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INVERSE DOMINATION INTEGRITY OF GRAPHS

B. BASAVANAGOUD1∗, S. POLICEPATIL2, §

Abstract. With the growing demand for information transport, networks and network
architecture have grown increasingly vital. Nodes and the connections that connect them
make up a communication network. When the communication network’s nodes or links
are destroyed, the network’s efficiency reduces. If a network is modeled by a graph,
then there are various graph theoretical parameters used to express the vulnerability
of communication networks such as connectivity, integrity, weak integrity, neighbor in-
tegrity, hub integrity, domination integrity, toughness, tenacity etc. In this paper, we
introduce a new vulnerability parameter known as an inverse domination integrity which
is defined as IDI(G) = min

S⊆V (G)
{|S| + m(G − S)}, where S is an inverse dominating set

and m(G− S) denotes the order of largest component of G− S. We derive few bounds
of an inverse domination integrity of graphs. Also, we determine an inverse domination
integrity of some families of graphs. Finally, we compute different types of measures
of vulnerabilities of probabilistic neural network which are useful in classification and
pattern recognition problems.

Keywords: Communication network, network vulnerability, integrity, inverse domination
integrity.
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1. Introduction

In this paper, we consider simple, finite, undirected graphs. Let G be a graph with a
vertex set V (G) and an edge set E(G) such that |V (G)| = n and |E(G)| = m. The open
neighbourhood of a vertex u ∈ V (G) is defined as the set NG(u) consisting of all vertices
v which are adjacent with u. NG[u] = N(u) ∪ {u} denotes the closed neighbourhood of
u. The degree of a vertex dG(v) is the number of edges incident to it in G. We refer to
Harary [21] for notations and terminologies not defined here.

Network designers place a premium on the stability of a communication network made
of processing nodes (vertices) and communication links (edges). As linkages or nodes are
lost, the network’s effectiveness will deteriorate. As a result, communication networks
should be built as stable as possible, not only in terms of preventing early damage, but
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also in terms of possible network reformation. Many parameters have been introduced for
the measurement of vulnerability. Some of them are connectivity, integrity, weak integrity,
neighbor integrity, hub integrity, domination integrity, toughness, tenacity etc.
The connectivity of a graph G is defined by

κ(G) = min
S⊆V (G)

|S|,

for which G \ S is disconnected or trivial.
The concept of integrity was introduced by Barefoot et al. in [10] as a measure of the

stability of a graph. The integrity of a graph G is defined in [10] as

I(G) = min
S⊆V (G)

{|S|+m(G \ S)},

where m(G \ S) denotes the order of the largest component of G \ S.
For more information about integrity refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16, 18, 19, 20].
The weak integrity of a graph G is defined in [23] as

Iw(G) = min
S⊆V (G)

{|S|+me(G \ S)},

where me(G \ S) denotes the number of edges of the largest component of G \ S.
A vertex u in G is said to be subverted if the closed neighborhood N [u] is deleted from

G. A set of vertices S = {u1, u2, ..., um} is called vertex subversion stratergy of G if each of
the vertices in S has been subverted from G. Let G \S be the survival subgraph left when
S has been a vertex subversion stratergy of G. The vertex neighbor integrity [13, 14] of a
graph G, V NI(G), is defined as

V NI(G) = min
S⊂V (G)

{|S|+m(G \ S)},

where S is any vertex subversion stratergy of G and m(G \ S) denotes the order of the
largest component of G \ S.

Definition 1.1. [32] Let H ⊆ V (G) and x, y ∈ V (G). An H-path between x and y is a
path where all intermediate vertices are from H. The set H ⊆ V (G) is a hub set of G if
it has the property that, for any x, y ∈ V (G) \H, there is an H-path in G between x and
y. This includes the degenerate cases where the path consists of the single edge xy or a
single vertex x if x = y.

The concept of hub integrity was introduced by Sultan et al. [26] as a measure of the
vulnerability of a graph. The hub integrity of a graph G is defined in [26] as

HI(G) = min
S⊆V (G)

{|S|+m(G \ S)},

where S is a hub set of G and m(G \ S) denotes the order of the maximum component of
G− S.

