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CERTAIN EXPANSION FORMULAE INVOLVING INCOMPLETE
I-FUNCTIONS

S. D. PUROHIT!, D. L. SUTHAR?, ALI A. AL-JARRAH?, V. K. VYAS3, K. S. NISAR**, §

ABSTRACT. The aim of this paper is to derive the expansion formulae for the incomplete
I-function. Furthermore, their special cases are illustrated in terms of various types
of special functions (incomplete I-function, incomplete H-function, and incomplete H-
function) that are common in nature and very useful for further analysis.
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1. INTRODUCTION AND PRELIMINARIES

The incomplete I-functions are very useful for deriving new and known results due to

its wide applications in science and engineering. Recently Jangid et al. [4] defined a

new family of incomplete I-functions (M 1;%"™ and (M 1)%". Incomplete I-functions are the

natural generalization of the I-function defined by Rathie [13], I-function, H-function,
H-function, Meijer G-function, hypergeometric function, and many other functions (see
details; [1, 7, 9, 14, 17, 18]). So keeping this in mind, we derive expansion formulae of
incomplete I-functions to make these more useful which are general in nature and helpful
for further studies.
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Recently fractional integral formulas for the incomplete gamma functions (s, x) and
I'(s,z) defined by Parmar and Saxena [11] (see also; [3]).

v(s,x) = /Oz e”'t7dt, (R(s) > 0;2 > 0), (1)

I'(s,z) = /00 e 't7dt, (R(s) > 0;2>0). (2)

These incomplete gammas functions 7y (s, x) and I' (s, z) satisfy the following decomposi-
tion formula:

v(s,z) + T(s,z) =T(s); (R(s)>0).

In the study of incomplete I-functions 7I,3" and 'I)%", Jangid et al. [4] define the
following pair of Mellin-Barnes type contour integral representation

(01701;141 :x)a(cjacj;Aj)Q,p }
(dj, Dj; Bj)ig

p.q p.q

) prn(z) = () pmen [Z

— (M m.n [Zl (c1,C1; Ar 2 ), (2, C2; A2), -+, (cp, Cpi Ap) ]

b (dlyDl;Bl)a"' ,(danq;Bq)
1
= 5x7 [ 0502 (3)

where

9(s,2) = {1 = e+ Crs oYM T AT — Dis)H T, (T - e+ Cys)} ™ (4)
| [Tz AT = dj + Dys) Y TT5,, 40 T (s — Cjs)} ’

and

(T) ym,n _ (D) ym,n (CDCBAI : .1‘), (Cjacj;Aj)Q,p
Ip,q (2) = Ip,q [z‘ (dj,Dj;Bj)Lq

— () mn [z' (c1,Cr; Ay i x), (e2,Co5 Az), -+, (cp, Cps Ap) ]

P (di,D1;B1),- -+, (dg, Dg; By)
1
= M/S:G(S,x)zsds, (5)

Gs, ) = Lzt o)} T AT (dy = Dys)} P T {0 (L = ¢ + Cys)} Y o
| s (0~ + Dy} Tl (e — G}

where (-, z) and I'(-,x) are the lower and upper incomplete gamma functions defined
in (1) and (2). These incomplete I-functions are exists for all x > 0 under the same
conditions. These incomplete I-functions are symmetric in the set of pair of parameters.
The equation is valid only for A7 = 1, In this case

O pmn(z) + O e (z) = I (2).

In general, we have
(1 =1 + Cis,2)]M + [T(1 = ¢1 + Cys,2)] # [D(1 — ¢1 + Cys) M.

Some important special cases of incomplete I-functions are enumerated below:
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(5 — . — . . . . 7_ . (’Y) m,n .
? Y ) *
(1) If we set Bj(j =1 m) = 1in (3); we obtain incomplete /-function I, " as

('y)va”(Z) _ (')/)Tm’" (clvclaAl ) (cj7Cj;Aj)27P
(d1, D1;1)1,m, (dj, Dj; Bj)my1,4

1 —= s
= o 29(3733)2 ds, (7)

where
{v(1 = c1 + Cus, )} I8, T(dy — Dys) [T—p {T(1 — ¢ + Cys) }

g(s,z) = _ _ . 8
9s2) 17,1 {01 = dj + Do)} TTo_,, 1 {T (e — Cys)} )

(2) If we put A;(j =n+1,---,p)=1and B;j(j = 1,--- ,m) =1 1in (3), incomplete
I-function is the incomplete H-function, defined by Srivastava et al. [19]:

—mn(,y _ =mn (c1, C1; Ay 2 ), (¢, Cf; Aj)an, (¢4, C)nyip
Vp.q (Z) = Tnyg |:Z ' (dj, .Dj)Lm, (d Dja B])WH‘LQ

27rz/¢ s, x)z%ds, 9)

Stomy = DO e o I T T~ DAL M0 = + Gl
s,x) = r .
femt DL —dj + Dys)] ™ TT5_, 1 T(cj — Cys)
(3) If we take Aj(j = 1,---,p) = 1 and Bj(j = 1,--- ,q) = 1 in (3), incomplete
I-function is the incomplete H-function, defined by Srivastava et al. [19]:

(c1,C1:2),(cj, Cj)ap
(djaD]')l,q

Yo (2) = V" [z

1
= — [ ®(s,2)zds, (11)
2mi Jo

(= + s, ) [[7L, T(d; - Ds)l_[’j1 2, I'(1—c¢j+ Cjs)
Hg‘:m—i-l ( d +D 5) ] =n+1 ( —Cj S)

(4) Additionally, if we set x = 0 in (3), then we obtain the /-function [13].

