
1

VC-Dimension of Univariate Decision Trees
Olcay Taner Yıldız

Abstract—In this paper, we give and prove lower bounds of
the VC-dimension of the univariate decision tree hypothesis class.
The VC-dimension of the univariate decision tree depends on
the VC-dimension values of its subtrees and the number of
inputs. Via a search algorithm that calculates the VC-dimension
of univariate decision trees exhaustively, we show that our VC-
dimension bounds are tight for simple trees. To verify that the
VC-dimension bounds are useful, we also use them to get VC-
generalization bounds for complexity control using structural
risk minimization in decision trees, i.e., pruning. Our simulation
results show that SRM-pruning using the VC-dimension bounds
finds trees that are more accurate as those pruned using cross-
validation.

Index Terms—Learning, Machine Learning, Supervised Learn-
ing, Computation Theory, VC-Dimension, Decision Trees

I. INTRODUCTION

In pattern recognition the knowledge is extracted as patterns

from a training sample for future prediction. Most pattern

recognition algorithms such as neural networks [1] or support

vector machines [2] make accurate predictions but are not

interpretable, on the other hand decision trees are simple,

can learn disjunctive expressions and therefore are easily

comprehensible. Whatever the learning algorithm is, the main

goal of the learner is to extract the optimal model (the model

with least generalization error) from a training set. In the

penalization approaches, the usual idea is to derive an estimate

of the generalization error in terms of the training error and

the complexity of the model.

In the statistical learning theory [2], Vapnik-Chervonenkis

(VC) dimension is a measure of complexity defined for any

type of classification algorithm. Suppose that we have a class

of functions {f(x, α)} indexed by the parameter vector α. VC

dimension of {f(x, α)} is defined to be the largest number of

points that can be shattered by members of {f(x, α)}. A set

of data points is shattered by {f(x, α)} if for all assignments

of class labels to those points, one can find a member of

{f(x, α)} which makes no errors when evaluating that set of

data points. For example, in two dimensions, we can separate

three points with a line, but we can not separate four points

(if the assignments of class labels are done like in the famous

XOR problem). Therefore, the VC dimension of the linear

estimator class in two dimensions is 3. In general, the VC

dimension of the linear estimator class in d dimensions is d+1
which is also the number of free parameters.

Structural risk minimization (SRM) [2] uses the VC dimen-

sion of the estimators to select the best model by choosing the

model with the smallest upper bound for the generalization

error. In SRM, the possible models are ordered according to

Olcay Taner Yıldız is with the Department of Computer Engineering, Işık
University, 34398, İstanbul Turkey.

their complexity

M0 ⊂ M1 ⊂ M2 ⊂ . . . (1)

For example, if the problem is selecting the best degree of a

polynomial function, M0 will be the polynomial with degree 0,

M1 will be the polynomial with degree 1, etc. For each model,

the upper bound for its generalization error is calculated.

• For binary classification, the upper bound for the gener-

alization error is

Eg ≤ Et +
ǫ

2

(

1 +

√

1 +
4Et

ǫ

)

(2)

• For regression, the upper bound for the generalization

error is

Eg ≤ Et

1− c
√
ǫ

(3)

and ǫ is given by the formula

ǫ = a1
V [log(a2S/V ) + 1]− log(ν)

S
(4)

where V represents the VC dimension of the model, ν
represents the confidence level, S represents the sample size,

and Et represents the training error. These bounds hold

simultaneously for all members {f(x, α)}, and are taken from

[3] (pages 116-118). They recommend to use ν = 1√
S

for

large sample sizes. For regression it is recommended to use

a1 = 1 and a2 = 1, and for classification a1 = 4 and a2 = 2

corresponds to the worst-case scenarios.

Obtaining the VC-dimension of a classifier is necessary for

complexity control in SRM. Unfortunately, it is not possible

to obtain an accurate estimate of the VC-dimension in most

cases. To avoid this problem, a set of experiments on artificial

sets are done and based on the frequency of the errors on

these sets, a best fit for theoretical formula is calculated.

Shao et al. [4] used optimized experimental design to improve

the VC-dimension stimates. The algorithm starts with the

uniform experiment design defined in Vapnik et al. [5] and

by making pairwise exchanges between design points, the

optimized design is obtained. The mean square error is used

as a criterion to identify good and bad design points.

In this work, we use decision trees as our hypothesis

class. Decision trees are tree-based structures where (i) each

internal node implements a decision function, fm(x), (ii) each

branch of an internal node corresponds to one outcome of

the decision, and (iii) each leaf corresponds to a class. In a

univariate decision tree [6], the decision at internal node m
uses only one attribute, i.e., one dimension of x, xj . If that

attribute is discrete, there will be L children (branches) of each

internal node corresponding to the L different outcomes of

the decision. ID3 is one of the best known univariate decision

tree algorithm with discrete features [7]. Survey of work on



2

constructing and simplifying decision trees can be found in

[8], [9]. There are also surveys comparing different decision

tree methods with other classification algorithms such as [10],

[11].

Determining the optimal complexity of a decision tree is

important. With complex decision trees, we do not learn a

general rule but memorize the particular training data which

gives large error on unseen test data. With too simple trees,

even the training data may not be learned well and the error

will be large on both training and test data.

As far as our knowledge, there is no explicit formula for the

VC-dimension of a decision tree. Although there are certain

results for the VC-dimension of decision trees such as:

• It is known that the VC dimension of a binary decision

tree with N nodes and dimension d is between Ω(N) and

O(N log d) [12].

• It is shown that the VC dimension of the set of all boolean

functions on d boolean variables defined by decision trees

of rank at most r is
∑r

i=0

(

d

i

)

[13].

• Maimon and Rokach [14] give explicit lower and upper

bounds of VC-dimension of oblivious decision trees.

Oblivious decision trees are decision trees, in which all

nodes at the same level test the same attribute.

These bounds are either structure independent, that is, they

give the same bound for all decision trees with N nodes; or

the bounds are for particular type of univariate trees.

In this work, we first focus on the easiest case of univariate

trees with binary features and we prove that the VC-dimension

of a univariate decision tree with binary features depends on

the number of binary features and the tree structure. Note that

we are discussing the VC dimension of hypotheses classes

defined as families of decision trees that share a tree structure,

differ only in the variables being tested in the internal nodes

and class labels assigned to the leaves. Our approach is the

following: First, for three basic tree structures, we give and

prove a lower bound of the VC-dimension. Second, we give

and prove a general lower bound of the VC-dimension of the

binary decision tree. Third, based on those theorems, we give

an algorithm to find a structure dependent lower bound of the

VC-dimension of a binary decision tree with binary features.

