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HOCHSTADT’S RESULTS FOR INVERSE STURM-LIOUVILLE
PROBLEMS WITH FINITE NUMBER OF TRANSMISSION AND
PARAMETER DEPENDENT BOUNDARY CONDITIONS

M. SHAHRIARI!, §

ABSTRACT. This paper deals with the boundary value problem involving the differential
equation
-y +ay =y,

subject to the parameter dependent boundary conditions with finite number of transmis-
sion conditions. The potential function ¢ € L2(0,7T) is real and A is a spectral parame-
ter. We develop the Hochstadt’s results based on the transformation operator for inverse
Sturm—Liouville problem when there are finite number of transmission and parameter
dependent boundary conditions. Furthermore, we establish a formula for ¢(z) — ¢(x) in
the finite interval [0, 7], where ¢(z) and §(x) are analogous functions.

Keywords: Inverse Sturm—Liouville problem, Mittag—Leffler expansion, discontinuous
conditions, transformation operator, Green’s function.
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1. INTRODUCTION

Sturm—Liouville problems with transmission conditions at interior points arise in a va-
riety of applications in engineering. We refers to [2] for a nice discussion and further
information. For the Sturm—Liouville problems, we have three types of problems: direct
problems, isospectral problems, and inverse problems. In direct problems, the eigenvalues,
eigenfunctions, and some properties of the problem are estimated from the known coef-
ficients [6, 13]. In isospectral problems, for a given problem, we want to obtain different
problems of the same form, which have the same eigenvalues of the initial problem. Isospec-
tral Sturm—Liouville problems are studied in [14, 15]. The third type of problems related to
the Sturm-Liouville problems are inverse problems. The inverse spectral Sturm-Liouville
problem can be regarded as three aspects: existence, uniqueness and reconstruction of the
coefficients given specific properties of eigenvalues and eigenfunctions.

Inverse problems with the discontinuities conditions inside the interval play an impor-
tant role in mathematics, mechanics, radio electronics, geophysics, and other fields of
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science and technology. As an example, such problems are related to discontinuous and
non-smooth properties of a medium (e.g., see [3, 5, 7] and [10]). We refer to the some-
what complementary surveys in inverse Sturm-Liouville problems in [2, 7, 9, 16, 19] and
[21]-[28].

In this paper, we study the inverse problem of Sturm—Liouville equations with finit
number of discontinuous and parameter dependent boundary conditions. We discuss the
uniqueness of spectral problem by developing the Hochstadt’s results for inverse Sturm-—
Liouville problem using two spectra with finite number of transmission and parameter
dependent boundary conditions. Using the above notation, we generalize the Hochstadt’s
results [8], refining the approach of Levinson [12] to show that precisely how much ¢ has
freedom where the p, and all but finitely many of the \,’s are specified. Note that the
eigenvalues p, is obtained with replacing H; by #H; for j = 1,2,3 in (2). The similar
papers for Hochstadt’s results in several cases such as discontinuous, left-definite Sturm-—
Liouville equations with indefinite weight, and singular Sturm-Liouville operators are in
[4, 9] and [17]-[19].

2. THE HILBERT SPACE FORMULATIONS AND PROPERTIES OF THE SPECTRUM
We consider the boundary value problem

ty:=—y" +qy =Xy (1)
with the eigenparameter dependent boundary conditions
Li(y) = A(y/(0) + hy(0)) — hay/(0) — hisy(0) = 0,
La(y) =y (m) + Hiy(r)) — Hay/(x) = Hyy(r) = 0, (2)
and the transmission conditions
Ui(y) :== y(d; +0) — aiy(d; — 0) =0,
Vi(y) :=y'(di +0) = biy/(di — 0) — ciy(d; — 0) = 0, (3)
where ¢(z) is real-valued function in L2[0,7]. We also assume that a;, b;, ¢; d;, i =

1,2,---,m — 1 (with m > 2) and h;, Hj, for j = 1,2,3, are real numbers, satisfying
ab;>0,dy=0<di <dy < - <dpm_1 <dy=mand

r1:=hg—hihy >0, and ry := H{Hy — H3 > 0.
For simplicity, we use the notation L := L(q(z);h;; H;;d;) for the problem (1)-(3). We
define the following weight function

1, 0<z<dy,

ﬁ, dy < x < da,
wi) = " (4)