(12)

Remark 1.1. Similarly, one can easily obtain another class of incomplete functions as
special cases of the incomplete I-function (1) I)%" (2)

In this paper, we derive certain expansions of incomplete I-functions by using the
generalized Tailor’s series formula given by Osler [10] as follows:

- ngn—mf( ) e=w(z — )pm_n
Z I(pn+n+1) ’

(13)

n=—oo

where 7 is the arbitrary complex number so the order of the derivative is arbitrary and
0 < p <1 and n is the integer over the summation.
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2. MAIN RESULTS

In this section, we have established certain expansion formulae of incomplete I-function
by using the Taylor’s series formula defined in Osler [10] and our results are presented in
Theorem 2.1 and Theorem 2.2 follow as:

Theorem 2.1. Let h > 0,m —1 < R(pn+1n) < m,n € C,0 < p < 1, where a is the
arbitrary constant and n is the integer over the summation, then

(c1,C1; A1 @), (¢, Cj3 Aj)2 ] Z Pla— 1Py
I(

(W)Im,n h
P [(aw) (dj, Dj; Bj)1.q (pn+n+1)

m,n+1
x01 +1Z+1 [(aw)h

(Cl,Cl;Al Zl‘), (07 h;1)7(cjvcj7Aj)2,p :| )
(dj, Djs Bj)i,q, (pn+ 1, h; 1)

Proof. We start from the L.H.S, by using the generalized Taylor’s series (13). For this in
our investigation, we consider

1) =g [zh

(c1,C13 A1 = ), (¢5,C5 Aj)2p }
(dj, Dj; Bj)ig ’

and then, we obtain

™) o [ P

(c1,C15 A1 2 ), (¢, C53 Aj)ayp }
(dj, Dj; Bj)1q

w)Prn
Z Pe= ") pentn J()pmn | h
F (pn+n+1) 7 Pa

(Cl,Cl;Al : l'), (Cjacj;Aj)Z,p :| } (14)
(dj, Dj; Bj)14 ’

for solving the above fractional derivative, we consider the fractional derivative formula
which is given by Raina ([12], Eq. 2.1), then we obtain

(c1,C1; A1 1 ), (¢, Cj; Aj)ap ]}

(dj, Dj; Bj)1,q

@;Z)'n,-i—n {( )I;;nqn |:Zh

_ —on—n () a1 || (€1, C1 An @), (0,h3 1), (¢4, Cj; Aj)ap (15)
Totiat (dj, Dj, Bj)1,q, (o + 1, b3 1) ’
by substitution z = aw in (15) and using (3), we get the required result. O

In the similar way, we can derive Theorem 2.2 for () %"

Theorem 2.2. Let h > 0,m —1 < R(pn+1n) < m,n € C,0 < p < 1, where a is the
arbitrary constant and n is the integer over the summation, then

(r )I;”an |:(au))h (01’01;A1 - ) (CJ7C]7A :| Z P a- 1 o —~ g P

(djaDmB)l,q pn+17+1)

p+1,q+1

(F)Im n+1 h
X |:(aw) (dijij])l,qa(pn+n7h7 1)

(e1,C13 A = 2), (0,h; 1), (¢, Cj, Aj)ap } '
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3. SPECIAL CASES

In this section, we present certain expansion formulae for other well known incomplete
functions (see details; [2, 5, 6, 8, 15, 16]) as special cases of the main results, in the form of
incomplete I-functions, incomplete H-functions, incomplete H-functions and I-function
by substituting particular value to the parameters in the below results.

(i) If we put Bj(j =1,--- ,m) =1, h =1 and using the relation

(v )Imn . (017013141 :x)7(cj7CjQAj)2,p
Pg (d1, D15 1)1,m, (dj, Dj; Bj)m+1,q

(c1,Cr; A 2 ), (¢, Cj; Aj)ap

(dlaDl)l,ma (djaDj;Bj)m+1,q

in Theorems 2.1 and 2.2, we obtain the following Corollaries.