Fourth, we use the exhaustive search algorithm to calculate the

exact VC-dimension of simple trees and compare our bounds

with the exact VC-dimension values.

As a next step, we generalize our work to the discrete uni-

variate decision tree hypothesis class, where a decision node

can have L children depending on the number of values of

the selected discrete feature. We show that the VC-dimension

of L-ary decision tree is greater than or equal to the VC-

dimension of its subtrees. Based on this result, we give an

algorithm to find a lower bound of the VC-dimension of a

L-ary decision tree.

As a last step, we generalize our work to include continuous

data, that is continuous univariate decision tree hypothesis

class, where a decision node always has two children. We

again give an algorithm to find a lower bound of the VC-

dimension of a univariate decision tree for continuous data

sets. We use these VC-dimension bounds in pruning via SRM

and when compared with cross-validation pruning, we see that

pruning based on SRM using our VC-dimension bounds work

well and find trees that are as accurate as cross-validation

pruning.

In the earlier version of this work [15], we proved lower

bounds of the VC-dimension of univariate decision trees with

binary features; this present paper revisits the binary feature

case, extends the proofs to include both L-ary and continuous

univariate decision trees, and makes a more thorough compar-

ison with cross-validation pruning.

This paper is organized as follows: In Section II, we give

and prove the lower bounds of the VC-dimension of the

univariate decision trees with binary features. We generalize

our work to L-ary decision trees in Section III, and continuous

univariate trees in Section IV. We give experimental results in

Section V and conclude in Section VI.

II. VC-DIMENSION OF THE UNIVARIATE DECISION TREES

WITH BINARY FEATURES

We consider the well-known supervised learning setting

where the decision tree algorithm uses a sample of m labeled

points S = (X,Y) = ((x(1), y(1)), . . . , (x(m), y(m)) ∈ (X ×
Y)m, where X is the input space and Y the label set, which

is {0, 1}. The input space X is a vectorial space of dimension

d, the number of features, where each feature can take values

from {0, 1}.

From this point on, we refer only internal nodes of the

decision tree as node(s). Note again that we are searching

the VC dimension of decision tree hypotheses class that share

a tree structure, differ only in variables being tested in the

internal nodes and class labels assigned to the leaves. A set

of instances S is shattered by hypothesis space H if and only

if for every dichotomy of S there exists some hypothesis in

H consistent with this dichotomy. Given a sample S with m
examples, there are 2m possible dichotomies. Each example

can be labeled with 0 or 1, which gives us 2m. From these

dichotomies, two of them will be all zeros or all ones, which

can be classified by any decision tree. A dichotomy and its

reverse dichotomy, where all class labelings are flipped, can

be classified by the same decision tree hypothesis h. This is

because decision trees treat class 0 and class 1 symmetrically,

that is, decision tree algorithms will construct identical deci-

sion trees if the class 0 and class 1 are interchanged. Hence,

the number of dichotomies that must be checked for a sample

with m examples is the half of 2m − 2, which is 2m−1 − 1.

Theorem 1: The VC-dimension of a single decision node

univariate decision tree that classifies d dimensional binary

data is ⌊log2(d+ 1)⌋+ 1.

Proof: To show the VC-dimension of the single decision

node univariate decision tree is at least m, we need to find such

a sample S of size m that, for each possible class labelings of

these m points, there is an instantiation h of our single node

decision tree hypothesis class H that classifies it correctly. Let

Cm be the matrix of size (2m−1 − 1)×m where the rows of

the matrix represent the dichotomies that must be checked for

a sample of m data points (See the discussion above). For m
= 4, the matrix C4 is



3

X =

d1 d2 d3 d4 d5 d6 d7
x
(1) 1 0 0 0 1 1 1

x
(2) 0 1 0 0 1 0 0

x
(3) 0 0 1 0 0 1 0

x
(4) 0 0 0 1 0 0 1

d5

x
(3)

x
(4)

0

x
(1)

x
(2)

1

d3

x
(1)

x
(2)

x
(4)

0

x
(3)

1

Fig. 1. Example for Theorem 1 with d = 7 and m = 4. If the class labeling
of S is {1, 1, 0, 0} we select feature 5 (left decision tree). If the class labeling
of S is {0, 0, 1, 0} we select feature 3 (right decision tree).

C4 =





















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1





















We construct the sample S such that

X = C
T

m

where C
T

m
represents transpose of the matrix Cm. In this

way, each feature di corresponds to a dichotomy that must

be checked for a sample of m points, implying a one-

to-one mapping between dichotomies and features. So for

each possible dichotomy, we will choose the decision tree

hypothesis h which has the corresponding feature as the split

feature (See Figure 1 for an example). If we set the number

of features to 2m−1 − 1:

d = 2m−1 − 1

d+ 1 = 2m−1

log2(d+ 1) = m− 1

m = log2(d+ 1) + 1

To show the VC-dimension of the single decision node

univariate decision tree is at most ⌊log2(d + 1)⌋ + 1, we go

in reverse direction. If the VC-dimension of a single node

univariate decision tree is m, for each possible dichotomy

of m examples, we must be able to realize it. In a single

node decision tree, we can have at most d possible orthogonal

splits. The number of dichotomies that must be checked for a

sample with m examples is 2m−1 − 1 (See the discussion in

the beginning of Section II). In order to be able to separate

m instances for each possible dichotomy, the total number of

splits must be at least as large as this number. So,

d ≥ 2m−1 − 1

m ≤ log2(d+ 1) + 1

VCDimension LB-binary(DT , d)

1 if DT is a leaf node

2 return 1

3 if left and right subtrees of DT are leaves

4 return ⌊log2(d+ 1)⌋+ 1
5 DTL = Left subtree of DT
6 DTR = Right subtree of DT
7 return LB-binary(DTL, d− 1) + LB-binary(DTR, d− 1)

Fig. 2. The pseudocode of the recursive algorithm for finding a lower bound
of the VC-dimension of univariate decision tree with binary features: DT :
Decision tree hypothesis class, d: Number of inputs

Theorem 2: The VC-dimension of a univariate decision tree

with binary features that classifies d dimensional binary data

is at least the sum of the VC-dimensions of its left and right

subtrees those classifying d− 1 dimensional binary data.

Proof: Let the VC-dimension of two decision trees (DT1

and DT2) be V C1 and V C2 respectively. Under this assump-

tion, those trees can classify V C1 and V C2 examples under all

possible class labelings of those examples. Now we form the

following tree: We add a new feature to the dataset and use that

feature on the root node of the new decision tree, which has its

left and right subtrees DT1 and DT2 respectively. The value

of the new feature will be 0 for those instances forwarded to

the left subtree (DT1), 1 for those instances forwarded to the

right subtree (DT2). Now the new decision tree can classify

at least V C1 + V C2 examples for all possible class labelings

of those examples.