S S
a1br-am—1bm—1’

dm_1 <x <.

to obtain a self-adjoint operator. The Hilbert space will be H := L((0,7);w) © C?
associated with the weighted inner product

- e f(x) o(z)
(F,G)y :=/0 fgw+ 2O pgr 0T e ( fi ) G = ( i ) (5)

T T
! 2 f2 g2
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The corresponding norm will be denoted by ||F||3 = (F, F >%{/ ?. Next, we introduce

Ri(y) = ¢'(0) + h1y(0),  Ry(y) := hay'(0) + hay(0),

Ro(y) =y (m) + Hiy(m),  Ry(y) == Hay'(m) + Hay().
In this Hilbert space, we construct the operator

A:H—-H

with domain

f(l‘) 4 m—1 2
om o o f,f EAC(U (dz,dz 1)),€f€L (0,7‘(’)
dom (4) = {F - ( ; ) 0P = Vi) =0, = Ralf). 2= Rol)) }
by
tf f(x)
AF = | R|(f) with F'= | Ri(f) | € dom(A).
Ry(f) Ro(f)
By construction, the eigenvalue problem for A,
y(z)
AY = )Y, Y=|Ri(y) | €dom(4),
Ry (y)

is equivalent to the eigenvalue problem (1)—(3) for L.
Lemma 2.1. [20] The operator A is self-adjoint.

In particular, the eigenvalues of A, and hence of L, are real and simple.
Suppose that the functions ¢(z,A) and 1(z, A) are solutions of (1) under the initial
conditions

©(0,\) = X — ha, ¢ (0,\) = hg — Ahy, (6)
and
Y(m,\) = Ha — A, Y'(m,\) = \H, — Hs (7)

as well as the jump conditions (3), respectively. It is easy to see that the equation (1)
under the initial conditions (6) or (7) has a unique solution ¢1(x,\) or 1, (z, ), which
is an entire function of A € C for each fixed point = € [0,d;) or = € (dy—1, 7. From the
linear differential equations, we obtain that the modified Wronskian

W (u,v) = w(z)(uw(z)v'(z) — v (z)v(z))

is constant on z € [0,dy) U2 (d;, d; + 1) U (dy—1, ] for two solutions fu = \u, fv = \v
satisfying the transmission conditions (3). Moreover, we set

AA) == W(p(A), (X)) = Li(¥(N)) = —w(m)La(p(X)).

Then A(X) is an entire function whose roots A, coincide with the eigenvalues of L. In this
section, we obtain the asymptotic form of solutions and characteristic function.

Theorem 2.1. [20] Let A = p? and 7 := Imp. For equation (1) with boundary conditions
(2) and jump conditions (3) as |\| — oo, the following asymptotic formulas hold:
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p? cos pr + O(pexp(|T|z)), 0<uz<d,
p*laq cos px + o cos p(z — 2dy)] + O(pexp(|7|z)), di < x < ds,
p*[a s cos px + g cos p(z — 2d1) + aqady cos p(z — 2d3)

+a oy cos p(x + 2dy — 2ds)] + O(pexp(|7|x)), dy < x < ds,

pPlaras ... Qi1 coS pr+

o(x,\) = +adag. .. am_icosp(z —2dy) +---

+agag...al, _cosp(z — 2dp—1)+

+ajabas ... am_1cosp(x + 2d; — 2dg) + - - -

taq ... o). .af . ooy cos p(z + 2d; — 2d;)

taq... o). 0l o ooy cos p(z— 2d; + 2d; — 2dy) + -
+ahaly...al, ycosp(z+2(=1)""tdy +2(=1)""2dy + -+ — 2dp—1)]

