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UNIFORM STABILIZATION OF THE PETROVSKY-WAVE

NONLINEAR COUPLED SYSTEM WITH STRONG DAMPING

AKRAM BEN AISSA1, §

Abstract. This paper concerns the well-posedness and uniform stabilization of the
Petrovsky-Wave Nonlinear coupled system with strong damping. Existence of global
weak solutions for this problem is established by using the Galerkin method. Meanwhile,
under a clever use of the multiplier method, we estimate the total energy decay rate.
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For simplicity reasons, we omit the space variable x of u(x, t), ut(x, t) and we denote
u(x, t) = u, ut(x, t) = u′ and utt(x, t) = u′′. In addition, when no confusion arises, the
functions considered are all real valued.
Our main interest lies in the following system of the coupled Petrovsky-wave system of
the type 

u′′1 + ∆2u1 − a(x)∆u2 − g1(∆u′1) = 0, x ∈ Ω, t ≥ 0

u′′2 −∆u2 − a(x)∆u1 − g2(∆u′2) = 0 x ∈ Ω, t ≥ 0

∆u1 = u1 = u2 = 0, x ∈ Γ, t ≥ 0

ui(x, 0) = u0
i (x), u′i(x, 0) = u1

i (x), x ∈ Ω, i = 1, 2.

(1)

Here Ω is a bounded domain of Rn with regular boundary Γ.
When a(x) = 0, the Petrovsky equation was treated by Komornik [8], where he used the semigroup
approach for setting the well-possedness, then he studied the strong stability of such system by
introducing a multiplier method combined with a nonlinear integral inequalities. Recently, Bahlil
et al. [6], studied the system u′′1 + a(x)u2 + ∆2u1 − g1(u′1(x, t)) = f1(u1, u2), in Ω× R+,

u′′2 + a(x)u1 −∆u2 − g2(u′2(x, t)) = f2(u1, u2), in Ω× R+,
∂νu1 = u1 = v = u2 = 0 on Γ× R+,

(2)

for gi (i = 1, 2) do not necessarily having a polynomial growth near the origin, by using Faedo-
Galerkin method to prove the existence and uniqueness of solution and established energy decay
results depending on gi. Guesmia [7] consider the problem (2) without source Terms f1 and f2.

1 UR Analysis and Control of PDE’s, UR 13ES64, Higher Institute of Transport and Logistics of Sousse,
University of Sousse, Tunisia.
e-mail: akram.benaissa@fsm.rnu.tn, issaakram26@gmail.com,
ORCID: https://orcid.org/0000-0002-8598-9238.

§ Manuscript received: March 12, 2021; accepted: May 26, 2021.
TWMS Journal of Applied and Engineering Mathematics, Vol.13, No.3 © Işık University, Department
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He deals with global existence and uniform decay of solutions.

In this paper, we prove the global existence of weak solutions of the problem (1) by using
the Galerkin method (see Lions [12]) we use some technique from [6] to establish an explicit and
general decay result, depending on gi. The proof is based on a powerful tool which is the multiplier
method [13, 9] and makes use of some properties of convex functions, and general Jensen and
Young’s inequalities. These convexity arguments were introduced and developed by Lasiecka and
co-workers ([11],[10]) and exploited later on, with appropriate modifications, by Liu and Zuazua
[14], Alabau-Boussouira [4] and others.

The paper is organized as follows. In section 2 we introduce our functional framework and state
the main results. Section 3 is devoted to prove the existence and uniqueness of a global solution.
In the last section we prove the energy estimates.

1. Functional setting and statement of main results

Let us introduce for brevity the following Hilbert spaces

H = L2(Ω)× L2(Ω)

W = H1
0 (Ω)×H1

0 (Ω)

H3
∆(Ω) = {v ∈ H3(Ω)|v = ∆v = 0 on Γ}, ‖v‖2H3

∆(Ω) =

∫
Ω

|∇∆v|2dx

V = H3
∆(Ω) ∩H2(Ω)×H2(Ω)

Ṽ = (H4(Ω) ∩H3
∆(Ω))× (H3

∆(Ω) ∩H2(Ω)).

Identifying H with its dual, we obtain the diagram

Ṽ ⊂ V ⊂W ⊂ H = H ′ ⊂W ′ ⊂ V ′ ⊂ Ṽ ′.
We impose the following assumptions on a and gi
I The function a : Ω→ R is nonnegative and bounded such that

a(x) ∈W 1,∞(Ω).

‖a‖L∞(Ω) < min
{ 1

c′
, 1
} (3)

where c′ > 0 (depending only on the geometry of Ω) is the constant

‖∆v‖ ≤ c′‖∇∆v‖, ∀v ∈ H3
∆(Ω).

‖∇v‖ ≤ c‖∆v‖, ∀v ∈ H2
0 (Ω).

I gi : R → R be non decreasing convex function of class C1 such that there exists ε (sufficiently
small), ci, τi > 0, (i = 1, 2), and G : R+ → R+ is convex, increasing and of class C1(R+) ∩
C2(]0,+∞[) satisfying

G(0) = 0 and G is linear on [0, ε] or

G′(0) = 0 and G′′ > 0 on ]0, ε] such that

c1|s| ≤ |gi(s)| ≤ c2|s| if |s| > ε

s2 + g2
i (s) ≤ G−1(sgi(s)) if |s| ≤ ε,

∃τ1, τ2 > 0, τ1 ≤ g′i(s) ≤ τ2, ∀s ∈ R.