Definition 1.2. [22] A set D of vertices in a graph G is a dominating set of G if every
vertex in V −D is adjacent to some vertex in D.

Sundareswaran and Swaminathan [27] defined the domination integrity of a graph. The
domination integrity of a graph G is defined as

DI(G) = min
S⊆V (G)

{|S|+m(G \ S)},

where S is a dominating set of G and m(G \ S) denotes the order of the maximum
component of G−S. For more information related to domination integrity refer to [29, 30].
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The toughness of a graph was introduced by Chvátal [12]. The toughness of a graph G
is defined by

t(G) = min
S⊆V (G)

|S|
ω(G \ S)

,

where ω(G \ S) denotes the number of components of G− S.
In [15], the tenacity of a graph G is defined by

T (G) = min
S⊆V (G)

|S|+m(G \ S)

ω(G \ S)
,

where ω(G \ S) denotes the number of components of G \ S and m(G \ S) denotes the
order of the maximum component of G \ S.

Inverse domination is one of the important domination concepts and it was introduced
by Kulli and Singarkatti [24] as follows.

Definition 1.3. [24] Let D be a minimum dominating set in a graph G = (V,E). If V −D
contains a dominating set D−1 of G, then D−1 is called an inverse dominating set with
respect to D. The inverse domination number γ−1(G) of G is the cardinality of a smallest
inverse dominating set of G. A γ−1-set is a minimum inverse dominating set.

The following results are useful to prove our main results.

Proposition 1.1. [24] If a graph G has no isolated vertices, then γ(G) ≤ γ−1(G).

Theorem 1.1. [24] If a (n,m) graph G has no isolated vertices, then 2n−m
3 ≥ γ−1(G).

Proposition 1.2. [24] For any path Pn with n vertices,

γ−1(Pn) =

{
dn3 e+ 1, if n ≡ 0( mod 3),
dn3 e, otherwise.

Proposition 1.3. [24] For a cycle Cn with n vertices, γ−1(Cn) = dn3 e.

Proposition 1.4. [28] Let G be a connected graph. Then I(G) ≤ DI(G).

2. Inverse domination integrity of graphs

We introduce a new measure of vulnerability of a graph G and it is called an inverse
domination integrity.

Definition 2.1. The inverse domination integrity of a graph G is defined as IDI(G) =
min

S⊆V (G)
{|S|+m(G \S)}, where S is an inverse dominating set of G and m(G \S) denotes

the order of the maximum component of G \ S. Any set S ⊆ V (G) with property that
|S|+m(G \ S) = IDI(G) is called as an IDI-set of G.

If the integrity and domination integrity values of two graphs are the same, these factors
are insufficient to distinguish them. As a result, a new parameter is required to distinguish
these graphs. Then, the following questions arise: How can a network designer determine
which network is more stable than the other? Is the inverse domination integrity a vulner-
ability parameter that compare these graphs in resistance? Let’s have a look at this with
a basic comparison of two graphs. Assume that G and H are graphs with same order as
follows in Fig. 1.

For G and H, I(G) = I(H) = 3 and DI(G) = DI(H) = 3. So, integrity and domination
integrity do not distinguish between G and H. The inverse domination integrity values of
these graphs are computed as follows.
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Figure 1. Two graphs G and H.

Consider S1 = {a1, a3, a5, a6} as an inverse dominating set of G and m(G − S1) = 1.
So, IDI(G) = 5.

Consider S2 = {b1, b2, b3, b5} as an inverse dominating set of H and m(G−S2) = 2. So,
IDI(H) = 6.

For G and H, IDI(G) = 5 and IDI(H) = 6. So, it can be said that H is more stable
than G. Then, an inverse domination integrity is a suitable measure of vulnerability which
distinguishes between these graphs.

In this section, we obtain the inverse domination integrity of graphs.

Observation 2.1. For any graph G without isolated vertices, IDI(G) > γ−1(G).

