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DISTANCE EIGENVALUES, FORWARDING INDICES, AND

DISTANCE-BASED TOPOLOGICAL INDICES OF COMPLEMENT OF

TWO CIRCULANT NETWORKS

J. R. M. ANTALAN1,2∗, F. J. H. CAMPEÑA2, §

Abstract. Let n, a, h, and m be positive integers such that 2 ≤ a ≤ n
2

and m ≥ 2.
In this research, we compute the exact value of the distance spectral radius, vertex-
forwarding index, and some distance-based topological indices of the connected comple-
ment of circulant networks Cn(1, a) and Cn=mh(1,m,m2, . . . ,mh−1). For a 6= n

2
, the

circulant network Cn(1, a) is called a double loop network while the circulant network
Cn=mh(1,m,m2, . . . ,mh−1) is called the multiplicative circulant network on mh vertices.

Keywords: Circulant networks, double loop network, multiplicative circulant graph,
graph complement.
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1. Introduction

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). For two vertices vi and vj
in V (Γ), the distance between them denoted by dΓ(vi, vj) is the length of a shortest path
between vi and vj . The distance matrix of Γ denoted by D(Γ) is the matrix whose ij−
entry is dΓ(vi, vj) if vi 6= vj , and 0 otherwise. The distance spectral radius of Γ denoted
by ρ(Γ) refers to the largest eigenvalue of D(Γ).

A graph property related to distance between vertices in a graph is the distance-based
topological index. A topological index is a real number associated to a graph which
characterizes its topology. It is invariant under graph automorphism. A topological index
is said to be distance-based if its computation involves distance between vertices in a graph.
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Many of the known distance-based topological indices have applications in Chemistry. For
instance, the applications of the Wiener index W of a graph Γ defined by

W (Γ) =
∑

{vi,vj}⊆V (Γ)

dΓ(vi, vj)

is presented in [12]. The Wiener index is the oldest distance-based topological index
related to molecular branching. It was introduced by Harry Wiener in 1947, when he
studied the relationship between the boiling point and the sum of the distances between
any two carbon atoms of paraffin [27].

Another graph property that depends on distance between vertices in a graph is the
concept of graph forwarding index. In order to discuss the graph forwarding index, we
need to talk first about routings in a graph. In what follows are some of the definitions
presented by Xu and Xu in [28].

Let Γ be a graph of order n. A routing R of Γ is a set of n(n − 1) elementary paths
R(x, y) specified for all ordered pairs (x, y) of vertices of Γ. If each of the paths specified
by R is shortest, the routing R is said to be minimal, denoted by Rm. If R(x, y) = R(y, x)
specified by R, that is to say the path R(y, x) is the reverse of the path R(x, y) for all
x and y, then the routing is symmetric. Finally, the set of all possible routings in Γ is
denoted by R(Γ), and the subset of R(Γ) that contains all the minimal routings in Γ is
denoted by Rm(Γ).

Now, let R ∈ R(Γ) and x ∈ V (Γ). The load of a vertex x in R of Γ denoted by ξx(Γ, R)
is the number of paths specified by R passing through x and admitting x as an inner
vertex. The vertex-forwarding index of Γ with respect to R, denoted by ξ(Γ, R) is the
maximum number of paths of R going through any vertex x in Γ. Hence

ξ(Γ, R) = max{ξx(Γ, R) : x ∈ V (Γ)}.

As an illustrative example, let us consider the graph Γ shown in Figure 1.

Figure 1. The graph Γ.

The sets

R1 =
{

(1, 2), (1, 3), (1, 4), (1, 2, 5), (1, 3, 6), (2, 1), (2, 1, 3), (2, 4), (2, 5), (2, 5, 6), (3, 1), (3, 1, 2),

(3, 4), (3, 6, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 2, 5), (4, 3, 6), (5, 2, 1), (5, 2), (5, 6, 3), (5, 2, 4),

(5, 6), (6, 3, 1), (6, 5, 2), (6, 3), (6, 3, 4), (6, 5)
}

and
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R2 =
{

(1, 4, 2), (1, 3), (1, 4), (1, 3, 6, 5), (1, 3, 6), (2, 1), (2, 1, 3), (2, 4), (2, 5), (2, 1, 3, 6), (3, 1),

(3, 1, 2), (3, 4), (3, 4, 1, 2, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 3, 6, 5), (4, 3, 6), (5, 2, 1),

(5, 6, 3, 1, 2), (5, 6, 3), (5, 2, 4), (5, 6), (6, 3, 1), (6, 5, 2), (6, 3), (6, 3, 4), (6, 3, 4, 2, 5)
}

are routings of Γ. Observe that R1 is a minimal routing while R2 is not. Moreover, the
load of vertex 3 in R1 of Γ is 4, that is ξ3(Γ, R1) = 4. While the load of vertex 3 in R2 of
Γ is 9, that is ξ3(Γ, R2) = 9. Finally, it can be verified that the load of each vertex in the
routing R1 of Γ is given by: 1: 3, 2: 4, 3: 4, 4: 0, 5: 2, 6: 2. Hence, the forwarding index
of Γ with respect to R1 is 4. On the other hand, the load of each vertex in the routing R2

of Γ is given by: 1: 7, 2: 7, 3: 9, 4: 3, 5: 2, 6: 2. Hence, the forwarding index of Γ with
respect to R2 is 9.