Figure 2 shows the recursive algorithm that calculates a

lower bound for the VC-dimension of an arbitrary univariate

decision tree using Theorems 1 and 2. There are two base

cases; (i) the decision tree is a leaf node whose VC-dimension

is 1, (ii) the decision tree is a single node decision tree whose

VC-dimension is given in Theorem 1.

Corollary 1: A degenerate decision tree is a decision tree,

where each node except the bottom one, has a single leaf.

The VC-dimension of a degenerate univariate decision tree

with N nodes that classifies d dimensional binary data is at

least ⌊log2(d−N + 2)⌋+N .

Proof: We will prove Corollary 1 by applying the algo-

rithm LB-binary to the degenerate decision tree (See Figure 3

for an example). A degenerate decision tree with N nodes

• has N − 1 nodes, where each of them has one leaf and

one child node. After applying LB-binary N − 1 times

recursively, where each call contributes 1 to the VC-

dimension (Line 2 of LB-binary), these nodes contribute

N − 1 to the VC-dimension of the degenerate decision

tree

• has one bottom node, which has two leaves. After ap-

plying LB-binary N − 1 times recursively, where each

time d is decreased by one (Line 7 of LB-binary),

this node contributes ⌊log2(d − (N − 1) + 1)⌋ + 1 =

⌊log2(d − N + 2)⌋ + 1 to the VC-dimension of the

degenerate decision tree.



4

X =

d1 d2 d3 d4 d5 d6 d7
x
(1) 1 0 1 0 0 0 0

x
(2) 0 1 1 0 0 0 0

x
(3) 0 0 0 0 0 0 0

x
(4) 0 0 0 1 0 0 0

x
(5) 0 0 0 0 1 0 0

x
(6) 0 0 0 0 0 1 0

x
(7) 0 0 0 0 0 0 1

d7

d6

0

d5

0

d4

0

d3

0

x
(3)

0

x
(1)

x
(2)

1

x
(4)

1

x
(5)

1

x
(6)

1

x
(7)

1

Fig. 3. Example for Corollary 1 with d = 7 and N = 5. If the class labeling
of S is {1, 1, 0, x, x, x, x} we select feature 3 in the bottom node. The
labelings of the last four examples do not matter since they are alone in the
leaves they reside.

Corollary 2: The VC-dimension of a full univariate deci-

sion tree of height h that classifies d dimensional binary data

is at least 2h−1(⌊log2(d− h+2)⌋+1). In a full decision tree

each node has two child nodes. The height of a tree is defined

as the longest path taken from the root node to a leaf.

Proof: Similar to Corollary 1, we will prove Corollary 2

by applying the algorithm LB-binary to the full decision tree

(See Figure 4 for an example). Similar to the bottom node in

Corollary 1, each bottom node contributes ⌊log2(d−(h−1)+
1)⌋+ 1 = ⌊log2(d− h+ 2)⌋+ 1 to the VC-dimension of the

full decision tree. Since there are 2h−1 such nodes, the VC-

dimension of the full decision tree is at least 2h−1(⌊log2(d−
h+ 2)⌋+ 1).

III. GENERALIZATION TO L-ARY DECISION TREES

Until now, we considered the VC-dimension of univariate

decision trees with binary features. In this section, we general-

X =

d1 d2 d3 d4 d5
x
(1) 1 0 1 0 0

x
(2) 0 1 1 0 0

x
(3) 0 0 0 0 0

x
(4) 1 0 1 0 1

x
(5) 0 1 1 0 1

x
(6) 0 0 0 0 1

x
(7) 1 0 1 1 0

x
(8) 0 1 1 1 0

x
(9) 0 0 0 1 0

x
(10) 1 0 1 1 1

x
(11) 0 1 1 1 1

x
(12) 0 0 0 1 1

d4

d5

0

d1

0

x
(2)

x
(3)

0

x
(1)

1

d2

1

x
(4)

x
(6)

0

x
(5)

1

d5

1

d2

0

x
(7)

x
(9)

0

x
(8)

1

d3

1

x
(12)

0

x
(10)

x
(11)

1

Fig. 4. Example for Corollary 2 with d = 5 and h = 3. Using feature 5 in
the first level and feature 4 in the second level, one divides the class labelings
into 4 subproblems of size 3. Each subproblem can then be shattered with a
single node.

ize our idea to univariate decision trees with discrete features.

In a univariate decision tree generated for such a dataset,

there will be L children (branches) of each internal node

corresponding to the L different outcomes of the decision. For

this case, the input space X is a vectorial space of dimension

d, the number of features, where each feature Xi can take

values from discrete set {1, 2, . . . , Li}.

Theorem 3: The VC-dimension of a single node L-ary

decision tree that classifies d dimensional discrete data is

⌊log2(
∑d

i=1(2
Li−1 − 1) + 1)⌋+ 1.

Proof: The proof is similar to the proof of Theorem 1.

We only give the reverse direction. If the VC-dimension of a

single node L-ary decision tree is m, for each possible class

labeling of m examples, we must be able to realize it. In a

single node L-ary decision tree, we can have at most d possible

splits corresponding to d features. Each split (corresponding

to the feature di) can also divide the examples into 2Li−1− 1
distinct dichotomies. Therefore the total number of splits in

a single node L-ary decision tree is
∑d

i=1(2
Li−1 − 1). The

number of dichotomies that must be checked for a sample with

m examples is 2m−1− 1 (See the discussion in the beginning

of Section II). In order to be able to separate m instances for

each possible dichotomy, the total number of splits must be at



5

VCDimension LB-L-ary(DT , d)

1 if DT is a leaf node

2 return 1

3 if all subtrees of DT are leaves

4 return ⌊log2(
∑d

i=1(2
Li−1 − 1) + 1)⌋+ 1

5 sum = 0

6 for i = 1 to number of subtrees

7 sum += LB-L-ary(DTi, d− 1)

8 return sum

Fig. 5. The pseudocode of the recursive algorithm for finding a lower bound
of the VC-dimension of L-ary decision tree: DT : Decision tree hypothesis
class, d: Number of inputs

least as large as this number. So,

d
∑

i=1

(2Li−1 − 1) ≥ 2m−1 − 1

m ≤ log2(

d
∑

i=1

(2Li−1 − 1) + 1) + 1

Theorem 4: The VC-dimension of L-ary decision tree that

classifies d dimensional discrete data is at least the sum of

the VC-dimensions of its subtrees those classifying d − 1
dimensional discrete data.

