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IŞIK UNIVERSITY
DECEMBER, 2022





USING UNCERTAINTY METRICS IN ADVERSARIAL
MACHINE LEARNING AS AN ATTACK AND DEFENSE TOOL

ABSTRACT

Deep Neural Network (DNN) models are widely renowned for their resistance to ran-
dom perturbations. However, researchers have found out that these models are indeed
extremely vulnerable to deliberately crafted and seemingly imperceptible perturbations
of the input, defined as adversarial samples. Adversarial attacks have the potential to
substantially compromise the security of DNN-powered systems and posing high risks
especially in the areas where security is a top priority. Numerous studies have been
conducted in recent years to defend against these attacks and to develop more robust
architectures resistant to adversarial threats.
In this thesis study, we leverage the use of various uncertainty metrics obtained from
MC-Dropout estimates of the model for developing new attack and defense ideas. On
defense side, we propose a new adversarial detection mechanism and an uncertainty-
based defense method to increase the robustness of DNN models against adversarial
evasion attacks. On the attack side, we use the quantified epistemic uncertainty ob-
tained from the model’s final probability outputs, along with the model’s own loss
function, to generate effective adversarial samples. We’ve experimentally evaluated
and verified the efficacy of our proposed approaches on standard computer vision
datasets.
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BELİRSİZLİK METRİKLERİNİN HASMANE MAKİNE
OĞRENMESİNDE SALDIRI VE SAVUNMA AMAÇLI

KULLANILMASI

ÖZET

Derin Sinir Ağları modelleri, yaygın olarak rastgele bozulmalara karşı dirençleri ile
bilinir. Bununla birlikte, araştırmacılar, bu modellerin, karşıt (hasmane) örnekler
olarak adlandırılan girdinin kasıtlı olarak hazırlanmış ve görünüşte algılanamaz bozul-
malarına karşı gerçekten son derece savunmasız olduğunu keşfettiler. Bu gibi has-
mane saldırılar, Derin Sinir Ağları tabanlı yapay zeka sistemlerinin güvenliğini önemli
ölçüde tehlikeye atma potansiyeline sahiptir ve özellikle güvenliğin öncelikli olduğu
alanlarda yüksek riskler oluşturur. Bu saldırılara karşı savunma yapmak ve has-
mane tehditlere karşı daha dayanıklı mimariler geliştirmek için son yıllarda çok sayıda
çalışma yapılmıştır.
Bu tez çalışmasında, yeni saldırı ve savunma fikirleri geliştirmek için modelin Monte-
Carlo Bırakma Örneklemesinden elde edilen çeşitli belirsizlik metriklerinin kul-
lanımından yararlanıyoruz. Savunma tarafında, hasmane saldırılara karşı yapay sinir
ağı modellerinin sağlamlığını artırmak için yeni bir tespit mekanizması ve belirsi-
zliğe dayalı savunma yöntemi öneriyoruz. Saldırı tarafında, etkili hasmane örnekler
oluşturmak için modelin kendi kayıp fonksiyonu ile birlikte modelin nihai olasılık
çıktılarından elde edilen nicelleştirilmiş epistemik belirsizliği kullanıyoruz. Standart
bilgisayarlı görü veri kümeleri üzerinde önerilen yaklaşımlarımızın etkinliğini deney-
sel olarak değerlendirdik ve doğruladık.

Anahtar Kelimeler: Derin Sinir Ağları, Karşıt Makine Öğrenmesi, Monte-Carlo Bırakma

Örneklemesi, Model Belirsizliği, Epistemik Belirsizlik, Rassal Belirsizlik, Bilinebilir Belirsiz-

lik
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CHAPTER 1

INTRODUCTION

Deep learning is a subset of machine learning (ML) that uses artificial neural

networks (ANN) to enable multi-layered data processing models to learn from data at

various levels of abstraction. Deep learning models obtain the data representations for

every individual layer from the preceding layer’s representation using the backpropa-

gation technique and find subtle features in massive amount of data (LeCun, Bengio,

& Hinton, 2015). Deep learning has emerged to be remarkably powerful in solving

issues for which traditional machine learning methods were ineffective. Deep learn-

ing has achieved great success in a broad range of tasks (Ciodaro, Deva, de Seixas, &

Damazio, 2012; Ma, Sheridan, Liaw, Dahl, & Svetnik, 2015) thanks to the evolution of

deep neural network (DNN) models, the accessibility of vast amounts of data as well

as the availability of high-performance hardware to train complicated models.

Deep learning models have started to outperform humans in the past few years.

To give an example, in the ”ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)”, a DNN model named ResNet (He, Zhang, Ren, & Sun, 2016) beat human

performance in 2015, and the record was later broken by more advanced architectures.

Similarly, Goodfellow et al. (Goodfellow, Bulatov, Ibarz, Arnoud, & Shet, 2014) cre-

ated a system that outperforms human operators for the problem of reading addresses

from Google Street View imagery and solving CAPTCHAS. In the field of gaming,

AlphaGo, an AI program, defeated the global Go champion in 2016 (Chouard, 2016).

Many advanced systems are now being developed using DNN models, which have

proven to be extremely successful in a variety of domains, including medical diagnosis

(Causey et al., 2018; Greenspan, van Ginneken, & Summers, 2016; Gulshan et al.,

2016; Shen et al., 2019), autonomous vehicles (Janai, Güney, Behl, & Geiger, 2020;
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Redmon, Divvala, Girshick, & Farhadi, 2016; Ren, He, Girshick, & Sun, 2015), game

play (Justesen, Bontrager, Togelius, & Risi, 2020), and machine translation (Bahdanau,

Cho, & Bengio, 2015; Luong, Pham, & Manning, 2015). However, the main empha-

sis of the researchers during the rise of DNN models was the creation of increasingly

precise models and the robustness and reliability of those models were paid almost no

attention. DNN’s do, in fact, necessitate a more thorough examination because they

have some inherent vulnerabilities that can be easily exploited by intruders.

1.1 Vulnerabilities of AI-driven systems

Within last decade, researchers discovered that existing DNN models are vulner-

able to meticulously crafted attacks. Szegedy et al. (Szegedy et al., 2014) were among

the very first who noticed the effectiveness of adversarial instances in the domain of

image classification. The authors have demonstrated that it is possible to modify an

image by a small amount to change the prediction of the deep learning model. It is

shown that a very slight and nearly unnoticeable change in input is enough to deceive

even the most advanced classifiers to cause incorrect classification. Back then, a vast

number of research studies have been undertaken in this new field named ”Adversarial

Machine Learning” and these studies have not been restricted just to image classifi-

cation domain. For example, Sato et al. (Sato, Suzuki, Shindo, & Matsumoto, 2018)

demonstrated in the NLP domain that altering merely one word from an input sentence

can deceive a sentiment analyser trained with textual data. A further example is in the

audio domain (Carlini & Wagner, 2018), where the authors built targeted adversarial

audio samples in autonomous speech recognition task by introducing very little distur-

bance to the original waveform. The result of this study shows that the target model

may simply be exploited to transcribe the input as any desired phrase.

Adversarial evasion attacks mainly work by modifying the input samples in a

way that increases the likelihood of making incorrect decisions, resulting in inaccurate

predictions. These attacks can cause the model’s prediction performance to deteriorate

since the algorithm is unable to correctly predict the real output for the input instances.

Attacks that take advantage of DNN’s weakness can substantially compromise the se-

curity of these machine learning (ML)-based systems, often with disastrous results. In

the context of medical applications, a malicious attack could result in an inaccurate
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disease diagnosis. As a result, it has the potential to impact the patient’s health as well

as the healthcare industry (Finlayson et al., 2019). Similarly, self-driving cars employ

ML to navigate traffic without the need for human involvement. A mislead decision of

the autonomous vehicle based on an adversarial attack could result in a tragic accident

(Morgulis, Kreines, Mendelowitz, & Weisglass, 2019; Sitawarin, Bhagoji, Mosenia,

Chiang, & Mittal, 2018). Hence, defending against malicious attacks and boosting the

robustness of ML models without sacrificing clean accuracy is critical. Presuming that

these ML models are to be utilized in crucial areas, we should pay utmost attention to

both the performance of ML models and the security problems of these architectures.

1.2 Importance of Uncertainty for AI-driven systems

If we put the security related threats against AI models aside, there are also

other important concerns regarding the reliability and robustness of AI-driven systems.

Today’s AI driven systems are forced to make predictions even in the cases where the

model is not confident in it’s predictions or the model has not encountered the concept

while training. We do need to know how probable the predictions of AI models are

right, which could only be accomplished by including uncertainty estimates into the

model. However, it is known that model uncertainty is not captured by conventional

DNN-based models by default.

For AI-driven systems, it is crucial for us as the users to know what a model

doesn’t actually know (Ghahramani, 2015). Uncertainty is vital to enhance the relia-

bility and security of AI-driven technologies (McAllister et al., 2017). DNNs are nowa-

days capable of developing potent representations that can map high dimensional data

to a variety of outputs. Nevertheless, these mappings are frequently taken for granted

and thought to be always correct, which may not actually be the case (Kendall, 2018).

This fact has led to catastrophic results in two recent situations. The first death from

an aided driving system occurred in May 2016, when the perception system misinter-

preted the white side of a trailer under a bright sun light (Technical Report, Jan 2017).

In another recent case, an image tagging algorithm offered by Google (Google Photos)

misidentified two African Americans as gorillas as shown in Figure 1.1, raising wor-

ries about systemic racism (Guynn, 2015). However, both of those algorithms could

have been able to make better predictions and probably prevent disaster if they had
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been able to associate a significant degree of uncertainty along with their inaccurate

predictions. These examples show the importance of using uncertainty information for

assessing the quality of AI model’s predictions and therefore prevent us from relying

on erroneous decisions.

Figure 1.1 Google Photos erroneously labelled a black couple as being gorillas (BBC
news, July 2015)

1.3 Problem Statement

The aim of adversarial attacks is to craft a perturbation δ under given constraint

on magnitude (δ < ε) which results into a wrong prediction as h(x+δ ,w) = yadv that

is different from a prediction on a clean sample h(x,w) = y. In this definition, h(x,w)

is the target model with weights denoted as w and x is the input sample. The success

criterion of the attack may vary depending on the type of task. In the case of a classifi-

cation problem, the attack might be considered successful if the model predicts a class

other than the actual class. From the perspective of the attacker, the perturbation δ

added to the input sample x should be as small as possible and yet sufficient to deceive

the target model. On the other hand, from the perspective of the model owner or de-

fender, the model h(x,w) should be as robust as possible and keep predicting accurately

even in the case of a powerful adversarial attack threat. It is indeed preferable that the

model could distinguish a benign input sample from malicious input sample which
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is specifically crafted to fool the model. All these aforementioned subjects, each of

which constitute a very active research area in its own, have evolved as a consequence

of the arms race among both attackers and defenders. These are the core problems to

be addressed as part of this thesis.

1.4 Motivation for Using Uncertainty Information

Previous research (Shridhar, Laumann, & Liwicki, 2018) has found a correlation

between validation accuracy and uncertainty; as validation accuracy increases, quanti-

fied uncertainty reduces, and vice versa. This discovery is based on the premise that

the more accurate labels our model predicts, the more confident it is in these predic-

tions. Based on this fact, we would like to investigate whether the uncertainty metrics

can be used for adversarial machine learning purposes. The reasoning behind this is

that the whole purpose of a malicious adversarial sample is to somehow deceive the

model into making an incorrect prediction.

To support our standpoint about why we think uncertainty information could be

a useful tool in adversarial ML, we have made some preliminary experiments. We

have trained different classifiers to predict all the samples of MNIST (Digit), MNIST

(Fashion) and CIFAR10 test datasets. Then, we have analyzed the values of various

uncertainty metrics for all the correct and wrong predictions. We observed that for the

samples which were predicted correctly; quantified uncertainty metrics are low, and

model confidences are high. Furthermore, for the wrong predictions, quantified uncer-

tainty metrics are high, and model confidences are low. The results are summarized in

Tables 1.1,1.2 and 1.3.

Our results show that uncertainty indicators are indeed useful tools to evaluate

the quality of the model predictions. Furthermore, there are recent studies in literature

which investigate the use of various uncertainty metrics such as mutual information and

predictive entropy as possible indicators for an adversarial attempt (Feinman, Curtin,

Shintre, & Gardner, 2017; Smith & Gal, 2018). There are also more recent studies

(Stutz, 2022; Stutz, Hein, & Schiele, 2020) which utilize uncertainty information for

improving the robustness of deep neural networks. These findings have deeply moti-

vated us for investigating the role of uncertainty in adversarial machine learning.
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Table 1.1 Uncertainty values of the model for the MNIST (digit) data.

Expected value Wrong Predictions Correct Predictions
Epistemic Uncertainty 0.0218 0.0014
Aleatoric Uncertainty 0.0298 0.0028
Scibilic Uncertainty 0.7936 0.1798

Entropy 0.9722 0.10124

Table 1.2 Uncertainty values of the model for the MNIST (Fashion) data.

Expected value Wrong Predictions Correct Predictions
Epistemic Uncertainty 0.0065 0.0011
Aleatoric Uncertainty 0.0394 0.0083
Scibilic Uncertainty 0.1836 0.05281

Entropy 0.8234 0.1804

Table 1.3 Uncertainty values of the model for the CIFAR10 data.

Expected value Wrong Predictions Correct Predictions
Epistemic Uncertainty 0.0282 0.0058
Aleatoric Uncertainty 0.0404 0.0091
Scibilic Uncertainty 0.6671 0.2861

Entropy 0.9699 0.3039

1.5 Main Contributions of the Thesis Dissertation

This study is based on utilizing uncertainty estimates derived from the DNN-

based classifiers for both defense and attack purposes. We seek to find effective ways

of using uncertainty information for detecting any malicious adversarial attempts and

improving robustness for DNN-based classifiers. We also focus on using quantified

uncertainty estimates for crafting efficient adversarial perturbations. Figure 1.2 depicts

the overall content of this thesis.

Our main contributions in this research are:

• We investigated the use of various uncertainty metrics (entropy, epistemic uncer-

tainty, aleatoric uncertainty, scibilic uncertainty) to detect adversarial samples.

• We proposed a novel method for quantifying the closeness of an input sample’s rep-

resentation to its predicted class data distribution in the subspace of last hidden layer

activations.
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Figure 1.2 Illustration of thesis content using a 2-dimensional and 2-class classification
task

• We showed experimentally that no single measure performs well in all circumstances

and that an ensemble technique utilizing a number of metrics should be used for

adversarial sample detection.

• We utilized a new metric (epistemic uncertainty of the model) which can be exploited

to craft adversarial examples.

• We showed that the performance of a pure uncertainty-based attack is indeed as high

as the attacks based on the model loss.

• We demonstrated that crafting adversarial examples using both the model loss and

uncertainty yields better performance in adversarial attacks.

• We introduced a novel and effective attack method by utilizing the model’s epis-

temic uncertainty, which yields more powerful adversarial impact with less amount

of perturbation at each step.

• We introduce a new adversarial defense technique which provides high degree of

robustness against some of the strongest attacks like Deepfool attack and Carlini-

Wagner attack (under default setting).

• We enhanced the performance of this uncertainty-based reversal technique which

can successfully restore adversarial samples back to their original class manifold

and introduced two more effective variants of it.
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• To the best of our knowledge, we are the first in research community to use scibilic

uncertainty for the aim of building more robust models.

• We introduced a hybrid architecture which combines different known defense meth-

ods like adversarial training and defensive distillation technique with our uncertainty

based reversal method. We experimentally show that these two approaches can han-

dle complementary situations and they together provide very high degree of robust-

ness against different attack types.

1.6 Organization of the Thesis Dissertation

The remainder of this thesis is structured as follows: Chapter 2 will introduce

the research field of adversarial machine learning with an emphasis on evasion attacks,

discussing some of the known attack types and defense techniques in the literature. In

Chapter 3, we will introduce the notion of uncertainty in machine learning together

with its main types and discuss how we can efficiently quantify different uncertainty

metrics for DNN-based classifiers. Chapter 4 will focus on detection of adversarial

samples using uncertainty metrics. In Chapter 5, we will present our uncertainty-based

adversarial attack methods. Chapter 6 will present our work on defending adversarial

attacks using various uncertainty metrics. Each of these chapters will include detailed

methodology and experimental results sections. And in Chapter 7, we will wrap up

our thesis work with conclusions.
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CHAPTER 2

ADVERSARIAL MACHINE LEARNING

Since the discovery of DNN’s vulnerability to adversarial attacks (Szegedy et al.,

2014), a vast amount of research has been conducted in both devising new adversarial

attacks and defending against these attacks with more robust DNN models (Huang

et al., 2020). After giving some preliminary information for adversarial attacks in

Section 2.1, we will treat the attack and defense studies separately and review some of

the notable ones in Section 2.2-2.3.

2.1 Adversarial Attacks

Deep learning models contain many vulnerabilities and weaknesses which make

them difficult to defend in the context of adversarial machine learning. For instance,

they are often sensitive to small changes in the input data, resulting in unexpected

results in the model’s final output. Figure 2.1 shows how an adversary would exploit

such a vulnerability and manipulate the model through the use of carefully crafted

perturbation applied to the input data.

The malicious perturbation is applied upon the original image and it manipulates

the model in such a way that a ”Chihuahua (Dog)” is wrongly classified as ”Sports

Car” with high degree of confidence.

We will continue by giving the formal definition of what an adversarial sample

is and give some preliminary information about the basic criteria which are used to

classify adversarial attacks.
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Figure 2.1 An example of adversarial attack.

2.1.1 Formal Definition of Adversarial Sample

Let k represent the total number of output classes, where D = {(xi,yi)}N
i=1 de-

notes our dataset, and xi ∈ Rd and yi are the ith input and output respectively and N is

size of our dataset. Based on this notation, we can define a neural network represented

as h(.) which successfully maps the input x to output y via h(x). We can consider an

input sample of x
′

to be an adversarial equivalent of x, when x and x
′

are close to each

other under a particular distance metric and also the model output for x
′

is different

from model output for x. In formal terms, we can formulate an adversarial sample of x

as shown below:

x
′
: D(x,x

′
)< ε, h(x

′
) ̸= y

where D(., .) is the distance metric and ε is a constraint representing the maximum

amount of allowed perturbation.

2.1.2 Distance Metrics

According to the formal definition above, an adversarial example xadv shall be

near to a benign sample x under a particular distance norm. This is especially an

important requirement which makes the attack unnoticeable to the human eye. To

formulate the maximum allowed perturbation amount, Lp distance is generally being

used. The Lp distance between an adversarial sample xadv and a normal input sample

x can be represented as
∥∥∥x− xadv

∥∥∥
p
, where∥.∥p can be denoted as :
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∥x∥p = (|x1|p +|x2|p +|x3|p + ...+|xd|p)1/p

where d represents the dimension of the vector x.