The vertex-forwarding index of Γ, denoted by ξ(Γ) is the minimum forwarding index
over all possible routings of Γ. In symbol,

ξ(Γ) = min{ξ(Γ, R) : R ∈ R(Γ)}.

A similar definition for the edge-forwarding index of a graph Γ denoted by π(Γ) can be
made by replacing the word “vertex” by “edge” in the definitions being stated.

The concept of graph forwarding indices is applied in network designs. This application
was discussed in the works of Xu and Xu [28], Chung et al. [7], and Heydemann [10].

Recently, the exact value of some distance-based topological indices and vertex-forwarding
index of some families of circulant networks were computed (see [4, 1, 2, 15, 14]).

Let G be a group and S be a subset of G\{e}. A graph Γ is a Cayley graph of G with
connection (or jump) set S, written Γ = Cay(G,S) if V (Γ) = G and E(Γ) = {{g, sg} :
g ∈ G, s ∈ S}. If G = 〈Zn,+n〉, then the graph Γ = Cay(G,S) is called the circulant
network with connection set S. The circulant network on n vertices with connection set
S is denoted by Cn(S). Note that for s and s−1 in Zn, we have {{g, s +n g} : g ∈ Zn} =
{{g, s−1 +n g} : g ∈ Zn}. Hence, for a circulant network, we have S ⊆ {1, 2, . . . , n2 } if n is

even and S ⊆ {1, 2, . . . , n−1
2 } if n is odd.

Circulant networks can also be defined in terms of their adjacency matrix. In particular,
circulant networks are graphs with circulant adjacency matrix. Recall, an n × n matrix
M is said to be circulant if each row in M is rotated one element to the right relative to
the preceding row. Figure 2 shows some examples of circulant networks.

Figure 2. The circulant networks C16(1, 3), C16(1, 2, 4, 8) and
C16(1, 2, 3, 4, 5) respectively.

Circulant networks have vast applications in different fields of study. Some of these fields
include telecommunication networking [5], VLSI (Very-large-scale integration) design [13],
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and distributed computing [16]. Other applications of circulant networks are provided in
the work of Monakhova [18], and the references therein.

This research note is motivated by our previous work [4] and the works of Ali et al.
[1, 2], Liu and Meng [15], as well as Lin et al. [14]. In [4], we were able to determine
the distance spectral radius, vertex-forwarding index, and bounds for the edge-forwarding
index of the circulant network Cmh(1,m,m2, . . . ,mh−1) where m ≥ 3 is odd. In [1, 2],
Ali et al. computed the Wiener, hyper-Wiener, and Schultz index of circulant network
Cn(1, a), where a = 2, 3, 4, and 5. While in [15], Liu and Meng computed the forwarding
indices of 4−regular circulant networks. Finally, in [14], Lin et al. computed the exact
values of the vertex-forwarding index of circulant networks with the following connection
sets (i) S = {1, a} where a = n

2 , (ii) S = {1, . . . , a} where 2 ≤ a ≤ n
2 , and (iii) S = {1, a}

where 2 ≤ a < n
2 . They also obtained an upper and lower bound for the edge-forwarding

index of the said networks.
The main objective of this study is to determine the distance matrix of the connected

complement of circulant networks (i) Cn(1, a) and (ii) Cmh(1,m,m2, . . . ,mh−1), where
2 ≤ a ≤ n

2 , m ≥ 2 and h ≥ 1. As a consequence, we have determined the exact value of
the distance spectral radius and the vertex-forwarding index of the complement of circulant
networks (i) and (ii). We also provide an upper and lower bound for the edge-forwarding
index of the complement of the circulant networks (i) and (ii). Lastly, we compute for some
well-known distance-based topological indices of the complement of circulant networks (i)
and (ii).

2. Preliminaries

In this section, we define some important terms and state some useful results that will
be used in the presentation of the main results.

2.1. The Distance-based Topological Indices. The distance-based topological indices
that we will consider in this paper are given in Tables 1-4. Table 1 gives some of the most
well-known purely distance-based topological indices. Table 2 gives some of the most well-
known distance-degree-based topological indices. Recall, the degree of a vertex vi refers
to the number of edges incident to vi. Moreover, we say that a graph Γ is vertex-regular
if all the vertices in V (Γ) have the same degree.

On the other hand, Table 3 gives some transmission-based topological indices of a graph.
The transmission of a vertex vi in Γ denoted by TrΓ(vi) or σΓ(vi) refers to the sum of
the distances from vi to all other vertices in V (Γ). In terms of the distance matrix D(Γ),
the transmission of vertex vi is the sum of the entries of the row indexed by vi in D(Γ).
Moreover, we say that a graph Γ is transmission-regular if all the vertices in V (Γ) have
the same transmission.

