/?7% + nbz] — N2 ,\/5% + 52 — 02, 52”>>
= [\/@, + QR — Gl Lo [y 2, + 12, — 2,2,
bas [\ /92, + 0%, — 82,02, ]]
= [/, + @@ n-a e, (J1-1-m - ]),

Gy — G Ca, — G625 + G260 G2

1.7
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6aij <\/1 —-[1- 527:3'”1 B 521‘]‘]) }
> A.

Hence A @, (A®, B) > A.
Similarly, we can prove that (ii)A ®; (A &s B) < A. O

The following theorem is obvious.
Theorem 2.5. For A, B € Sy, xn, then
(i) AV, B =BV, A,
(i1) AAs B =B A, A,
Theorem 2.6. For A, B,C € S,,xn, then
(1) A®s (BVsC) = (A®s B) Vs (A O),
(11) A®s (BVsC) = (A®s B) Vs (AR C),
(1ii) A®s (BAsC) = (A®s B) Ns (A O),
(1v) A®s (BN C) = (A®s B) As (AR5 C).
Proof. In the following, we shall prove (i), and (ii) — (iv) can be proved analogously.
(1) Let Ads (B Vs CO)

= [\/ng + max ((gij,(%_J — (3, max <C§U, ng.j>,
Ta;; - MaxX (nbij , ncij) 0y, - max (0, , 5%.) }

= [\/ max (G2, + G, +2)) —max (@2, 2,2 ),
0 (T oy T e ) » T (B, O,y » Dy ) |

= [ fmax (@, + 62, - 4,60, + 2, -,

min (naz‘j Mbij» Nai; 770¢j) , min (5%' Ob;;» Oa; 5%‘) }
= (A®s B) Vs (A®; O). O

Theorem 2.7. For A, B € S;,xn, then
(i) (AAs B)®s (AVs B) = A®s B,

(17) (AAs B)®s (AVs B) = A®s B,
(i11) (A @®s B) As (A®, B) = A®, B,
(iv) (A®s B) Vs (A®s B) = A®; B.

Proof. In the following, we shall prove (i), and (ii) — (iv) can be proved analogously.
(i) Let (ANs B) @5 (A Vs B)

= !\/min <C§ij,C§U> + max (CgijaniJ — min (Cgijagli-j) .max (Cgijaé}?ij),

max (77%. ) nbij) . min (naij ) nbij) , max ((5%, , 6bij) . min ((5%. , 5bij) ]

— Ao, B. 0

In the following theorems, the operator complement obey th De Morgan’s laws for the
operation &, ®, Vg, As.

Theorem 2.8. For A,B € Sy,xn, then
(i) (A®, B)® = AY @, BC,
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(ii) (A®, B)¢ = A® @, BC,
(iii) (A ®s B)® < AC @, B,
(iv) (A®s B)¢ > AY @, BC.
Proof. We shall prove (iii), (iv), and (7), (i7) are straightfforward.
(i) Let (A @y B)C = (30,00, \J08, + 1, — 8,8, [R, + G, — G, GE)):
A€ @, B = ({\f02, 402 = 02,08, sy iy Gy oy ) )
SO0,y < \J02, + 05 — 07 6
\/ Masy + My = M, Mo, = Masg Moy
a G, — 62 Gh, = Cayy b
Hence (A @, B)® < A® @, BC.
(iv) Let (A @ B)C = ((1/53, + 07, = 02,02 Mois oy Caus o ) )-
A€ @y BC = ((Buyuy 12, + 18, = B, \[GB, + @B, — BLGE))-
Since /02, + 07 — 02,07 > ba, b,

Since dg,

Qg

Tai; sy < \/ Masy Moy, = Masy M,
Couoy < J2, + G, — G,
Hence (A ®4 B)¢ > A® @, BC. O
Theorem 2.9. For A, B € S;,xn, then
(i) (A9)° = 4,
(ii) (A Vs B)Y = AY A, BE,
(#ii) (A As B)® = A® v, BC.

Proof. We shall prove (ii) only, (i) is obvious.

AV, B = ((max (Ca,;, Cb;)  min (a5 M, ) » min (da,, 0,y ) )

(A Vs B)C = ((min (da,,, b,;) » min (M, m,,) - max (Cayyr Gy )))

= A = ((das; Masy» Casy )
B¢ = ({05555 Gy )

= A% Ay BY = ((min (Oas;» Ob,;) s min (a5 m;,) s max (a5 Gy ) )

Hence (A V4 B)® = A® A, BY,

Similarly, we can prove that (#ii)(A As B)¢ = A v, BC. O
Based on the Definition 2.2, 2.3 & 2.4., we shall next prove the algebraic properties of

Spherical fuzzy matrices under the operations of scalar multiplication and exponentiation.