Researchers commonly use 3 types of metrics to limit the maximum allowed

perturbation amount applied on the input sample. And these metrics are L2, L0 and L∞.

L2 distance is the conventional Euclidean distance. L∞ distance is the greatest change

to any of the input attributes. And L0 distance is the number of distinct input features.

2.1.3 Attacker Objective

We now introduce different sorts of adversarial attacks. Based on the attacker’s

objective, adversarial attacks can be categorized under two types as untargeted and tar-

geted attacks. In the untargeted attack scenario, the attacker perturbs the input sample,

causing the model to predict a class other than the actual class. In the targeted scenario,

the attacker perturbs the input sample so that a particular target class is predicted by

the model.

2.1.4 Capability of the Attacker

The last criteria for grouping the adversarial attacks is the threat model. White-

box adversarial attacks assumes access of an attacker to the model details like archi-

tecture and weights. It is considered a valid security threat (Katzir & Elovici, 2021)

and therefore this threat model has been intensively studied in literature. Under this

threat model, researchers have mostly proposed gradient based approaches for loss

maximization, or constrained optimization based methods to generate adversarial ex-

amples. Figure 2.2 illustrates White-box setting where an adversary uses the target AI

model to craft an adversarial perturbation.

There is also the Black-box threat model where the attacker does not have access

to model details. In this threat model, the attacker can only access the target model’s

outputs (prediction scores or the final decisions of the model). In this type of setting,

adversary interacts with the target AI model to query the predictions for specific inputs

as illustrated in Figure 2.3.

Black-box attacks are classified as score-based or decision-based according to

whether the attacker has access to the entire probability output scores, or the predicted
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Figure 2.2 Illustration of White-box Setting

Figure 2.3 Illustration of Black-box Setting

label of a given input. Chen et al. (P.-Y. Chen, Zhang, Sharma, Yi, & Hsieh, 2017)

developed score-based approaches for generating adversarial examples using zeroth-

order gradient estimation. Chen et al. (J. Chen, Jordan, & Wainwright, 2020) proposed

decision-based methods based on an estimation of model’s gradient direction and bi-

nary search procedure for approaching the decision boundary. One of the drawbacks of

these kind of Black-box adversarial attack ideas which makes them unpractical in real

world scenarios is that the adversary needs to make very high number of queries to the

target model (i.e. more that 25k) and the difference between the query samples of each

successive sample is so small (input samples are usually quite similar in input space)

which gives the AI model owner high chance of detecting these malicious attempts as

in (S. Chen, Carlini, & Wagner, 2020; Li et al., 2022).

There is also the concept of attack transferability in adversarial ML. It has been

observed that an adversarial sample crafted using a surrogate model can fool the target

AI model as in (Papernot et al., 2017). In this context, transferability refers to the ca-

pability of a malicious attack to be successful against another, presumably unknowable
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model. Since the malicious actor does not have a copy of the target model and instead

uses his/her own surrogate model, this scenario is also considered as Black-box attack

scenario. However, the need for the adversary to train a surrogate model requires to

collect huge amount of input training samples makes it again unpractical in many real

world scenarios.

2.2 Adversarial Attack Types

Many different adversarial attack algorithms have been proposed in literature

in the past few years. In this section, we will briefly describe some of the notable

adversarial machine learning attacks.

2.2.1 Fast-Gradient Sign Method

This approach, sometimes known as FGSM (Goodfellow, Shlens, & Szegedy,

2015), is amongst the first and most famous adversarial attacks so far. In this attack

algorithm, the derivative of the model’s loss function with respect to the input sample

is used to identify which direction the input image’s pixel values should be altered

in order to minimize the model’s loss function. Once extracted, it alters all pixels in

the opposite direction simultaneously to maximize the loss. We may craft adversarial

samples for a model with a classification loss function represented as J(θ ,x,y) by

utilizing the formula below, where θ denotes the parameters of the model, x is the

benign input, and ytrue is the real label of our input.

xadv = x+ ε · sign
(
∇xJ(θ ,x,ytrue)

)
(2.1)

In (Kurakin, Goodfellow, & Bengio, 2017), the authors presented a targeted vari-

ant of FGSM referred to as the Targeted Gradient Sign Method (TGSM). This way, they

could change the attack to try to convert the model’s prediction to a particular class. To

achieve this, instead of maximizing the loss with respect to the true class label, TGSM

attempts to minimize the loss with respect to the target class Jtarget .

xadv = x− ε · sign
(
∇xJ(θ ,x,ytarget)

)
(2.2)
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Different from Eq. 2.1, we now subtract the crafted perturbation from the origi-

nal image as we try to minimize the loss this time. If we want to increase the efficiency

of this approach, we can modify above equation as in Eq.2.3. The only difference is

that instead of minimizing the loss of the target label, we maximize the loss of the true

label and also minimize the loss for the alternative label.

xadv = x+ ε · sign
(
∇x(J(θ ,x,ytrue)− J(θ ,x,ytarget))

)
(2.3)

Another important aspect of FGSM is that it is not intended to be optimum, but

rather fast. It isn’t designed to output the minimum required amount of perturbation.

Furthermore, when compared to other attack types, the success ratio of FGSM is rela-

tively low when applied with small ε values.

2.2.2 Iterative Gradient Sign Method

Kurakin et al. (Kurakin et al., 2017) proposed a minor but significant enhance-

ment to the FGSM. Instead of taking one large step ε in the direction of the gradient

sign, we take numerous smaller steps α and utilize the supplied value ε to clip the out-

put in this method. This method is also known as the Basic Iterative Method (BIM),

and it is simply FGSM applied to an input sample iteratively. Equation 2.4 describes

how to generate perturbed images under the lin f norm for a BIM attack.

x∗t = x

x∗t+1 = clipx,ε{xt +α · sign
(
∇xJ(θ ,x∗t ,ytrue)

)
}

(2.4)

where x is the clean sample input to the model, x∗ is the output adversarial sample at ith

iteration, J is the loss function of the model, θ denotes model parameters, ytrue is the

true label for the input, ε is a configurable parameter that limits maximum perturbation

amount in given lin f norm, and α is the step size.

The BIM attack has a better success rate than the FGSM (Kurakin, Goodfellow,

& Bengio, 2016). The attacker can manage how far an adversarial sample is pushed

further away from the decision boundary by configuring the ε parameter.

One can group BIM attacks under two main types, namely BIM-A and BIM-

B. In the former type, we stop iterations as soon as we succeed in fooling the model

(passing the decision boundary), while in the latter, we continue the attack till the end
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of the provided number of iterations so that we push the input further away the decision

boundary. This phenomenon is illustrated in Figure 2.4.

Figure 2.4 BIM-A vs BIM-B

As in the case of TGSM, we can easily modify Eq. 2.4 to produce targeted

variant of BIM. At each intermediate step, we can try to minimize the loss with respect

to target class while at the same time maximizing the loss with respect to original class.

2.2.3 Projected Gradient Descent

This attack type, commonly known as PGD, has been proposed by Madry et al.

(Madry, Makelov, Schmidt, Tsipras, & Vladu, 2018). It perturbs an input image x for

a number of i iterations in the direction of the model’s loss function gradient with a

tiny step size. It projects the generated adversarial sample back onto the ε-ball of the

input after each perturbation step depending on the chosen distance norm. In addition,

rather than starting from the original point (ε = 0, in all the dimensions), PGD employs

random start, which can be defined as:

x0 = x+P(−ε,+ε) (2.5)

where P(−ε,+ε) is the uniform distribution between (−ε,+ε).

2.2.4 Jacobian-based Saliency Map Attack (JSMA)

This method, also known as JSMA, has been proposed by Papernot et al. (Pa-

pernot et al., 2017). It is designed to be used under L0 distance norm which takes total
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number of altered pixels into count, thereby restricting the attacker. It is a greedy algo-

rithm which selects two pixels at a time. The algorithm utilizes the gradient ∇Z(x)l to

compute a saliency map, which shows each pixel’s impact on the classification of each

class. And the aim is to enhance the possibility of the target class while diminishing

the possibility of other classes by selecting and updating two pixels at a time based on

the saliency map. The attack is continued until either a predefined number of pixels is

modified or the model is successfully fooled.

2.2.5 Carlini&Wagner Attack

Proposed by Carlini and Wagner (Carlini & Wagner, 2017b), and it is one of the

strongest attack algorithms so far. As a result, it’s commonly used as a benchmark

for the adversarial defense research groups, which tries to develop more robust DNN

architectures that can withstand adversarial attacks. It is shown that, for the most well-

known datasets, the CW attack has a greater success rate than the other attack types on

normally trained models. Like Deepfool, it can also deceive adversarially trained and

defensively distilled models, which other attack types struggle to create adversarial

examples for.

In order to generate more effective and strong adversarial samples under multiple

lp norms, the authors reformulate the attack as an optimization problem which may

be solved using gradient descent. A ”confidence” parameter in the algorithm can be

used to change the level of prediction score for the created adversarial sample. For a

normally trained model, application of CW attack with default setting (confidence set

to 0) would generally yield to adversarial samples close to decision boundary. And

high confident adversaries generally located further away from decision boundary.

2.2.6 Deepfool Attack

This attack method has been introduced by Moosavi-Dezfooli et al. (Moosavi-

Dezfooli, Fawzi, & Frossard, 2016) and it is one of the strongest untargeted attack

algorithms in literature. It’s made to work with several distance norm metrics, includ-

ing lin f and l2 norms.

The Deepfool attack is formulated on the idea that neural network models act like

linear classifiers with classes separated by a hyperplane. Starting with the initial input
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point xt, the algorithm determines the closest hyperplane and the smallest perturbation

amount, which is the orthogonal projection to the hyperplane, at each iteration. The

algorithm then computes xt+1 by adding the smallest perturbation to the xt and checks

for misclassification. The illustration of this attack algorithm is provided in Figure 2.5.

This attack can break defensive distillation method and achieves higher success rates

than previously mentioned iterative attack approaches. But the downside is, produced

adversarial sample generally lies close to the decision boundary of the model.
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Figure 2.5 Illustration of Deepfool attack algorithm

2.2.7 Hopskipjump Attack

HopSkipJumpAttack (HSJA) (J. Chen et al., 2020) is a decision-based black-

box attack algorithm in which the adversary does not have any information about the

model architecture and weights. In this algorithm, the attacker makes a large number

of queries to the target model and observe the decisions of the model. The attack can be

thought of as an iterative method where the whole process is based on a binary-search

procedure for approaching the decision boundary and an estimation of model’s gradient

direction. The important thing to note about this attack as all the other black-box

attacks is that the resulting adversarial samples lie very close to the decision boundary

of the target model and therefore the final prediction probability scores of the predicted

wrong class is very close to the probability score of the actual class.
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2.2.8 Universal Adversarial Attack

The carefully created adversarial perturbations were unique to benign samples

in each of the aforementioned attacks. This limitation has led the researchers to de-

termine if there exists a universal perturbation that can successfully deceive the target

model on vast majority of benign samples. Instead of crafting perturbations to deceive

a target model on a single input, Moosavi-Dezfooli et al. (Moosavi-Dezfooli, Fawzi,

Fawzi, & Frossard, 2017) suggested a method to craft universal adversarial pertur-

bations that can deceive a model on any input with high confidence. In contrast to

being highly transferable, universality is related to the attribute of a perturbation being

”input-agnostic.”

Adversarial machine learning is a burgeoning field of research, and we see a lot

of new adversarial attack algorithms being proposed. Some recent studies are Square

Attack (Andriushchenko, Croce, Flammarion, & Hein, 2020), Bandit (Ilyas, Engstrom,

& Madry, 2019). Besides, some recent studies utilize MC Dropout sampling and un-

certainty information to craft adversarial samples. Liu et al. (Liu et al., 2019) proposed

Universal Adversarial Perturbation (UAP) method that utilizes a metric called virtual

uncertainty obtained from the model’s structural activation. However, estimating the

model’s uncertainty involves aggregating all the neurons’ virtual uncertainties, which

is computationally costly. Finally, Tuna et. al. proposed Uncertainty-Based Attacks

(O. F. Tuna, Catak, & Eskil, 2022b, 2022c) which utilizes both the model’s loss func-

tion and quantified epistemic uncertainty to generate more powerful attacks.

Figure 2.6 shows adversarial samples generated by some of the attack algorithms

discussed earlier.

(a) Clean im-
age

(b) FGSM (c) BIM (d) PGD (e) DeepFool (f) CW

Figure 2.6 An example image from CIFAR10 dataset and some of the adversarial
samples crafted by using previously mentioned attack types
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2.3 Adversarial Defense

Since the discovery of DNN’s vulnerability to adversarial attacks (Szegedy et

al., 2014), a vast amount of research has been conducted on defending against these

attacks. Defense against adversarial attacks can be divided into two categories; (i) im-

proving the robustness of classifiers to existing attack types, (ii) methods for detecting

adversarial samples. We first present important defense approaches in literature, then

we will mention some notable methods for the detection of the adversarial samples.

2.3.1 Defensive Distillation

Although the idea of knowledge distillation was previously introduced by Hinton

et al. (Hinton, Vinyals, & Dean, 2015) to compress a large model into a smaller one,

the utilization of this technique for adversarial defense purposes was first suggested by

Papernot et al. (Papernot, McDaniel, Wu, Jha, & Swami, 2016). The algorithm starts

with training a teacher model on training data by employing a high temperature (T)

value in the softmax function as in Equation 2.6, where pi is the probability of ith class

and zi’s are the logits.

pi =
exp( zi

T )

∑ j exp( zi
T )

(2.6)

Then, using the previously trained teacher model, each of the samples in the

training data is labeled with soft labels calculated with temperature (T) in prediction

time. The distilled model is then trained with the soft labels acquired from the teacher

model, again with a high temperature (T) value in the softmax. When the training of

the student model is over, we use temperature value as 1 during prediction time. Figure

2.7 shows the overall steps for this technique.

This technique was found to significantly reduce the ability of traditional

gradient-based untargeted attacks to build adversarial samples. Because defense distil-

lation has an effect of diminishing the gradients down to zero and the usage of standard

objective function is not effective anymore. To illustrate this fact, we made a simple

experiment using a test sample from MNIST (Digit) dataset and draw the loss sur-

face of the normal and distilled models against two different directions (one for loss

gradient direction and one for a random direction).
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Figure 2.7 Defensive Distillation.
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Figure 2.8 Loss surfaces of ”normally-trained” and ”distilled” models

As depicted in Figure 2.8, the gradient of the distilled model diminishes to zero

and thus loss based attacks have difficulty in crafting adversarial samples for defen-

sively distilled models. However, it was later demonstrated that more successful attack

types, such as the CW and Deepfool attacks, could defeat the defensive distillation

strategy.

2.3.2 Adversarial Training

Adversarial training is recognized as an intuitive way of defensive strategy in

which the robustness of the deep learner is strengthened by training it with adversarial

samples. This strategy can be represented mathematically as a Minimax game, as

shown in Eq. 2.7:

min
θ

max
|δ∥≤ε

J(hθ (x+δ ),y) (2.7)
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where h denotes the model, J denotes the model’s loss function, θ represents model’s

weights and y is the actual label. δ is the amount of perturbation amount added to

input x and it is constrained by given ε value. The inner objective is maximized by

employing the most powerful attack possible, which is often approximated by various

adversarial attack types. In order to reduce the loss resulting from the inner maximiza-

tion step, the outside minimization objective is used to train the model. This whole

process produces a model that is expected to be resistant to adversarial attacks used

during the training of the model. For adversarial training, Goodfellow et al. (Goodfel-

low et al., 2015) used adversarial samples crafted by the FGSM attack. And Madry et

al. used the PGD attack to build more robust models, but at the expense of consuming

more computational resources. Despite the fact that adversarial training is often re-

garded as one of the most effective defenses against adversarial attacks, adversarially

trained models are nevertheless vulnerable to attacks like CW. And it is known that

although adversarially trained models are somewhat resistant to adversarial samples

to some extent, these models generally suffer from severe overfitting issue which is

known as robustness-accuracy trade-off (Su et al., 2018).

2.3.3 Magnet

Meng et al. (Meng & Chen, 2017) suggested a defense mechanism with two

components: a detector and a reformer. The former inspects input samples to deter-

mine if they are benign or not and the latter reforms inputs classified as benign by the

detector to remove any leftover adversarial nature. Although the authors demonstrate

the efficiency of their defense against several attack types, their approach was then

shown to be vulnerable to CW attacks (Carlini & Wagner, 2017a).

Adversarial ML is a very active field of research, and new adversarial defense

approaches are constantly being presented. Among the most notable are: i) High-

Level Representation Guided Denoiser (HGD) (Liao et al., 2018) which avoids the

error amplification effect of a traditional denoiser by utilizing the error in the upper

layers of a DNN model as loss function and manages the training of a more efficient

image denoiser, ii) APE-GAN (Jin, Shen, Zhang, Dai, & Zhang, 2019) which uses a

Generative Adversarial Network (GAN) trained with adversarial samples to eliminate

any adversarial perturbation of an input image, iii) Certified Defense (Raghunathan,
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Steinhardt, & Liang, 2018) which proposes a new differentiable upper bound yielding

a model certificate ensuring that no attack can cause the error to exceed a specific value

and iv) (O. F. Tuna, Catak, & Eskil, 2022a) which uses several uncertainty metrics for

detecting adversarial samples.

2.3.4 Detection of Adversarial Samples

Kernel density and quantified epistemic uncertainty were the two indications

used by Feinman et al. (Feinman et al., 2017) to identify adversarial samples. The

variance of a Bayesian distribution obtained from a deep learning model with dropout

was used to calculate the uncertainty estimate. Utilizing the activations of last hidden

layer, the kernel density estimate score was computed. Nonetheless, aside from epis-

temic uncertainty, no other uncertainty metrics have been investigated, and calibrating

the bandwidth for the kernel density estimation approach is a critical issue. For the

purpose of detecting adversarial samples, Ma et al. (Xingjun Ma, 2018) suggested us-

ing an auxiliary classifier that has been trained to employ the expansion-based metric

known as local intrinsic dimensionality. Metzen et al. (Metzen, Genewein, Fischer,

& Bischoff, 2017) suggested enhancing a DNN with a detector subnetwork trained on

the task of binary classification of normal and adversarial samples. Yang et al. (Yang,

Chen, Hsieh, Wang, & Jordan, 2020) introduced ML-Loo, a technique for detecting

adversarial samples by thresholding a scale estimate of feature attribution scores from

Leave-One-Out (LOO).
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CHAPTER 3

UNCERTAINTY IN MACHINE LEARNING

Predictive models have traditionally been required to make decisions even in am-

biguous cases where the model is unsure about its prediction. And this fact often leads

to low-quality predictions. Assuming that the prediction of the model is always correct

without considering the model’s uncertainty can have disastrous consequences. This

led the researcher study developing different methods for uncertainty quantification in

an attempt to improve model reliability.