Finally, Table 4 gives some newly introduced reciprocal transmission-based topological
indices. The reciprocal transmission of a vertex vi in Γ denoted by rsΓ(vi) refers to the
sum of the reciprocal of the distances from vi to all other vertices in V (Γ). In terms of the
distance matrix D(Γ), the reciprocal transmission of vertex vi is the sum of the reciprocal
of the entries of the row indexed by vi in D(Γ).

We note that some of the indices in Table 3 and all the indices in Table 4 first formally
appeared in [21]. We also note that the Wiener index is also a transmission-based topo-
logical index while the Harary index is also a reciprocal transmission-based topological
index.
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Topological Index Mathematical Expression Introduced by and Date Introduced

Wiener[27] W (Γ) =
∑

{vi,vj}⊆V (Γ)

dΓ(vi, vj) Wiener, 1947

Hyper-Wiener[22] WW (Γ) =
1

2

∑
{vi,vj}⊆V (Γ)

[
dΓ(vi, vj) + dΓ(vi, vj)

2
]

Randic, 1993

Harary([20],[11]) H(Γ) =
∑

{vi,vj}⊆V (Γ)

1

dΓ(vi, vj)
Plavsic et al. & Ivanciuc et al., 1993

Table 1. Some distance-based topological indices.

Topological Index Mathematical Expression Introduced by and Date Introduced

Schultz[25] S(Γ) =
∑

{vi,vj}⊆V (Γ)

[degΓ(vi) + degΓ(vj)]dΓ(vi, vj) Schultz, 1989

Gutman[8] G(Γ) =
∑

{vi,vj}⊆V (Γ)

[degΓ(vi)degΓ(vj)]dΓ(vi, vj) Gutman, 1994

Additively weighted
Harary[3]

HA(Γ) =
∑

{vi,vj}⊆V (Γ)

degΓ(vi) + degΓ(vj)

dΓ(vi, vj)
Alizadeh et al., 2013

Multiplicatively weighted
Harary[3]

HM (Γ) =
∑

{vi,vj}⊆V (Γ)

degΓ(vi) · degΓ(vj)

dΓ(vi, vj)
Alizadeh et al., 2013

Table 2. Some distance-degree-based topological indices.

Topological Index Mathematical Expression Introduced by and Date Introduced

T. geometric-arithmetic[19] TGA(Γ) =
∑

vi,vj∈E(Γ)

2
√
σ(vi)σ(vj)

σ(vi) + σ(vj)
Narayankar & Selvan , 2017

T. sum-connectivity[24] TSC(Γ) =
∑

vi,vj∈E(Γ)

1√
σ(vi) + σ(vj)

Sharafdini & Reti, 2020

T. arithmetic-geometric[21] TAG(Γ) =
∑

vi,vj∈E(Γ)

σ(vi) + σ(vj)

2
√
σ(vi)σ(vj)

Ramane et al. , 2020

T. atom-bond connectivity[21] TABC(Γ) =
∑

vi,vj∈E(Γ)

√
σ(vi) + σ(vj)− 2

σ(vi)σ(vj)
Ramane et al. , 2020

T. augmented Zagreb[21] TAZ(Γ) =
∑

vi,vj∈E(Γ)

[
σ(vi)σ(vj)

σ(vi) + σ(vj)− 2

]3

Ramane et al. , 2020

Table 3. Some transmission-based topological indices.

Topological Index Mathematical Expression Introduced by and Date Introduced

R.T. arithmetic-geometric[21] RTAG(Γ) =
∑

vi,vj∈E(Γ)

rs(vi) + rs(vj)

2
√
rs(vi)rs(vj)

Ramane et al. , 2020

R.T. geometric-arithmetic[21] RTGA(Γ) =
∑

vi,vj∈E(Γ)

2
√
rs(vi)rs(vj)

rs(vi) + rs(vj)
Ramane et al. , 2020

R.T. sum-connectivity[21] RTSC(Γ) =
∑

vi,vj∈E(Γ)

1√
rs(vi) + rs(vj)

Ramane et al., 2020

R.T. atom-bond connectivity[21] RTABC(Γ) =
∑

vi,vj∈E(Γ)

√
rs(vi) + rs(vj)− 2

rs(vi)rs(vj)
Ramane et al. , 2020

R.T. augmented Zagreb[21] RTAZ(Γ) =
∑

vi,vj∈E(Γ)

[
rs(vi)rs(vj)

rs(vi) + rs(vj)− 2

]3

Ramane et al. , 2020

Table 4. Some reciprocal transmission-based topological indices.

2.2. Some Useful Results. In this subsection, we state some important results that will
be used in the presentation of the main results. We begin with the result involving the
vertex-regularity of circulant networks.
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Lemma 2.1. Let Γ = Cn(S) such that |S| = k. If v ∈ V (Γ), then

degΓ(v) =

{
2k − 1 if n

2 ∈ S
2k otherwise.

The next three results show that the distance matrix of the complement of a circulant
network is also circulant. For a graph Γ, we denote by Γ the complement of Γ.

Lemma 2.2 (Lin et al. [14]). If Γ is a circulant network, then D(Γ) is circulant.

Lemma 2.3 (Meijer [17]). If Γ is a circulant network, then Γ is also a circulant network.