Proposition 2.1. For any graph G without isolated vertices, I(G) ≤ DI(G) ≤ IDI(G).

By Proposition 1.4, I(G) ≤ DI(G). By Proposition 1.1, we know that γ(G) ≤ γ−1(G),
then DI(G) ≤ IDI(G). Therefore, I(G) ≤ DI(G) ≤ IDI(G).

Proposition 2.2. For any graph G without isolated vertices, IDI(G) > γ(G)

Proof. Since IDI(G) > γ−1(G) and by Proposition 1.1, γ−1(G) ≥ γ(G). Hence IDI(G) >
γ(G) �

Observation 2.2. 2 ≤ IDI(G) ≤ n. IDI(G) = 2, if and only if G = K2. If G 6= K2,
then 3 ≤ IDI(G) ≤ n.

Theorem 2.1. Let G be a graph of order n ≥ 2 with no isolated vertices. Then IDI(G) ≥
γ−1(G) + 1

Proof. Let G be a graph of order n ≥ 2 with no isolated vertices and S be a γ−1-set of G.
So, |S| = γ−1(G) and m(G− S) ≥ 1. Then

IDI(G) = min
S⊆V (G)

{|S|+m(G− S)}

≥ min{γ−1(G) + 1}
≥ γ−1(G) + 1

�

Theorem 2.2. Let every nonend vertex of a tree T be adjacent to atleast two end vertices,
then IDI(T ) = n

Proof. If every nonend vertex of T is adjacent to at least two end vertices, then the set
of all nonend vertices is a minimum dominating set and the set of all end vertices is a
minimum inverse dominating set. Let D and D−1 denote the minimum dominating and
inverse dominating sets, respectively. So, |S| = |V \D| and m(G \ S) = |D|. Therefore,
IDI(G) = |V \D|+ |D| = n �
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Theorem 2.3. For any graph G order n containing no isolated vertices, if IDI(G) = n,
then diam(G) ≤ 2.

Proof. Let G be a graph of order n such that it contains no isolated vertices. Assume that
diam(G) ≥ 3, then G contains a path P4. Thus, IDI(G) ≤ n−1 which is a contradiction.
Hence, diam(G) ≤ 2. �

Proposition 2.3. For any complete graph Kn(n ≥ 2), IDI(Kn) = n.

Proof. Let V (Kn) = {x1, x2, ..., xn} and S ⊆ V (Kn) is an inverse dominating set of com-
plete graph Kn(n ≥ 2). The only minimum dominating set of Kn is any one vertex of Kn

that is D = {x1}. Since Kn is a complete graph, S = {x2, x3, ..., xi} for any i, 2 ≤ i ≤ n
so that |S| = i− 1. Correspondingly, m(Kn−S) = n− i+ 1 and hence IDI(Kn) = n. �

Proposition 2.4. For any path Pn with n ≥ 3,

IDI(Pn) =

{
dn3 e+ 3, if n ≡ 0( mod 3),
dn3 e+ 2, otherwise.

Proof. Let Pn be any path n ≥ 3. From Proposition 1.2, it is known that γ−1(Pn) = dn3 e+1

if n ≡ 0( mod 3) and γ−1(Pn) = dn3 e if n 6≡ 0( mod 3). For any minimum inverse

dominating set S of Pn, m(Pn \ S) = 2. Therefore, IDI(Pn) ≤ γ−1(Pn) + 2. If X is any
inverse dominating set of Pn, then |X|+m(Pn \X) ≥ γ−1(Pn) + 2. Hence the proof. �

Proposition 2.5. For any cycle Cn, n ≥ 4

IDI(Cn) =

{
3, if n = 4,
dn3 e+ 2, if n ≥ 5.