We will begin this part by discussing the main types of uncertainty in ML. Then,

we will go over how different uncertainty metrics can be quantified.

3.1 Types of Uncertainty in Machine Learning

In ML, there are two main kinds of uncertainty: aleatoric and epistemic uncer-

tainty (An et al., 2020; Hüllermeier & Waegeman, 2021; Zheng, Zhang, Liu, Luo,

& Sun, 2021). And recently, apart from these main types, a new uncertainty metric

named scibilic uncertainty has been introduced.

3.1.1 Epistemic Uncertainty

Uncertainty due to an inadequate knowledge and limited data required for a per-

fect predictor is referred to as Epistemic uncertainty (Antonelli et al., 2020). As shown

in Figure 3.1, it can be classified as: approximation uncertainty and model uncertainty.

Approximation Uncertainty: In a traditional ML task, the learner is provided

with data points from a dataset that is independent and identically distributed. Then

the learner attempts to induce a hypothesis ĥ from hypothesis space H by selecting
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an appropriate learning method with its associated hyper-parameters and minimizing

the expected loss (risk) with a chosen loss function, ℓ. Nevertheless, what the he/she

actually does is to try to keep empirical risk Remp as low as possible, which is an

estimation of real risk R(h). The induced ĥ represents approximation to the h∗ which

is the the real risk minimizer and best possible hypothesis within H . This leads to

an approximation uncertainty. As a result, the quality of the induced hypothesis is not

ideal, and the trained model will be prone to errors.

Model Uncertainty: Assume that the perfect predictor is not included in the hy-

pothesis space H. In that situation, the learner has no possibility of developing a hy-

pothesis function that can effectively map all potential inputs to outputs. This results

in a discrepancy between the ground truth f ∗ and the best possible function h∗ within

H , which is referred to as model uncertainty.

ĥ

h∗

f∗
Hypothesis space

H ⊂ F

f∗: Ground truth

h∗: the best possible predictor within H
ĥ: Induced predictor

Figure 3.1 Different types of Epistemic Uncertainty.

The Universal Approximation Theorem, on the other hand, showed us that any

target function f can be approximated by a neural network (Cybenko, 1989; Zhou,

2018). For deep neural networks, the hypothesis space H can be extremely large.

Hence, it is reasonable to presume that h∗ = f ∗. The model uncertainty can be ne-

glected in deep neural networks, leaving only the approximation uncertainty to be con-

sidered. As a result, the actual source of epistemic uncertainty in deep learning tasks

is related with approximation uncertainty. Epistemic uncertainty is referred to the con-

fidence a model has about its prediction (Loquercio, Segu, & Scaramuzza, 2020). The

fundamental cause is the uncertainty regarding the model’s parameters. This form of

uncertainty is visible in areas where we have inadequate training data and the model

weights are not properly tuned.
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3.1.2 Aleatoric Uncertainty

Aleatoric uncertainty relates to the variation in an experiment’s outcome caused

by inherent random effects (Gurevich & Stuke, 2019). Despite having adequate train-

ing examples, this form of uncertainty cannot be reduced (Senge et al., 2014). The

noise observed in a sensor’s measurement data is an excellent example of this phe-

nomena. Furthermore, aleatoric uncertainty may be divided into heteroscedastic un-

certainty and homoscedastic uncertainty (Collier, Mustafa, Kokiopoulou, Jenatton, &

Berent, 2020). Heteroscedastic uncertainty varies across various model inputs. Ho-

moscedastic uncertainty, on the other hand, is insensitive to diverse inputs, which

means it is consistent regardless of input.
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Figure 3.2 Illustration of the Epistemic and Aleatoric uncertainty.

A simple nonlinear function ( logit(0.085× x) in the interval x ∈ [0,12] ) is

presented in Figure 3.2. Noisy samples are illustrated in the region at right where

(9 < x < 12), and those samples leads to high aleatoric uncertainty. These points, for

example, could reflect an erroneous sensor measurement; one can deduce that the sen-

sor generates errors around x = 10.5 for some unknown inherent reason. We can also

argue that the figure’s central regions represent areas of high epistemic uncertainty.

Because our model doesn’t have enough training examples to accurately represent the

data.
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3.1.3 Scibilic Uncertainty

Reinhold et al.(Reinhold et al., 2020) proposed a new sort of uncertainty named

scibilic uncertainty by combining epistemic and aleatoric uncertainty. This new uncer-

tainty metric was employed in an image segmentation challenge to identify areas in an

input image that the model could resolve how to predict if it was given enough data

to train with. After quantifying epistemic and aleatoric uncertainty, we can compute

scibilic uncertainty by dividing the former by the latter. The intuition behind scilibilic

uncertainty is as follows: For a suspicious input, a DNN model trained on naturally

occurring data may result in high epistemic uncertainty. Nevertheless, due to some

intrinsic property of the data, the model can lead to significant aleatoric uncertainty for

that same input, making it difficult to make a reliable prediction. The division proce-

dure allows us to keep epistemic uncertainty that isn’t caused by the model’s difficulty

for that particular input.

3.2 Quantifying Uncertainty in Deep Neural Networks

In recent years, many research studies have been conducted to quantify uncer-

tainty in deep learning models. Most of the work was based on Bayesian Neural

Networks, which learn the posterior distribution over weights to quantify predictive

uncertainty (Hinton & Neal, 1995). However, the Bayesian NN’s come with addi-

tional computational cost and inference issue. Therefore, several approximations to

Bayesian methods have been developed which make use of variational inference (Blun-

dell, Cornebise, Kavukcuoglu, & Wierstra, 2015; Graves, 2011; Hoffman, Blei, Wang,

& Paisley, 2013; Paisley, Blei, & Jordan, 2012). On the other hand, Lakshminarayanan

et al. (Lakshminarayanan, Pritzel, & Blundell, 2017) used the deep ensemble approach

as an alternative to Bayesian NN’s to quantify predictive uncertainty. But this approach

requires training several NN’s which may not be feasible in practice. A more efficient

and elegant approach was proposed by Gal et al. The authors showed that a neural

network model with inference time dropout is equivalent to a Bayesian approximation

of the Gaussian process. In the following subsections, we will briefly mention their ap-

proach for quantifying different types of uncertainties, and then describe the enhanced
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version of quantifying uncertainties in DNN-based classifier models. Before that, we

first introduce the notation as follows:

Given a dataset D = {(x1,y1), · · · ,(xN ,yN)} ⊂ X ×Y where X ∈ Rm is a m-

dimensional input vector and Y ∈ {1 · · ·C} where C is the output labels, training in-

stances {xi,yi}∀X are a set of independent and identically distributed (i.i.d.) training

samples from some unknown probability measure P on X×Y . The objective is to find

a hypothesis h : X 7→ Y as close as possible to the original function that has generated

the labels using weights of neural network architecture w and a loss function L .

3.2.1 Quantification of Epistemic Uncertainty via MC-Dropout Sampling

Gal et al. (Gal & Ghahramani, 2016) demonstrated that using a neural net-

work with dropout in inference time is identical to a specific variational inference on a

Bayesian neural network model. The uncertainty of hypothesis model is approximated

by averaging probabilistic feed-forward Monte Carlo dropout sampling throughout in-

ference time.

It functions as an ensemble strategy. In each individual ensemble model, the sys-

tem should discard different neurons in each layer of the network based on the dropout

ratio in inference time. The average of the predictions made throughout dropout rounds

is known as the predictive mean and the predictive mean is used as the final inference,

ŷ, for the input sample x̂. The overall prediction uncertainty is approximated by find-

ing the entropy and the variance of the probabilistic feed-forward Monte Carlo dropout

sampling during prediction time. The prediction is defined as follows:

p(ŷ = c|x̂,D)≈ µ̂pred =
1
T ∑

y∈T
p(ŷ|θ ,D) (3.1)

where θ denotes model weights, D represents input dataset, T is the number of predic-

tions of the MC dropouts, and x is the input sample. The mean value of Monte-Carlo

dropout predictions p(ŷ|θ ,D), which will be made T times, can be used to estimate

the label of the input sample.

Figure 3.3 illustrates a high-level overview of the Monte Carlo dropout based

classification algorithm in the prediction time. In the prediction time, random neurons

in each layer are dropped out, according to the p, from the base neural network model

to create another model. As a result, T different classification models can be used for

27



the prediction of the input instance’s class label and uncertainty quantification of the

overall prediction.
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Figure 3.3 An example of Monte Carlo dropout based prediction.

For each testing input sample x, the predicted label is assigned with the highest

predictive mean. And the variance of the p(ŷ) is can be used as a measure of epistemic

uncertainty of the model.

3.2.2 Quantification of Aleatoric Uncertainty via MC-Dropout Sampling

Let’s assume that we would like to fit a regression model to some linear function

and we employ a simple mean squared error (MSE) as our objective loss function for

that regression model. In this scenario, as suggested by Kendal et al. (Kendall & Gal,

2017), we can replace our loss function as below :

Loss =
||y− ŷ||2

2σ2 +
1
2

logσ
2 (3.2)

Now, our model not only predicts ŷ, but also σ . From this updated loss function,

we can see that when our model’s prediction is very erroneous, loss will be attenuated

by increased uncertainty σ2. And we avert uncertainty from becoming too large by the

term logσ2. Similarly, if the model can easily predict the actual value of the target, it

should estimate a low variance term on that to reduce the loss.
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Therefore, like in the above example, if we contain aleatoric uncertainty term

in our loss function, our model will be predicting with high variance for data points

residing in the areas where training data samples were noisy.

If we would like to train a classification model instead, then the loss would be as

follows:

x̂t = ŷ+ εt εt ∼N

(
0,diag

(
σ̂

2
))

L (x, x̂) =
1
T

T

∑
t=1

Cross entropy (x, x̂t)

The logic behind the above formulation is that when the model can easily predict

the actual class for any input sample, the softmax output score for the predicted class

will be high, and the model should estimate a low variance to reduce the extra noise. If,

on the other hand, the model cannot easily predict the actual class, the softmax output

probability score for the predicted class will be low. Therefore, introducing noise can

raise the prediction of actual class by chance, hence lowering the value for the loss

function.

3.2.3 Quantification of Epistemic and Aleatoric Uncertainty via MC-Dropout

Sampling

Later, Kendall and Gal (Kendall & Gal, 2017) presented a technique in which

both epistemic and aleatoric uncertainties are captured in a single model as shown in

Figure 3.4. They employed a CNN Model f (Bayesian NN) with weights represented

by ω̂ that maps an input x to ŷ and σ2. In their approach, the model output is divided

into two parts as predictive mean (ŷ) and predicted variance σ̂2 terms. Consequently,

the two types of uncertainty are quantified as follows:

1
T

T

∑
t=1

diag(σ̂2)

︸ ︷︷ ︸
aleatoric

+
1
T

T

∑
t=1

(ŷ− ȳ)⊗2

︸ ︷︷ ︸
epistemic

(3.3)

where T denotes the number of MC Dropout samples in prediction time when the

model is in training mode, ȳ = ∑
T
t=1 ŷt/T and y⊗2 = yyT
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Figure 3.4 Quantification of Epistemic and Aleatoric Uncertainty via MC-Dropout
Sampling.

3.2.4 Moment-Based Predictive Uncertainty Quantification

The method described above by Kendal and Gal is delicate and has been demon-

strated to be effective in computer vision applications such as image segmentation.

Unfortunately, since the output of the model is divided into two parts for predicting

mean and variance terms, it was inconvenient to employ in adversarial machine learn-

ing trials for us. We had to look for other options, since the attack algorithms are

developed to function with model architectures with only prediction output term (no

variance).

In (Kwon, Won, Kim, & Paik, 2020), Kwon et al. proposed an alternative way

of capturing both aleatoric and epistemic uncertainty for a classification model. The

prediction variance is composed of two terms representing aleatoric and epistemic un-

certainty in their approach, respectively. Let ω̂ represents parameters (learnt weights)

used in the neural network, the number of different output classes is denoted by K,

then the prediction y∗ of a model for any test sample x∗ given the weights of the model

is denoted by p(y∗|x∗, ω̂) where y∗ ∈ Rk. The formulation for their method is given

below:

Varp(y∗|x∗,ω)(y
∗) = Ep(y∗|x∗,ω)(y

∗⊗2)−Ep(y∗|x∗,ω)(y
∗)⊗2 (3.4)

Varp(y∗|x∗,ω)(y
∗) = diag{Ep(y∗|x∗,ω)(y

∗)}−Ep(y∗|x∗,ω)(y
∗)⊗2 (3.5)
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=
1
T

T

∑
t=1

[diag{p(y∗|x∗, ω̂t)}− p(y∗|x∗, ω̂t)
⊗2]

︸ ︷︷ ︸
aleatoric

(3.6)

+
1
T

T

∑
t=1
{p(y∗|x∗, ω̂t)}− p̂(y∗|x∗, ω̂t)

⊗2

︸ ︷︷ ︸
epistemic

(3.7)

where, p̂(y∗|x∗, ω̂t) = ∑
T
t=1{p(y∗|x∗, ω̂t)}

Both of the above equations (3.6 and 3.7) output a matrix of shape k× k where

the diagonal elements represents variance of each output class and we used the mean

of the diagonal terms for quantifying uncertainty metrics for a given input x∗.

Once the quantification of epistemic and aleatoric uncertainty is over, we simply

calculate scibilic uncertanty as below:

Scibilic = E pistemic/Aleatoric (3.8)

Eventually, for a given input x∗, we have three different coulumn vectors of shape

K× 1 as EP ∈ Rk, AL ∈ Rk, SC ∈ Rk, whose elements represent epistemic, aleatoric

and scibilic uncertainty for each class respectively.

Figure 3.5 presents the general overview of the Monte Carlo dropout based clas-

sification algorithm. In the prediction time, random neurons in each layer are dropped

out (based on the dropout ratio p) from the base neural network model to create a new

model. As a result, T different classification models can be used to quantify uncer-

tainty of the overall prediction. That is, the variance of the p(ŷ) is used to quantify

epistemic uncertainty.

We have chosen the MC dropout method due to its simplicity and effectiveness.

Although it requires a certain number of feed-forward queries, it is still more efficient

than using Bayesian Networks or variational inference techniques which compute or

approximate the posterior distribution of weights to quantify predictive uncertainty.

The approach needs only a single trained model to measure the prediction’s uncer-

tainty, while other techniques such as Deep Ensemble need multiple models. Sec-

ondly, since the function used to calculate the variance is convex and smooth (Liu et

al., 2019), one can take the backward derivative of the computed variance term for
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each input instance and use it to craft adversarial examples to evade the model.
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Figure 3.5 Illustration of the Monte Carlo dropout based Bayesian prediction.
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CHAPTER 4

ADVERSARIAL SAMPLE DETECTION

4.1 Uncertainty Quantification

For the quantification of uncertainty metrics, we used Equation 3.6 for Aleatoric

uncertainty, Equation 3.7 for Epistemic Uncertainty, Equation 3.8 for Scibilic Uncer-

tainty.

4.1.1 Explanatory Research on Uncertainty Quantification Methods

We have made a simple test on a sample image to visualize how the uncertainty

metrics behave under an adversarial attack with varying strengths. Figure 4.1 shows

how the uncertainty was affected under BIM attack to our model with different allowed

perturbation amounts, ε . We can see that all the quantified uncertainty indicators in-

crease as the amount of perturbation applied to the image becomes high enough to fool

the classifier. Indeed, almost maximum epistemic uncertainty, aleatoric uncertainty

and entropy values are observed at an ε value where the model starts mispredicting the

input class. We can name this interval as ”low confidence interval”. The uncertainty

metrics can be useful to differentiate the clean samples from their adversarial counter-

parts within this interval. Moreover, when the amount of perturbation used to fool the

model is high, the model start to predict wrong class even more confidently, resulting

a decrease in uncertainty estimates and thus they are not so reliable for detection as

these metrics can not act as a separator anymore. We can call this interval as ”high

confidence interval”. For those cases, we need an additional indicator to help us to

increase detection accuracy scores. To overcome this problem, we used another metric
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which we call ”closeness score for predicted class” obtained from the activations of

the last hidden layer.
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Figure 4.1 Change of uncertanty-based metrics under BIM attack with different
amount of maximum allowed perturbation (ε) values.

4.2 Proposed Closeness Metric

Apart from the uncertainty metrics, one other possible way to understand the

underlying mechanism of adversarial machine learning vulnerabilities, is to look at the

manifold (low dimensional areas where the input data distribution is found) of the data

used in the model training phase. High dimensional data like images are known to

lie on low dimensional data manifold (Lee & Verleysen, 2007). And the manifolds of

source classes which are the representations of the input instance in lower dimensional

space become more linear and easy to work with as we go to the deep layers of DNN’s

(Bengio, Mesnil, Dauphin, & Rifai, 2013). For this reason, we opted to work in the

feature space of the last hidden layer activations. We used a tricky and trivial approach

to understand the closeness of an input instance to the manifold which the predicted
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class of the input is represented. We grouped all the last hidden layer output vectors of

clean, noisy and perturbed images of each class together and tried to train a secondary

model so that all these lower dimensional representations of input instances actually

correspond to the same class of input. By doing so, we could let our secondary model

learn that the representation of any perturbed image in lower dimensional space should

virtually be close to the its original class manifold rather than its wrongly predicted

class manifold. The details of our approach is as follows:

Let D = {(x,y)|x ∈ Rm×n,y ∈ Rm} be the training set for our CNN classifier

(Hcnn) consisting of all the clean samples {x1,x2, · · · ,xm}, and their corresponding

actual labels {y1,y2, · · · ,ym}.
We first apply a noise with normal distribution to all the samples in training set

as below:

η = N (0,ε) (4.1)

x(noisy) = x+η , η ∈ Rm×n (4.2)

We then apply adversarial attack F (we used BIM) to all the training samples in

our original training set with the same ε value that we used in crafting noisy samples.

And we get perturbed samples as in below where δ is the perturbation amount derived

from the attack algorithm:

δ = F (x) (4.3)

x(pert) = x+δ , δ ∈ Rm×n (4.4)

After we increase the number of our training samples with crafted noisy and

perturbed samples, we feed all these samples to our CNN classifier Hcnn to get their

corresponding last hidden layer activation outputs v:

v(clean) = Hcnn(x(clean)) (4.5)
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v(noisy) = Hcnn(x(noisy)) (4.6)

v(pert) = Hcnn(x(pert)) (4.7)

Then, we combine all the last hidden layer activation outputs in one pool to get

V ∈ R3·m× jas in below, where j is the dimension of the last hidden layer for the CNN

model:

V = v(clean)∪ v(noisy)∪ v(pert) (4.8)

The corresponding labels for these v(clean), v(noisy) and v(pert) vectors will all be

y(clean). Because, we would like to teach our MLP model that all these vectors represent

source class distribution in the sub-space of last hidden layer’s activations and therefore

they correspond to actual class labels of the inputs x from which they are derived from.