If we combine Lemma 2.2 and Lemma 2.3 we have

Corollary 2.1. If Γ is a circulant network, then D(Γ) is circulant.

On the other hand, if we combine Lemma 2.2 and Corollary 2.1 we get

Corollary 2.2. If Γ is a circulant network, then Γ and Γ are transmission-regular.

The connection of the vertex transmission to the distance spectral radius, vertex-
forwarding index, and the bounds for the edge-forwarding index of a circulant network
is given in the next series of useful results.

Lemma 2.4 (Lin et al. [14]). Let Γ be a circulant network with distance spectral radius
ρ(Γ). If v ∈ V (Γ), then

ρ(Γ) = σΓ(v).

Lemma 2.5 (Lin et al. [14]). If Γ is a connected circulant network of order n, then

ξ(Γ) = ξm(Γ) = ρ(Γ)− (n− 1).

Lemma 2.6 (Lin et al. [14]). If Γ is a connected r-regular circulant network of order n,
then

2ρ(Γ)

r
≤ π(Γ) ≤ n+ ρ(Γ)− (2r − 1).

Before going to the last two final results in this section, we recall that the diameter
of a graph Γ denoted by diam(Γ) refers to the maximum distance between any pair of
vertices in V (Γ).

The two final results of this section are the following:

Lemma 2.7 (Gutman et al. [23]). Let Γ be a graph with n number of vertices and m
number of edges. If for any two adjacent vertices u and v in V (Γ), there exists a third
vertex w in V (Γ) that is not adjacent to either u or v [also called Property *] then

i Γ is connected,
ii the diameter of Γ is two, and

iii the Wiener index of Γsatisfies the identity

W (Γ) =

(
n

2

)
+m.

Lemma 2.8 (Gutman et al. [9]). If Γ is a connected graph with diam(Γ) ≥ 4, then Γ has
property *.
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Remark 2.1. If a graph Γ satisfies the property *, then for any vertex u, v ∈ V (Γ) we
have

dΓ(u, v) =


2 if u is adjacent to v in Γ

0 if u = v

1 otherwise.

3. Distance Matrix of Complement of Two Circulant Networks

In this section, we determine the distance matrix of the complement of circulant net-
works (i) and (ii). Note that in order to determine the distance matrix of a circulant
network, it is enough to determine the distance of the 0-vertex to all the other vertices of
the network. We begin by considering the complement of circulant network (i).

Theorem 3.1. Let n = 2a. For a ≥ 4 we have

d
Cn(1,a)

(0, v) =


0 if v = 0

2 if v ∈ {1, a, n− 1}
1 otherwise.

Proof. We prove the theorem by considering two cases. The first case is when 4 ≤ a ≤ 7.
If 4 ≤ a ≤ 7, we can manually construct the network Cn(1, a) and verify that the result
holds.

The second case is when a > 7. If a > 7, it follows from Theorem 3.1 in [14] (the
diameter of Cn(1, a) is a

2 if a is even, while a+1
2 if a is odd) that diam(Cn(1, a)) ≥ 4.

Hence, by Lemma 2.7, Lemma 2.8, and Remark 2.1, the result follows. �

Theorem 3.2. Let n ≥ 8 and 2 ≤ a < n
2 . If v ∈ V (Cn(1, a)) then

d
Cn(1,a)

(0, v) =


0 if v = 0

2 if v ∈ {1, a, n− a, n− 1}
1 otherwise.

With the exception for the circulant network C8(1, 3).

Proof. Here we also consider two cases. The first case is when 8 ≤ n < 26. If 8 ≤ n < 26,
using a computing software, we verified that the result holds except for the complement
of C8(1, 3) since C8(1, 3) is disconnected.

For n ≥ 26, we denote by δ(n) = min{diam(Cn(a, b)) : 1 ≤ a < n
2 , a 6= b}. Note that

δ(n) ≤ diam(Cn(1, a)). Using the lower bound for δ(n) of Boesch and Wang [6] , we have⌈√
2n− 1− 1

2

⌉
≤ δ(n) ≤ diam(Cn(1, a)).

Note that the expression
⌈√

2n−1−1
2

⌉
increases as n increases. So it is enough to find the

minimum value of n such that
⌈√

2n−1−1
2

⌉
= 4. The solution of the last stated equation

is n = 26. Thus, for n ≥ 26, we have diam(Cn(1, a)) ≥ 4. Using Lemma 2.7, Lemma 2.8,
and Remark 2.1, the result follows. �
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Remark 3.1. If n = 7 for the family of complement circulant network that was considered
in Theorem 3.2, we have

d
C7(1,2)

(0, v) =


0 if v = 0

1 if v ∈ {3, 4}
2 if v ∈ {1, 6}
3 if v ∈ {2, 5},

d
C7(1,3)

(0, v) =


0 if v = 0

1 if v ∈ {2, 5}
2 if v ∈ {3, 4}
3 if v ∈ {1, 6}.

Next, we determine the distance matrix of the complement of multiplicative circulant
network on mh vertices. For simplicity, we denote by Γmh the multiplicative circulant
network Cmh(1,m,m2, . . . ,mh−1).