L +O0(pexp(|T|z)), dp—1 <z <,
(8)
and
p3[— sin pz] + O(p? exp(|7|z)), 0 <z <d,
p3[—a1 sin px — o sin p(z — 2d1)] + O(p? exp(|7|7)), di < x < dy,
pP[—aiag sin pr — o ag sin p(z — 2d;)—
—aag sin p(x — 2dg) — ooy sin p(x + 2d; — 2da)]
+0(p? exp(|7|7)), dy < x < ds,
(p/(x,)\) - 3 : / : /
pllmanaz .. .amoysinpr — djag .. .amoysinp(z —2dy) — - — .. .al,
sinp(x — 2dp,—1) — &jabas ... am_1sinp(x + 2d; — 2dg) — - - -
—al...ag...a}...am,lsinp(x—l—Zdi — 2d;)
7041...ag...a;...a%...am,lsinp(x72di+2dj —2dp)+ -
—afddy... ol sinp(x+2(=1)""dy +2(—=1)""2dy + - -+ — 2dp_1)]
+0(p? exp(|7|)), dmp—1 <z <,
where
a; + b; , a; —b;
a4 =— and o = 7
fori=1,2,--- ,m—1. The characteristic function satisfies
AN) =p°w(m)[aras ... am_1sinpr + alas .. au_1sinp(m — 2d1) + -+ aqan. ..ol

sin p(m — 2dp—1) + oy abas...apm_1 sin p(m + 2dy — 2dy) + - - -
+ay...al... .. Q1 sin p(m + 2d; — 2d;)

+ai...d... Qoo sin p(m — 2d; + 2dj — 2d) + - - -
+ahah...al, ysinp(m+2(=1)""1dy +2(=1)"2dy + - - - — 2dp—1)]

+O0(p" exp(|7|m)).

«

/,
g
/
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The eigenvalues N, = p2 of the boundary value problem L satisfy

pn=n+o0(n) as n— oco.

From the above theorem, we obtain
]go(”)(m, A =0 (]p|”+2 exp(|7\$)) , 0<z<m v=0,1.

Substituting x to m—z in the Eq. (1) and using a simple calculation, we get the asymptotic
form of ¢(x,\) and ¢’(z, ) and particularly

[0 (2, 0)] = O(|p]" P exp(|7|(r — 2))), O0<w<m v=0,1

Moreover, the eigenfunctions p(z, \,) and 1 (z, \,) associated with a certain eigenvalue
An, satisfy the relation

(@, An) = Brp(, An). 9)

Using (6) with a simple calculation, we obtain

™

We also define the norming constant by

T = || Pn(2) 3, (10)

where

on(z) = (T, An)
D, (x) :=P(x,\y) = Ri(pn) . (11)
R2(‘Pn)

Then it is straightforward to verify:

Lemma 2.2. All zeros A, of A(X\) are simple and the derivative is given by

A()‘n) = *’Ynﬁrp

Lemma 2.3. If o(z, \,) is the eigenfunction corresponding to eigenvalues A, then

Vo = 1(pn; di; ai; b;) [1 +0 <i>} : (12)
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where pu(pn; di; ai; b)) =

(AT _
pnf’ form—l,

A4 B+ of rotmpaa)], s

P |4 + Lt (03 + o/} + 010t cos pa(2d1))

_ 2 2 12
+%(a%a% +a'1a? + /{5 + 2a1aza’1az cos pp(2d;)
+adasa’s cos pp(2da) + 20 apady ol cos pp(2da — 2dy)

+alEagaly cos p,(2ds — 4d1)) ] for m = 3,

4 |d do—d 2 12 /
O [71 + 2";11)11 (af + /T + a1a/y cos pr(2dy))
d3—d 2.2 2.2 12 12 /
+5a,b1ab; (afa3 + /Taf + o/1d/5 + 201000 1rg cos py (2d))

+201 apal oy cos pp (2da — 2d1) + aFasal, cos py, (2de — 4d)
+adaga’s cos pn(2d2)) + ...

tog e (efas . ap_ + o203 g+ 0203

+. . Fdds a2+ aa10d. .. a2, cos pn(2d;)

+atasabhad ... a2, | cos pn(2ds)

+a2a3 ... am_10l, 1 cos pn(2dm_1) + -

+a'Tand!s . . o1, cos p(2[(=1)™ 1 1]dy + 2(=1)"2dy + - — 2dyy_1)
tarahaly. .. am_1al, 1 cos pp(2(=1)""tdy +2[(=1)""2 + 1]dg + - - — 2dyp—1)
4+ + alo/lo/gz . 0/m_12 oS pn(2dy)

4o O/%O/Q2 e Qo100 4 COS pn(Qdm,l))} for m > 4.