(4)

We are now in a position to state our main results.

Theorem 1.1. Let (u0
1, u

0
2) ∈ Ṽ and (u1

1, u
1
2) ∈ V arbitrarily. Assume that (3) and (4) hold. Then,

system (1) has a unique weak solution satisfying

(u1, u2) ∈ L∞(R+, Ṽ ), (u′1, u
′
2) ∈ L∞(R+, V )

and

(u′′1 , u
′′
2) ∈ L∞(R+,W ).
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Theorem 1.2. Let (u0
1, u

0
2) ∈ Ṽ and (u1

1, u
1
2) ∈ V . Assume that (3) and (4) hold. The energy of

the unique solution of system (1), given by (6) decays as

E(t) ≤ ψ−1
(
h(t) + ψ(E(0))

)
, ∀t ≥ 0 (5)

where ψ(t) =

∫ 1

t

1

ωϕ(s)
ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)

ωϕ(E(0)) and

h−1(t) = t+
ψ−1(t+ ψ(E(0)))

ϕ(ψ−1(t+ ψ(E(0))))
, ∀t ≥ E(0)

ϕ(E(0))

ϕ(t) =

{
t if G is linear on [0, ε]

tG′(ε0t) if G′(0) = 0 and G′′ > 0 on ]0, ε],

where ω and ε0 are positive constants.

Lemma 1.1. The energy functional associated to the solution of the problem (1) given by the
following formula

E(t) =
1

2

∫
Ω

|∇u′1|2 + |∇u′2|2 + |∇∆u1|2 + |∆u2|2 dx+

∫
Ω

a(x)∆u1∆u2dx, (6)

is nonnegative.

Proof. Multiplying the first equation in (1) by −∆u′1 and the second equation by −∆u′2, integrating
(by parts) over Ω, we obtain

1

2

d

dt

[ ∫
Ω

|∇u′1|2 + |∇u′2|2 + |∇∆u1|2 + |∆u2|2 dx+ 2

∫
Ω

a(x)∆u1∆u2 dx
]

= −
∫

Ω

∆u′1g1(∆u′1) + ∆u′2g2(∆u′2) dx.

Using Hölder’s inequality, Sobolev embedding and the condition (3), we get∫
Ω

a(x)∆u1∆u2dx ≥ −
1

2
‖a‖L∞(Ω)

√
c′√
c′

∫
Ω

|∆u1∆u2| dx

≥ −1

2
‖a‖L∞(Ω)

∫
Ω

1

c′
|∆u1|2 + c′|∆u2|2 dx

≥ −1

2
‖a‖L∞(Ω)

∫
Ω

c′2

c′
|∇∆u1|2 + c′|∆u2|2 dx

≥ −c
′

2
‖a‖L∞(Ω)

∫
Ω

|∇∆u1|2 + |∆u2|2 dx

then

E(t) ≥ 1

2

∫
Ω

|∇u′1|2 + |∇u′2|2 + (1− c′‖a‖L∞(Ω))(|∇∆u1|2 + |∆u2|2) dx

≥ 0.

Hence, E is a nonnegative function and its derivative is

E′(t) = −
∫

Ω

∆u′1g1(∆u′1) + ∆u′2g2(∆u′2) dx. (7)

�

The following result is due to Nakao [15] and will be needed later.
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Lemma 1.2. Let E : R+ → R+ be a non-increasing differentiable function, λ ∈ R+ and ϕ : R+ →
R+ a convex and increasing function such that ϕ(0) = 0. Assume that

∫ +∞

s

ϕ(E(t)) dt ≤ E(s), ∀s ≥ 0

E′(t) ≤ λE(t) ∀t ≥ 0.

Then E satisfies the following estimate:

E(t) ≤ eτ0λd−1
(
eλ(t−h(t))ϕ

(
ψ−1

(
h(t) + ψ(E(0))

))
, ∀t ≥ 0 (8)

where

ψ(t) =

∫ 1

t

1

ϕ(s)
ds, ∀t ≥ 0

d(t) =


ψ(t), if λ = 0∫ t

0

ϕ(s)

s
ds if λ > 0

h(t) =

{
K−1(D(t)), ∀t > T0

0 ∀t ∈ [0, T0]

K(t) = D(t) +
ψ−1(t+ ψ(E(0)))

ϕ(ψ−1(t+ ψ(E(0))))
eλt, ∀t ≥ 0

D(t) =

∫ t

0

eλs ds ∀t ≥ 0

T0 = D−1
( E(0)

ϕ(E(0))

)
, τ0 =

{
0 ∀t > T0

T0 ∀t ∈ [0, T0]