Theorem 2.10. For A, B € Sp,xn, then n > 0,

(1) n(A®s B) =nA®snB,n >0,

(71) n1A ®sngA = (n1 +n2)A,ny,ng >0,

(7i1) (A®s B)" = A" ®s B™,n > 0,

(iv) A} @4 Ay = AMHn2) 5y ny > 0,

Proof. For the two SFMs A and B, and n,ny,ns > 0, according to definition,

we can obtain

(i) Let n(A @5 B)
=n << \/Cgij + CI?“ - Cr%ij Cl?m 2 Naij Mbij » 6‘”? 51’” >)
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L= 1= QM = G 1 By o, 1™ By 00,17 ) )

((V

<<\/1 —[1- Cgij + Cli-j - Cgij Cli-j]n7 [naijnbij}n’ [5az‘j55ij]n>>
(

[

<nB
(/1= 1= @1 [y ™ B ") @5 (/1= 1= @17 [, 7 00, ]7) ))
(-f-@r+1i-n-gJr) - (1--) (1-1n-¢ ),
sy )" By O, 17

—1- Cz%ij]n[l - Cli-j]nv [ﬁaijﬁbu]n7 [5aij6bij]n>>

N
(Y= 1=, + G = QG T [aiymo, 1™ [Baiy 80,1 ))

(1= 10— @0 a1 80,1 ) s (/1= [ = @12 e )72, 180, ) ) ) )
Y- ri-n-g - (- ) (1- -, ),

t
= (C Cb \/1 [t =i, + 77 ~ Tlay; b j]n’ \/1 -0, + 5§ij N 532‘1'65@]”}
_ g o)L= L= L= ] 1 -8 -7 "]

:j@%gwﬁ,¢1—u—n%1+4—wr—ﬁgn—(r—u—n@w)(r—u—n@w)
\/1 182 +1—[1—-3 |- (1 - a2 ]n)(l [1-62 ]n)}

:<ccb \/1 L=z Jr(l— g I \/1 162 ] 152]n>)

:[mwrﬁm,¢1—u—n@wh+r—u—ﬁgm—(1—u—n@w0(1—u—n@w*)
\/1 —p-eg ez - (1-n-a ) (1- 1 -8 1))

- ({f, R, T )

— Alnitnz)

Hence proved. O
Theorem 2.11. For A, B € S;,xn, then n > 0,

(1) nA < nB,

(11) A™ < B".

Proof. (i) Let A< B

= Ca;; < Cb;; and 1q,; > Mp,; and dq,; > 0p,; for all i, j.
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;»\/1— [1—¢2 ] n<\/1— [1-¢ I

nazg ] [nb” ] a’nd
[6a;;]™ = [0b,, ]” for all 4, j.

(71) Also, [Ca” 1" > [Gy,]",

\/1— 1-n2, n<\/1— L—n2 I,
\/1 -2 "< \/1 —[1 =32 ], for all i, j.
Theorem 2.12. For A, B € Sp,xn, then n > 0,

(1) n(ANs B) =nAAsnB,
(13) n(AVs B) =nAVsnB.

Pmof (i) Let n(A As B)
= 11— [1 — min (Cc%i]w Cl?”ﬁn? max ([naij]nv [nbij]n) , max ([5%]']”7 [55”]”) :|

= nA As nB. Hence n(A Ns B) =nA Ag nB
Similarly, we can prove that (ii)n (A Vs B) = nA VsnB.

Theorem 2.13. For A, B € S;,xn, then n > 0,
(1) (AN B)" = A™ Ag B™,
(1i) (AVs B)" = A™ Vs B™.

Proof.

o~

i) Let (A A, B)"

= _\/1 — [max (1 — @G 1= Cfi)]”, max ([7a;,]", [7,;]") » max ([a,,]" [0,,]") }
= [ (o (1= a0 = G2 1) ) (O 1 o, 1) e (0, 6,17)
= [max (,/1-[1-¢ ] Vl — =@ ) smae (o, ] e ) e (8,17 5,)7) |

0

=

ol
- [mm([gaij]",[cb“]"),\/1— Coin (112, 1=, 17))
\/1 — (min ([1 — 5,%“]”7 [1- 5131]]71))}

= [ (G 7 (6o, 1") o (T =T =2, I, =T =2, ]

max (\/1 —[1 -0z, f1-T- 531,],]“)]

A" Ns B

in ([Ca”] 5 (G 1™ ) \/1 — [max (1 — n% 1— nb \/1 — maX 1 - 62”_, 1— (Si)}n}

= [ min ([Gay " [Goy 1) s (/1= [L =2 I, /1= L= "),
max (\/1 —-a ) 1-n-e ) ]
= (AAs B)™.
Hence (A Ns B)" = A™ \s B™,
Similarly, we can prove that (ii)(A Vs B)" = A" V4 B™.