Proof: The proof is similar to the proof of Theorem 2. Let

the VC-dimension of L decision trees (DT1, DT2, . . . , DTL)

be V C1, V C2, . . . , V CL respectively. Under this assumption,

those trees can classify V C1, V C2, . . . , V CL examples under

all possible class labelings of those examples. Now we form

the following tree: We add a new feature which can have

L different values to the dataset and use that feature on the

root node of the new decision tree, which has its subtrees

DT1, DT2, . . . , DTL. The value of the new feature will be

1 for those instances forwarded to the subtree (DT1), 2 for

those instances forwarded to the subtree (DT2), . . ., L for

those instances forwarded to the subtree (DTL). Now the new

decision tree can classify at least
∑L

i=1 V Ci examples for all

possible class labelings of those examples.

Figure 5 shows the recursive algorithm that calculates a

lower bound for the VC-dimension of an arbitrary L-ary

decision tree using Theorems 3 and 4. There are two base

cases; (i) the L-ary decision tree is a leaf node whose VC-

dimension is 1, (ii) the L-ary decision tree is a single node

decision tree whose VC-dimension is given in Theorem 3.

IV. GENERALIZATION TO DECISION TREES WITH

CONTINUOUS FEATURES

Until now, we considered the VC-dimension of univariate

decision trees with discrete features. In this section, we gen-

eralize our idea to univariate decision trees with continuous

features. In a univariate decision tree generated for such a

dataset, there will be always two children (branches) of each

internal node. For this case, the input space X is a vectorial

space of dimension d, where each feature di can take values

from continuous space R. We assume that, for at least one

feature di, all instances have distinct values.

Corollary 3: The VC-dimension of a single node decision

tree that classifies d dimensional continuous data is at least

⌊log2(d+ 1)⌋+ 1.

Proof: The proof directly follows the proof of Theorem

1 given a slight modification. We construct the sample S such

that

X = C
T

m
+Rm

where Rm is a random matrix of size m × (2m−1 − 1)
containing random values from the interval (0, 1). Given such

an X, ⌊x(t)
i ⌋ will correspond to a possible class labeling of

x
(t), implying a one-to-one mapping between dichotomies

and features. So for each possible dichotomy to be checked,

we will choose the decision tree hypothesis h which has the

corresponding feature as the split feature and the split is xi ≤ 1
(See Figure 6 for an example).

Figure 7 shows the recursive algorithm that calculates a

lower bound for the VC-dimension of an arbitrary decision

tree for continuous data using Theorem 3. There are two

differences between algorithm LB-binary in Figure 2 and

algorithm LB-continuous in Figure 7. For discrete data sets,

a feature can only be used once through a path from the root

node to a leaf node. On the other hand, for continuous data

sets, one can construct all nodes of the decision tree based on

a single feature. For this reason, on each recursive call, LB-

binary decreases d by 1, where LB-continuous does not (Line

7).

As explained above, we spare one feature for constructing

the inner splits of the decision tree (Lines 5-6). The remaining

features are used to forward the instances to the nodes having

two leaves as children (Lines 3-4). We set the values of the

spared feature in increasing order from left to right, that is, the

instances forwarded to the leftmost/rightmost node will have

the smallest/largest value in that spared feature. After that,

with the appropriate splits based on that single feature, the

same instances are always forwarded to the same node(s) (See

Figure 8 for an example). For this reason, when we encounter

a node with two leaves in LB-binary, the VC-dimension is

⌊log2(d+ 1)⌋+ 1, where d represents the remaining features

for that node, whereas when we encounter a node with two

leaves in LB-continuous, the VC-dimension is ⌊log2(d)⌋+ 1,

where d represents the number of all features in that data set

(Line 4).

V. EXPERIMENTS

A. Exhaustive Search Algorithm

To show the bounds found using Theorems 1-4 or using the

algorithm in Figure 2 are tight, we search the VC-dimension

of different decision tree hypothesis classes exhaustively using

the algorithm in [16].

The pseudocode for finding VC-Dimension of univariate

decision tree with binary features is given in Figure 9. Given

a dataset with d dimensions, we generate all possible data

combinations having N data points iteratively (Line 3 and

Line 17). For each data combination, we generate all possible

class labelings iteratively (Line 7 and Line 12). For each



6

X =

d1 d2 d3 d4 d5 d6 d7
x
(1) 1.2 0.3 0.2 0.6 1.4 1.5 1.1

x
(2) 0.8 1.4 0.8 0.2 1.3 0.3 0.2

x
(3) 0.6 0.6 1.1 0.7 0.1 1.1 0.7

x
(4) 0.4 0.7 0.7 1.9 0.2 0.9 1.7

x5 ≤ 1

x
(3)

x
(4)

Yes

x
(1)

x
(2)

No

x3 ≤ 1

x
(1)

x
(2)

x
(4)

Yes

x
(3)

No

Fig. 6. Example for Corollary 3 with d = 7 and m = 4. If the class labeling
of S is {1, 1, 0, 0} we select feature 5 and the split x5 ≤ 1 (left decision
tree). If the class labeling of S is {0, 0, 1, 0} we select feature 3 and the
split x3 ≤ 1 (right decision tree).

VCDimension LB-continuous(DT )

1 if DT is a leaf node

2 return 1

3 if left and right subtrees of DT are leaves

4 return ⌊log2(d)⌋+ 1
5 DTL = Left subtree of DT
6 DTR = Right subtree of DT
7 return LB-continuous(DTL) + LB-continuous(DTR)

Fig. 7. The pseudocode of the recursive algorithm for finding a lower bound
of the VC-dimension of univariate decision tree for continuous data: DT :
Decision tree hypothesis class, d: Number of inputs

possible class labeling of a data combination, we check if

there is an hypothesis h from the decision tree hypothesis class

H that classifies the data correctly (Line 9). If there is not

such an hypothesis (Line 10, 11), we break the class labeling

search and continue the search with the next data combination

(Line 17). If there is such an hypothesis, we iterate to next

class labeling (Line 12). If for all class labelings of a data

combination we can find a decision tree hypothesis h (Lines

13, 14), we increment N (Lines 18, 19) and continue the

search. If all subsets N of 2d are iterated and no subset is

classified for all class labelings, then the search is over and

VC dimension is taken as N − 1. Since the computational

complexity of the exhaustive search is exponential, we can

run the exhaustive search algorithm only on cases with small

d and N .