Theorem 3.3. Let v ∈ V (Γmh). For m ≥ 5 we have

dΓ
mh

(0, v) =


0 if v = 0

2 if v ∈ {1,m,m2, . . . ,mh−1,mh −mh−1, . . . ,mh − 1}
1 otherwise.

Proof. To prove the theorem, we use one of the results of Tang et al. in [26]. Using
Theorem 4 in [26], we get

diam(Γmh) =

{
h(m−1)+1

2 if m is even and h is odd

h
(
m−1

2

)
otherwise.

Now, we consider two cases. The first case is when 5 ≤ m ≤ 8. If 5 ≤ m ≤ 8, using the
diameter formula above reveals that for h ≥ 2, we have diam(Γmh) ≥ 4. By Lemma 2.7,
Lemma 2.8, and Remark 2.1, the result follows. For circulant networks Γ5, Γ6, Γ7, and
Γ8, we manually calculated the distance matrix and verified that the result holds. Hence,
the result is true for Γmh where 5 ≤ m ≤ 8.

The second case is when m ≥ 8. If m ≥ 8, using the diameter formula above reveals
that for h ≥ 1, diam(Γmh) ≥ 4. By Lemma 2.7, Lemma 2.8, and Remark 2.1, the result
follows. �

Remark 3.2. The complement networks Γ2h where h ≥ 4, Γ3h where h ≥ 2, and Γ4h

where h ≥ 2 also satisfies the result in Theorem 3.3.
For Γ23, we have

dΓ23
(0, v) =



0 if v = 0

1 if v ∈ {3, 5}
2 if v ∈ {2, 6}
3 if v ∈ {1, 7}
4 if v = 4.
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4. Forwarding Indices and Some Distance-based Topological Indices of
Cn(1, a)

In this section, we state some of the consequences of Theorem 3.1, Theorem 3.2, and
Remark 3.1. We begin by considering the distance spectral radius of the complement
circulant network Cn(1, n2 ). The result follows from the definition of distance spectral
radius and Theorem 3.1.

Theorem 4.1. Let n = 2a. If a ≥ 4, then ρ(Cn(1, a)) = n+ 2.

Another consequence of Theorem 3.1 talks about the reciprocal transmission of a vertex
in Cn(1, n2 ).

Theorem 4.2. Let n = 2a where a ≥ 4. If v ∈ V (Cn(1, a)), then rs
Cn(1,a)

(v) = 2n−5
2 .

For the vertex-forwarding index and bounds for the edge-forwarding index of the com-
plement circulant network Cn(1, n2 ), they can be computed by combining Lemma 2.5,
Lemma 2.6, and Theorem 3.1. The results are presented in the next two corollaries.

Corollary 4.1. If n = 2a where a ≥ 4, then ξ(Cn(1, a)) = 3.

Corollary 4.2. If n = 2a where a ≥ 4, then 2(n+2)
n−4 ≤ π(Cn(1, a)) ≤ 11.

The next series of results give the exact value of some distance-based topological indices
of the complement circulant network Cn(1, n2 ). The results follow from the definition of
the topological indices combined with Theorem 3.1, Theorem 4.1, Theorem 4.2, and the
fact that Cn(1, n2 ) is a vertex-regular network with vertex-regularity n− 4.

Corollary 4.3. If Γ = Cn(1, n2 ), then

(i) W (Γ) = n(n+2)
2

(ii) S(Γ) = n(n− 4)(n+ 2)

(iii) G(Γ) = n(n+2)(n−4)2

2

(iv) WW (Γ) = n(n+5)
2

(v) H(Γ) = n(2n−5)
4

(vi) HA(Γ) = n(n−4)(2n−5)
2

(vii) HM (Γ) = n(2n−5)(n−4)2

4

(viii) TAG(Γ) = n(n−4)
2

(ix) TGA(Γ) = n(n−4)
2

(x) TSC(Γ) = n(n−4)

2
√

2
√
n+2

(xi) TABC(Γ) = n(n−4)
√
n+1√

2(n+2)

(xii) TAZ(Γ) = n(n−4)(n+2)6

16(n+1)3

(xiii) RTAG(Γ) = n(n−4)
2

(xiv) RTGA(Γ) = n(n−4)
2

(xv) RTSC(Γ) = n(n−4)

2
√

2n−5

(xvi) RTABC(Γ) = n(n−4)
√

2n−7
2n−5

(xvii) RTAZ(Γ) = n(n−4)(2n−5)6

128(2n−7)3
.

Now, we consider the distance spectral radius of complement circulant networks C7(1, 2)

and C7(1, 3) . The results follow from the definition of distance spectral radius and Remark
3.1.

Theorem 4.3. If Γ1 = C7(1, 2) and Γ2 = C7(1, 3), then ρ(Γ1) = ρ(Γ2) = 12.

Another consequence of Remark 3.1 talks about the reciprocal transmission of a vertex
in C7(1, 2) and C7(1, 3).