(16)

) it [z

Corollary 3.1. Let m — 1 < R(pn+n) < m,n € C,0 < p < 1, where a is the arbitrary
constant and n is the integer over the summation, then

—_ 1) tn
(W)Tm,n (61,01,141 ) (CJ7C],A CL 1 —pn—n
b4 [aw’ (thl)lm,(djaD]aB m+1q Z Fpn+77+1)a

y )jmﬂiﬂrl aw (c1,C13 A1 : 2),(0,h;1),(cj, Cj, Aj)ayp '
ptlat (dlle)l,rru(dj’Dj;Bj)erLQa (pn+777h; 1)

Corollary 3.2. Let m — 1 < R(pn+1n) < m,n € C,0 < p < 1, where a is the arbitrary
constant and n is the integer over the summation, then

— 1)pn+n
(F)van (Cla Cr; Ar ) (C]7 C]v A CL 1 —pn—n
b4 [aw’ (d17D1)1M7(dj7Dj7B m+1,q Z T pn+77+1)a

X(F)Tm,n—i-l aw (61, Ci;Ar l‘)a (07 h; 1)7 (Cja Cja Aj)lp
prla+l (d1, D1)1,m, (dj, Dj; Bj)mrg, (pn+ 1,0 1) |
(ii) f we put A;(j =n+1,--- ,p)=1,Bj(j=1,--- ,m) =1, h = 1 and using the relation
() gman |, | (€1, C1; Axz ), (¢, O Aj)an, (€5, O Dngrp
pa (d1, D13 1)1,m, (dj, Dj; Bj)m+1,4

_ | (c1,Cr; A1 x), (¢, Cy5 Aj)an, (¢, Cjntip
P (d1, D1)1,ms (dj, Dj; Bj)m+1,4

in Theorems 2.1 and 2.2, we obtain the following Corollaries.

(17)

Corollary 3.3. Let m — 1 < R(pn+n) < m,n € C,0 < p < 1, where a is the arbitrary
constant and n is the integer over the summation, then

,ymn |:CLU) ‘ (61701;141 : 33)7 (Cj, Cj;A]’)Z,n, (Cj,Cj)nJer :|
i (dj, Dj)1,m: (dj, Dj; Bj)m+1,4

Nt I‘ pn + 17 T(pn+n+1)
o FMN n+1 aw (Cla Cl; Al : :1:)7 (07 h; 1)7 (cn7 Cn; An)7 (Cja Cj)n-i—l,p
Tptig+1 (dj, Dj)1,ms (dj, Dj; Bj)m+1,9, (pn + 1, h; 1) '
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Corollary 3.4. Let m — 1 < R(pn+1n) < m,n € C,0 < p < 1, where a is the arbitrary
constant and n is the integer over the summation, then

n [aw‘ (c1,C13 A1t @), (¢, Cjs Aj)ams (¢, Cint1p }
P (dj7 Dj)Lmy (djﬂ Dj; Bj)m"’_l)q

p pn+77
-y ¢
T(pn+n+1)

n=—oo

% Fm 7ll+1 e (017 017 Al (Oa ; l)a (Cm C’na An): (Cj7 Cj)n+1,p .
prbat (dj, Dj), m7<dj7 i3 Bj)mt1,g, (pn+m, h; 1)

(iii) f we put A;(j =1,---,p) =1, Bj(j=1,---,¢q) =1, h =1 and using the relation

(v )Imn (Clycﬂ 1: JZ‘), (Cj7Cj; 1)2,;7 _ amn (61701 : iL'), (Cja Cj)Q,p 18
pa [Z‘ (di,D1;1)1,4 Tpa | (di,D1)1,4 (18)

in Theorems 2.1 and 2.2, we obtain the following Corollaries.

Corollary 3.5. Let m — 1 < R(pn+n) < m,n € C,0 < p < 1, where a is the arbitrary
constant and n is the integer over the summation, then

m,n (01701: )(Cja a_lpn-l-?? —pn—mn
Tpa [aw' (dij)lq Z T(pn+n+1)"

m,n+1 (Cl, Ch: I’), (07 h’): (ij Cj)27p
X Vpf1,g+1 [aw ’ (dj, Dj)1,q, (pn+n, h; 1) '

Corollary 3.6. Let m — 1 < R(pn+1n) < m,n € C,0 < p < 1, where a is the arbitrary
constant and n is the integer over the summation, then

Oy : 7). (¢;,C pla—1)mn
e (Cla 1 K pn—n
P [aw' (dj, Dj)1,q Z Fpn+77+1)a

<« ™ n+1 a (Cl, Ci: l')y (Oa h)a (ij Cj)Q,p
p+1,q+1 (dj,Dj)l,q,(pn—i—n,h; 1) ’

Remark 3.1. By taking into account the decomposition formula of incomplete H -functions
or by setting x = 0, the Corollary 3.5 lead to the known result provided earlier by Raina
[12].

(iv) If we put = 0 in Theorems 2.1, we get the following Corollary:

Corollary 3.7. Let h > 0,m —1 < R(pn+n) < m,n € C,0 < p < 1, where a is the
arbitrary constant and n is the integer over the summation, then

pa—l”"+77

(C],C],A —pn—n
(dj, Dj; Bj) 1q Z pn+n+1)a

m,n h
Ly {(aw)

+1 h
XLV [(aw)

(Oaha 1)7(cj70j7Aj)1,P :| .
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4. CONCLUDING REMARKS

Moreover, it is important to note that the particular cases of the results obtained in this
paper for x = 0 given the corresponding results for classical I-function and other special
functions. Therefore, we conclude with the remark that, by specializing the parameter
in the main results, one can derive number of expansion formulas for variety of special
functions.
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