Figures 10 and 11 show our calculated lower bound and

exact VC-dimension of decision trees for datasets with 3

and 4 input features. It can be seen that the VC-dimension

increases as the number of nodes in the decision tree increases,

but there are exceptions where the VC-dimension remains

constant though the number of nodes increases, which shows

that the VC-dimension of a decision tree not only depends

the number of nodes, but also the structure of the tree. The

results show that our bounds are tight for small d and N :

the maximum difference between the calculated lower bound

X =

d1 d2 d3 d4
x
(1) 1.2 0.8 1.1 0.1

x
(2) 0.9 1.3 1.5 0.2

x
(3) 0.8 0.7 0.5 0.1

x
(4) 1.1 0.6 1.3 0.6

x
(5) 0.7 1.1 1.2 0.7

x
(6) 0.6 0.9 0.8 0.8

x
(7) 1.4 0.8 1.7 1.1

x
(8) 0.8 1.3 1.2 1.3

x
(9) 0.7 0.4 0.9 1.2

x
(10) 1.3 0.8 1.4 1.6

x
(11) 0.8 1.7 1.3 1.9

x
(12) 0.9 0.7 0.6 1.8

x4 ≤ 1

x4 ≤ 0.5

Yes

x1 ≤ 1

Yes

x
(2)

x
(3)

Yes

x
(1)

No

x2 ≤ 1

No

x
(4)

x
(6)

Yes

x
(5)

No

x4 ≤ 1.5

No

x2 ≤ 1

Yes

x
(7)

x
(9)

Yes

x
(8)

No

x3 ≤ 1

No

x
(12)

Yes

x
(10)

x
(11)

No

Fig. 8. Example for algorithm LB-continuous with d = 4 and m = 12.
Using the spared feature 4 in all levels except the last level, one divides the
class labelings into 4 subproblems of m = 3. Each subproblem can then be
shattered with a single node.

VCDimension ExhaustiveSearch(H , d, data)

1 N = 1

2 while TRUE

3 dataComb = getDataCombination(data, N )

4 successful = FALSE

5 while dataComb != NULL

6 classifiedAllCombinations = TRUE

7 classComb = getClassCombination(N )

8 while classComb != NULL

9 if not treeClassify(H , dataComb, classComb)

10 classifiedAllCombinations = FALSE

11 break

12 classComb = getNextClassCombination(N )

13 if classifiedAllCombinations

14 successful = TRUE

15 break

16 else

17 dataComb = getNextDataCombination(data, N )

18 if successful

19 N = N + 1

20 else

21 break

22 return N − 1

Fig. 9. The pseudocode of the exhaustive search algorithm for finding VC-
dimension of univariate decision tree: H: Decision tree hypothesis class, d:
Number of inputs in the dataset, data: Universal set for d dimensional input



7

3 - 3

3 - 4 4 - 4 4 - 4

5 - 5 5 - 5 6 - 6

6 - 6 7 - 7 8 - 8

Fig. 10. Calculated lower bound and the exact VC-dimension of univariate
decision trees for datasets with 3 input features. Only the internal nodes are
shown.

and the exact VC-dimension is 1. Also for most of the cases,

our proposed algorithm based on lower bounds finds the exact

VC-dimension of the decision tree.

B. Complexity Control Using VC-Dimension Bounds

In this section, we use our VC-dimension bounds for

complexity control in decision trees. Controlling complexity

in decision trees could be done in two ways.

• We can control the complexities of the decision nodes by

selecting the appropriate model for a node. For example,

an omnivariate decision tree can have univariate, linear

multivariate or nonlinear multivariate nodes [17], [18].

• We can control the overall complexity of the decision tree

via pruning.

3 - 3

4 - 5 6 - 6 4 - 5

5 - 5 6 - 7 6 - 7

7 - 7 7 - 8 8 - 8

Fig. 11. Calculated lower bound and the exact VC-dimension of univariate
decision trees for datasets with 4 input features. Only the internal nodes are
shown.

Since this paper covers only univariate trees, we take the

second approach and use the VC-dimension bounds found in

the previous sections for pruning.

In postpruning (CvPrune), for each subtree T ,

• We calculate the validation error of the tree

• We replace T with a leaf and calculate the validation

error of the pruned tree.

If there is overfitting, we expect the more complex subtree

T to learn the noise and perform worse than the simple leaf.

Here the validation set determines the number of nodes after

pruning and it is not possible to determine the number of nodes

beforehand.

When we try to prune a subtree T using SRM, we have two

choices, namely SrmLocal and SrmGlobal. In our previous

work [15], we proposed SrmLocal, where



8

TABLE I
DETAILS OF THE DATASETS. d: NUMBER OF ATTRIBUTES, S : SAMPLE SIZE

Set d S Type

Acceptors 88 3889 Discrete
Arabidopsis 1558 3279 Continuous
Artificial 10 320 Discrete
Breast 9 699 Continuous
Bupa 6 345 Continuous
Dlbcl 5439 77 Continuous
Donors 13 6246 Discrete
German 24 1000 Continuous
Hepatitis 19 155 Continuous
Haberman 3 306 Continuous
Heart 13 270 Continuous
Ironosphere 34 351 Continuous
Krvskp 36 3196 Discrete
Magic 10 19020 Continuous
Monks 6 432 Discrete
Mushroom 22 8124 Discrete
Musk2 166 6598 Continuous
Parkinsons 22 195 Continuous
Pima 8 768 Continuous
Polyadenylation 169 6371 Continuous
Promoters 57 106 Discrete
Prostatetumor 10509 102 Continuous
Ringnorm 20 7400 Continuous
Satellite47 36 2134 Continuous
Spambase 57 4601 Continuous
Spect 22 267 Discrete
Tictactoe 9 958 Discrete
Titanic 3 2201 Discrete
Transfusion 4 748 Continuous
Twonorm 20 7400 Continuous
Vote 16 435 Discrete

• We find the upper bound of the generalization error of

T using Equation 2 where V is the VC-dimension and

Et is the training error of the subtree T to be pruned.

The training error of a subtree T is calculated over the

instances arriving into T .

• We find the upper bound of the generalization error of

the leaf replacing T using Equation 2 where the VC-

dimension of a leaf is 1 and Et is the training error of

the leaf. The training error of a leaf is calculated over the

instances arriving into it.

If the upper bound of the generalization error of the leaf is

smaller than the upper bound of the generalization error of the

subtree T , we prune the subtree T , otherwise we keep it.

In this paper, we propose SrmGlobal, where

• We find the upper bound of the generalization error using

Equation 2 where V is the VC-dimension and Et is the

training error of the whole tree without pruning.