Theorem 4.4. Let Γ1 = C7(1, 2) and Γ2 = C7(1, 3). If v1 ∈ Γ1 and v2 ∈ Γ2, then
rsΓ1

(v1) = rsΓ2
(v2) = 11

3 .
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For the vertex-forwarding index and bounds for the edge-forwarding index of comple-
ment circulant networks C7(1, 2) and C7(1, 3), they can be computed by combining Lemma
2.5, Lemma 2.6, and Remark 3.1. The results are presented in the next two corollaries.

Corollary 4.4. If Γ1 = C7(1, 2) and Γ2 = C7(1, 3), then ξ(Γ1) = ξ(Γ2) = 6.

Corollary 4.5. If Γ1 = C7(1, 2) and Γ2 = C7(1, 3), then 12 ≤ π(Γ1) = π(Γ2) ≤ 16.

The next series of results give the exact value of some distance-based topological indices
of complement circulant networks C7(1, 2) and C7(1, 3). The results follow from the def-
inition of the topological indices combined with Remark 3.1, Theorem 4.3, Theorem 4.4
and the fact that the two networks are vertex-regular network with vertex-regularity 2.

Corollary 4.6. Let Γ denote either C7(1, 2) or C7(1, 3).. Then

(i) W (Γ) = 42
(ii) S(Γ) = 168

(iii) G(Γ) = 168
(iv) WW (Γ) = 70
(v) H(Γ) = 77

6

(vi) HA(Γ) = 154
3

(vii) HM (Γ) = 154
3

(viii) TAG(Γ) = 7
(ix) TGA(Γ) = 7

(x) TSC(Γ) = 7
√

6
12

(xi) TABC(Γ) = 7
√

22
12

(xii) TAZ(Γ) = 2 612 736
1 331

(xiii) RTAG(Γ) = 7
(xiv) RTGA(Γ) = 7

(xv) RTSC(Γ) = 7
√

66
22

(xvi) RTABC(Γ) = 28
√

3
11

(xvii) RTAZ(Γ) = 12 400 927
110 592 .

Finally, we consider the complement circulant network Cn(1, a) where n ≥ 8 and 2 ≤
a < n

2 . We first determine its distance spectral radius. The result follows from the
definition of distance spectral radius and Theorem 3.2.

Theorem 4.5. Let Γ = Cn(1, a) where 2 ≤ a < n
2 . If n ≥ 8, then ρ(Γ) = n+ 3.

Another consequence of Theorem 3.2 talks about the reciprocal transmission of a vertex
in Cn(1, a) where 2 ≤ a < n

2 .

Theorem 4.6. Let Γ = Cn(1, a) where n ≥ 8 and 2 ≤ a < n
2 . If v ∈ V (Γ), then

rsΓ(v) = n− 3.

For the vertex-forwarding index and bounds for the edge-forwarding index of the com-
plement circulant network Cn(1, a) where n ≥ 8 and 2 ≤ a < n

2 , they can be computed
by combining Lemma 2.5, Lemma 2.6, and Theorem 3.2. The results are presented in the
next two corollaries.

Corollary 4.7. If Γ = Cn(1, a) where n ≥ 8 and 2 ≤ a < n
2 , then ξ(Γ) = 4.

Corollary 4.8. If Γ = Cn(1, a) where n ≥ 8 and 2 ≤ a < n
2 , then 2(n+3)

n−5 ≤ π(Γ) ≤ 14.

The next series of results give the exact value of some distance-based topological indices
of complement circulant network Cn(1, a) where n ≥ 8 and 2 ≤ a < n

2 . The results follow
from the definition of the topological indices combined with Theorem 3.2, Theorem 4.5,
Theorem 4.6 and the fact that the network is vertex-regular with vertex-regularity n− 5.

Corollary 4.9. If Γ = Cn(1, a) where n ≥ 8 and 2 ≤ a < n
2 , then

(i) W (Γ) = n(n+3)
2

(ii) S(Γ) = n(n− 5)(n+ 3)

(iii) G(Γ) = n(n+3)(n−5)2

2

(iv) WW (Γ) = n(2n+14)
4

(v) H(Γ) = n(n−3)
2

(vi) HA(Γ) = n(n− 5)(n− 3)
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(vii) HM (Γ) = n(n−3)(n−5)2

2

(viii) TAG(Γ) = n(n−5)
2

(ix) TGA(Γ) = n(n−5)
2

(x) TSC(Γ) = n(n−5)

2
√

2
√
n+3

(xi) TABC(Γ) = n(n−5)
√
n+2√

2(n+3)

(xii) TAZ(Γ) = n(n−5)(n+3)6

16(n+2)3

(xiii) RTAG(Γ) = n(n−5)
2

(xiv) RTGA(Γ) = n(n−5)
2

(xv) RTSC(Γ) = n(n−5)

2
√

2
√
n−3

(xvi) RTABC(Γ) = n(n−5)
√
n−4√

2(n−3)

(xvii) RTAZ(Γ) = n(n−5)(n−3)6

16(n−4)3
.

5. Forwarding Indices and Some Distance-based Topological Indices of
Cmh(1,m,m2, . . . ,mh−1)

In this section, we state some of the consequences of Theorem 3.3 and Remark 3.2. We
first consider the distance spectral radius of the complement circulant network C23(1, 2, 22).
The result follows from the definition of distance spectral radius and Remark 3.2.