Proof. Using the inner product (5), initial conditions (6), and the asymptotic form of
o(x, ) in (8), we get

o = / Gz, Ayw(x)de + 1 + w(m)ry
0

1
= u(pn; di; ai; b;) {1 +0 <n>] + 71+ w(m)rs.
The second term i.e. 71 + w(m)ry, merged in the leading term, so we get Eq. (12). O

Suppose that the functions @(x, ) and ¢ (x, \) are solutions of

ty=—y"+aqy =2y
under the initial conditions
P(0,\) =X —ha,  F(0,A) = hg — A,
and
W(m A =Hy =X '(m,\) = AH; — Hy

as well as the jump conditions (3), respectively. So we get

1[}(-737 S\n) = Bn@(xa :\n)v
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where ~ ~ ~ ~
5 = PR + hd(0.3,)

1

where @(z, \,) and ¢ (x, \,) are eigenfunctions of L := L({(z); h;; Hj; d;) corresponding
to the eigenvalue \,, and
5 . Fn(r) = @z, An)
R2(@n)

Let L(q(x); hj;H;;d;) be another eigenvalue problem such that by H; — Hy # 0. The
boundary condition for the problem L(q(x); hj;#H;;d;) in the end point 7 is

Ls(y) = A(y/ () + Hay(m)) — Hay'(x) — Hay(x) =0.

Suppose that 6(x,\) is the solution of (1) satisfying in the initial conditions 6(m, \) =
Ho — A, 0'(m,\) = AH1 — Hs and the jump conditions (3). It is clear that ¢(\) =
Wi(p(A),0(N) = —w(m)L3(p(N)) is the characteristic function of L(g(x); hj; Hj;d;) and
the zeros of ¢(\) are eigenvalues of L(q(x); hj; H;;d;), say {pn}or,, are real and simple.

This is a new operator and a new spectrum. Define ¢(\) by an analogous manner.
Lemma 2.4. If L(q(x); hj; Hj;d;) and L(G(x); hj; Hj;d;i) have the same eigenvalues then
¢=09.

Proof. Using the Hadamard’s factorization theorem for entire functions ¢(\) and ¢(\) of
order 1/2, we have

¢(A):c§ (1—:) and 3(\) = 001 <1_5>.

Define M()\) := % Note that the function M(A) is an entire function. Using the

asymptotic forms of ¢(A) and ¢()), we get
M(X) =14o0(1), for |\ — oo.

(13)

Using Liouville’s theorem for the entire function M (\), we get

B(A) = d(N).
O
Lemma 2.5. Let Ag C N be a finite set and A = N\Aq. If L(q(x); hj; Hj;di), L(G(x); hy; Hjs di)
have the same eigenvalues and, as well as, A, = An for all m € A, whefe An and A, are
the eigenvalues of L(q(x); hy; Hj; d;) and L(G(x); hy; Hj; d;), then Bn = By for alln € A.
Proof. From definition of ¢, 8, ¢ and @, 0, ¢, we get

W (¥n, 0n) = B W (0n, 0n) = Bnd(An) and W(&na én) = BnW(Sém én) = Bnﬁg(j‘n)
So
5. W ()l () = V4 )00 ()
" ¢(An)
_ )‘%(Hl - ,Hl) + )\n(H2H1 — HiHo + Hs — Hg) + H3Ho — HoHs
N ¢(An)

(14)
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and

5, _ WEu()(r) - G (x)n(m)
?(An)
_ N2 (Hy — Ha) + An(HoHa — HiHo + Hs — Hs) + HHy — HoHs (15)
P(An)
From \, = \, for all n € A and Lemma 2.4, we have ¢()\,) = &(\,). Using the similar
proof of ([5, Lemma:1.1.3]), we get ¢(\,) # 0. So, Egs. (14)-(15) conclude 8, = 3,. O

Assume that A is not in the spectrum of (1)—(3) and let

Syi=(A- )\I)_l‘dom(A) .

Replace A by A and define S analogously. We consider the following spaces

U :=dom(A)©{®, :nc A}, and U :=dom(A)S{®,:n € Ao} (16)
Define the transformation operator T : U — U by
T®, = o, (17)

for all n € A. Note that by dom (A4) & {®, : n € Ag} we mean dom (A) contains all of
{®,}22, except {Pp }nen,, where @, and ®,, are defined in (11) and (13), respectively.

Lemma 2.6. The operator T : U — U defined by (17) is bounded.