Theorem 2.14. For A, B € S;,xn, then n > 0,
(Ads B)" # A" &5 B™.

— <Ca” \/1_1_% \/1—1—63””) (Cbij"\/l— =1, 1"
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Proof. Let (A ®s B)"™
:[W L322 \/1—1—773”775.]",\/1—1—53”52”]"]
= ((lGay 1" %1—1—% W-=a )
:(<Qw VI vﬁ—»1—527§)
are, B = | fla Pl —ic Pl P (- -m, ) (Y- - )
(y1-D 521) (1—[1—52”])}

Hence (A @5 B)" # A™ @5 B™. O

3. NEW OPERATION (@) ON SPHERICAL FUZZY MATRICES

In this section, we define a new operation(@) on Spherical fuzzy matrices and proved
their algebraic properties. Further, we discuss the Disstributivity laws in the case where
the operations of @, ®, Vs and As; combined each other.

Definition 3.1. A Spherical fuzzy matrices A and B of the form, A = (<Caij,77aij,6ai],>)
and B = (<Cbij7nb7,’j75b7jj>)' Then

2 2 2 5 2 2
AQB = Caij * Cbij Na, + M, ; 5az] + (5
2 ’ 9 ) 5

Remark 3.1. Obuiously, for every two Spherical fuzzy matrices A and B, then AQB is
a Spherical fuzzy matrix.

Simple illustration given: For AQB,

0< Caij + Cbij + 77111-]-""771)7;]- + 6aij + 5bij

2 2 2
<@ﬁ+%w+&w+gu+m +%U<1+} 1
- 2 2 -2 2 ’
Theorem 3.1. For any Spherical fuzzy matriz A, then AQA = A.

+ 2 12 + 62
Proof. Let AQA = <v2w‘%avﬁ”"w 0y au>
2 2 2 2 2 2
2 ’ 2 ’ 2

B x@ m@ %&
a 27 27 2

= %Caij?naij75aij>) . Since C(i-]- S Caijvngij § naz‘jﬁégij § 5%]' 0

Remark 3.2. For a,b € [0,1],then ab < %t =t < g 4 b — ab.

Theorem 3.2. For A,B € Sy,xn, then
(1) (A®s B) Vs (AQB) = A @, B,
(ii) (A®s B) A\s (AQB) = A®; B,
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(iii) (A @, B) As (AQB) = AQB,
(iv) (A®, B) Vs (AGB) = AGB.
)

Proof. we shall prove (i) and (iii), (ii) and (iv) can be proved analogously.
(1) Let (A®s B) Vs (AQB)

2 2 2 2
N wmax [ JC 7@ @/ ) sy * Moy
aij bij Q5 3by;0 2 ) Tai; bij » 2 ’
2 2
o+
. a/z_j b’L
min | J4,;0p,;, fj ]

= << \/Cgij + Cme - Cf%ij C[?m ’ na’ij 77bij ) 6aij 5bi]' >)
— A®, B.
(441) (A B, %) As (A@B)

' o+ n2 +ng
= | min \/Cgij + Cb2” — Cgij Cgij’ # , Max | 7a,; 77bij7 # y
2 2
o+ 0y
max 6aij 6[71.]. s %sz] ]
= ‘i‘j + Czi.j 772”- + nli'j 530’ + 5?’11
2 ’ 2 ’ 2
= AQ@B,
Hence proved. O

Remark 3.3. The Spherical fuzzy matriz forms a semilattice, associativity, commutativ-
ity, idempotency under the Spherical fuzzy matrix operation of algebraic sum and algebraic
product. The distributive law also holds for Gs, ®s and N, Vs, Q are combined each other.

4. APPLICATIONS

The formation of Spherical fuzzy semilattice structure, Spherical fuzzy matrix and al-
gebraic structure on this matrix, the results are applicable.

5. CONCLUSION

In this paper, spherical fuzzy matrices and its algebraic operations are defined. Then
some properties, such as idempotency, commutativity, associativity, absorption law, dis-
tributivity, De Morgan’s laws over complement are proved. Finally, we have defined a new
operation(@) on Spherical fuzzy matrices and discussed distributive laws in the case where
the operations of @, ®s, As and Vg are combined each other. This result can be applied
further application of Spherical fuzzy matrix theory. For the development of Spherical
fuzzy semilattice and its algebraic property the results of this paper would be helpful.
In the future, the application of the proposed aggregating operators of SFMs needs to
be explored in the decision making, risk analysis and many other uncertain and fuzzy
environment.
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