Theorem 5.1. If Γ23 = C23(1, 2, 22), then ρ(Γ23) = 16.

Another consequence of Remark 3.2 talks about the reciprocal transmission of a vertex
in C23(1, 2, 22).

Theorem 5.2. Let Γ23 = C23(1, 2, 22). If v ∈ V (Γ), then rsΓ23
(v) = 47

12 .

For the vertex-forwarding index and bounds for the edge-forwarding index of the com-
plement circulant network C23(1, 2, 22), it can be computed by combining Lemma 2.5,
Lemma 2.6, and Remark 3.2. The results are presented in the next two corollaries.

Corollary 5.1. If Γ23 = C23(1, 2, 22), then ξ(Γ23) = 9.

Corollary 5.2. If Γ23 = C23(1, 2, 22), then 16 ≤ π(Γ23) ≤ 21.

The next series of results give the exact value of some distance-based topological indices
of complement circulant network C23(1, 2, 22). The results follow from the definition of
the topological indices combined with Remark 3.2, Theorem 5.1, Theorem 5.2 and the fact
that the network is vertex-regular network with vertex-regularity 2.

Corollary 5.3. If Γ23 = C23(1, 2, 22), then

(i) W (Γ23) = 64
(ii) S(Γ23) = 256

(iii) G(Γ23) = 256
(iv) WW (Γ23) = 120
(v) H(Γ23) = 47

3

(vi) HA(Γ23) = 188
3

(vii) HM (Γ23) = 188
3

(viii) TAG(Γ23) = 8
(ix) TGA(Γ23) = 8
(x) TSC(Γ23) =

√
2

(xi) TABC(Γ23) =
√

30
2

(xii) TAZ(Γ23) = 16 777 216
3 375

(xiii) RTAG(Γ23) = 8
(xiv) RTGA(Γ23) = 8

(xv) RTSC(Γ23) = 8
√

282
47

(xvi) RTABC(Γ23) = 16
√

210
47

(xvii) RTAZ(Γ23) =
10 779 215 329

74 088 000 .

Next, we consider the distance spectral radius of C2h(1, 2, 22, . . . , 2h−1) where h ≥ 4.
The result follows from the definition of distance spectral radius and Remark 3.2.

Theorem 5.3. Let Γ2h = C2h(1, 2, 22, . . . , 2h−1). If h ≥ 4, then ρ(Γ2h) = n+ 2h− 2.

Another consequence of Remark 3.2 talks about the reciprocal transmission of a vertex

in C2h(1, 2, 22, . . . , 2h−1).

Theorem 5.4. Let Γ2h = C2h(1, 2, 22, . . . , 2h−1) and h ≥ 4. If v ∈ V (Γ2h), then
rsΓ

2h
(v) = n− h− 1

2 .
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For the vertex-forwarding index and bounds for the edge-forwarding index of comple-

ment circulant network C2h(1, 2, 22, . . . , 2h−1), it can be computed by combining Lemma
2.5, Lemma 2.6, and Remark 3.2. The results are presented in the next two corollaries.

Corollary 5.4. Let Γ2h = C2h(1, 2, 22, . . . , 2h−1). If h ≥ 4, then ξ(Γ2h) = 2h− 1.

Corollary 5.5. Let Γ2h = C2h(1, 2, 22, . . . , 2h−1). If h ≥ 4, then 2(n+2h−2)
n−2h ≤ π(Γ2h) ≤

6h− 1.

The next series of results give the exact values of some distance-based topological indices

of the complement circulant network C2h(1, 2, 22, . . . , 2h−1). The results follow from the
definition of the topological indices combined with Theorem 3.3, Theorem 5.3, Theorem
5.4 and the fact that the network is vertex-regular with vertex-regularity n− 2h.

Corollary 5.6. Let Γ2h = C2h(1, 2, 22, . . . , 2h−1). If h ≥ 4, then

(i) W (Γ2h) = n(n+2h−2)
2

(ii) S(Γ2h) = n(n− 2h)(n+ 2h− 2)

(iii) G(Γ2h) = n(n+2h−2)(n−2h)2

2

(iv) WW (Γ2h) = n(2n+8h−6)
4

(v) H(Γ2h) =
n(n−h− 1

2
)

2

(vi) HA(Γ2h) = n(n− 2h)(n− h− 1
2)

(vii) HM (Γ2h) =
n(n−h− 1

2
)(n−2h)2

2

(viii) TAG(Γ2h) = n(n−2h)
2

(ix) TGA(Γ2h) = n(n−2h)
2

(x) TSC(Γ2h) = n(n−2h)

2
√

2
√
n+2h−2

(xi) TABC(Γ2h) = n(n−2h)
√
n+2h−3√

2(n+2h−2)

(xii) TAZ(Γ2h) = n(n−2h)(n+2h−2)6

16(n+2h−3)3

(xiii) RTAG(Γ2h) = n(n−2h)
2

(xiv) RTGA(Γ2h) = n(n−2h)
2

(xv) RTSC(Γ2h) = n(n−2h)

2
√

2n−2h−1

(xvi) RTABC(Γ2h) = n(n−2h)
√

2n−2h−3
2n−2h−1

(xvii) RTAZ(Γ2h) = n(2h−n)(1+2h−2n)6

128(3+2h−2n)3
.