2. Proof of Theorem 1.1

We will use the Faedo-Galerkin method [12] to prove the existence of a global solutions. Let
T > 0 be fixed and denote by V k the space generated by {w1

i , w
2
i , ..., w

k
i }, where the set {wki , k ∈ N}

is a basis of Ṽ .
We construct approximate solution uki , k = 1, 2, 3, ..... in the form

uki (x, t) =

k∑
j=1

cjk(t)wji (x),

where cjk (j = 1, 2, ..., k) are determined by the following ordinary differential equations
(ük1 + ∆2uk1 − a(x)∆uk2 − g1(∆u̇k1), wj1) = 0 ∀w1

j ∈ V k

(ük2 −∆uk2 − a(x)∆uk1 − g2(∆u̇k2), wj2) = 0 ∀w2
j ∈ V k

uki (0) = u0k
i , u̇

k
i (0) = u1k

i , x ∈ Ω, i = 1, 2

(9)

with initial conditions

uk1(0) = u0k
1 =

k∑
j=1

〈u0
1, w

j
1〉w

j
1 → u0

1, in H4(Ω) ∩H3
∆(Ω) as k → +∞, (10)

uk2(0) = u0k
2 =

k∑
j=1

〈u0
2, w

j
2〉w

j
2 → u0

2, in H3
∆(Ω) ∩H2(Ω) as k → +∞, (11)

u̇k1(0) = u1k
1 =

k∑
j=1

〈u1
1, w

j
1〉w

j
1 → u1

1, in H3
∆(Ω) ∩H2(Ω) as k → +∞. (12)
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u̇k2(0) = u1k
2 =

k∑
j=1

〈u1
2, w

j
2〉w

j
2 → u1

2, in H2(Ω) as k → +∞. (13)

−∆2u0k
1 + a(x)∆u0k

2 + g1(∆u1k
1 ) −→ −∆2u0

1 + a(x)∆u0
2 + g1(∆u1

1), in L2(Ω) as k → +∞. (14)

∆u0k
2 + a(x)∆u0k

1 + g2(∆u1k
2 ) −→ ∆u0

2 + a(x)∆u0
1 + g2(∆u1

2), in H1
0 (Ω) as k → +∞. (15)

First, we are going to use some a priori estimates to show that tk = ∞. Then, we will show that
the sequence of solutions to (9) converges to a solution of (1) with the claimed smoothness.

Choosing wji = −2∆u̇ki in (9), we obtain

d

dt

∫
Ω

|∇u̇k1 |2 + |∇u̇k2 |2 + |∇∆uk1 |2 + |∆uk2 |2 dx+ 2a(x)∆uk1∆uk2 dx

+ 2

∫
Ω

∆u̇k1g1(∆u̇k1) dx+ 2

∫
Ω

∆u̇k2g2(∆u̇k2) dx = 0,

(16)

and choosing wji = ∆2u̇ki in (9), implies

d

dt

∫
Ω

|∆u̇k1 |2 + |∆u̇k2 |2 + |∆2uk1 |2 + |∇∆uk2 |2 + 2a(x)∇∆uk1∇∆uk2 dx

+ 2

∫
Ω

∇a(x)∆uk2∇∆u̇k1 dx+ 2

∫
Ω

∇a(x)∆uk1∇∆u̇k2 dx

+ 2

∫
Ω

|∇∆u̇k1 |2g′1(∆u̇k1) dx+ 2

∫
Ω

|∇∆u̇k2 |2g′2(∆u̇k2) dx = 0.

(17)

Summing (16) and (17), we obtain

d

dt

∫
Ω

{|∆u̇k1 |2 + |∆u̇k2 |2 + |∇u̇k1 |2 + |∇u̇k2 |2 + |∆2uk1 |2 + |∇∆uk2 |2|+∇∆uk1 |2 + |∆uk2 |2} dx

+ 2
d

dt

∫
Ω

{a(x)∆uk1∆uk2 + a(x)∇∆uk1∇∆uk2} dx+ 2

∫
Ω

∆u̇k1g1(∆u̇k1) dx+ 2

∫
Ω

∆u̇k2g2(∆u̇k2) dx

+ 2

∫
Ω

∇a(x)∆uk2∇∆u̇k1 dx+ 2

∫
Ω

∇a(x)∆uk1∇∆u̇k2 dx

+ 2

∫
Ω

|∇∆u̇k1 |2g′1(∆u̇k1) dx+ 2

∫
Ω

|∇∆u̇k2 |2g′2(∆u̇k2) dx = 0.

(18)

Using Hölder’s inequality and Sobolev embedding, we have

2
∣∣∣ ∫

Ω

a(x)∆uk2∆uk1 dx
∣∣∣ ≤ 2

√
c′√
c′

∫
Ω

|a(x)||∆uk2 ||∆uk1 | dx

≤ c′‖a‖
∫

Ω

|∇∆uk1(x, t)|2 dx+ c′‖a‖
∫

Ω

|∆uk2(x, t)|2 dx
(19)

and ∣∣∣2 ∫
Ω

a(x)∇∆uk1∇∆uk2 dx
∣∣∣

≤ 2‖a‖
∫

Ω

|∇∆uk1 ||∇∆uk2 | dx

≤ ‖a‖
∫

Ω

|∇∆uk1 |2 dx+ ‖a‖
∫

Ω

|∇∆uk2 |2 dx.