Proof. Let Cn be any cycle n ≥ 4.
Case 1. Suppose n = 4. Let S be an inverse dominating set of C4. |S| = β0(C4) = 2 and
m(C4 \ S) = 1. Therefore, IDI(C4) = 3.
Case 2. From Proposition 1.3, it is known that γ−1(Cn) = dn3 e if n ≥ 5. For any minimum

invesre dominating set S of Cn, m(Cn − S) = 2. Therefore, IDI(Cn) ≤ γ−1(Cn) + 2. If
X is any inverse dominating set of Cn, then |X|+m(Cn \X) ≥ γ−1(Cn) + 2. Hence the
proof. �

Proposition 2.6. For any complete bipartite graph Ka,b with 2 ≤ a ≤ b,
IDI(Ka,b) = a+ b,

Proof. Let V (Ka,b) = V1 ∪ V2, where V1 = {x1, x2, ..., xa} and V2 = {y1, y2, ..., yb}. It is
easy to say that IDI(K2,2) = 3. Let us consider the other case except a = b = 2. The
minimum dominating set of a complete bipartite graph contains one vertex from V1 and
another vertex from V2. Then Si = {x2, ..., xa, y2, ..., yb} contains an inverse dominating
set of Ka,b. If |Si| = k, then m(Ka,b \ Si) = a+ b− k and hence IDI(Ka,b) = a+ b. �

Proposition 2.7. For the star graph K1,b, IDI(K1,b) = b+ 1,

Proof. Let V (K1,b) = {x1, x2, ..., xb} and d(x1) = ∆(K1,b). D = {x1} is a minimum
dominating set and S = {V (K1,b) \ {x1}} is an inverse dominating set. No proper subset
of S is an inverse dominating set. So, |S| = b and m(K1,b\S) = 1. Thus, IDI(K1,b) = 1+b.
Therefore, IDI(K1,b) = b+ 1. �

Proposition 2.8. For the wheel graph Wn(n ≥ 4), IDI(Wn) = n.

Proof. Let x be the central vertex of a wheel and V (Wn) = {x, y1, y2, ..., yn−1}. D = {x}
is a minimum dominating set and S = {V (Wn) \ {x}} is an inverse dominating set. No
proper subset of S is an inverse dominating set. So, |S| = n−1 and m(Wn \S) = 1. Thus,
IDI(Wn) = n. �
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3. Vulnerability measures in probabilistic neural network

A probabilistic neural network (PNN(n, k, m)) is a feedforward neural network, which
is widely used in classification and pattern recognition problems. In the PNN(n, k, m)
algorithm, the parent probability distribution function (PDF) of each class is approximated
by a Parzen window and a non-parametric function. Then, using PDF of each class, the
class probability of a new input data is estimated and Bayes’ rule is then employed to
allocate the class with highest posterior probability to new input data. By this method,
the probability of mis-classification is minimized. This type of artificial neural network
(ANN) was derived from the Bayesian network and a statistical algorithm called Kernel
Fisher discriminant analysis. It was introduced by D.F. Specht in 1966. In a PNN(n, k,
m), the operations are organized into a multilayered feedforward network with four layers:
namely, Input layer, Pattern layer, Summation layer and Output layer.
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Figure 2. The probabilistic neural network PNN[4, 2, 3].

Theorem 3.1. Let PNN(n, k,m) be the probabilistic neural network. Then

κ(PNN(n, k,m)) = min{n,mk}.

Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Choose set S in such a way that it should contain all the vertices in input layer
of PNN(n, k,m). So, |S| = n. The removal of the vertices of set S from PNN(n, k,m)
results in k disconnected star graphs each of order m+ 1.
Case 2. Let S ⊂ V (PNN(n, k,m)) be a set containing all the vertices of hidden layer.
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So, |S| = mk. The removal of vertices from PNN(n, k,m) leaves a totally disconnected
graph with n+ k vertices.
Combining the above two cases we get, κ(PNN(n, k,m)) = min{n,mk}. �

Theorem 3.2. Let PNN(n, k,m) be the probabilistic neural network. Then

I(PNN(n, k,m)) = min{n+m+ 1,mk + 1}.

Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Choose set S in such a way that it should contain all the vertices in input layer
of PNN(n, k,m). So, |S| = n. The deletion of the vertices of set S from PNN(n, k,m)
results in k disconnected star graphs each of order m+1. So, m(PNN(n, k,m)\S) = m+1.
|S|+m(PNN(n, k,m) \ S) is minimum for above chosen S.
Case 2. Let S ⊂ V (PNN(n, k,m)) be a set containing all the vertices of hidden layer. So,
|S| = mk. The removal of vertices from PNN(n, k,m) leaves a disconnected graph with
n+k vertices. Hence, m(PNN(n, k,m)\S) = 1. Therefore, |S|+m(PNN(n, k,m)\S) =
mk + 1 is minimum for above set S.
Combining the above two cases we get, I(PNN(n, k,m)) = min{n+m+ 1,mk+ 1}. �

Theorem 3.3. Let PNN(n, k,m) be the probabilistic neural network. Then

V NI(PNN(n, k,m)) = 2.

Proof. Let S be a subversion stratergy of V (PNN(n, k,m)). Choose any one vertex from
input layer, |S| = 1. If we remove the set S and all its adjacent vertices, then there exist
n− 1 + k components which are of order 1. So, V NI(PNN(n, k,m)) = 2. �

Theorem 3.4. Let PNN(n, k,m) be the probabilistic neural network. Then

HI(PNN(n, k,m)) = mk + 1.

Proof. Let PNN(n, k,m) be the probabilistic neural network. The set of vertices in hidden
layer of PNN(n, k,m) forms a hub set S, it follows that |S| = mk. The removal of S
from PNN(n, k,m) results a disconnected graph. Therefore, HI(PNN(n, k,m) \ S) =
mk + 1. �

Theorem 3.5. Let PNN(n, k,m) be the probabilistic neural network. Then

DI(PNN(n, k,m)) = min{n+ k + 1,mk + 1}.

Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Choose set S in such a way that it should contain all the vertices in input layer and
output layer of PNN(n, k,m), which is a dominating set of PNN(n, k,m). So, |S| = n+k.
The deletion of the vertices of set S from PNN(n, k,m) results in disconnected graphs
each of order 1. So, m(PNN(n, k,m) \ S) = 1. |S| + m(PNN(n, k,m) \ S) is minimum
for above chosen S.
Case 2. Let S ⊂ V (PNN(n, k,m)) be a set containing all the vertices of hidden layer
which is a dominating set for PNN(n, k,m). So, |S| = mk. The removal of vertices from
PNN(n, k,m) leaves a disconnected graph. Hence, m(PNN(n, k,m) \S) = 1. Therefore,
|S|+m(PNN(n, k,m) \ S) = mk + 1 is minimum for above set S.
Combining the above two cases we get, DI(PNN(n, k,m)) = min{n+k+1,mk+1}. �

Theorem 3.6. Let PNN(n, k,m) be the probabilistic neural network. Then

Iw(PNN(n, k,m)) = min{n+m,mk}.
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Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Choose set S in such a way that it should contain all the vertices in input layer
of PNN(n, k,m). So, |S| = n. The deletion of the vertices of set S from PNN(n, k,m)
results in disconnected graph each of size m. So, me(PNN(n, k,m) \ S) = m. |S| +
m(PNN(n, k,m) \ S) is minimum for above chosen S.
Case 2. Let S ⊂ V (PNN(n, k,m)) be a set containing all the vertices of hidden layer
of PNN(n, k,m). So, |S| = mk. The removal of vertices from PNN(n, k,m) leaves a
disconnected graph each of size 0. Hence, m(PNN(n, k,m) \ S) = 0. Therefore, |S| +
m(PNN(n, k,m) \ S) = mk is minimum for above set S.
Combining the above two cases we get, Iw(PNN(n, k,m)) = min{n+m,mk}. �

Theorem 3.7. Let PNN(n, k,m) be the probabilistic neural network. Then

t(PNN(n, k,m)) = min

{
n

k
,
mk

n+ k

}
.

Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Choose set S in such a way that it should contain all the vertices in input layer of
PNN(n, k,m). So, |S| = n. The removal of S from PNN(n, k,m) results in disconnected

graph where number of components is k. So, ω(PNN(n, k,m) \ S) = k. |S|
ω(PNN(n,k,m)\S)

is minimum for above chosen S.
Case 2. Let S be a set containing all the vertices of hidden layer of PNN(n, k,m).
So, |S| = mk. The removal of vertices from PNN(n, k,m) results in a disconnected
graph where number of components is n + k. Hence, ω(PNN(n, k,m) \ S) = n + k.

|S|
ω(PNN(n,k,m)\S) is minimum for above chosen S.

Combining the above two cases we get, t(PNN(n, k,m)) = min
{

n
k ,

mk
n+k

}
. �

Theorem 3.8. Let PNN(n, k,m) be the probabilistic neural network. Then

T (PNN(n, k,m)) = min

{
n+m+ 1

k
,
mk + 1

n+ k

}
.

Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Choose set S in such a way that it should contain all the vertices in input layer
of PNN(n, k,m). So, |S| = n. The deletion of the vertices of set S from PNN(n, k,m)
results in k disconnected star graphs each of order m+1. So, m(PNN(n, k,m)\S) = m+1

and ω(PNN(n, k,m) \ S) = k. |S|+m(PNN(n,k,m)\S)
ω(PNN(n,k,m))\S is minimum for above chosen S.

Case 2. Let S ⊂ V (PNN(n, k,m)) be a set containing all the vertices of hidden layer.
So, |S| = mk. The removal of vertices from PNN(n, k,m) leaves a disconnected graph
with n+ k vertices. Hence, m(PNN(n, k,m) \ S) = 1 and ω(PNN(n, k,m) \ S) = n+ k.

Therefore, |S|+m(PNN(n,k,m)\S)
ω(PNN(n,k,m))\S is minimum for above set S.

Combining the above two cases we get, T (PNN(n, k,m)) = min
{

n+m+1
k , mk+1

n+k

}
. �

Theorem 3.9. Let PNN(n, k,m) be the probabilistic neural network. Then

IDI(PNN(n, k,m)) =

{
n+ k +m, if mk ≤ n+ k,
mk + 1, if mk > n+ k.
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Proof. Let PNN(n, k,m) be the probabilistic neural network. There are two cases to
choose the set S.
Case 1. Suppose mk ≤ n + k. Let D be a minimum dominating set which con-
sists of all the vertices of hidden layer. So, choose set S in such a way that it should
contain all the vertices in input layer and output layer of PNN(n, k,m), which is an
inverse dominating set of PNN(n, k,m). So, |S| = n + k. The deletion of the ver-
tices of set S from PNN(n, k,m) results in totally disconnected graphs of order 1. So,
m(PNN(n, k,m) \ S) = 1. |S| + m(PNN(n, k,m) \ S) is minimum for above chosen S.
Thus, IDI(PNN(n, k,m)) = n+ k + 1 if m ≤ n+ k.
Case 2. Suppose mk > n + k. Choose set D in such a way that it should contain
all the vertices in input layer and output layer of PNN(n, k,m), which is a minimum
dominating set of PNN(n, k,m). Let S ⊂ V (PNN(n, k,m)) be a set containing all the
vertices of hidden layer which is a dominating set for PNN(n, k,m). So, |S| = mk.
The removal of vertices from PNN(n, k,m) leaves a totally disconnected graph. Hence,
m(PNN(n, k,m) \ S) = 1. Therefore, |S|+m(PNN(n, k,m) \ S) = mk + 1 is minimum
for above set S. Thus, IDI(PNN(n, k,m)) = mk + 1 if m > n+ k.

�

4. Conclusions

In this paper, we have introduced the inverse domination integrity, a new measure of
network vulnerability. We have computed the inverse domination integrity of standard
class of graphs. Also, we have studied some properties and bounds for inverse domination
integrity. The probabilistic neural network is taken to model the network system and the
vulnerability parameter values of them reveal how network can be made more stable than
the earlier. These results can help the network designers to choose a suitable topology
for the network. This study can be very useful in the investigation of complex network
robustness.
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