• We prune subtree T by replacing it with a leaf and find the

upper bound of the generalization error using Equation

2 where V is the VC-dimension and Et is the training

error of the pruned tree.

If the upper bound of the generalization error of the pruned

tree is smaller than the upper bound of the generalization error

of the unpruned tree, we prune the subtree T , otherwise we

keep it.

CvPrune corresponds to ID3 [7] for discrete datasets and

C4.5 [6] for continuous datasets where pruning is done via

cross-validation. SrmLocal and SrmGlobal correspond to ID3

TABLE II
THE AVERAGE AND STANDARD DEVIATIONS OF ERROR RATES OF

DECISION TREES GENERATED USING NOPRUNE, CVPRUNE, SRMLOCAL,
AND SRMGLOBAL. THE FIGURE BELOW SHOWS THE RESULT OF THE

POST-HOC NEMENYI’S TEST.

Dataset NoPrune CvPrune SrmLocal SrmGlobal

artificial 0.7 ± 1.6 1.1 ± 1.8 0.7 ± 1.6 0.7 ± 1.6
mushroom 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1

tictactoe 22.1 ± 3.5 23.8 ± 2.2 22.1 ± 3.5 22.1 ± 3.5
titanic 21.4 ± 0.4 21.8 ± 0.5 21.4 ± 0.4 21.4 ± 0.4

acceptors 18.6 ± 1.0 16.1 ± 2.0 16.5 ± 0.8 17.3 ± 0.7
arab. 3.7 ± 0.4 3.4 ± 0.6 3.4 ± 0.4 3.5 ± 0.6
bupa 39.8 ± 4.2 38.6 ± 4.1 37.2 ± 4.5 39.1 ± 4.9

donors 9.4 ± 0.4 7.7 ± 0.4 8.1 ± 0.4 7.5 ± 0.5
german 32.7 ± 1.9 29.9 ± 0.0 28.9 ± 1.9 29.9 ± 0.0

haberman 35.3 ± 3.9 26.6 ± 0.3 26.5 ± 0.0 26.3 ± 0.6
heart 30.9 ± 3.5 28.3 ± 4.7 26.9 ± 2.3 29.8 ± 3.6

hepatitis 26.5 ± 4.1 22.1 ± 4.4 21.2 ± 0.0 21.2 ± 0.0
ironosphere 14.9 ± 2.7 13.1 ± 1.9 14.2 ± 3.2 13.1 ± 2.9

magic 18.9 ± 0.7 17.5 ± 0.6 16.7 ± 0.4 16.6 ± 0.4
pima 31.9 ± 1.4 27.9 ± 3.4 26.7 ± 2.0 30.4 ± 1.9
poly. 32.8 ± 1.4 30.5 ± 1.3 29.1 ± 1.3 30.2 ± 1.1

promoters 33.3 ± 10.1 26.1 ± 9.9 30.0 ± 11.4 27.5 ± 10.9
ringnorm 12.7 ± 1.2 12.2 ± 1.1 12.6 ± 1.1 12.3 ± 1.2

satellite47 17.5 ± 0.9 15.4 ± 1.5 15.3 ± 1.3 16.3 ± 1.7
spect 23.3 ± 4.7 19.1 ± 2.8 20.8 ± 2.2 21.1 ± 0.0

transfusion 30.1 ± 2.5 24.0 ± 0.0 23.8 ± 1.1 24.0 ± 0.0
vote 6.9 ± 1.7 5.2 ± 0.7 4.8 ± 0.0 4.8 ± 0.0

breast 6.7 ± 0.9 6.7 ± 1.1 6.0 ± 1.2 5.8 ± 1.1
dlbcl 20.4 ± 6.1 23.7 ± 4.7 20.4 ± 6.1 20.4 ± 6.1

krvskp 1.0 ± 0.3 1.2 ± 0.4 1.0 ± 0.4 1.0 ± 0.4
parkinsons 13.5 ± 3.1 13.8 ± 2.3 12.9 ± 3.3 13.5 ± 3.1

prostate. 22.9 ± 6.6 23.1 ± 7.1 22.3 ± 6.8 22.9 ± 7.1
spambase 9.7 ± 0.6 9.9 ± 0.7 9.0 ± 0.5 9.0 ± 0.4
twonorm 16.0 ± 0.5 17.0 ± 0.7 15.9 ± 0.5 15.9 ± 0.6

monks 13.3 ± 6.8 12.8 ± 7.8 13.3 ± 6.8 13.3 ± 6.8
musk2 5.7 ± 0.9 5.5 ± 0.6 5.6 ± 0.9 5.7 ± 0.8

1 2 3 4

NoPrune

CvPrune

SrmLocal

SrmGlobal

for discrete datasets and C4.5 for continuous datasets where

pruning is done via SRM locally and globally respectively.

We compare SRM based prunings with CvPrune. For the

sake of generality, we also include the results of trees before

any pruning is applied (NoPrune). We use Friedman’s test for

the equality of the results of the algorithms and Nemenyi’s

test as the post-hoc test to compare neighboring algorithms

for significant difference in rank [19].

We did the experiments on a total of 31 data sets where 22 of

them are from UCI repository [20] and 9 are (acceptors, ara-

bidopsis, dlbcl, donors, musk2, parkinsons, polyadenylation,

prostatetumor, and transfusion) bioinformatics datasets (see

Table I). We first separate one third of the data set as the test set

over which we evaluate and report the final performance. With

the remaining two thirds, we apply 5×2-fold cross validation,

which gives a total of ten folds for each data set. For CvPrune,

validation folds are used as a pruning set. For both SrmLocal

and SrmGlobal, we did a grid-search on a1 with values from

{0.1, 0.2, . . . , 3.9, 4} and a2 with values from {0.1, 0.2, . . . ,

1.9, 2} using also validation folds.

Tables II and III show the average and standard deviations of

error rates and tree complexities of decision trees generated



9

TABLE III
THE AVERAGE AND STANDARD DEVIATIONS OF NUMBER OF DECISION

NODES OF DECISION TREES GENERATED USING NOPRUNE, CVPRUNE,
SRMLOCAL, AND SRMGLOBAL. THE FIGURE BELOW SHOWS THE RESULT

OF THE POST-HOC NEMENYI’S TEST.