(20)
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By Hölder’s inequality, Sobolev embedding and the condition (4), we get

2
∣∣∣ ∫

Ω

∇a(x)∆uk2∇∆u̇k1 dx
∣∣∣ ≤ 2

∫
Ω

|∇a(x)||∆uk2 ||∇∆u̇k1 | dx

≤ 2

∫
Ω

|∇a(x)||∆uk2 ||∇∆u̇k1 |
√
g′1(∆u̇k1)
√
τ1

dx

≤
∫

Ω

|∇∆u̇k1 |2g′1(∆u̇k1) dx+
1

τ1
‖∇a‖2

∫
Ω

|∆uk2 |2 dx.

(21)

Similarly, we have

2
∣∣∣ ∫

Ω

∇a(x)∆uk1∇∆u̇k2 dx
∣∣∣ ≤ ∫

Ω

|∇∆u̇k2 |2g′2(∆u̇k2) dx+
1

τ1
‖∇a‖2

∫
Ω

|∆uk1 |2 dx

≤
∫

Ω

|∇∆u̇k2 |2g′2(∆u̇k2) dx+
c′

τ1
‖∇a‖2

∫
Ω

|∇∆uk1 |2 dx.
(22)

Reporting (19)-(22), into (18) and integrating over (0, t), we find

F k(t) + 2

∫ t

0

∫
Ω

∆u̇k1(s)g1(∆u̇k1(s)) dx dt+ 2

∫ t

0

∫
Ω

∆u̇k2(s)g2(∆u̇k2(s)) dx dt

+

∫ t

0

∫
Ω

|∇∆u̇k1(s)|2g′1(∆u̇k1(s)) dx dt+

∫ t

0

∫
Ω

|∇∆u̇k2(s)|2g′2(∆u̇k2(s)) dx dt

≤ F k(0) + C1

∫ t

0

F k(s) dx ds, ∀t ∈ [0, tk)

where

F k(t) =

∫
Ω

|∆u̇k1(t)|2 + |∆u̇k2(t)|2 + |∇u̇k1(t)|2 + |∇u̇k2(t)|2 + |∆2uk1(t)|2 dx

+ (1− c′‖a‖ − |a‖)
∫

Ω

|∇∆uk1(t)|2 dx+ (1− c′‖a‖)
∫

Ω

|∆uk2(t)|2 dx+ (1− ‖a‖)
∫

Ω

|∇∆uk2(t)|2 dx

and C1 is a positive constant depending only on ‖a‖, ‖∇a‖ and τ1.
So that, thanks to the monotonicity condition on the function gi and using Gronwall’s lemma, we
conclude that

uk1 is bounded in L∞(0, T ;H4(Ω) ∩H3
∆(Ω)) (23)

uk2 is bounded in L∞(0, T ;H3
∆(Ω) ∩H2(Ω)) (24)

u̇k1 is bounded in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) (25)

u̇k2 is bounded in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) (26)

∆u̇ki gi(∆u̇
k
i ) is bounded in L1(A), (27)

where A = Ω× (0, T ).
We assume first t < T and let 0 < ξ < T − t. Set

ukξi (x, t) = uki (x, t+ ξ),

Ukξ = uk1(x, t+ ξ)− uk1(x, t),

and

Dkξ = uk2(x, t+ ξ)− uk2(x, t).

Then, Ukξ solves the differential equation

(Ükξ + ∆2Ukξ − a(x)∆Dkξ − (g1(∆u̇kξ1 )− g1(∆u̇k1)), wj1) = 0, ∀wj1 ∈ V k. (28)

and Dkξ solves

(D̈kξ −∆Dkξ − a(x)∆Ukξ − (g2(∆u̇kξ2 )− g2(∆u̇k2)), wj2) = 0, ∀wj2 ∈ V k. (29)
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Choosing wj1 = −∆U̇kξ in (28) and wj2 = ∆Ḋkξ in (29), and using the fact that gi is nondecreasing,
we find

d

dt

∫
Ω

{|∇U̇kξ(x, t)|2 + |∇Ḋkξ(x, t)|2 + |∇∆Ukξ(x, t)|2 + |∆Dkξ(x, t)|2} dx

+ 2
d

dt

∫
Ω

a(x)∆Dkξ(x, t)∆Ukξ(x, t) dx ≤ 0 ∀t ≥ 0.

Integrating it over [0, t], to get∫
Ω

|∇U̇kξ(t)|2 + |∇Ḋkξ(t)|2 dx+ (1− c′‖a‖)
∫

Ω

|∇∆Ukξ(t)|2 + |∆Dkξ(t)|2 dx

≤ C2

∫
Ω

{|∇U̇kξ(0)|2 + |∇Ḋkξ(0)|2 +

∫
Ω

|∇∆Ukξ(0)|2 + |∆Dkξ(0)|2} dx

and C2 is a positive constant depending only on ‖a‖ and c′.
Dividing by ξ2, and letting ξ → 0, we find∫

Ω

{|∇ük1(t)|2 + |∇ük2(t)|2 + |∇∆u̇k1(t)|2 + |∆u̇k2(t)|2} dx

≤ C ′2
∫

Ω

{|∇ük1(0)|2 + |∇ük2(0)|2 + |∇∆u1k
1 |2 + |∆u1k

2 |2} dx.