Proof. From Lemma 2.3 we see that
1
=l 0 [P plpidsiasit) 140 (1) (1
and )
Fn =l P 1= pa(pn; di; ai; bi) [1 +0 (nﬂ (19)
for all n € A. Thus by (19) and (18), we get

=~ 2
| T2, 2 [ @ | =1+0<1>
N n

By using the similar proof of theorem ([5, Thm:1.2.1]) we get:

Theorem 2.2. The system of eigenfunctions {®,(z)}n>0 of the boundary value problem
A is complete in Lo((0,7);w) @ C2.

Lemma 2.7. The relation SxT = T'Sy holds for A # A, \n and n € N.

Proof. Let F' € U, then we can expand F' in terms of the set ®,,

f(z)
Fl)=| Ri(f) | = faln(x), (20)
Ra(f) A
<F7¢'n>7-t

for n € A, where f, = C Let A be in complex plane which is not an eigenvalue of

L(q; hj; Hj; d;), then the operator Sy exists and can be written as

fn
~ A=

—S)\F(z) = D, (x).
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If we apply T to the above relation, we obtain

fn =
—TS\F(z) = D, ().
A — A=A,

If we apply Sy and T to (20) respectively, we obtain

—S\TF(x Z

Then we get
S\T'=TS).

3. MAIN RESULT

In this section, we examine a different representation for 7', in a general case when
there are m discontinuous parameter-dependent boundary conditions. We generalize the
well-known results of [8, 17, 4] to the finite number of jump conditions. Denote

oz (y,\) O<x<y<m
GZL‘, 7)\ = A(A) ’ 7 21
(7,95 M) {W> O<y<z<m, -

where x,y # d;. For simplicity, we can write

plr <)z >)
AN

where x <:= min{x,y} and = >:= max{z,y}. Consider the function
V() = [ Gl fly)utu)ds

The function G(z,y; ) is called the Green’s function for L. G(z,y; ) is the kernel of
the inverse operator for the Sturm-Liouville operator, i.e. Y (z,\) is the solution of the
boundary value problem

G(z,y;\) =

Y =AY = f(z), UY)=V()=0;

and the jump conditions (3), this is easily verified by differentiation. Let C,, be a sequence
of circles about the origin intersecting the positive A-axis between A, and A\,+1. By using
the Green’s function from (21), we get

hm/ Gl y; ) N w=0, AeintCp. (22)

n—oo

From residue integration, it follows that

1 G(z,y; 1) sz z < wl x >)
e : § 23

where p;(z) = ¢(z,\;) and ¥;(z) = ¥(z,\;). By applymg Mlttag—LefHer expansion for
G(z,y; \) and using (22) and (23), we obtain

901$<¢1$>>
G(z,y; A Z AR

where @i, ¥ are eigenfunctions correspondmg to the eigenvalues Ag.
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Theorem 3.1. If L(q(x); hj; Hj;d;i) and L(G(x); hy; Hj; d;) have the same spectrum and
An = Ap for alln € A, then
q—q= Z(gn()@n)lwy
Ao
a.e. on [0,d1) U (dz, dit1)U(dm—1, 7], where w is defined in (4), §n and @, are suitable
solutions of fyn = —yn — Gl = MG and lpn, = — @l — qpn = Anpn, Tespectively.

Proof. By using the same techniques of [1] for —S\®,, = G,,, where G, (z) := G(z, \,) =
(gn(@) := g(x, Mn), Ri(gn), Ra(gn))’ € H, by simple calculation we can show that the
relation

gn(@) + (A = a(x))gn(z) = en(z), = € UL (di, dita), (24)
A(9,(0) + h1gn(0)) — h2g;,(0) — h3gn(0) = 0,
Mg () + Hign(m)) — Hagy (m) — Hzgn(m) = 0, (25)
and
Ui(gn) =0, and Vi(gn) =0, i=1,2,...,m—1 (26)

are satisfied. The equation (24) with (25) and (26) has the unique solution (i.e. g,(z)),
which can be represented as

- /Ox G(x,t; A pn(H)w(t)dt. (27)

The formula (27) reduces to

gn(@) Jo G, t; M) on(t)w(t)dt
Gn(z) = | Bilgn) | = R;ﬁﬁz’ (28)
Ra(gn) Ralon)