Dataset NoPrune CvPrune SrmLocal SrmGlobal

artificial 4.7 ± 0.7 4.4 ± 1.0 4.7 ± 0.7 4.7 ± 0.7
mush. 4.9 ± 0.3 4.9 ± 0.3 4.9 ± 0.3 4.9 ± 0.3

tictactoe 54.3 ± 4.9 22.2 ± 6.8 54.3 ± 4.9 54.3 ± 4.9
titanic 8.3 ± 0.8 4.2 ± 0.6 8.3 ± 0.8 8.3 ± 0.8

acceptors 79.0 ± 4.0 7.1 ± 6.9 54.9 ± 1.8 61.6 ± 6.1
arab. 62.7 ± 19.0 12.5 ± 5.3 25.7 ± 9.0 31.8 ± 14.0
bupa 25.4 ± 3.8 5.4 ± 3.7 18.5 ± 5.0 18.2 ± 2.3

donors 124.8 ± 1.9 21.0 ± 3.7 72.1 ± 7.1 58.3 ± 7.3
german 68.5 ± 5.6 0.0 ± 0.0 40.4 ± 8.0 0.0 ± 0.0

haberman 29.7 ± 3.2 1.0 ± 3.2 0.0 ± 0.0 1.6 ± 1.6
heart 14.9 ± 1.9 3.5 ± 2.7 6.9 ± 2.5 12.2 ± 3.1

hepatitis 6.1 ± 1.3 0.7 ± 0.9 0.0 ± 0.0 0.0 ± 0.0
irono. 7.8 ± 0.9 3.8 ± 1.9 4.4 ± 1.3 4.0 ± 1.1
magic 627.0 ± 10.9 30.1 ± 16.5 308.7 ± 29.9 76.6 ± 23.2
pima 41.7 ± 3.9 3.8 ± 2.6 5.9 ± 4.6 28.5 ± 3.6
poly. 231.1 ± 7.0 22.5 ± 18.4 44.1 ± 15.6 89.2 ± 18.8

promoters 4.7 ± 0.9 2.0 ± 1.3 2.8 ± 1.0 1.0 ± 0.0
ringnorm 123.9 ± 10.3 45.7 ± 5.2 110.1 ± 9.3 94.2 ± 6.6

satellite47 57.2 ± 3.8 11.9 ± 4.5 21.2 ± 4.6 30.5 ± 9.9
spect 21.1 ± 2.3 5.2 ± 5.8 6.8 ± 7.3 0.0 ± 0.0
trans. 67.8 ± 4.2 0.0 ± 0.0 8.6 ± 14.0 0.0 ± 0.0
vote 8.9 ± 2.5 2.9 ± 1.7 1.0 ± 0.0 1.0 ± 0.0

breast 9.9 ± 1.9 4.1 ± 2.2 4.0 ± 2.0 4.9 ± 1.8
dlbcl 1.4 ± 0.5 0.5 ± 0.7 1.4 ± 0.5 1.4 ± 0.5

krvskp 35.7 ± 3.2 23.7 ± 4.2 31.2 ± 4.4 30.3 ± 4.5
park. 5.6 ± 0.8 3.3 ± 1.7 4.5 ± 1.4 5.6 ± 0.8

prostate. 2.2 ± 0.4 1.3 ± 0.5 1.2 ± 0.4 1.0 ± 0.0
spambase 101.8 ± 5.5 20.3 ± 8.4 65.6 ± 7.0 57.0 ± 13.9
twonorm 152.0 ± 6.5 79.9 ± 8.0 139.6 ± 7.2 133.9 ± 6.9

monks 24.0 ± 6.1 11.2 ± 2.4 24.0 ± 6.1 24.0 ± 6.1
musk2 68.6 ± 4.2 28.5 ± 7.0 60.8 ± 7.8 62.7 ± 4.8

1 2 3 4

NoPruneCvPrune

SrmLocal

SrmGlobal

using NoPrune, CvPrune, SrmLocal, and SrmGlobal respec-

tively. Friedman’s test rejects the equality of error rates. Post-

hoc Nemenyi’s test’s results on error rates show that pruning

works, that is, all three pruning strategies form a clique and

they are significantly better than NoPrune.

Friedman’s test also rejects the equality of tree complex-

ities. According to the post-hoc Nemenyi’s test’s results on

tree complexity, there are three groups: CvPrune generates

significantly smaller trees than (SrmLocal, SrmGlobal) group,

which also generate significantly smaller trees than NoPrune.

On four discrete datasets (first group) there is no need to

prune, i.e., pruning decreases performance and in this cases,

CvPrune prunes trees aggressively by sacrificing accuracy,

whereas both SrmLocal and SrmGlobal do not prune and gets

the best performance with NoPrune.

On eighteen datasets (second group) pruning helps, i.e.,

pruning reduces both the error rate and the tree complexity

as needed.

On seven datasets (third group) CvPrune prunes trees ag-

gressively by sacrificing accuracy, whereas both SrmLocal and

SrmGlobal prune well and gets smaller and at least as accurate

TABLE IV
THE AVERAGE AND STANDARD DEVIATIONS OF ERROR BOUNDS OF

DECISION TREES GENERATED USING SRMLOCAL, AND SRMGLOBAL.

Dataset SrmLocal SrmGlobal

acceptors 19.3 ± 0.8 17.8 ± 0.6
arabidopsis 8.9 ± 2.7 4.5 ± 0.4

artificial 47.5 ± 0.2 47.5 ± 0.2
breast 13.1 ± 1.7 12.8 ± 1.3
bupa 69.1 ± 4.9 64.9 ± 29.7
dlbcl 146.6 ± 6.4 146.6 ± 6.4

donors 10.4 ± 0.3 13.3 ± 0.3
german 30.0 ± 1.3 61.6 ± 0.0

haberman 93.7 ± 0.0 31.3 ± 5.6
heart 71.8 ± 3.1 34.7 ± 2.0

hepatitis 127.8 ± 0.5 127.8 ± 0.5
ironosphere 16.3 ± 2.5 6.8 ± 30.7

krvskp 3.1 ± 0.2 3.1 ± 0.2
magic 17.5 ± 0.5 23.1 ± 0.6
monks 15.6 ± 3.2 15.6 ± 3.2

mushroom 7.1 ± 0.1 2.6 ± 0.4
musk2 1.8 ± 1.1 12.2 ± 0.4

parkinsons 45.4 ± 5.6 80.5 ± 2.8
pima 36.7 ± 2.8 36.5 ± 2.2

polyadenylation 37.2 ± 2.0 38.1 ± 2.1
promoters 46.5 ± 5.3 21.9 ± 4.2

prostatetumor 76.4 ± 4.5 117.4 ± 60.8
ringnorm 5.4 ± 0.4 11.6 ± 0.6

satellite47 22.7 ± 1.3 21.6 ± 1.4
spambase 9.8 ± 0.7 12.1 ± 0.4

spect 34.1 ± 2.1 91.1 ± 0.5
tictactoe 7.5 ± 2.0 7.5 ± 2.0

titanic 22.9 ± 3.2 36.2 ± 1.6
transfusion 32.8 ± 1.2 59.1 ± 0.0

twonorm 10.4 ± 0.6 14.4 ± 0.4
vote 36.6 ± 1.4 36.6 ± 1.4

trees as NoPrune.