We estimate ‖∇üki (0)‖. Choosing wij = −∆üki and t = 0 in (9), we obtain that

‖∇ük1(0)‖2 =

∫
Ω

∇ük1(0)∇(−∆2u0k
1 − a(x)∆u0k

2 + g1(∆u1k
1 )) dx.

and

‖∇ük2(0)‖2 =

∫
Ω

∇ük2(0)∇(∆u0k
2 − a(x)∆u0k

1 + g2(∆u1k
2 )) dx.

Using Cauchy-Schwarz inequality, we have

‖∇ük1(0)‖ ≤
(∫

Ω

|∇(−∆2u0k
1 − a(x)u0k

2 + g1(∆u1k
1 ))|2 dx

) 1
2

.

and

‖∇ük2(0)‖ ≤
(∫

Ω

|∇(∆u0k
2 − a(x)u0k

1 + g2(∆u1k
2 ))|2 dx

) 1
2

.

By (14) and (15) yields

(ük1(0), ük2(0)) are bounded in W ×W (30)

By (12), (13) and (30), we deduce that∫
Ω

{|∇ük1(t)|2 + |∇ük2(t)|2 + |∇∆u̇k1(t)|2 + |∆u̇k2(t)|2} dx ≤ C3 ∀t ≥ 0,

where C3 is a positive constant independent of k ∈ N. Therefore, we conclude that

u̇k1 is bounded in L∞(0, T ;H3
∆(Ω)) (31)

u̇k2 is bounded in L∞(0, T ;H2(Ω)) (32)

ük1 is bounded in L∞(0, T ;H1
0 (Ω)) (33)

ük2 is bounded in L∞(0, T ;H1
0 (Ω)). (34)

Applying Dunford-Pettis and Banach-Alaoglu-Bourbaki theorems, we conclude from (23)-(27) and
(31)-(34) that there exists a subsequence {umi } of {uki } such that

(um1 , u
m
2 ) ⇀ (u1, u2), weak-star in L∞(0, T ; Ṽ ), (35)

(u̇m1 , u̇
m
2 ) ⇀ (u′1, u

′
2) weak-star in L∞(0, T ;V ), (36)

(üm1 , ü
m
2 ) ⇀ (u′′1 , u

′′
2) weak-star in L∞(0, T ;W ), (37)

(u̇m1 , u̇
m
2 ) −→ (u′1, u

′
2), almost everywhere in Ω× [0,+∞) (38)

gi(∆u̇
m
i ) ⇀ χi weak-star in L2(A). (39)
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As (um1 , u
m
2 ) is bounded in L∞(0, T ; Ṽ ) (by (35)) and the injection of Ṽ in H is compact, we have

(um1 , u
m
2 ) −→ (u1, u2), strong in L2(0, T ;H). (40)

On the other hand, using (35), (37) and (40), we have∫ T

0

∫
Ω

(
üm1 (x, t) + ∆2um1 (x, t)− a(x)∆uk2(x, t)

)
w dx dt −→∫ T

0

∫
Ω

(
u′′1(x, t) + ∆2u1(x, t)− a(x)∆u2(x, t)

)
w dx dt,

(41)

and ∫ T

0

∫
Ω

(
üm2 (x, t)−∆um2 (x, t)− a(x)∆um1 (x, t)

)
w dx dt −→∫ T

0

∫
Ω

(
u′′2(x, t)−∆u2(x, t)− a(x)∆u1(x, t)

)
w dx dt,

(42)

for all w ∈ L2(0, T ;L2(Ω)).
It remains to show the convergence∫ T

0

∫
Ω

gi(∆u̇
m
i ) w dx dt −→

∫ T

0

∫
Ω

gi(∆u
′
i) w dx dt,

when m→ +∞.

Lemma 2.1. For each T > 0, gi(∆u
′
i) ∈ L1(A), ‖gi(∆u′i)‖L1(A) ≤ K, where K is a constant

independent of t and gi(∆u̇
k
i )→ gi(∆u

′
i) in L1(A).

Proof. We claim that

g(∆u′) ∈ L1(A).

Indeed, since gi is continuous, we deduce from (38)

gi(∆u̇
k
i ) −→ gi(∆u

′
i) almost everywhere in A. (43)

∆u̇ki gi(∆u̇
k
i ) −→ ∆u′igi(∆u

′
i) almost everywhere in A.

Hence, by (27) and Fatou’s Lemma, we have∫ T

0

∫
Ω

∆u′i(x, t)gi(∆u
′
i(x, t)) dx dt ≤ K1, for T > 0. (44)

Now, we can estimate
∫ T

0

∫
Ω
|gi(∆u′i(x, t))| dx dt. By Cauchy-Schwarz inequality, we have∫ T

0

∫
Ω

|gi(∆u′i(x, t))| dx dt ≤ c|A|1/2
(∫ T

0

∫
Ω

|gi(∆u′i(x, t))|2 dx dt
)1/2

.