A—=An

and the function G(z,t; ) is as defined in (21). Using the asymptotic forms of p(x, \),
W(x, N), A(N) for sufficiently large p and p # p,, we deduce that the Green’s function
G(z,t; \) is bounded. G(x,t;\) is a meromorphic function with the eigenvalues Ay as its
poles [1]. Let (f(z), Ri(f), Ra(f))" € U, from (16), (21), (28), and Lemma 2.5 we have

(y(@), Ri(y), Ra(y))" = Sx (f(@), Ra(f), Ra(f))"

= S)\F(:E)
Bron (@) [§ en(®)f(Hw(t)dt
; A(;)\n)()\ An)

nR n
3 Bl

fnR (Wn)
- e

(29)
By applying T" to both sides of (29), we see that
6n¢’n(73) fo on () f(R)w(t)dt
Z A(An)(A=An)
nR 3
TS\F(x) = 5 nfalfn) . (30)

A
$ fnR2(en)
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Define

U(z) = Ry (y)

Ry (y)

By applying the MittagfLeﬂ'ler expansion for (z), we have
Z z) Jo Pn W) W) wy)dy+2n(2) [ ¥n(y)f@)w(y)dy
N AAn)(A=An)

U (@) [ on (@) f ) w(y)dy+En (@) [T n(y) f(y)w(y)dy
+2 ‘ AOw)(A—An)

Z fan 8071)

( 2) Jy W) f(w)wy)dy + () [ b (y ()dy)

neN
Z fnRZ Spn)
A=

neN
By using (30) the second term of the above expression is equal to TS\F' and y,(z) and
Zn(x) represents ¥ (x, \,) and @(z, \,,) respectively. Hence

> n () [§ on (W) f @) w(y)dy+2n (@) [] ¥n(y)f(y)w(y)dy
A (A=2n)

nelo R (G
S\TF(z) = U(x) — Y, InfagPel

nelg "
Z JfnR2(Pn)
A=An
nelg

By using a simple calculation by applying Eq. (5), and the following relation

/07r ¢n7w + w?"(i)) Rl (@Z)n)E‘F wﬁj) RQ(@Z}n)E = 0,
we get
Tf(a) = —{jyn /0 (D) f(yw(t)dt
> f“ﬁﬁjf) D (O s ratien) + T ol Ralin) ).
where ) i (2) — B (1)
2= 0,

From Lemma 2.4 it follows that )
ATF =TAF. (31)

Suppose that F' = ®,, (n € A) then we get f,, = %ﬁ* =0, for m € Ag. For left and
right sides of (31) we get

$n — % Z Um foz PmPnW

~ ~ meA
AT®, =A Rj(%)
R2(</~7n)
&pn - % Z g?jm fox PmPnW
meENo 1 ~
— -3 Z 20, (Qom@n) 2 Jm (Pmpnw)’
mEAo ~ meANg
(‘Pn)
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and
Tlon =T(~py + qpn)
TA®, = Ry (@n)
Ry(&n)
lon — % > Um fom PmPnW — % Y Im(Pn@hn — Pmspn)w
. meNg ~ meNg
- le (an)
R2(‘Pn>

From (31)-(33), we deduce that
G—G=Y (Jmpm)w.

Ao
If Ao is empty, then 7T is a unitary operator and A = A. Hence ¢ = ¢. This completes the
proof. O

Theorem 3.2. Suppose that A\, = 5\,1 and yn = Ap, for alln € 70, where Yo and v, are
defined in (18) and (19), then

q=q
Proof. Applying Lemma 2.4 to L(q(x); hj; Hj;d;) and L(G(z); hy; Hy; d;) in place of
L(q(x); hj; 1y d;) and L(G(x); hj; Hj; d;) we obtain A(X) = A()). Hence

for all n € Z°. From Lemma 2.2 and the assumptions we get 3, = .. The rest of proof
follows form Theorem 3.1. g

4. CONCLUSION

In this paper, the inverse Sturm—Liouville problems with finite number of transmis-
sion and parameter dependent boundary conditions was studied. For this purpose, a new
Hilbert space by defining a new inner product for obtaining a self-adjoint operator was
defined. So, the asymptotic form of solutions, eigenvalues and eigenfunctions of this prob-
lem was obtained. Finally, we formulated the Hochestadt’s result based on transformation
operator for inverse Sturm-Liouville problems.
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