Thus, we just concatenate y(clean) vector multiple times with itself to get Y ∈ R3×m

Y = y(clean) + y(clean) + y(clean) (4.9)

Finally, using the new training set (V,Y ) obtained from the last hidden layer

activation outputs of clean, noisy and perturbed samples, we train our MLP model

Hml p : V 7→ Y .

When the training of the MLP model is over, for any test image xtest , we can get

the last hidden activations vtest of the CNN model and then feed it to our MLP model

to get the softmax score outputs. Softmax score output vector (O) of the MLP model

will be of shape k, where k is the number of classes for our original training data. And

we use the value at the index of the predicted label (pred) for the CNN model which

is O[pred] as our last metric value for detecting adversarial samples.

4.2.1 Explanatory Research on our Closeness Metric

In Figure 4.2, we show the effectiveness of our proposed method. The y-axis

shows the softmax prediction scores of the MLP model for the predicted class of the

CNN model. MLP model was already trained on the last hidden layer activations
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of the CNN model for clean, noisy and perturbed samples. Since it learnt to map

all the training samples (last hidden layer activations) into their related actual class

labels accurately, even the CNN classifier is fooled and predicts a wrong class for a

deliberately perturbed sample, the MLP model still predicts correct output given the

last hidden layer activations of the CNN model for that perturbed sample.
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Figure 4.2 Change of prediction softmax score of MLP model obtained from last hid-
den layer activation of the CNN model under BIM attack with different amount of
maximum allowed perturbation (ε) values.

In the figures, the green regions represent the areas of correct prediction and the

red regions represent the areas of wrong prediction for the CNN model. Beginning

with eps value of 0.12, the CNN model is fooled and starts to make wrong prediction.

However, the MLP model prediction score decrease to 0 for the predicted class of

the CNN model. This knowledge is already thought to the MLP model during its

training. Thus, it successfully distinguishes the last hidden layer activation output of

the perturbed sample as it is closer to the original class data distribution in the latent

space rather than target class distribution and the predicted softmax score tends to

rapidly decrease to zero for the wrongly predicted class of the CNN model.

4.2.2 Summary of the Algorithm

We provide the summary of our algorithm for adversarial sample detection in

Figure 4.3. The overall process consists of five different stages. The first two stages

are for the preparation of the helper MLP model which will then be used to compute

the closeness score between the last hidden layer activations of the input sample and
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the lower dimensional representation of our CNN model’s predicted class. Stage three

is performed for the dataset preparation of our Logistic Regression (LR) classifier and

this dataset, which consists of five different features, is then used to train the LR model.

And in the final stage, our trained LR model is used for adversarial sample classifica-

tion. Further details of our algorithm are explained in Section 5.7.2.

Figure 4.3 Overview of our algorithm.

4.3 Results

4.3.1 Experimental Setup

We trained our CNN models for the MNIST (Digit) (LeCun & Cortes, 2010),

MNIST (Fashion) (Xiao, Rasul, & Vollgraf, 2017) and CIFAR10 (Krizhevsky, Nair, &

Hinton, n.d.) datasets, and we achieved accuracy rates of 99.10 % , 91.52 % and 80.79

% respectively. The model architectures are given in Table 4.1 and the hyperparameters

selected in Table 4.2. For training a classifier using last hidden layer activations of the

CNN Models, we used simple Multilayer Perceptron (MLP) models with 2-hidden
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layers which are detailed in Table 4.3. The hyperparameters applied for these MLP

models are shown in Table 4.4. In addition to the clean data, the noisy and perturbed

samples which are used to train the MLP models are crafted using eps values of 0.2,

0.07 and 0.03 for MNIST Digit, MNIST Fashion and CIFAR datasets respectively.

Finally, we used T = 50 as the number of MC dropout samples when quantifying

uncertainty metrics.

Table 4.1 CNN model architectures

Dataset Layer Type Layer Information

MNIST (Digit)

Convolution (padding:1) + ReLU 3×3×10
Convolution (padding:1) + ReLU 3×3×20

Dropout p : 0.5
Dense + ReLU 2880×128

Dropout p : 0.5
Dense + ReLU 128×10

MNIST (Fashion)

Convolution (Padding = 1) + ReLU 3×3×32
Max Pooling 2×2

Convolution (Padding = 1) + ReLU 3×3×32
Max Pooling 2×2

Convolution (Padding = 1) + ReLU 3×3×64
Dropout p : 0.25

Convolution (Padding = 1) + ReLU 3×3×64
Dropout p : 0.25

Dense + ReLU 3136×600
Dropout p : 0.5

Dense + ReLU 600×128
Dense + ReLU 128×10

CIFAR10

Convolution (Padding = 1) + ReLU 3×3×32
Convolution (Padding = 1) + ReLU 3×3×64

Max Pooling (Stride 2) 2×2
Convolution (Padding = 1) + ReLU 3×3×128
Convolution (Padding = 1) + ReLU 3×3×128

Max Pooling (Stride 2) 2×2
Dropout p : 0.5

Convolution (Padding = 1) + ReLU 3×3×256
Convolution (Padding = 1) + ReLU 3×3×256

Max Pooling (Stride 2) 2×2
Dense + ReLU 4096×1024

Dropout p : 0.5
Dense + ReLU 1024×256

Dropout p : 0.5
Dense + ReLU 256×10
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Table 4.2 CNN model parameters

Parameter MNIST (Digit) MNIST (Fashion) CIFAR10
Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001
Batch Size 64 64 128

Dropout Ratio 0.5 0.25 0.5
Epochs 10 10 50

Table 4.3 MLP model architectures

Dataset Layer Type Layer Information

MNIST (Digit)

Fully Connected + ReLU 128×512
Dense + ReLU 512×1024
Dense + ReLU 1024×128

Dense 128×10

MNIST (Fashion)

Fully Connected + ReLU 128×512
Dense + ReLU 512×1024
Dense + ReLU 1024×512

Dense 512×10

CIFAR10

Fully Connected + ReLU 256×512
Dense + ReLU 512×1024
Dense + ReLU 1024×512

Dense 512×10

Table 4.4 MLP model parameters

Parameter MNIST (Digit) MNIST (Fashion) CIFAR10
Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001
Batch Size 128 128 128

Epochs 50 50 150

4.3.2 Experimental Results

To evaluate the performance of different metrics for adversarial detection, we

have implemented each of the 5 attacks (FGSM, BIM, PGD, CW and Deepfool) with

different allowed perturbation amounts (ε) under lin f norm on MNIST (Digit), MNIST

(Fashion) and CIFAR10 test data. Just for CW attack, we used the l2 norm equivalent

of the applied perturbation by using the formula l2 = lin f ×
√

n×
√

2/
√

πe, where n

is the input sample dimension. For the implementations of these attacks, we used a

Python toolbox called Foolbox (Rauber, Brendel, & Bethge, 2018) and implement the

attacks in their default settings. To be consistent with Feinman et al. (Feinman et al.,
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2017), we only perturbed those test samples which were accurately predicted by our

models in their original states since an adversary would have no motive to perturb sam-

ples that are already misclassified. For each adversarial sample, we have also included

normal and noisy counterparts in the pool as a benchmark. We craft noisy samples

by applying Gaussian noise to each pixel with a scale similar to the adversarial sam-

ples. Then, all these normal, noisy and perturbed samples are used to train a Logistic

Regression (LR) model to test the performance of our adversarial classifier. Adversar-

ial samples are labeled as 1, which represents the positive class, whereas normal and

noisy samples are labeled as 0, which represents the negative class. Total of five fea-

tures which are computed for each sample in the pool before LR training are Epistemic

Uncertainty, Aleatoric Uncertainty, Scibilic Uncertainty, Entropy and Closeness Score

for predicted class. For MNIST (Digit) dataset, we showed ROC-AUC scores of our

adversarial classifier in Figures 4.4 and 4.5. And the detailed results of our experiments

are available in Tables 4.5 , 4.6 and 4.7. We aimed at evaluating the quality of our met-

rics under both medium and high level of adversarial threat by using different allowed

perturbation amounts. We achieved almost perfect detection scores under high level of

allowed perturbation (epsilon). And despite the risk of lowering attack success chance,

if the intruder opts to chose a lower epsilon value for the attack, we again achieve very

high degree of performance.

Table 4.5 Digit MNIST - Roc-Auc Scores of different metrics under various attack
types and epsilon values

eps = 0.12 eps = 0.30
Epis Ale Scib Ent Dist All Epis Ale Scib Ent Dist All

FGSM 0.84 0.87 0.77 0.86 0.59 0.87 0.85 0.89 0.71 0.88 0.91 0.94
BIM 0.93 0.95 0.87 0.94 0.77 0.96 0.60 0.64 0.47 0.64 0.98 0.99
PGD 0.93 0.94 0.86 0.94 0.75 0.96 0.63 0.67 0.44 0.66 0.98 0.99

Deepfool 0.89 0.91 0.83 0.90 0.63 0.91 0.91 0.91 0.81 0.87 0.97 0.99
CW 0.97 0.96 0.93 0.96 0.88 0.98 0.98 0.90 0.94 0.91 0.98 1.00

After verifying the effectiveness of our adversarial sample detection method on

image domain with CNN architectures, we would like to test our method on other

forms of input data and with a different model architecture. For this purpose, we opted

to work on intrusion detection tasks and chose the KDD-Cup-99 Dataset from UCI

ML repository for our additional experiment. We used %10 percent of the KDD99

dataset which contains around 494K data records. This dataset contains 42 features

41



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 ra
te

Metrics
Aleatoric (AUC=0.9453)
Entropy (AUC=0.9399)
Epistemic (AUC=0.9347)

Scibilic (AUC=0.8709)
Closeness Score (AUC=0.77)
All (AUC=0.9613)

(a) BIM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 ra
te

Metrics
Aleatoric (AUC=0.9622)
Entropy (AUC=0.9613)
Epistemic (AUC=0.9723)

Scibilic (AUC=0.9289)
Closeness Score (AUC=0.88)
All (AUC=0.9764)

(b) CW

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 ra
te

Metrics
Aleatoric (AUC=0.9114)
Entropy (AUC=0.9045)
Epistemic (AUC=0.8937)

Scibilic (AUC=0.8322)
Closeness Score (AUC=0.6348)
All (AUC=0.907)

(c) DeepFool

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 ra
te

Metrics
Aleatoric (AUC=0.8718)
Entropy (AUC=0.8647)
Epistemic (AUC=0.8428)

Scibilic (AUC=0.7713)
Closeness Score (AUC=0.5866)
All (AUC=0.8699)

(d) FGSM

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 ra
te

Metrics
Aleatoric (AUC=0.9449)
Entropy (AUC=0.9387)
Epistemic (AUC=0.9323)

Scibilic (AUC=0.8648)
Closeness Score (AUC=0.7519)
All (AUC=0.9585)

(e) PGD

Figure 4.4 Roc-Auc Plots for MNIST - ε = 0.12
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Figure 4.5 Roc-Auc Plots for MNIST - ε = 0.30

and 23 output classes and 3 of the input data features were categorical which we have

removed. We’ve split %80 percent of the dataset for training and %20 percent of the

dataset for test. After normalising the remaining features, we have trained a 5-layer

standard DNN architecture. We used dropout with a rate of 0.5 for first and second
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Table 4.6 Fashion MNIST - Roc-Auc Scores of different metrics under various attack
types and epsilon values

eps = 0.03 eps = 0.12
Epis Ale Scib Ent Dist All Epis Ale Scib Ent Dist All

FGSM 0.77 0.76 0.77 0.76 0.61 0.78 0.80 0.77 0.79 0.79 0.76 0.86
BIM 0.77 0.72 0.78 0.74 0.74 0.85 0.69 0.72 0.33 0.72 0.99 0.99
PGD 0.78 0.74 0.79 0.75 0.71 0.84 0.71 0.73 0.69 0.73 0.99 0.99

Deepfool 0.89 0.85 0.88 0.86 0.76 0.90 0.95 0.89 0.91 0.90 0.93 0.98
CW 0.89 0.84 0.89 0.85 0.79 0.91 0.96 0.87 0.93 0.89 0.94 0.98

Table 4.7 CIFAR10 - Roc-Auc Scores of different metrics under various attack types
and epsilon values

eps = 0.02 eps = 0.04
Epis Ale Scib Ent Dist All Epis Ale Scib Ent Dist All

FGSM 0.70 0.69 0.68 0.69 0.53 0.71 0.71 0.69 0.68 0.70 0.55 0.72
BIM 0.82 0.84 0.83 0.84 0.89 0.92 0.89 0.94 0.95 0.95 0.96 0.99
PGD 0.77 0.79 0.77 0.79 0.84 0.87 0.89 0.94 0.93 0.94 0.95 0.98

Deepfool 0.94 0.88 0.83 0.89 0.77 0.96 0.93 0.87 0.83 0.88 0.77 0.96
CW 0.94 0.87 0.85 0.88 0.79 0.97 0.93 0.85 0.84 0.86 0.80 0.96

inner-product layers. We trained our model for 5 epochs using Adam optimizer with

a learning rate of 0.001 and achieved a test set accuracy of 99.60 % .Then, we used

this trained standard DNN model and tested our adversarial sample detection method

against different attack types with an ε value of 0.04. Table 4.8 shows the attack

success rates of the attack algorithms and Roc-Auc detection scores of our proposed

method. The results confirm once again the effectiveness of our proposed method.

Table 4.8 KDD-Cup-99 dataset - Roc-Auc detection scores of our method for various
attack types

Attack Success Rate Roc-Auc Detection Score
FGSM 53,60% 98,92%
BIM 57,90% 99,32%
PGD 58,08% 99,35%
Deepfool 56,67% 99,52%
CW 67,30% 99,45%

We finally provide a comparison of our experimental results with Feinman et al.

(Feinman et al., 2017). Results available in Table 4.9 shows that our method achieves

better detection performance for each of the attacks on different datasets.
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Table 4.9 Comparison of ROC-AUC detection scores

MNSIT - Digit CIFAR10
FGSM BIM CW FGSM BIM CW

Feinman et al. 90,57% 82,06% 97,94% 72,23% 95,41% 92,17%
Ours 94,12% 99,07% 99,78% 72,41% 99,10% 96,29%

4.3.3 Further Results and Discussion

We have finally made an in depth series of experiments to see the performance of

each of the metrics under the application of an adversarial attack (BIM) with different

level of perturbation amounts. Figure 4.6 summarizes the results of our experiments.

Results show that when the perturbation amount is low or moderate, the contribution

of uncertainty metrics to adversarial detection performance is high. However, when

we apply the attack with high level of perturbation, this time our closeness metric

takes the lead and plays the key role. The reason why the closeness metric performs

poorly under an attack with low perturbation amount is that for those cases the attack

success rates are actually not so high and the attack barely succeeds in fooling the CNN

Model. Therefore, the predictions of the CNN and MLP models are mostly the same

and softmax output score of the MLP model for the predicted class can not act as a

successful separator for clean and perturbed samples for the LR classifier. Ultimately,

the combined usage of all the metrics is observed to be the best choice for securing the

model prediction performance.
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Figure 4.6 ROC-AUC scores of different metrics under an attack with varying level of
allowed perturbation amounts ε
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CHAPTER 5

ADVERSARIAL ATTACK

5.1 Approach

The uncertainty of the model is higher in areas with limited number of training

points. Due to this ignorance about ground truth, we cannot achieve a perfect model

that can predict accurately every possible test data. Figure 5.1 shows the prediction

of a regression model trained on a limited number of data points constrained on some

interval. In this simple example, we trained a single hidden layer NN with ten neurons

to learn a linear function y = −2x+ 1. As can be seen from the graph, in the areas

where we do not have enough training points, the uncertainty values obtained from

MC dropout estimates of our model is high, which can be interpreted as the quality of

the prediction is low, and our model is having difficulties in deciding the correct output

values. Harmoniously, we also observe high error in these areas. For this reason, we

can conclude that the high epistemic uncertainty area coincides with the low prediction

accuracy area. Accordingly, we claim that pushing the model’s limits by testing it in

extreme conditions with input outside from training data distribution (input from a

shifted-domain) may cause model prediction failure.

The adversarial attacks aim to find the necessary perturbation amount (δ ) con-

strained to some interval (ε), resulting in maximum loss, thus fooling the classifier.

We can express this mathematically in the below equation, where Fθ (x) is our neural

network.

argmax
∥δ∥≤ε

ℓ(Fθ (x+δ ),y) (5.1)
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Like most of the attack types in literature, the attackers can perturb the input

image in a direction that maximizes the loss, and this direction is found using the gra-

dient of the loss function. However, we showed that instead of using the loss function,

another effective approach is to use the model’s epistemic uncertainty. Our alternative

method uses the model’s epistemic uncertainty as a tool for creating successfully ma-

nipulated adversarial input instances. In contrast to the loss based adversarial machine

learning attacks, this method can provide an alternative strategy in which the attacker

can make an effective attack by exploiting uncertainty due to the difficulty of the model

to interpret the shifted-domain sample based on the data observed during training.
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Figure 5.1 Uncertainty estimates obtained from a regression model

To verify that our intuition holds true, we have done a simple experiment and

depicted the loss surfaces of a trained CNN model (digit classifier) within a constrained

epsilon neighbourhood of the original input data points, as shown in Figure 5.2. Figure

5.2b shows the model’s loss values in the direction of the model’s loss gradient and a

random direction. We see that the maximum loss value observed is 3.783. Then,

as shown in Figure 5.2c, we depicted the model loss surface in the direction of the

model’s epistemic uncertainty’s gradient and the same random direction we used in

the previous try. This time, the maximum loss value achieved is 3.713, which is close

to the previous one. We observed that out of 784 sub-directions, 693 were the same

and 91 were different according to the directions of loss and uncertainty gradients.

The model loss can be maximized by perturbing the input image in a slightly different

direction than we used to do before. Lastly, we depicted the model loss surface in
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the direction of loss and uncertainty’s gradient directions as in 5.2d. We reached a loss

value of 4.167, which is bigger than the previous two attempts. In Figures 5.2b,5.2c and

5.2d, the points where there is a difference in color on the loss surfaces indicate that the

model prediction has changed from the correct class 7 to wrong class 2. Therefore, we

can conclude that perturbing the image in both directions will lead to misclassification

for the model.
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Figure 5.2 Loss surfaces in different directions. The maximum loss values are 3.783,
3.713, 4.167 for b, c and d respectively

The loss surfaces of DNN models are well-known to be highly non-linear, with

many local minimums and maximums in high-dimensional space. Numerical solution

to finding global extrema points is an NP-hard problem (Blum & Rivest, 1992; Judd,

1990). No optimization approach can reach these global extrema points by utilizing

a naive method like gradient descent on the model’s loss function. Eventually, the

optimizer will be stuck to local extrema points. However, the above experiment shows

that slightly changing the direction in each gradient descent step by leveraging the

model uncertainty can increase the proposed attacks’ performance.