Finally, we consider the complement circulant network Cmh(1,m,m2, . . . ,mh−1) where
m ≥ 3. We begin by determining its distance spectral radius. The result follows from the
definition of distance spectral radius, Theorem 3.3, and Remark 3.2.

Theorem 5.5. Let Γmh = Cmh(1,m,m2, . . . ,mh−1). For (i) m = 3 and h ≥ 2, (ii) m = 4
and h ≥ 2, and, (iii) m ≥ 5 and h ≥ 1, we have

ρ(Γmh) = n+ 2h− 1.

Another consequence of Theorem 3.3 and Remark 3.2 talks about the reciprocal trans-

mission of a vertex in Cmh(1,m,m2, . . . ,mh−1).

Theorem 5.6. Let Γmh = Cmh(1,m,m2, . . . ,mh−1) and v ∈ V (Γmh). For (i) m = 3 and
h ≥ 2, (ii) m = 4 and h ≥ 2, and, (iii) m ≥ 5 and h ≥ 1, we have

rsΓ
mh

(v) = n− h− 1.

For the vertex-forwarding index and bounds for the edge-forwarding index of the com-

plement circulant network Cmh(1,m,m2, . . . ,mh−1), it can be computed by combining
Lemma 2.5, Lemma 2.6, Theorem 3.3, and Remark 3.2. The results are presented in the
next two corollaries.
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Corollary 5.7. Let Γmh = Cmh(1,m,m2, . . . ,mh−1). For (i) m = 3 and h ≥ 2, (ii)
m = 4 and h ≥ 2, and, (iii) m ≥ 5 and h ≥ 1, we have

ξ(Γmh) = 2h.

Corollary 5.8. Let Γmh = Cmh(1,m,m2, . . . ,mh−1). For (i) m = 3 and h ≥ 2, (ii)
m = 4 and h ≥ 2, and, (iii) m ≥ 5 and h ≥ 1, we have

2(n+ 2h− 1)

n− 2h− 1
≤ π(Γmh) ≤ 6h+ 2.

The next series of results give the exact value of some distance-based topological indices

of complement circulant network Cmh(1,m,m2, . . . ,mh−1). The results follow from the
definition of the topological indices combined with Theorem 3.3, Remark 3.2, Theorem
5.5, Theorem 5.6 and the fact that the network is vertex-regular with vertex-regularity
n− 2h− 1.

Corollary 5.9. Let Γmh = Cmh(1,m,m2, . . . ,mh−1). For (i) m = 3 and h ≥ 2, (ii)
m = 4 and h ≥ 2, and, (iii) m ≥ 5 and h ≥ 1, we have

(i) W (Γmh) = n(n+2h−1)
2

(ii) S(Γmh) = n(n− 2h− 1)(n+ 2h− 1)

(iii) G(Γmh) = n(n+2h−1)(n−2h−1)2

2

(iv) WW (Γmh) = n(n+4h−1)
2

(v) H(Γmh) = n(n−h−1)
2

(vi) HA(Γmh) = n(n− 2h− 1)(n− h− 1)

(vii) HM (Γmh) = n(n−h−1)(n−2h−1)2

2

(viii) TAG(Γmh) = n(n−2h−1)
2

(ix) TGA(Γmh) = n(n−2h−1)
2

(x) TSC(Γmh) = n(n−2h−1)

2
√

2
√
n+2h−1

(xi) TABC(Γmh) =
n(n−2h−1)

√
n
2

+h−1
√

2(n+2h−1)

(xii) TAZ(Γmh) = n(n−2h−1)(n+2h−1)6

16(n+2h−2)3

(xiii) RTAG(Γmh) = n(n−2h−1)
2

(xiv) RTGA(Γmh) = n(n−2h−1)
2

(xv) RTSC(Γmh) = n(n−2h−1)

2
√

2
√
n−h−1

(xvi) RTABC(Γmh) = n(n−2h−1)
√
n−h−2√

2(n−h−1)

(xvii) RTAZ(Γmh) = n(1+2h−n)(1+h−n)6

16(2+h−n)3
.

6. Conclusion

In this research note, we were able to determine the distance matrix of the connected
complement of the circulant networks Cn(1, a) where 2 ≤ a ≤ n

2 and Cmh(1,m,m2, . . . ,mh−1)
where m ≥ 2. As a consequence, we were able to compute for the distance spectral radius,
vertex-forwarding index, and some distance-based topological indices of the connected

complement circulant networks Cn(1, a) and Cmh(1,m,m2, . . . ,mh−1). As a possible re-
search problem, we recommend the determination of the distance matrix, as well as the dis-
tance spectral radius, vertex-forwarding index and some distance-based topological indices
of the connected complement of the circulant network Cn(1, 2, . . . , a), where 3 ≤ a ≤ n

2 .
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