Table IV shows the average and standard deviations of

error bounds of decision trees generated using SrmLocal and

SrmGlobal. It is well known that the generalization bounds

given by the VC-dimension are not necessarily tight, that is,

the upper bound for generalization error given by the equation

2 can be very loose [21]. For example, in our experiments, in

datasets such as artificial, bupa, dlbcl, hepatitis, prostatetumor

the bounds are extremely large. On the other hand, there are

also cases in the literature where SRM works well and the

bounds are not necessarily loose [3], [22], [23]. Cherkassy

and Ma [24] show that SRM consistently outperforms AIC

(Akaike Information Criterion) in all datasets they covered

and SRM and BIC (Bayesian Information Criterion) methods

attain similar predictive performance. Also in our experiments,

in many cases the error bounds are useful, i.e., the difference

between the test error and the error bound is quite small.

In general, the size of the dataset inversely effects the error

bound. For small datasets, the differences between the test

error and error bound are large, for large datasets it is reverse.

VI. CONCLUSION

This paper tries to fill the gap in the statistical learning the-

ory, where there is no explicit formula for the VC-dimension

of a decision tree. In this work, we first focused on the

easiest case of univariate trees with binary features. Starting

from basic decision tree with a single decision node, we give

and prove lower bounds of the VC-dimension of different

decision tree structures. We also show that our approach can



10

be generalized to decision trees having more than two feature

values and continuous univariate trees. In general, we prove

that the VC-dimension of a univariate decision tree depends

on the number of features and the VC-dimension of the left

and right subtrees of it (tree structure).

To show our bounds are tight, we use the exhaustive search

algorithm given in [16] to calculate the exact VC-dimension

of simple trees and compare our bounds with the exact VC-

dimension values. These VC-dimension bounds are then used

in pruning decision trees and when compared with cross-

validation pruning, we see that SRM-pruning using our VC-

dimension values work well and find trees that are as accurate

as CV pruning.

REFERENCES

[1] C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford University Press, Inc., 1995.

[2] V. Vapnik, The Nature of Statistical Learning Theory. New York, NY,
USA: Springer-Verlag New York, Inc., 1995.

[3] V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory,

and Methods, 2nd ed. New York, NY, USA: John Wiley & Sons, Inc.,
2007.

[4] X. Shao, V. Cherkassky, and W. Li, “Measuring the VC-dimension using
optimized experimental design,” Neural Computation, vol. 12, no. 8, pp.
1969–1986, Aug. 2000.

[5] V. Vapnik, E. Levin, and Y. L. Cun, “Measuring the VC-dimension of
a learning machine,” Neural Computation, vol. 6, no. 5, pp. 851–876,
Sep. 1994.

[6] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[7] ——, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp.
81–106, Mar. 1986.

[8] S. K. Murthy, “Automatic construction of decision trees from data:
A multi-disciplinary survey,” Data Mining and Knowledge Discovery,
vol. 2, no. 4, pp. 345–389, Dec. 1998.

[9] L. Rokach and O. Maimon, “Top-down induction of decision trees classi-
fiers - a survey,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, vol. 35, no. 4, pp. 476–487, Nov.
2005.

[10] T. S. Lim, W. Y. Loh, and Y. S. Shih, “A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new
classification algorithms,” Machine Learning, vol. 40, no. 3, pp. 203–
228, Sep. 2000.

[11] M. Fernndez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
Journal of Machine Learning Research, vol. 15, pp. 3133–3181, 2014.

[12] Y. Mansour, “Pessimistic decision tree pruning based on tree size,” in
Proceedings of the 14th international conference on Machine learning,
Nashville, TN, USA, Jul. 1997, pp. 195–201.

[13] H. U. Simon, “The Vapnik-Chervonenkis dimension of decision trees
with bounded rank,” Information Processing Letters, vol. 39, no. 3, pp.
137–141, 1991.

[14] O. Maimon and L. Rokach, “Improving supervised learning by feature
decomposition,” in Proceedings of the Second International Symposium

on Foundations of Information and Knowledge Systems. Salzau Castle,
Germany: Springer Verlag, Feb. 2002, pp. 178–196.

[15] O. T. Yıldız, “On the VC-dimension of univariate decision trees,”
in 1st International Conference on Pattern Recognition and Methods,
Vilamoura, Algarve, Portugal, Feb. 2012, pp. 205–210.

[16] O. Aslan, O. T. Yıldız, and E. Alpaydın, “Calculating the VC-dimension
of decision trees,” in Proceedings of the 24th International Symposium

on Computer and Information Sciences, North Cyprus, Sep. 2009, pp.
193–198.

[17] O. T. Yıldız and E. Alpaydın, “Omnivariate decision trees,” IEEE

Transactions on Neural Networks, vol. 12, no. 6, pp. 1539–1546, Nov.
2001.

[18] O. T. Yıldız, “Model selection in omnivariate decision trees using
structural risk minimization,” Information Sciences, vol. 181, no. 23,
pp. 5214–5226, Dec. 2011.

[19] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, Dec. 2006.

[20] C. Blake and C. Merz, “UCI repository of ma-
chine learning databases,” 2000. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[21] D. Cohn and G. Tesauro, “How tight are the Vapnik-Chervonenkis
bounds,” Neural Computation, vol. 4, pp. 249–269, Mar. 1992.

[22] V. Cherkassky, X. Shao, F. M. Mulier, and V. Vapnik, “Model com-
plexity control for regression using VC generalization bounds,” IEEE

Transactions on Neural Networks, vol. 10, no. 5, pp. 1075–1089, Dec.
1999.

[23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference and Prediction, 2nd ed. New York,
NY, USA: Springer-Verlag New York, Inc., 2009.

[24] V. Cherkassky and Y. Ma, “Comparison of model selection for regres-
sion,” Neural Computation, vol. 15, no. 7, pp. 1691–1714, Jul. 2003.

Olcay Taner YILDIZ received his BSc, MSc, and
PhD degrees in computer science from Boğaziçi
University in 1997, 2000, and 2005. He did postdoc-
toral work at the University of Minnesota in 2005.
He is associate professor of Computer Engineering
at Işık University. He worked on machine learning,
specifically model selection and decision trees. His
current research is on software engineering, natural
language processing, and bioinformatics.