We conducted the same experiment on a different sample from the MNIST test
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dataset. Figure 5.3 shows that the maximum loss value in uncertainty’s gradient direc-

tion (0.811) is far greater than the maximum loss value in model loss’ gradient direction

(0.285). And the maximum loss value in the hybrid direction (0.845) is larger than the

ones in both model loss’ and uncertainty’s directions. Besides, we observe that there

is no possibility of misclassification in the loss gradient direction, as there is no visible

colour change in the surface plot of Figure 5.3b, whereas in Figure 5.3c we observe

that there are yellow regions where the model misclassifies the input image in the un-

certainty’s gradient direction. Again, when we analyzed the directions of loss’ and

uncertainty’s gradients, we saw that out of 784 directions, only 639 of them were the

same and 145 of them were different, which is much larger than the first experiment.
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Figure 5.3 Loss surfaces in different directions. The maximum loss values are 0.285,
0.811, 0.845 for b, c and d respectively

The epistemic uncertainty yields a better direction for our second experiment be-

cause our model (like all the trained ML models) is not the ”perfect” predictor and is

just an approximation to the oracle function. The model itself has an inherent ”approx-

imation uncertainty” which sometimes induce sub-optimal solutions. Consequently,
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any method which only relies on the trained model (which is not the optimum model)

will result in less effective performance.

5.2 Proposed Epistemic Uncertainty Based Attacks

Previous attack types in literature have been designed to exploit the model loss

and maximize the model loss value within a constrained neighbourhood of the input

data points. And we have witnessed quite successful results with this approach. How-

ever, one possible drawback for these attacks is that they solely rely on the trained ML

model, which inevitably suffers from the approximation error. We can overcome this

problem by utilizing an additional metric, namely epistemic uncertainty of the model.

This additional uncertainty information has a correcting effect and improves the con-

vergence to global extrema points by yielding a higher loss value. Results shown in

Figure 5.2 and Figure 5.3 support our argument. Therefore, we can reformulate exist-

ing attacks using model uncertainty instead of model loss. And even we can benefit

from both of them. In sections 5.2.1 - 5.2.4, we present our first group of proposed

attack variants together with their original counterparts.

5.2.1 Fast Gradient Sign Method (Uncertainty-Based)

The formulation used in traditional loss-based FGSM attack is given below:

xadv = x+ ε · sign(∇xℓ(x,ytrue)) (5.2)

where x denotes input (clean) image, xadv represents the perturbed adversarial image,

ℓ is the classification loss function, ytrue is the actual label for the input x. And our

modified FGSM attack (uncertainty-based) is shown as;

xadv = x+ ε · sign(∇xU(x,F, p,T )) (5.3)

where x denotes the input (clean) image, xadv represents the perturbed adversarial im-

age, U is the uncertainty metric (mean variance) derived from T different MC dropout

estimates, F is the prediction model in training mode, p denotes the dropout ratio used

in the dropout layers, T represents the number of MC-dropout samples in model train-

ing mode.
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And the steps necessary for the calculation of uncertainty metric (mean variance

of T predictions) is given as below:

Step: 1 For an input image x, T different predictions is obtained pt(x) by Monte-

Carlo Dropout sampling where each prediction is a vector of softmax scores for the

C classes.

pt(x) = F (x, p,T )

Step 2: The next step is to calculate the average prediction score for the T different

outputs:

pT (x) =
1
T ∑

t∈T
pt(x)

Step 3: Calculate the variance of the T predictions for each class.

σ
2(pt(x)) =

1
T ∑

t∈T
(pt(x)− pT (x))2

Step 4: Compute the expected value of variance over all classes by taking their aver-

age.

U(x,F, p,T ) = E(σ2(pT (x)))

5.2.2 Basic Iterative Attack (BIM-A Uncertainty-Based)

In this section, we first provide the pseudo-codes for known loss-based BIM

attack types as in Algorithm 5.1 and 5.2. Then, we provide our proposed uncertainty-

based BIM attack variants in Algorithm 5.3 and 5.4. All the attack types proposed here

are designed under L∞ norm.

5.2.3 Basic Iterative Attack (BIM-A Hybrid Approach)

Here, we present the pseudo-code for our Hybrid Approach in Algorithm 5.5.

Same as the previous BIM attack variants, our Hybrid Approach is also designed under

ℓ∞ norm. At each iteration, we step into both the model loss’ gradient direction and

model uncertainty’s gradient direction. These two metrics make up for each other and

yield to a better result.
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Algorithm 5.1: Loss-based BIM Algorithm (type-A)
x is the benign image, ytrue is the true label for x, F is the deep learning model
learnt in training, N denotes iteration number, ε is the maximum amount of
perturbation allowed, α denotes step size.

Input: x ∈ Rm,ytrue,F,N,α,ε
Output: xt+1

1 x0← x
2 while n < N do

/* update X by using below formula, F in evaluation mode

*/

3 x(t+1) = clipx,ε(xt +α · sign(∇xℓ(xt ,ytrue)))

4 if argmax(F(xt+1)) ̸= ytrue then
5 end while

6 return xt+1

Algorithm 5.2: Loss-based BIM Algorithm (type-B)
x is the benign image, ytrue is the true label for x, F is the deep learning model
learnt in training, N denotes iteration number, ε is the maximum amount of
perturbation allowed, α denotes step size.

Input: x ∈ Rm,ytrue,F,N,α,ε
Output: xt+1

1 x0← x
2 while n < N do

/* update X by using below formula, F in evaluation mode

*/

3 x(t+1) = clipx,ε(xt +α · sign(∇xℓ(xt ,ytrue)))

4 return xt+1

Algorithm 5.3: Uncertainty-based BIM Algorithm (type-A)
x is the benign image, F is the deep learning model learnt in training, p
denotes the dropout ratio used in dropout layers, T represents the number of
MC dropout samples in model training mode, N denotes iteration number, ε

is the maximum amount of perturbation allowed, α denotes step size.
Input: x ∈ Rm,F, p,T,N,α,ε
Output: xt+1

1 x0← x
2 initial prediction = argmax(F(x0))
3 while n < N do

/* update X by using below formula, F in training mode

*/

4 x(t+1) = clipx,ε(xt +α · sign(∇xU(xt ,F, p,T )))
5 if argmax(F(xt+1)) ̸= initial prediction then
6 end while

7 return xt+1
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Algorithm 5.4: Uncertainty-based BIM Algorithm (type-B)
x is the benign image, F is the deep learning model learnt in training, p
denotes the dropout ratio used in dropout layers, T represents the number of
MC dropout samples in model training mode, N denotes iteration number, ε

is the maximum amount of perturbation allowed, α denotes step size.
Input: x ∈ Rm,F, p,T,N,α,ε
Output: xt+1

1 x0← x
2 while n < N do
3 if argmax(F(xt+1)) ̸= initial prediction then
4 condition = True

5 if condition = False then
/* update X by using below formula, F in training

mode */

6 x(t+1) = clipx,ε(xt +α · sign(∇xU(xt ,F, p,T )))

7 else
/* update X by using below formula, F in training

mode */

8 x(t+1) = clipx,ε(xt−α · sign(∇xU(xt ,F, p,T )))

9 return xt+1

5.2.4 Basic Iterative Attack (BIM-B Hybrid Approach)

In the last part of this proposed algorithms section, we present the pseudo-code

for our Hybrid Approach for BIM-B as in Algorithm 5.6. Like the other proposed

BIM attack variants, our Hybrid Approach for BIM-B is also designed under ℓ∞ norm.

Until the perturbed input sample is pushed away from the model’s decision boundary,

we step into both the model loss’ gradient direction and model uncertainty’s gradient

direction at each iteration. And after passing the decision boundary, we try to decrease

the quantified uncertainty and also try to increase the loss at the same time. The suc-

cess rates of Algorithm 5.5 and 5.6 are equal in the white-box setting. Therefore, we

suggest to use this method while crafting black-box adversarial samples using attack

transferability.

5.3 Visualizing Gradient Path for Uncertainty-Based Attacks

Figure 5.4 shows a simplified example of the gradient path for our uncertainty-

based BIM attack variants. In the example shown in the figures, the low uncertainty
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Algorithm 5.5: Algorithm for BIM A (Hybrid Approach)
x is the benign image, F is the deep learning model learnt in training, p
denotes the dropout ratio used in dropout layers, T represents the number of
MC dropout samples in model training mode, N denotes iteration number, ε

is the maximum amount of perturbation allowed, α denotes step size.
Input: x,F, p,T,N,α,ε
Output: xt+1

1 x0← x
2 initial prediction = argmax(F(x0)) /* F in evaluation mode */

3 while n < N do
/* update X by using below formula, F in training mode

when calculating gradient of model uncertainty, F in

evaluation mode when calculating gradient of model

loss */

4 x(t+1) = clipx,ε(xt +α · sign(∇xU(xt ,F, p,T ))+α · sign(∇xℓ(xt ,ytrue)))

5 if argmax(F(xt+1)) ̸= initial prediction then
6 end while

7 return xt+1

Algorithm 5.6: Algorithm for BIM B (Hybrid Approach)
x is the benign image, F is the deep learning model learnt in training, p
denotes the dropout ratio used in dropout layers, T represents the number of
MC dropout samples in model training mode, N denotes iteration number, ε

is the maximum amount of perturbation allowed, α denotes step size.
Input: x,F, p,T,N,α,ε
Output: xt+1

1 x0← x
2 initial prediction = argmax(F(x0)) /* F in evaluation mode */

3 while n < N do
/* update X by using below formula, F in training mode

when calculating gradient of model uncertainty, F in

evaluation mode when calculating gradient of model

loss */

4 x(t+1) = clipx,ε(xt +α · sign(∇xU(xt ,F, p,T ))+α · sign(∇xℓ(xt ,ytrue)))

5 if argmax(F(xt+1)) ̸= initial prediction then
6 x(t+1) =

clipx,ε(xt−α · sign(∇xU(xt ,F, p,T ))+α · sign(∇xℓ(xt ,ytrue)))
7 end while

8 return xt+1
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regions are shown in blue, while the high uncertainty regions are shown in red. Fig-

ure 5.4a shows an example of successful uncertainty-based BIM attack type-A. But,

we would expect the uncertainty-based BIM attack type-B to be unsuccessful for this

specific example. Because at the intermediate iteration where we passed the deci-

sion boundary from source to target class, we are at the left side of the uncertainty

hill. Therefore, when we try to decrease the uncertainty, we will perturb the image

back to the original class manifold. However, for Figure 5.4b, we would expect both

uncertainty-based BIM attack types A and B would be successful. Because this time,

at the intermediate iteration where we passed the decision boundary from source to

target class, we are at the right side of the uncertainty hill.
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Figure 5.4 Uncertainty gradient path

5.4 Visualizing Uncertainty Under Different Attack Variants

Figure 5.5 shows the change in our quantified uncertainty values of the model

during different BIM attack variants. In this experiment, we applied all of the attack

variants to the 23th test sample from MNIST (Digit) dataset. The original label of

the input image was 6. For type A and B of loss and uncertainty based attacks, we

observed that at 11th and 13th iterations, respectively, the attack is successful, and the

input image was misclassified as 4. In Figure 5.5a, we stop the iteration as soon as

we succeeded in fooling the model, whereas in Figure 5.5b, we continue to perturb

the image, but this time in a direction which minimize the uncertainty. After the last

iteration, the predicted label was still 4, and the uncertainty level decreased compared

to the time of misclassification. For this sample, our uncertainty-based BIM attack

type-B was successful, because, when we pass the decision boundary as we try to
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maximize model uncertainty, we also go beyond the point where there is the maximum

uncertainty. One last important point to mention is that, when we apply the hybrid

approach where we utilize both loss and uncertainty, we could successfully fool the

model after 6th iteration, which is much faster. This also proves our assumption that

the hybrid approach is more effective than the others.
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(c) BIM-A (Loss Based)
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(d) BIM-B (Loss Based)
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Figure 5.5 Change of uncertainty values during different BIM attack variants

5.5 Search For a More Efficient Attack Algorithm

So far, we demonstrated that we can increase the loss based attack performances

by additionally using the quantified uncertainty information of the model. We have

exceeded the attack success rates of traditional loss based attacks with our hybrid ap-

proach. However, one can argue that even the total perturbation amount is constrained

to the same ε , the amount of perturbation applied upon the image might be higher than
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the loss based attack in case of our proposed hybrid attack variant. In an aim to do

the better, we come up with a more efficient attack idea. In our new attack proposal,

we will be using only a subset of directions based on some defined logic. We name

our proposed attack algorithm as Rectified Basic Iterative Attack (Rectified-BIM). Be-

cause the direction pointed out by the gradient of the loss function is updated using the

reference information obtained from the quantified epistemic uncertainty.

5.5.1 Rectified Basic Iterative Attack

Algorithm 5.7 shows our proposed uncertainty based Rectified-BIM attack. The

algorithm is designed under L∞ norm.

Algorithm 5.7: Algorithm for Rectified-BIM attack:
x is the benign image, ytrue is the actual label for x, h is the hypothesis func-
tion learnt during training, p denotes the dropout ratio used in dropout layers,
T represents the number of MC dropout samples in model training mode, N
denotes iteration number, ε is the maximum amount of perturbation allowed,
α denotes step size.

Input: x ∈ Rm,h, p,T,N,ε,α
Output: xt+1

1 x0← x
2 condition← False
3 while n < N do
4 Compute ∇xℓ(h(xt ,ytrue)) while h in evaluation mode
5 Compute ∇xU(xt ,h, p,T ) while h in training mode
6 if argmax(h(xt+1)) ̸= ytrue then
7 condition = True

8 if condition = False then
9 Update all elements of ∇xℓ(h(xt ,ytrue)) to 0 where ∇xℓ(h(xt ,ytrue))

!= ∇xU(xt ,h, p,T )
// update x

10 x(t+1) = clipx,ε(xt +α · sign(∇xℓ(h(xt ,ytrue))))

11 else
12 Update all elements of ∇xℓ(h(xt),ytrue) to 0 where ∇xℓ(h(xt ,ytrue)

== ∇xU(xt ,h, p,T )
// update x

13 x(t+1) = clipx,ε(xt +α · sign(∇xℓ(h(xt ,ytrue))))

14 return xt+1

At each iteration of the Rectified-BIM algorithm, we calculate ∇xℓ(h(xt ,ytrue))

and ∇xU(xt ,h, p,T ). We then get the sign of these gradient vectors which show the
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sub-directions for each input dimension. If the sign of the gradient for any input pixel

is positive, it means that we can increase loss or uncertainty by increasing the value

of that pixel. For any input sample fed to the attack algorithm, we start perturbing

the input image by first using the intersection of the sub-directions pointed by the

derivative of loss and uncertainty information. This is valid until the input sample

is pushed off of the decision boundary. Once the input sample passes the decision

boundary, this time we use the sub-directions of loss’ gradient which are not shared

by the uncertainty’s gradient. This idea can be understood better by looking at Figure

5.6 - (A) and Figure 5.6 (B). In the first part of the proposed attack: Instead of trusting

only loss or only uncertainty, we trust the information provided by both. This way, we

only use a subset of sub-directions. Thus, at each iteration, the amount of perturbation

applied to the input sample is being decreased without compromising the adversarial

attacking strength.

In the low confidence regions where the input sample is close to the model’s

decision boundary, the uncertainty has a friction effect against loss. It is known that the

quantified uncertainty is higher near the decision boundaries (O. F. Tuna et al., 2022a).

Thus, for adversarial attack purposes, perturbing the input sample in the direction of

uncertainty’s gradient is not a good idea after passing the decision boundary. This is

because the direction in which the gradient of uncertainty points will keep the sample

near the boundary regions and prevent the perturbed sample from being pushed far

away. Therefore, for the second part of our Rectified-BIM Attack, we consciously

decided not to use the common sub-directions which are shared by both loss’ and

uncertainty’s gradients, instead we used the sub-directions which are left from the

loss’ gradient after discarding the common sub-directions as in Figure 5.6 - (B). By

gradients, here we mean the sign of the gradient vectors.

5.6 Attacker’s Capability

We hypothesized that the main objective of the attacker is to deceive the model

by introducing cleverly crafted perturbation to the model input. In a practical case,

the white-box setting is the most preferred option for the adversary. This demands the

attacker to gain access to the model for generating adversarial samples. After capturing
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Figure 5.6 Sub-directions (sign of the gradients) used in attack purposes (A,B)

model information, the attackers can leverage the vulnerabilities of the model to their

advantage.

However, the adversary must solve an optimization problem to decide which

regions of input data should be changed to prevent this manipulation from being easily

noticed by the human eye. By resolving this optimization problem by employing one of

the available attack algorithms (Aladag, Catak, & Gul, 2019; Goodfellow et al., 2015;

Kurakin et al., 2017; Madry et al., 2018), the attacker seeks to lower the classification

performance of the model on the adversarial data as much as possible. In this work,

to restrict the maximum permissible perturbation for the attacker, we utilized ℓ∞ norm,

which is the maximum pixel difference limit between adversarial and benign images.

5.7 Results

5.7.1 Experimental Setup

We begin our experiments by assessing the performance of our first group of at-

tack variants. For this purpose, we trained our CNN models for the MNIST (Digit)

(LeCun & Cortes, 2010) and MNIST (Fashion) (Xiao et al., 2017) datasets, and we

achieved accuracy rates of 99.05 % and 91.15 % respectively. For the CIFAR10 dataset

(Krizhevsky et al., n.d.), we used a pretrained VGG-A (11 weight layers) model (Si-

monyan & Zisserman, 2015) and then apply transfer learning by freezing the convolu-

tion layers, changing the number of neurons in the output layer from 1000 to 10 and

updating the weights of the dense layers only for 10 epoch. In this way, we achieved

an accuracy rate of 89.07 % on test data. Since the used pretrained VGG model was
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trained on IMAGENET dataset, we had to rescale the CIFAR10 images from 32×32

to 224×224. We also applied the same normalization procedure by normalizing all the

pixels with mean = [0.485,0.456,0.406] and std = [0.229,0.224,0.225]. The adver-

sarial settings that have been used throughout our experiments are provided in Table

5.1. Finally, we used T = 50 as the number of MC dropout samples when quantifying

uncertainty.

Table 5.1 Adversarial settings of our experiments: α , i respectively denote the step-
size and the number of attack steps for a perturbation budget ε

Attack Parameters lp norm
FGSM i = 1 l∞
BIM α = ε · 0.2, i = 10 (for MNIST) l∞
BIM α = ε · 0.3, i = 5 (for CIFAR-10) l∞

5.7.2 Experimental Results

During our experiments, we only perturbed the test samples which were accu-

rately predicted by our models in their original states. Because, an intruder would have

no motivation to perturb samples that are already classified wrongly.