Using (4) and (44), we obtain∫ T

0

∫
Ω

|gi(∆u′i(x, t))|2 dx dt ≤
∫ T

0

∫
|∆u′i|>ε

∆u′igi(∆u
′
i) dx dt+

∫ T

0

∫
|∆u′i|≤ε

G−1(∆u′igi(∆u
′
i)) dx dt

≤ c
∫ T

0

∫
Ω

∆u′igi(∆u
′
i) dx dt+ cG−1

(∫
A

∆u′igi(∆u
′
i) dx dt

)
≤ c

∫ T

0

∫
Ω

∆u′igi(∆u
′
i) dx dt+ c′G∗(1) + c′′

∫
Ω

∆u′ig(∆u′i) dx dt

≤ cK1 + c′G∗(1), for T > 0.

Then ∫ T

0

∫
A
|gi(∆u′i(x, t))| dx d ≤ K, for T > 0.
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Let E ⊂ Ω× [0, T ] and set

E1 =
{

(x, t) ∈ E : |gi(∆u̇mi (x, t))| ≤ 1√
|E|

}
, E2 = E\E1,

where |E| is the measure of E. If M(r) = inf{|s| : s ∈ R and |gi(s)| ≥ r}∫
E

|gi(∆u̇mi )| dx dt ≤ c
√
|E|+

(
M
( 1√
|E|

))−1
∫
E2

|∆u̇mi gi(∆u̇mi )| dx dt.

By applying (27) we deduce that

sup
m

∫
E

gi(∆u̇
m
i ) dx dt −→ 0, when |E| −→ 0.

From Vitali’s convergence theorem we deduce that

gi(∆u̇
m
i )→ gi(∆u

′
i) in L1(A).

This completes the proof. �

Then (39) implies that

gi(∆u̇
m
i ) ⇀ gi(∆u

′
i), weak-star in L2([0, T ]× Ω).

We deduce, for all v ∈ L2([0, T ]× L2(Ω), that∫ T

0

∫
Ω

gi(∆u̇
m
i )w dxdt −→

∫ T

0

∫
Ω

gi(∆u
′
i)w dxdt.

Finally we have shown that, for all w ∈ L2([0, T ]× L2(Ω)):∫ T

0

∫
Ω

(
u′′1(x, t) + ∆2u1(x, t)− a(x)∆u2(x, t)− g1(∆u′1(x, t))

)
w dxdt = 0.

and ∫ T

0

∫
Ω

(
u′′2(x, t)−∆u2(x, t)− a(x)∆u1(x, t)− g2(∆u′2(x, t))

)
w dxdt = 0.

Therefore, (u1, u2) are a solutions for the problem (1).

3. Proof of Theorem 1.2

From now on, we denote by c various positive constants which may be different on different

occurrences. Multiplying the first equation of (1) by −ϕ(E)
E ∆u1, where ϕ : R+ → R+ is convex,

increasing and of class C1 on ]0,+∞[ such that ϕ(0) = 0. Thus, we obtain

0 =

∫ T

S

−ϕ(E)

E

∫
Ω

∆u1(u′′1 + ∆2u1 − a(x)∆u2 − g1(∆u′1)) dx dt

= −
[ϕ(E)

E

∫
Ω

u′1∆u1 dx
]T
S

+

∫ T

S

(ϕ(E)

E

)′ ∫
Ω

∆u1u
′
1 dx dt

− 2

∫ T

S

ϕ(E)

E

∫
Ω

|∇u′1|2 dx dt+

∫ T

S

ϕ(E)

E

∫
Ω

(|∇u′1|2 + |∇∆u1|2) dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω

a(x)∆u1∆u2 dx dt+

∫ T

S

ϕ(E)

E

∫
Ω

∆u1.g1(∆u′1) dx dt
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Similarly, we have

0 =

∫ T

S

−ϕ(E)

E

∫
Ω

∆u2(u′′2 + ∆u2 − a(x)∆u1 − g2(∆u′2)) dx dt

= −
[ϕ(E)

E

∫
Ω

u′2∆u2 dx
]T
S

+

∫ T

S

(ϕ(E)

E

)′ ∫
Ω

∆u2u
′
2 dx dt

− 2

∫ T

S

ϕ(E)

E

∫
Ω

|∇u′2|2 dx dt+

∫ T

S

ϕ(E)

E

∫
Ω

(|∇u′2|2 + |∆u2|2) dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω

a(x)∆u2∆u1 dx dt+

∫ T

S

ϕ(E)

E

∫
Ω

∆u2.g2(∆u′2) dx dt

Taking their sum, we obtain∫ T

S

ϕ(E) dt ≤
[ϕ(E)

E

∫
Ω

u′1∆u1 + u′2∆u2 dx
]T
S

−
∫ T

S

(ϕ(E)

E

)′ ∫
Ω

∆u1u
′
1 + ∆u2u

′
2 dx dt

+ 2

∫ T

S

ϕ(E)

E

∫
Ω

|∇u′1|2 + |∇u′2|2 dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω

∆u1.g1(∆u′1) + ∆u2.g2(∆u′2) dx dt

(45)

Since E is non-increasing, we find that[ϕ(E)

E

∫
Ω

u′1∆u1 + u′2∆u2 dx
]T
S
≤ cϕ(E(S))

∣∣∣ ∫ T

S

(ϕ(E)