The results shown in Table 5.2 that our Hybrid Approach of using both model’s

loss and uncertainty results into the best performance. Success rates of pure loss-

based and pure uncertainty-based attacks are similar to each other. We also observe

that the success rates for uncertainty-based attack types A and B are different. We

argue that the point of global maximum for uncertainty metric for any class is not on

the model’s decision boundary as in the case of model loss. Instead, the point where

the uncertainty is maximum can be beyond the decision boundary. Therefore, during

the gradient-based search, it may be possible for us to pass the decision boundary

but still not reaching the peak value for uncertainty. And when we start to decrease

the uncertainty after passing the decision boundary (fooling the model), it may be

possible to go back to the original class. However, this is not the case in loss-based

approaches. Since we are trying to maximize the loss based on a reference class,

we always see an increasing trend during the gradient descent approach of the loss

maximization journey. Figure 5.7 shows some examples of adversarial samples crafted

using different methods mentioned in this study.
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Table 5.2 Attack success rates on different datasets

MNIST (Digit)
ε = 0.15

MNIST (Fashion)
ε = 0.05

CIFAR10
ε = .2/255

FGSM (loss-based) % 46.81 %59.28 %72.42
FGSM (uncertainty-based) % 47.29 %62.89 %71.52
BIM-A (loss-based) % 82.56 % 82.96 %89.44
BIM-A (uncertainty-based) % 76.09 % 84.83 %86.77
BIM-B (uncertainty-based) % 65.43 % 71.71 %82.98
BIM-A (Hybrid Approach) % 85.14 % 90.13 %91.06

In the last part of experimental results for this section, we tried to compare the

success ratio of our hybrid attack variants in black-box setting. For this, we first trained

different surrogate models using MNIST Digit, MNIST Fashion and also CIFAR10

datasets. Then, we tried to craft adversarial samples using both traditional approaches

and also using our proposed algorithms. Later, we tested these adversarial samples on

a different target models. As can be seen in Table 5.3 and 5.4, the success rates of our

attack algorithms are higher which shows the effectiveness of our method in black-box

setting as well.

Table 5.3 Comparison of attack transferability rates - part 1

Attack transferability rates
MNIST DIGIT

eps : 0.2
MNIST FASHION

eps : 0.03
CIFAR10

eps : 6.0/255
Bim-A (loss-based) 2.99% 9.03% 8.19%
Bim-A (hybrid approach) 6.35% 13.37% 11.57%
Deepfool 1.16% 5.01% 5.82%

Table 5.4 Comparison of attack transferability rates - part 2

Attack transferability rates
MNIST DIGIT

eps : 0.2
MNIST FASHION

eps : 0.03
CIFAR10

eps : 6.0/255
Bim-B (loss-based) 17.62% 27.26% 18.15%
Bim-B (hybrid approach) 19.16% 28.88% 20.30%
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Figure 5.7 Some example images from MNIST(Digit), MNIST(Fashion) and CIFAR-
10. The original image is shown in the left-most column and adversarial samples
crafted based on different methods are on the other columns.

5.7.3 Further Results and Discussion

After verifying the performances of our first group of attack variants, we tried

to assess the performance of second group of attack idea. For this purpose, we

trained our CNN models for the MNIST (Digit) (LeCun & Cortes, 2010), MNIST

(Fashion) (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., n.d.) datasets, and we

achieved accuracy rates of 99.26 % , 92.63 % and 83.91 % respectively. For the CI-

FAR10 dataset we applied a normalization procedure by normalizing all the pixels with

mean = [0.485,0.456,0.406] and std = [0.229,0.224,0.225]. The adversarial settings

that have been used throughout of our experiments is provided in Table 5.5. Finally,
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we used T = 50 as the number of MC dropout samples when quantifying epistemic

uncertainty.

Table 5.5 Adversarial settings of our experiments: α , i respectively represent the step-
size and the number of attack steps for a perturbation budget ε , r denotes the number
of restarts

Attack Parameters lp norm
FGSM i = 1 l∞
BIM α = ε · 0.2, i = 10 l∞
PGD α = ε · 0.2, i = 10, r = 5 l∞

Like in our previous experiment, we again only perturbed the test samples dur-

ing our experiments on testing the performances of adversarial attack methods, which

were already accurately predicted by our models in their original states. Obviously, an

intruder would have no reason to perturb samples that are already classified wrongly.

The results in table 5.6 show that our Rectified-BIM algorithm and other two at-

tack variants (Rectified-FGSM and Rectified-PGD) which leverage both the quantified

epistemic uncertainty and the model’s loss value result into better performances than

their originals. Once we verified the success of our attack variants on our comparably

small models with different epsilon (ε) values, we tried to test their performances on

larger models. For this purpose, we first trained VGG-19 (Simonyan & Zisserman,

2015) (with batch normalization) and ResNet (with custom dropout layers) models on

CIFAR-10 dataset and achieved accuracy rates of % 85.79 and % 86.24. Then, we

have applied all our attack variants and compared the attack success rates with their

originals. The results available in Table 5.7 reveal once again the effectiveness of our

proposed attack method. After verifying the efficacy of our approach on various model

architectures, we conducted a separate experiment to observe the effect of chosen num-

ber of iterations parameter on the performance of our proposed iterative attack variant.

The results available in Table 5.8 show that our PGD attack variant outperforms its

original counterpart in each attempt (PGD5, PGD10, PGD20).

Unlike known loss-based attacks, our proposed attack variants (rectified attacks)

perturb less number of pixels at each iteration and still can reach a higher degree of

adversarial attack success rate. To verify this, we have conducted an additional exper-

iment to compare the resulting perturbation amounts of our attack variants with their
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Table 5.6 Attack success rates on different datasets

MNIST (Digit) MNIST (Fashion) CIFAR10
ε : 0.12 ε : 0.16 ε : 0.04 ε : 0.06 ε : 2/255 ε : 3/255

FGSM 23.76 % 37.79 % 53.86 % 61.56 % 41.71 % 45.98 %
Rectified-FGSM 24.64 % 40.33 % 55.86 % 66.62 % 45.11 % 52.88 %
BIM 53.40 % 81.40 % 76.24 % 89.65 % 59.42 % 70.21 %
Rectified-BIM 56.93 % 85.97 % 80.86 % 96.09 % 69.14 % 83.13 %
PGD 54.26 % 84.01 % 76.69 % 91.23 % 59.38 % 70.62 %
Rectified-PGD 55.41 % 86.58 % 79.71 % 95.22 % 67.14 % 81.63 %
Deepfool 40.05 % 72.10 % 75.67 % 92.38 % 64.09 % 81.81 %

Table 5.7 Attack success rates under l∞ norm against VGG-19 and ResNet models

CIFAR10 Dataset VGG19bn ResNet
FGSM (ε = 3/255) 56,78% 74,33%
Rectified-FGSM (ε = 3/255) 59,18% 78,11%
BIM (ε = 3/255, α = ε · 0.4, i = 5) 73,45% 94,99%
Rectified-BIM (ε = 3/255, α = ε · 0.4, i = 5) 84,67% 96,42%
PGD (ε = 3/255, α = ε · 0.4, i, r = 5) 74,95% 95,06%
Rectified-PGD (ε = 3/255, α = ε · 0.4, i, r = 5) 83,97% 96,17%

Table 5.8 Results under PGD attack with various number of iterations

VGG19bn on CIFAR10 PGD Rectified-PGD
Number of iterations = 5, ε = 3/255 73,25% 83,01%

Number of iterations = 10, ε = 3/255 82,13% 91,30%
Number of iterations = 20, ε = 3/255 83,60% 92,24%

originals (FGSM, BIM, PGD). We have used a batch of input from each dataset and

computed the resulting perturbation amounts based on both L1 and L2 norms. The

results that are shown in Table 5.9 support our claim. We know that any trained ML

model is not the perfect predictor and is just an approximation to the oracle function.

The model itself has an inevitable inherent approximation uncertainty which some-

times induce to sub-optimal solutions. Consequently, any method which only relies

on the trained model will result in less effective performance. By double-checking the

sub-directions pointed by the derivative of the model’s loss with the ones available in

the quantified epistemic uncertainty derivative, we could discard the sub-directions,

which are suspected to be unreliable. The attack success rates are inline with this fact.

There have been previous studies in literature which try to minimize the amount of

perturbation applied to the input of the AI model as in (Akan, Genc, & Vural, 2020)
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for crafting adversarial samples. However, the adversarial success rate of these attack

algorithms are questionable and mostly not comparable to their traditional counter-

parts as primary goal of these method is to generate adversarial samples with least

perceptible difference instead of most powerful ones.

Table 5.9 Mean Perturbation Amount Comparison

MNIST Digit
(ε = 0.16)

MNIST Fashion
(ε = 0.06)

CIFAR10
(ε = 3/255)

L2 norm L1 norm L2 norm L1 norm L2 norm L1 norm
FGSM 3,36 71,57 1,44 35,19 0,64 35,90
Rect.-FGSM 3,06 59,53 1,29 28,56 0,56 27,48
BIM 2,75 53,41 1,21 27,40 0,55 28,27
Rect.-BIM 2,69 52,09 1,16 25,99 0,54 27,70
PGD 2,79 54,79 1,22 27,96 0,55 28,39
Rect.-PGD 2,74 53,70 1,19 26,92 0,54 28,02

As a last experiment for the attack part, we have measured the time spent by

each attack method for a batch of input of size 64 from the MNIST (Digit) Dataset.

The results available in Table 5.10 show the measured execution time of our attack

variants together with their originals (FGSM, BIM, PGD). As expected, the execution

time of our attack variants is longer than their originals due to additional uncertainty

quantification steps. However, this can be tolerated thanks to the higher success rate

and smaller perturbation need of our attack variants.

Table 5.10 Execution Time Comparison (in seconds)

Attack Type Time
FGSM 0,0104

Rectified-FGSM 0,4613
BIM 0,0444

Rectified-BIM 6,4161
PGD 0,4695

Rectified-PGD 31,3377
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CHAPTER 6

ADVERSARIAL DEFENSE

6.1 Approach

In regions with a low number of training samples, model uncertainty is larger.

We can’t get a perfect model to precisely predict all test data because we don’t have any

ground truth in these areas. Figure 6.1 displays the prediction outputs of a regression

model trained on a small amount of data that are bound by some interval. For this

toy example, we trained a neural network with single hidden layer and ten neurons to

learn a linear function y = 2× x+ 3. As can be observed in the figure, the model’s

uncertainty values (epistemic) derived from MC dropout estimates are high in places

where we don’t have training data, indicating that the quality of the prediction is low

and the model is having difficulty deciding the accurate output values. Consistently,

high loss values are observed in those regions. As a result, we can argue that the

regions with high epistemic uncertainty corresponds to the regions of low prediction

quality. Therefore, testing the model in severe settings with input that it has never

encountered before will lead to model prediction failure as the wights of the model

are not properly optimized to correctly predict these regions (O. F. Tuna et al., 2022b).

Similarly, restoring the input samples to the regions where the model was trained on

(low uncertainty regions) would yield more accurate predictions. In this study, we

employed this idea. However we paid attention to one key point, that is, while trying

to minimize the quantified uncertainty for any input sample, we made sure that the

restoration operation has minimal effect to model loss against predicted label.

65



10 5 0 5 10

x

20

10

0

10

20

y 
=

 f(
x)

test data
training data
uncertainty obtained from MC dropout estimates

Figure 6.1 Uncertainty values obtained from a regression model

6.2 Intuition Behind Using Uncertainty-based Reversal Process

For the quantification of uncertainty metrics, we use MC-Dropout Estimates of

DNNs. For instance, quantification of epistemic uncertainty involves using the model

in training mode, getting T different feed-forward predictions and calculating the vari-

ance of these predictions. What we actually do during this operation is to use T dif-

ferent models, because dropout mechanism will randomly zeros out the activations of

different neurons of the model as displayed in right side of Figure 6.2. However, dur-

ing normal operation of the model in inference time, we use all the neurons and do

not force the activations of any neuron to zero as in left side of the Figure 6.2. There-

fore, the model that is used in inference time and all the models that are used during

uncertainty quantification are different from each other.

The adversarial samples target the model to force them to incorrect predictions

during inference time. For example, white-box adversarial attacks use the models that

are used in their inference time to compute the gradients to increase the loss against

any desired class. But, these crafted perturbations are designed specifically for the

model that is used in inference time. The adversarial perturbation will infect part of

the neurons in the network which will result them to perform abruptly (Wu & Wang,

2021), (Guan, Tu, He, & Tao, 2021). Because the weights of these neurons are not

optimized well during the learning process, making them prone to unseen form of

data. However, when we use the model in training mode, the crafted perturbations will
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Figure 6.2 Dropout mechanism - Srivastava Nitish et al. 2014

not be as effective as it is intended. Because some of the infected neurons will not be

active in that particular model. Dropout mechanism will unintentionally prune some

of these infected neurons. To verify this, we conducted a simple experiment and assess

the success rate of Deepfool attack against a model in evaluation mode and against the

exactly equal model in training mode where dropout is enabled. We observed that the

success rate in evaluation mode is 25.01 % whereas the success rate in training mode

is 15.96 %. Because, when we randomly disable part of the neurons based on dropout

probability, the infected neurons that are available in the actual model that is used in

inference time will not be active and therefore predictions of the model will not be

depending on them as illustrated in Figure 6.3.

Misclassification of adversarial sample is the result of the infected neurons in the

model whose weights are sensitive to adversarial perturbations. The aim of our uncer-

tainty based reversal method is to decrease the sensitivity of these infected neurons to

the input sample. When we perturb the image in a direction to minimize the model’s

quantified uncertainty, we are updating the pixels of the input image so that the erro-

neous activations of these infected neurons are minimized. Because the uncertainty

or the variance of T feed-forward predictions results from the existence of infected

neurons and their erroneous activations.
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Figure 6.3 Sensitivity of different models to adversarial perturbations

6.3 Uncertainty-Based Reversal Operation

We start this section by presenting the pseudo-code for our uncertainty-based

reversal procedure, as described in Algorithm 6.1. This reversal method is designed

under L∞ norm.

Algorithm 6.1: Algorithm for uncertainty-based reversal:
x is the input image, h is the learnt hypothesis function, p denotes the dropout
ratio of the model used in dropout layers, T represents the number of MC dropout
samples at prediction time in model training mode, N denotes iteration number,
ε is the maximum amount of perturbation allowed, α denotes step size.

Input: x ∈ Rm,h, p,T,N,ε,α
Output: xt+1

1 x0← x
2 condition← False
3 while n < N do
4 Compute ∇xU(xt ,h, p,T ) while h in training mode
5 if argmax(h(xt+1)) ̸= ypred then
6 condition = True
7 break

8 if condition = False then
9 x(t+1) = clipx,ε(xt−α · sign(∇xU(xt ,h, p,T ))

10 return xt+1

Via this algorithm, we propose a method in which before feeding any input to
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the DNN model, we try to revert it back to its original data manifold by minimizing

its quantified epistemic uncertainty. Since uncertainty quantification metrics does not

depend on any kind of label information, by minimizing the uncertainty value, one can

have a chance to revert the input instance back to its original data manifold depending

on where the adversarial sample resides.

6.4 Enhanced Uncertainty-Based Reversal Operation

In a typical production environment where an ML model is used for any classi-

fication problem, the input is fed to the model, and the final decision is observed after

the input is processed and mapped to an output, as shown in the upper example of

Figure 6.4.

Input ML Model
h : X → Y

Output
x ∈ Rn y ∈ R

Input
x ∈ Rn Uncertainty

Based
Reversal
u : X → X̂

x̂ ∈ Rn
ML Model
h : X → Y

Output: y ∈ R

Figure 6.4 Deployment options of the ML model - with and without uncertainty based
reversal step

During this prediction time, the model does not have any information about the

actual label for the input, yet it certainly has an opinion about the predicted label. And

this predicted label can be used to quantify the loss. Suppose the prediction of the ML

model is correct. In that case, the derivative of the loss against the predicted label gives

us an idea about the possible direction by which we can decrease the predicted loss.

However, if the initial prediction is wrong, in that case, the model’s prediction will

be even more erroneous. In this enhanced version of our uncertainty-based reversal

method as described in Algorithm 6.2, we use both the quantified uncertainty and loss
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value against predicted class. At each iteration of the enhanced uncertainty-based re-

versal algorithm, we calculate ∇xℓ(h(xt ,ypred)) and ∇xU(xt ,h, p,T ). Then, we simply

perturb the input image by using the sub-directions of uncertainty’s gradient which are

not shared by the loss’ gradient.

Algorithm 6.2: Algorithm for enhanced uncertainty-based reversal:
x is the input image, ypred is the predicted label for x, h is the learnt hypothesis func-
tion, p denotes the dropout ratio of the model used in dropout layers, T represents
the number of MC dropout samples at prediction time in model training mode, N
denotes iteration number, ε is the maximum amount of perturbation allowed, α de-
notes step size.

Input: x ∈ Rm,h, p,T,N,ε,α
Output: xt+1

1 x0← x
2 condition← False
3 while n < N do
4 Compute ∇xℓ(h(xt ,ypred)) while h in evaluation mode
5 Compute ∇xU(xt ,h, p,T ) while h in training mode
6 if argmax(h(xt+1)) ̸= ypred then
7 condition = True
8 break

9 if condition = False then
10 Update all elements of ∇xU(xt ,h, p,T ) to 0 where ∇xU(xt ,h, p,T )

== ∇xℓ(h(xt ,ypred))
/* update X by using below formula */

11 x(t+1) = clipx,ε(xt−α · sign(∇xU(xt ,h, p,T ))

12 return xt+1

This idea can be understood better by looking at Figure 6.5 - (C). Different from

Algorithm 6.1, this time we will only take the sub-directions from the uncertainty’s

gradient which are not shared by the loss’ gradient. Since, for the perturbed images

that are already pushed away from the decision boundary, the gradient of the loss

against predicted label will point to the target class data manifold. Therefore, these

sub-directions should not be taken into account if we wish to revert the input sample

back to its own data manifold. After discarding some portion of the sub-directions, the

resulting sub-directions left in the uncertainty’s gradient can be safely used to revert

the input back to its original data manifold.
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Figure 6.5 Sub-directions (sign of the gradients) used in defense purposes (C)

6.5 The Usage of Uncertainty-based Reversal

Our proposed uncertainty-based reversal algorithm can be implemented as a pre-

processing module prior to any classification model in production. As seen in the bot-

tom section of Figure 6.4, an input X that is intended to be presented to the ML model

is first processed by uncertainty-based reversal procedure. The goal of this reverse-

perturbation operation is to judiciously perturb the input image in a way that reduces

its quantified uncertainty. This ”slightly reversed” image X̂ will then be fed into the

ML model.

The uncertainty based reversal operation is visualized in Figure 6.6. The key

point for a successful reverse operation is that the point where the input image resides

should not be far away (on the wrong side) from the model’s decision boundary. The

attack types that we used to show our approach’s effectiveness are chosen based on

this fact.

Our defense method is evaluated in terms of the error rate across a maliciously

perturbed version of the chosen test set. This error rate metric is proposed by Good-

fellow et al. (Goodfellow et al., 2015) and is still suggested by Carlini et al. (Carlini

et al., 2019).
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Figure 6.6 Reverting perturbed image back to its original class data manifold

6.6 The Effect of Uncertainty-based Reversal

It was shown that no matter what kind of defensive approaches are utilized like

adversarial training or defensive distillation technique, strong attack types such as Car-

lini&Wagner (CW) or Deepfool attacks, can break these defensive methods and suc-

cessfully fool the ML model (Carlini & Wagner, 2017b). However, when we analyze

the softmax scores of the perturbed samples which are crafted by using Deepfool at-

tack and CW attack with default setting (confidence parameter set to 0), we see that the

resulting confidence level for the wrong class is only slightly larger than the original

class. That means the perturbed image is actually not pushed far away from the de-

cision boundary. Consequently, by applying our uncertainty based reversal operation,

one can actually revert the perturbed sample back to the original class data manifold.

We have picked random samples from the MNIST Digit dataset to illustrate this phe-

nomenon, then applied CW and Deepfool attacks on them to craft adversarial samples

and finally applied our uncertainty-based reversal operation on these perturbed sam-

ples. For each of the original, perturbed and reversed samples, we have also depicted

the output softmax scores of the ML model used as in Figure 6.7. We observe that

although these attacks are successful, the wrong classes’ output softmax scores are not

large enough in favor of the wrong class, and the difference between the softmax scores

of the correct and wrong classes is considerably small. As a result, by applying our un-

certainty based reversal operation on these perturbed samples, we could successfully

revert them back to their original class manifold so that the ML model will predict

these reversed samples correctly, and therefore will not be fooled. And as a natural
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consequence of a successful reversal operation, the adversarial inputs can be detected

as well. Line 6 of Algorithm 6.2 checks whether the predicted label for the input has

changed from the initial prediction. If this is the case, one can use this as a possible

sign of adversarial detection. Therefore, our approach can be used for both detecting

adversarial samples and defending against them.

Original C&W - Attack C&W - Reversed
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Figure 6.7 Effect of Adversarial Attack and Reversal Operation on Model Prediction
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6.7 Variants of the Enhanced Uncertainty-Based Reversal Operation

In this study, we have first used uncertainty-based reversal method which is based

on epistemic uncertainty and then developed 2 additional variants of the same algo-

rithm which are different in terms of the type of the uncertainty metric employed and

the way of using the output uncertainty vector. We started our experiments by using

epistemic uncertainty obtained from Eq 3.7. We used the expected value(mean) of the

epistemic uncertainty (EP) for the uncertainty quantification as in the case of Eq. 6.1.

Then, we tried scibilic uncertainty (SC) and used mean of the SC via Eq.6.2. Lastly,

instead of using the average scibilic uncertainty measure of all classes, we used the

uncertainty value of the predicted class only as in Eq. 6.3. In this way, we used the

following three equations for uncertainty quantification.

U(h,xt , p,T ) =
1
K

K

∑
k=1

EP[k] (6.1)

U(h,xt , p,T ) =
1
K

K

∑
k=1

SC[k] (6.2)

U(h,xt , p,T ) = SC[pred] (6.3)

6.8 Hybrid Deployment Options

Our uncertainty-based reversal method works well for the cases where the result-

ing adversarial sample resides in the vicinity of the decision boundary of the model.

Black-box attack type like Hopskipjump Attack or some powerful white-box attack

types like Carlini-Wagner (CW) or Deepfool Attack can be considered in this cate-

gory. However, some gradient-based attack-types like FGSM, BIM, PGD might result

in adversarial samples that are pushed far away from the decision boundary. which

makes our approach less effective. To defend the model from vast variety of attack

threats, we propose to apply a hybrid approach and apply our method prior to adver-

sarially trained or defensively distilled models. These additional defense mechanisms

will complement with our reversal method and provide excellent robustness to wide

range of threats.
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6.8.1 Via Adversarial Training

It has been shown that adversarially trained models provide important robust-

ness to most of the existing attacks but there exist in literature some known attack

algorithms which are still effective against these models. One can regard Deepfool ,

CW or Hoskipjump attacks among these algorithms. Luckily the adversarial samples

resulted by these algorithms are not pushed far away from the decision boundary of

the models as can be understood from the top-2 class probability differences. And, via

combining our uncertainty-based reversal approach with adversarial training, we have

a chance to defend most of the existing attack methods.

6.8.2 Via Defensive Distillation

Although our reversal procedure is performing very well on certain attack types

like Deepfool or CW attack (when confidence parameter set to a low value), for other

loss based attacks like FGSM, BIM or PGD, we still face some problems. The same is

valid if we opt to use CW attack by setting confidence parameter to a high value during

attack implementation. The reason is that, for those cases, the resulting adversarial

samples generally lie far from the decision boundary of the model. To mitigate this

problem, we employed another method known as defensive distillation. Distillation

technique has an effect of diminishing the gradients of the model down to almost zero

and also force the model to make its predictions much more confidently (O. Tuna,

Catak, & Eskil, 2022). The former effect of distillation prohibits loss based untargeted

attacks to use gradients efficiently and results in considerably lower attack success

rates. And the latter effect of distillation results in high confidence adversarial samples

located close to decision boundary. Thanks to the second effect, the crafted adversarial

samples by using CW attack with confidence parameter set to a high value are found

near the decision boundary. Therefore, when we combined reversal procedure with

defensive distillation, we can achieve much better results. The results available in

experimental proves this fact.

Figure 6.8 shows one of our proposed hybrid deployment options where our

uncertainty based reversal procedure is applied as a preprocessing module prior to a

defensively distilled model.
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Input ML Model
h : X → Y

Output
x ∈ Rn y ∈ R

Input
x ∈ Rn Uncertainty

Based
Reversal
u : X → X̂

x̂ ∈ Rn
Distilled Model
h : X → Y

Output: y ∈ R

Figure 6.8 Hybrid option for ML model deployment

Last the effect of our uncertainty based reversal method applied on a defensively

distilled model can be seen in Figure 6.9. The Deepfool attack algorithm used in this

example and our reversal procedure variants are successful on both of the normal and

distilled models. When we check the softmax output scores of the normal model for

perturbed sample in the first scenario, we see that there is not much difference between

the prediction scores of the correct and wrong class. However, we observe that the

distilled model makes its prediction in favor of the predicted class with a very high

confidence.
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Figure 6.9 The effect of uncertainty-based reversal procedure on normal and distilled
models
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6.9 The Effect on Clean Data Performance

For our proposed defense method, we employed a proactive strategy. We antic-

ipate the potential threat of adversarial activity throughout the deployment life cycle

of the ML model regardless of whether an attack attempt exists or not. The same pre-

processing operation is being applied to every input that is planned to be fed to the

ML model regardless of being an adversarial or benign sample. Obviously, a key point

that should be considered for any kind of preprocessing operation on the input samples

of an ML model is that the preprocessing operation should not negatively affect the

”clean data” performance of the model. Any kind of intervention to the ML model’s

deployment which will decrease the prediction performance higher than an acceptable

level might not be tolerated no matter how much robustness it provides. We have per-

formed a test to measure the effect of our uncertainty based reversal operation on the

clean data performance of the model and verified that the accuracy rate does not de-

crease as presented in the experiments section. The results prove that one can safely

use our approach to increase the robustness against malicious attempts to the deployed

ML model.

6.10 Results

6.10.1 Part-1

6.10.1.1 Experimental Setup

For the first part of our experiments, we trained our CNN models for the MNIST

(Digit) (LeCun & Cortes, 2010), MNIST (Fashion) (Xiao et al., 2017) and CIFAR10

(Krizhevsky et al., n.d.) datasets, and we achieved accuracy rates of 99.26 % , 92.63

% and 83.91 % respectively. The model architectures are given in Table 6.1 and the

hyperparameters selected in Table 6.2. For the CIFAR10 dataset we applied a normal-

ization procedure by normalizing all the pixels with mean = [0.485,0.456,0.406] and

std = [0.229,0.224,0.225]. The adversarial settings that have been used throughout of

our experiments is provided in Table 6.3. Finally, we used T = 50 as the number of

MC dropout samples when quantifying epistemic uncertainty.

Throughout our experiments, we applied attack algorithms on the test samples

only if they were previously classified correctly by our models. Because, an attacker
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would obviously have no motivation to perturbed samples that have already been mis-

classified. We utilized an open source Python library called Foolbox (Rauber et al.,

2018) to implement the attacks used in this study.

Table 6.1 CNN model architectures

Dataset Layer Type Layer Information

MNIST (Digit)

Convolution (padding:1) + ReLU 3×3×16
Max Pooling 2×2

Convolution (padding:1) + ReLU 3×3×16
Max Pooling 2×2

Convolution (padding:1) + ReLU 3×3×32
Dropout p : 0.2

Convolution (padding:1) + ReLU 3×3×32
Dropout p : 0.2

Dense + ReLU 1568×100
Dense + ReLU 100×10

MNIST (Fashion)

Convolution (Padding = 1) + ReLU 3×3×32
Max Pooling 2×2

Convolution (Padding = 1) + ReLU 3×3×32
Max Pooling 2×2

Convolution (Padding = 1) + ReLU 3×3×64
Dropout p : 0.2

Convolution (Padding = 1) + ReLU 3×3×64
Dropout p : 0.2

Dense + ReLU 3136×600
Dense + ReLU 600×120
Dense + ReLU 120×10

CIFAR10

Convolution (Padding = 1) + ReLU 3×3×32
Convolution (Padding = 1) + ReLU 3×3×64

Max Pooling (Stride 2) 2×2
Convolution (Padding = 1) + ReLU 3×3×128
Convolution (Padding = 1) + ReLU 3×3×128

Max Pooling (Stride 2) 2×2
Dropout p : 0.1

Convolution (Padding = 1) + ReLU 3×3×256
Convolution (Padding = 1) + ReLU 3×3×256

Max Pooling (Stride 2) 2×2
Dense + ReLU 4096×512

Dropout p : 0.5
Dense + ReLU 512×512

Dropout p : 0.5
Dense + ReLU 512×10
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Table 6.2 CNN model parameters

Parameter MNIST (Digit) MNIST (Fashion) CIFAR10
Optimizer SGD SGD SGD

Learning rate 0.01× (1
2

epoch
//10) 0.01× (1

2
epoch

//10) 0.005× (1
2

epoch
//20)

Momentum 0.9 0.9 0.9
Batch Size 64 64 64

Dropout Ratio 0.2 0.2 0.5
Num. of Epochs 30 50 50

Table 6.3 Parameters that are used in uncertainty reversal operation: α , i respectively
represent the step-size and the number of reversal steps for a perturbation budget ε

Dataset Parameters lp norm
MNIST Digit ε = 0.02, α = ε · 0.2, i = 10 l∞

MNIST Fashion ε = 0.001, α = ε · 0.2, i = 10 l∞
CIFAR10 ε = 0.1/255, α = ε · 0.2, i = 10 l∞

6.10.1.2 Experimental Results

We begin this section by presenting the results of Algorithm 6.1 against some

of the well-known attack algorithms. The results available in Table 6.4 show that

our uncertainty-based reversal method provide important degree of robustness to the

deployed model. However, we still see some portion of adversarial samples which our

method could not revert back to their original manifolds.

Table 6.4 Performance of uncertainty-based reversal operation (Algorithm-1) on dif-
ferent attack types

success.
rev.

unsuccess.
rev.

rev.
succ. rate

MNIST (Dig.)
Deepfool (L∞, ε : 0.1) 1837 668 73,33%
CW (L2, ε : 1.35) 4553 608 88,21%
Hopskipjump (L∞, ε : 0.1) 1942 403 82,81%

After checking the defensive performance, we wanted to check whether the im-

plementation of our method has some negative effect on the natural performance of

the ML model against clean dataset. The result available in Table 6.5 show that the

accuracy of the model does not drop and it is safe to use our method as a preprocessing

module prior to feeding any input to the model.

Then, we would like to check whether our enhanced uncertainty based reversal
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method (Algorithm 6.2) has a better performance compared to Algorithm 6.1. We start

this by checking the clean data performance first. The results in Table 6.6 show that our

enhanced proposed uncertainty based reversal method does not decrease the classifica-

tion performance of the deployed models on clean data. While some minor portion of

data samples were wrongly classified even if they were previously classified correctly,

there is an almost similar amount of samples that happened to be predicted correctly

after the reversal process. Therefore, we can conclude that on average, there is no

negative effect of deploying our uncertainty based reversal method as a preprocessing

module prior to feeding any input to an ML model in production.

Table 6.5 Performance of uncertainty based reversal (Algorithm-1) operation on clean
data

number of successful
reversal

number of unsuccessful
reversal

MNIST (Dig.)
on corrects 9924 2
on wrongs 5 69

Table 6.6 Performance of enhanced uncertainty based reversal (Algorithm-2) operation
on clean data

number of successful
reversal

number of unsuccessful
reversal

MNIST (Digit)
on corrects 9901 25
on wrongs 14 60

MNIST (Fashion)
on corrects 9185 78
on wrongs 62 675

CIFAR10
on corrects 8080 241
on wrongs 214 1465

We then tested the enhanced version of our proposed defense technique (Al-

gorithm 6.2) against two powerful attack types, namely Deepfool attack and Car-

lini&Wagner attack (with confidence = 0). The results presented in table 6.7 prove

the effectiveness of our enhanced uncertainty-based reversal method. For the MNIST

datasets, our proposed defense method provides perfect robustness and almost totally

revert all the perturbed samples crafted by these strong attacks. And for the CIFAR10

dataset, we achieved reversal success rates of around % 96 for Deepfool attack and

almost % 98 for CW attack. Thanks to our defense method, we could lower the final
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attack success rates of these attacks to very low levels as shown in Table 6.8.

Table 6.7 Performance of enhanced uncertainty based reversal (Algorithm-2) operation
on different attack types

success.
rev.

unsuccess.
rev.

rev.
success. rate

MNIST (Dig.)
Deepfool (L∞, ε : 0.1) 2505 0 100%
Deepfool (L2, ε : 1.35) 2935 27 99,09%
Hopskipjump (L∞, ε : 0.1) 2345 5 99,78%
CW (L2, ε : 1.35) 5161 0 100%

MNIST (Fash.)
Deepfool (L∞, ε : 0.05) 7940 19 99,76%
Deepfool (L2, ε : 0.67) 7268 25 99,66%
CW (L2, ε : 0.67) 7898 19 99,76%

CIFAR10
Deepfool (L∞, ε : 2/255) 5078 255 95,22%
Deepfool (L2, ε : 53/255) 4081 117 97,21%
CW (L2, ε : 53/255) 4904 102 97,96%

Table 6.8 Effect of enhanced uncertainty-based reversal (Algorithm-2) on attack suc-
cess rates

Attack Success Rates
without reversal with reversal

MNIST (Dig.)
Deepfool (L∞, ε : 0.1) 25,24% 0,00%
Deepfool (L2, ε : 1.35) 29,84% 0,27%
CW (L2, ε : 1.35) 51,99% 0,00%

MNIST (Fash.)
Deepfool (L∞, ε : 0.05) 85,92% 0,21%
Deepfool (L2, ε : 0.67) 78,73% 0,27%
CW (L2, ε : 0.67) 85,47% 0,21%

CIFAR10
Deepfool (L∞, ε : 2/255) 63,56% 3,04%
Deepfool (L2, ε : 53/255) 50,03% 1,39%
CW (L2, ε : 53/255) 59,66% 1,22%

The results available above show that we significantly increased the defensive

performance of our uncertainty-based reversal method by simply discarding the sub-

directions available in the gradient of the model’s loss against predicted class in Step

10 of Algorithm 6.2. Therefore, we picked our enhanced uncertainty based reversal

method as our base solution and used Algorithm 6.2 in the rest of the experiments.
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6.10.1.3 Discussions and Results with Hybrid Approach (Adversarial Training)

We have tested and verified our approach’s effectiveness in three different

datasets, which are heavily used by the adversarial research community. Experimen-

tal results show that our proposed methods generalize well across datasets. Our de-

fense method is not concerned with the internal dynamics of the attack. Instead, it is

concerned with the eventual result of the attack, which is the perturbed sample. For

normally trained models, the underlying factor for the success of our approach can be

understood better by analyzing the resulting final probability scores of the perturbed

samples. Since the gap between the predicted probability scores of original and target

classes is not high for Deepfool attack and CW attack (when confidence parameter is

set to 0), we could successfully revert almost all perturbed images with a reasonably

small perturbation because the perturbed images are not pushed far away from the de-

cision boundary of the model for these attacks. Other known attacks like FGSM, BIM

or PGD might not result in such a small gap in the final softmax scores. This is also

valid if one applies CW attack with a high confidence value as a parameter as well.

Thus, our reversal process’s success rate will not be so high as in the case of the previ-

ously mentioned attack implementations. However, we have empirically verified tools

like adversarial training to defend against those attacks (FGSM, BIM, PGD), and the

success rate of those attacks can be lowered to an acceptable level.

To verify this, we have used two other models, which are naturally and adver-

sarially trained for the MNIST Digit classification task. We used a slightly different

architecture this time and applied the dropout in the first convolutional layer as in Ta-

ble 6.9. We then checked the attack success rates of FGSM, BIM, Deepfool and CW

attacks against these two trained models. As expected, the success rates for FGSM and

BIM were significantly lowered via adversarial training. Additional implementation of

our uncertainty based reversal approach decreased the attack success rates even further,

as shown in Table 6.10.

Regarding the most powerful attack in our experiments, our defense method pro-

vides excellent robustness if the attacker applies CW attack with confidence set to 0.

The attacker can try to avoid our defense by using a high confidence value as a pa-

rameter. However, trying to craft high confident adversaries will eventually decrease

the attack success rate. And if our method is used in front of an adversarially trained
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model, the CW attack’s success rate will decrease even further.

Finally, when we check if our uncertainty based reversal operation negatively

affect the model’s performance for legitimate inputs as shown in Table 6.11, we once

again confirm that the accuracy of the model does not decrease considerably at all.

Hence, our approach can be safely used in production when there is no security threat.

Suppose that the model owner is worried about any suspicious activity and thinks that

the model is under attack. In that case, he/she can tune the ε parameter for the reversal

operation to increase the power of defense at the cost of slightly lowering clean data

performance.