E

)′ ∫
Ω

∆u1u
′
1 + ∆u2u

′
2 dx dt

∣∣∣ ≤ cϕ(E(S))

Using these estimates, we conclude from (45) that∫ T

S

ϕ(E) dt ≤ Cϕ(E(S)) + 2

∫ T

S

ϕ(E)

E

∫
Ω

|∇u′1|2 + |∇u′2|2 dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω

|∆u1|.|g1(∆u′1)|+ |∆u2|.|g2(∆u′2)| dx dt
(46)

Now, we estimate the terms of the right-hand side of (46) in order to apply the results of Lemma
1.2.
As in Komornik [8], we consider the following partition of Ω,

Ω+ = {x ∈ Ω : |∆u′i| > ε}, Ω− = {x ∈ Ω : |∆u′i| ≤ ε}.
We distinguish two cases:
ICase 1. G is linear on [0, ε]. By using Sobolev embedding and Young’s inequality, we obtain∫ T

S

ϕ(E)

E

∫
Ω+

|∆u1|.|g1(∆u′1)| dx dt+

∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′1|2 dx dt

≤ ε
∫ T

S

ϕ(E)

E

∫
Ω+

|∆u1|2 dx dt+ C(ε)

∫ T

S

ϕ(E)

E

∫
Ω+

|g1(∆u′1)|2 dx dt+ c

∫ T

S

ϕ(E)

E

∫
Ω+

|∆u′1|2

≤ εc′
∫ T

S

ϕ(E)

E

∫
Ω

|∇∆u1|2 dx dt+ (C(ε)c2 +
c

c1
)

∫ T

S

ϕ(E)

E

∫
Ω

∆u′1g1(∆u′1) dx dt

≤ εC
∫ T

S

ϕ(E) dt+ C1(ε)

∫ T

S

ϕ(E)

E

∫
Ω

∆u′1g1(∆u′1) dx dt,

(47)



A. BEN AISSA: UNIFORM STABILIZATION OF THE PETROVSKY-WAVE SYSTEM 817

Similarly, we have∫ T

S

ϕ(E)

E

∫
Ω+

|∆u2|.|g2(∆u′2)| dx dt+

∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′2|2 dx dt

≤ εC
∫ T

S

ϕ(E) dt+ C2(ε)

∫ T

S

ϕ(E)

E

∫
Ω

∆u′2g2(∆u′2) dx dt.

(48)

Summing (47) and (48), and noting that s 7→ ϕ(s)
s is non-decreasing, we obtain∫ T

S

ϕ(E)

E

∫
Ω+

|∆u1|.|g1(∆u′1)|+ |∆u2|.|g2(∆u′2)| dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′1|2 + |∇u′2|2 dx dt

≤ εC
∫ T

S

ϕ(E) dt+ C ′(ε)

∫ T

S

ϕ(E)

E
(−E′(t)) dt

≤ εC
∫ T

S

ϕ(E) dt+ C ′(ε)ϕ(E(S))

(49)

and ∫ T

S

ϕ(E)

E

∫
Ω−
|∆u1|.|g(∆u′1)|+ |∆u2|.|g(∆u′2)| dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω−
|∇u′1|2 + |∇u′2|2 dx dt

≤ εC
∫ T

S

ϕ(E) dt+ C ′(ε)

∫ T

S

ϕ(E)

E
(−E′(t)) dt

≤ εC
∫ T

S

ϕ(E) dt+ C ′(ε)ϕ(E(S)).

Inserting these two inequalities into (46) and choosing ε > 0 small enough, we deduce that∫ T

S

ϕ(E(t)) dt ≤ cϕ(E(S))

Since, choosing ϕ(s) = s, we deduce from (8) that

E(t) ≤ ce−ωt.

I Case 2. G′(0) = 0, G′′ > 0 on ]0, ε]

Using (4) and the fact that s 7→ ϕ(s)
s is non-decreasing, we obtain∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′1|2 + |∆u1|.|g(∆u′1)| dx dt

≤ εC
∫ T

S

ϕ(E) dt+

∫ T

S

ϕ(E)

E

∫
Ω+

∆u′1g1(∆u′1) dx dt

and ∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′2|2 + |∆u2|.|g(∆u′2)| dx dt

≤ εC
∫ T

S

ϕ(E) dt+

∫ T

S

ϕ(E)

E

∫
Ω+

∆u′2g2(∆u′2) dx dt.
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Summing these two inequalities, we have∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′1|2 + |∆u1|.|g1(∆u′1)| dx dt

+

∫ T

S

ϕ(E)

E

∫
Ω+

|∇u′2|2 + |∆u2|.|g2(∆u′2)| dx dt

≤ εC
∫ T

S

ϕ(E) dt+ Cϕ(E(S)),

(50)

and exploit Jensen’s inequality and the concavity of G−1 to obtain∫ T

S

ϕ(E)

E

∫
Ω−
|∆u1|.|g1(∆u′1)|+ |∇u′1|2 dx dt

≤ εc′
∫ T

S

ϕ(E)

E

∫
Ω

|∇∆u1|2 dx dt+ C(ε)

∫ T

S

ϕ(E)