Table 6.9 CNN model architecture for Adversarially Trained MNIST Model

Dataset Layer Type Layer Information

MNIST (Digit)

Convolution (padding:1) + ReLU 3×3×16
Dropout p : 0.2

Convolution (padding:1) + ReLU 3×3×16
Dropout p : 0.2

Convolution (padding:1) + ReLU 3×3×32
Max Pooling 2×2

Convolution (padding:1) + ReLU 3×3×32
Max Pooling 2×2

Dense + ReLU 1568×100
Dense + ReLU 100×10

Table 6.10 Effect of Adversarial Training and Uncertainty Based Reversal on attack
success rates

Attack Success Rates
without reversal with reversal

Normal
Model

FGSM (ε = 0.1) % 11.82 % 9.01
BIM (L∞, ε = 0.1) %32.02 % 22.13
Deepfool (L∞, ε = 0.1) % 17.28 % 0.02
Deepfool (L2, ε = 1.35) % 22.79 % 0.30
CW (L2, ε = 1.35, confidence = 0) % 50.42 % 0
CW (L2, ε = 1.35, confidence = 10) % 40.42 % 30.38

Robust
Model

FGSM ( eps = 0.1) % 1.32 % 1.02
BIM (L∞, ε = 0.1) % 1.43 % 1.11
Deepfool (L∞, ε = 0.1) % 1.34 % 0.01
Deepfool (L2, ε = 1.35) % 4.14 % 0.20
CW (L2, ε = 1.35, confidence = 0) % 7.78 % 0.03
CW (L2, ε = 1.35, confidence = 10) % 4.82 % 4.04
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Table 6.11 Effect of Uncertainty Based Reversal on clean performance for normal and
adversarially trained model

# of success. reversal # of unsuccess. reversal

Normal Model
on corrects 9916 17
on wrongs 19 48

Robust Model
on corrects 9921 13
on wrongs 4 62

6.10.2 Part-2

For the second part of our experiments, we used two sets of models as normal

and distilled(student) by using same architectures and trained our CNN models us-

ing MNIST (Digit) (LeCun & Cortes, 2010), MNIST (Fashion) (Xiao et al., 2017)

and CIFAR-10 (Krizhevsky et al., n.d.) datasets. In the first group, our normally

trained models attained accuracy rates of 99.11%, 92.61%, and 79.38%, whereas, in

the second group our distilled models attained accuracy rates of 99.41%, 92.62%, and

80.47%.

We started the second part of our experiments by first evaluating the contribution

of different uncertainty metrics on uncertainty-based reversal procedure performance.

To do this, we used a normal CNN model which is trained on MNIST (Digit) Dataset,

and we applied several different attack types on each sample to craft their adversarial

counterparts. We then tried to restore those adversarial samples back to their original

class manifolds by using each of the three variants of reversal procedure explained in

Section 6.7. Table 6.12 summarizes the values of the parameters that are used in the

reversal procedure.

Table 6.12 Parameters that are used in our uncertainty based reversal process: α de-
notes the step size and i denotes # of reversal steps for a perturbation budget ε

Dataset Parameters lp norm
MNIST Digit ε = 0.02, α = ε · 0.2, i = 10 l∞

MNIST Fashion ε = 0.006, α = ε · 0.2, i = 20 l∞
CIFAR10 ε = 0.2/255, α = ε · 0.2, i = 10 l∞

The results of this experiment is provided in Table 6.13. As can be seen from the

final attack success rates, best robustness performance is achieved when we used the
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Scibilic uncertainty value of the predicted class only. We also observe a considerable

difference between the reversal performances of Scibilic and Epistemic Uncertainty

(standard uncertainty metric used in the initial proposal of reversal procedure). For

instance: in the case of BIM attack, attack success rates drop from 31.47 % to 20.48

% if we switch from Epistemic Uncertainty (Eq. 6.1) to Scibilic Uncertainty (Eq. 6.2).

And instead of using the mean of Scibilic Uncertainty vector, if we use the uncertainty

value of the predicted class only (Eq. 6.3), we can even lower the final attack success

rate to 18.16 %.

Table 6.13 Attack success rates of normally trained model on MNIST (Digit) dataset
with and without uncertainty based reversal procedure

Epistemic (mean) Scibilic (mean) Scibilic (pred)
w/o rev. w rev. w/o rev. w rev. w/o rev. w rev.

FGSM (l∞, ε : 0.1) 13.25% 9.04% 13.25% 6.41% 13.25% 5.82%
BIM (l∞, ε : 0.1) 38.94% 31.47% 38.94% 20.48% 38.94% 18.16%
PGD (l∞, ε : 0.1) 35.32% 27.34% 35.32% 18.64% 35.32% 16.68%
Deepfool (l∞, ε : 0.1) 21.60% 0.07% 21.60% 0.01% 21.60% 0.01%
Deepfool (l2, ε : 0.1) 26.78% 1.07% 26.78% 0.20% 26.78% 0.11%
CW (l2, ε : 1.35 c : 0) 67.71% 0,00% 67.71% 0.02% 67.71% 0.01%
CW (l2, ε : 1.35 c : 40) 21.15% 16.87% 21.15% 7.44% 21.15% 7.16%

We then checked the effect of reversal procedure on clean data performance. For

this purpose, we applied reversal strategy (the standard one with epistemic uncertainty

and our 2 variants separately) directly to each of the test samples of MNIST (Digit)

dataset. And we compared the resulting model accuracy values with the ones we ob-

tained without any reversal operation. As shown in Table 6.14, reversal strategy has

only a minimal and tolerable impact on model classification performance. Considering

the level of robustness it provides, we can thus infer that the use of uncertainty-based

reversal strategy has no detrimental impact on overall. We also do not observe a no-

ticeable difference between the impact of our variants on clean data classification per-

formance. Therefore, we choose the usage of our second variant (Scibilic Unc. with

pred. class) as our base metric in the rest of our experiments.

As previously explained in Part-1, although the reversal procedure is performing

very well on certain attack types like Deepfool or CW attack (when confidence param-

eter set to a low value), for other loss based attacks like FGSM, BIM or PGD, we still
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Table 6.14 Effect of reversal procedure on clean performance of normally trained
model - MNIST (Digit) Dataset

Model Performance
without reversal with reversal

Epistemic Unc. (mean)
Based Reversal 99,11 % 99,00 %

Scibilic Unc. (mean)
Based Reversal 99,11 % 98,95 %

Scibilic Unc. (pred class)
Based Reversal 99,11 % 98,92 %

face some problems. The same is valid if we opt to use CW attack by setting confidence

parameter to a high value during attack implementation. The reason is that, for those

cases, the resulting adversarial samples generally lie far from the decision boundary of

the model. To mitigate this problem, we employed another adversarial defense method

known as defensive distillation. Distillation technique has an effect of diminishing the

gradients of the model down to almost zero and also force the model to make its pre-

dictions much more confidently. The former effect of distillation prohibits loss based

untargeted attacks to use gradients efficiently and results in considerably lower attack

success rates. And the latter effect of distillation results in high confidence adversarial

samples located close to decision boundary. Therefore, when we combined reversal

procedure with defensive distillation, we achieved much better results. The results

in Table 6.15 show that our proposed hybrid architecture provides perfect robustness

to all kinds of used attacks and reduces the attack success rates down to 1% regard-

less of the attack algorithm with only a negligible effect on clean data classification

performance (Table 6.16).

Table 6.15 Attack success rates of distilled model on MNIST (Digit) dataset with and
without uncertainty based reversal procedure

Scibilic Unc. Based Rev. (pred)
without reversal with reversal

FGSM (l∞, ε : 0.1) 1.01% 0.91%
BIM (l∞, ε : 0.1) 1.04% 1.03%
PGD (l∞, ε : 0.1) 1.10% 1.09%
Deepfool (l∞, ε : 0.1) 15.95% 0.00%
Deepfool (l2, ε : 0.1) 26.12% 0.12%
CW (l2, ε : 1.35 conf : 0) 75.57% 0.01%
CW (l2, ε : 1.35 conf : 40) 75.43% 0.76%
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Table 6.16 Effect of reversal procedure on clean performance of distilled model -
MNIST (Digit) dataset

Model Performance
without reversal with reversal

Scibilic Unc. Based
Reversal (pred class) 99,41 % 99,10 %

To assess and verify the efficacy of our proposed architecture, we have conducted

additional experiments on different datasets. Table 6.17 shows the performance of

reversal procedure on MNIST (Fashion) dataset for both normal and distilled models.

Table 6.17 Attack success rates on MNIST (Fashion) dataset with and without uncer-
tainty based reversal procedure

Attack Success
w/o rev. with rev.

Normal
Model

FGSM (ε = 0.03) % 42.77 % 31.16
BIM (l∞, ε = 0.03) %71.79 % 61.29
PGD (l∞, ε = 0.03) %68.15 % 58.04
Deepfool (l∞, ε = 0.03) % 59.96 % 0.02
Deepfool (l2, ε = 0.403) % 57.72 % 0.00
CW (l2, ε = 0.403, conf. = 0) % 75.36 % 0.01
CW (l2, ε = 0.403, conf. = 10) % 66.65 % 49.08

Distilled
Model

FGSM ( ε = 0.03) % 2.48 % 2.35
BIM (l∞, ε = 0.03) % 2.57 % 2.57
PGD (l∞, ε = 0.03) % 3.44 % 3.44
Deepfool (l∞, ε = 0.03) % 72.45 % 0.02
Deepfool (l2, ε = 0.403) % 69.47 % 0.06
CW (l2, ε = 0.403, conf. = 0) % 83.61 % 0.00
CW (l2, ε = 0.403, conf. = 10) % 83.41 % 0.13

And Table 6.18 shows the effect of our proposed architecture on clean data clas-

sification performance.

Table 6.18 Effect of reversal procedure on clean performance - MNIST (Fashion)
dataset

Model Performance
without reversal with reversal

Normal Model 92,61 % 90,18 %
Distilled Model 92,62 % 90,25 %
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Finally, we have performed the same set of experiments on CIFAR-10 dataset.

The results are available in Table 6.19 and Table 6.20. The results of our detailed

experiments on all the datasets reveal that our reversal procedure and defensive distil-

lation technique can handle complimentary situations and together they provide very

high degree of robustness against various kinds of untageted attacks.

Table 6.19 Attack success rates on CIFAR-10 dataset with and without uncertainty
based reversal procedure

Attack Success
w/o rev. with rev.

Normal Model

FGSM (ε = 4/255) % 62.91 % 59.29
BIM (l∞, ε = 4/255) %77.92 % 77.61
PGD (l∞, ε = 4/255) %76.36 % 75.89
Deepfool (l∞, ε = 4/255) % 76.23 % 0.28
Deepfool (l2, ε = 0.2/255) % 73.73 % 0.12
CW (l2, ε = 0.2/255, conf. = 0) % 78.26 % 4.15
CW (l2, ε = 0.2/255, conf. = 10) % 74.39 % 72.50

Distilled Model

FGSM ( ε = 4/255) % 4.21 % 4.16
BIM (l∞, ε = 4/255) % 4.24 % 4.24
PGD (l∞, ε = 4/255) % 4.58 % 4.58
Deepfool (l∞, ε = 4/255) % 77.94 % 0.64
Deepfool (l2, ε = 0.2/255) % 74.95 % 0.23
CW (l2, ε = 0.2/255, conf. = 0) % 79.71 % 0.16
CW (l2, ε = 0.2/255, conf. = 10) % 79.73 % 1.87

Table 6.20 Effect of reversal procedure on clean performance - CIFAR10 dataset

Model Performance
without reversal with reversal

Normal Model 79,38 % 77,84 %
Distilled Model 80,47 % 79,45 %

6.10.2.1 Discussions and Further Results

We begin this part by showing the positive effect of getting rid of the common

directions which are shared by loss and uncertainty’s gradient from uncertainty’s gra-

dient. Results available in Table 6.21 show the attack success rates of Deepfool and

CW attacks against normal prediction and our proposed defense method (with and

without eliminating the common directions). For this experiment, we call the version
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of Algorithm-1 which does not discard the common directions as ”primitive” (omitting

line 10 in Algorithm-1). As evidenced by the outcomes, we can substantially increase

the defensive performance once we discard the common directions. Because, for the

perturbed input samples that are pushed away from their decision boundaries and thus,

which are already classified wrongly, the gradient of the loss with respect to the pre-

dicted label will point to the wrong class data manifold. Therefore, these sub-directions

have a negative impact on reverting the input sample back to its own data manifold.

Table 6.21 Attack success rates on a normally trained Fashion MNIST model - Algo-
rithm comparison

w/o rev.
with rev. via
Algorithm 1
(primitive)

with rev. via
Algorithm 1

Deepfool (l∞) 59.96% 9.98% 0.03%
Deepfool (l2) 57.72% 12.90% 0.01%
CW (l2, conf. = 0) 75.36% 8.19% 0.01%

We then wanted to evaluate the performance of our proposed defense method to

one of the most effective defense approaches in literature, which is adversarial training.

The results available in Table 6.22 show that our proposed TENET architecture outper-

forms adversarial training in terms of robustness in all the experiments we conducted

with different datasets.

Table 6.22 Comparison of attack success rates with TENET and Adversarial Training

MNIST DIGIT MNIST FASHION CIFAR10
Adv.

Training TENET
Adv.

Training TENET
Adv.

Training TENET

FGSM (l∞) 1.19% 0.91% 4.76% 2.35% 16.02% 4.16%
BIM (l∞) 1.28% 1.03% 5.68% 2.57% 18.83% 4.24%
PGD (l∞) 1.09% 1.09% 5.02% 3.54% 16.82% 4.58%
Deepfool (l∞) 1.23% 0,00% 5.19% 0.02% 19.74% 0.64%
Deepfool (l2) 3.78% 0.12% 7.03% 0.06% 13.93% 0.23%
CW (c=0, l2) 10,23% 0.01% 9,30% 0,00% 26,59% 0.16%
CW (c=10, l2) 6.06% 0.76 3.49% 0.13% 11,47% 1.87%

After analyzing the effectiveness of our proposed defense method on our com-

parably small models, we tried to test its performances on a considerably larger model.
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To do this, we first trained VGG-19 (Simonyan & Zisserman, 2015) models (with cus-

tom dropout layers) on CIFAR-10 dataset and achieved accuracy rates of 90.46% and

89.47% for normally trained and distilled models. Then, we have applied different

attack algorithms and compared the attack success rates of TENET architecture with

a standalone normal model. The results available in Table 6.23 reveal once again the

efficacy of our proposed defense approach.

Table 6.23 Attack success rates on normally trained VGG19 model and VGG19 with
TENET architecture

VGG19
Normal Model

VGG19
TENET

FGSM (l∞) 65.56% 7.04%
BIM (l∞) 79.62% 8.94%
PGD (l∞) 79.26% 8.93%
Deepfool (l∞) 89.68% 1.34%
Deepfool (l2) 84.77% 0.88%
CW (c=0, l2) 97.32% 0.11%
CW (c=10, l2) 94.98% 0.62%

As a last experiment, we have measured the time spent by our defense method

for a batch of input of size 64 from the MNIST Dataset. In our local machine, it took

1,51 seconds to make a prediction with our proposed defense method, compared to

4.12 milliseconds of making a prediction directly without any previous operation. As

expected, the execution time of our defense method is longer than making a single

prediction due to additional uncertainty quantification steps and backward derivative

operation. However, we believe that this can be tolerated thanks to the robustness

provided by our proposed method.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The core objective of this thesis is to leverage the concept of uncertainty in the

context of adversarial machine learning. Current research in adversarial machine learn-

ing is divided into two group; attack and defense. Adversarial attacks have been studied

to find new and efficient ways to craft more powerful attack types. Adversarial defense

can also be divided in two categories: improving the robustness of machine learning

models and detecting adversarial attempts. In this thesis, we aim to propose solutions

in each of these fronts using an approach that leverages the notion of uncertainty.

In the first part of this thesis work, we investigated the utilization of different

measures for detecting adversarial samples and demonstrated that moment-based pre-

dictive uncertainty estimates combined with the closeness score for predicted class

obtained from the last hidden layer activation can be effectively used as a tool for a suc-

cessful defense mechanism against adversarial threats. We investigated and validated

the efficacy of our strategy using four benchmark datasets that are widely utilized in the

adversarial research field. Our extensive studies indicate that our suggested technique

generates high ROC-AUC scores on a variety of datasets and generalizes well across

diverse attack types. Last but not least, we have shown the contribution of different

metrics to adversarial sample identification under attack threats of varying strengths.

In the second part of this thesis work, we initially presented novel attack methods

by perturbing the input in a direction that maximizes the model’s epistemic uncertainty

instead of its loss. When compared to loss-based techniques, we found nearly identical

results. We also introduced a new concept for finding better points resulting in higher

loss values within a specified ℓp norm interval to craft adversarial samples. For this,

we used a hybrid approach and stepped towards gradient directions of both loss and
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uncertainty in each gradient descent step. We demonstrated that this strategy signifi-

cantly increases the attack success rate. Subsequently, we suggested a more efficient

attack idea based on the combined usage of the model’s epistemic uncertainty and the

model’s loss function. We experimentally showed that our rectified attack variants out-

perform their original counterparts which rely solely on the model loss function. We

also showed that our rectified attack algorithm achieves higher attack rates by applying

less amount of perturbation. In essence, our goal was to demonstrate the existence of

strong measures other than model loss that might be used to create adversarial sam-

ples. We intend to contribute to future research attempting to create more efficient and

uncertainty-aware techniques by approaching the problem from a new angle and offer-

ing other ways of crafting adversarial samples. Furthermore, we empirically showed

that relying just on the trained model may not always be the best course of action

because it is only a rough approximation of the best predictor, but knowing the de-

gree of epistemic uncertainty may be highly helpful in situations where the model is

inaccurate.

We commenced the last part of this study by developing a unique uncertainty-

based reversal operation that may be utilized as a pre-processing module before feed-

ing any input into a deployed model. Our technique delivers a high level of adversarial

robustness for adversarial samples positioned nearby model’s decision boundary. We

then considerably improved the uncertainty-based reversal method, evaluated the use

of several uncertainty metrics, and coupled our suggested method with well-known

adversarial defense methodologies such as defensive distillation and adversarial train-

ing. On three distinct datasets that are extensively used in the adversarial research area,

we examined and confirmed the effectiveness of our technique. Our thorough studies

show that the suggested architecture generalizes successfully across different datasets

and exhibits a significant level of adversarial robustness.

Adversarial ML is one of the important topics that is intensively being studied

and robustness of AI models is an extremely important concern that needs to be se-

cured as part of the trustworthy AI research. However, there are also other important

principles which needs to be guaranteed for the successful deployment of AI-driven

systems in our everyday life. These principles include preserving the privacy of the
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user data together with the serving AI model and introducing some degree of explain-

ability to the predictions of AI-based systems. As a future work, we believe that it

could be interesting to investigate the role of uncertainty in privacy-preserving ML

and Explainable-AI (XAI) research. For instance, most of the existing methods in XAI

investigate the role of each input feature on the prediction probability score of the AI

models. It could be worthwhile to investigate whether the deviations in these features

would also yield to high uncertainty as we have thoroughly studied in developing our

attack algorithms.
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