E

∫
Ω

(|∆u′1|2 + |g1(∆u′1)|2) dx dt

≤ εc′
∫ T

S

ϕ(E)

E

∫
Ω

|∇∆u1|2 dx dt+ C(ε)

∫ T

S

ϕ(E)

E
|Ω|G−1

( 1

|Ω|

∫
Ω

∆u′1g1(∆u′1) dx
)
dt

≤ εC
∫ T

S

ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)

E
|Ω|G−1

( 1

|Ω|

∫
Ω

∆u′1g1(∆u′1) dx
)
dt

(51)

Similarly, we have∫ T

S

ϕ(E)

E

∫
Ω−
|∆u2|.|g2(∆u′2)|+ |∇u′2|2 dx dt

≤ ε
∫ T

S

ϕ(E)

E

∫
Ω

|∆u2|2 dx dt+ C(ε)

∫ T

S

ϕ(E)

E
|Ω|G−1

( 1

|Ω|

∫
Ω

∆u′2g2(∆u′2) dx
)
dt

≤ εC
∫ T

S

ϕ(E) dt+ C(ε)

∫ T

S

ϕ(E)

E
|Ω|G−1

( 1

|Ω|

∫
Ω

∆u′2g2(∆u′2) dx
)
dt

(52)

Let G∗ denote the dual function of the convex function G in the sense of Young (see Arnold [5, p.
64]). Then G∗ is the Legendre transform of G, which is given by (see Arnold [5, p. 61-62]) i.e.,

G∗(s) = sup
t∈R+

(st−G(t)).

Then G∗ is given by

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)], ∀s ≥ 0

and satisfies the following inequality

st ≤ G∗(s) +G(t) ∀s, t ≥ 0. (53)

Choosing ϕ(s) = sG′(εs), we obtain

G∗
(ϕ(s)

s

)
= sεG′(εs) = εsG′(εs)−G(εs) ≤ εϕ(s). (54)

Making use of (53) and (54), we have∫ T

S

ϕ(E)

E
|Ω|G−1

( 1

|Ω|

∫
Ω

∆u′igi(∆u
′
i)
)
dx dt

≤ c
∫ T

S

G∗(
ϕ(E)

E
) dt+ c

∫ T

S

∫
Ω

∆u′igi(∆u
′
i)
)
dx dt

≤ ε
∫ T

S

ϕ(E) dt+ c

∫ T

S

∫
Ω

∆u′igi(∆u
′
i)
)
dx dt.

(55)
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Summing (51) and (52) and using (55), we obtain∫ T

S

ϕ(E)

E

∫
Ω−
|∆u1|.|g1(∆u′1)|+ |∇u′1|2 dx dt+

∫ T

S

ϕ(E)

E

∫
Ω−
|∆u2|.|g2(∆u′2)|+ |∇u′2|2 dx dt

≤ εC
∫ T

S

ϕ(E) dt+ C(ε)E(S)

(56)

Then, choosing ε > 0 small enough and substitution of (50) and (56) into (46) gives∫ T

S

ϕ(E(t)) dt ≤ c(E(S) + ϕ(E(S)))

≤ c
(

1 +
ϕ(E(S))

E(S)

)
E(S) ≤ cE(S), ∀S ≥ 0

Using Lemma 1.2 in the particular case where Ψ(s) = ωϕ(s) we deduce from (5) our estimate (46).
The proof of Theorem 1.2 is now complete.

Example 3.1. Let gi be given by gi(s) = sp(− ln s)q where p ≥ 1 and q ∈ R on ]0, ε]. Then
g′i(s) = sp−1(− ln s)q−1(p(− ln s)− q) which is an increasing function in the right neighborhood of
0 (if q = 0 we can take ε = 1). The function G is defined in the neighborhood of 0 by

G(s) = cs
p+1

2 (− ln
√
s)q

and we have

G′(s) = cs
p−1

2 (− ln
√
s)q−1

(p+ 1

2
(− ln

√
s)− q

2

)
, when s is near 0

Thus

ϕ(s) = cs
p+1

2 (− ln
√
s)q−1

(p+ 1

2
(− ln

√
s)− q

2

)
, when s is near 0

and

ψ(t) = c

∫ 1

t

1

s
p+1

2 (− ln
√
s)q−1

(
p+1

2 (− ln
√
s)− q

2

) ds
= c

∫ 1√
t

1

(ln z)q−1
(p+ 1

2
ln z − q

2

)
dz, when t is near 0

We obtain in the neighborhood of 0

ψ(t) =


c

1

t
p−1

2 (− ln t)q
if q > 1

c(− ln t)q−1 if p = 1, q < 1

c(ln(− ln t)) if p = 1, q = 1

and then in the neighborhood of +∞

ψ−1(t) =


ct−

2
p−1 (ln t)−

2q
p−1 if q > 1

ce−t
1

1−q
if p = 1, q < 1

ce−e
t

if p = 1, q = 1

Since h(t) = t as t tends to infinity, we obtain

E(t) ≤


ct−

2
p−1 (ln t)−

2q
p−1 if q > 1

ce−t
1

1−q
if p = 1, q < 1

ce−e
t

if p = 1, q = 1
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