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GRAPH INVARIANTS BASED ON DISTANCE BETWEEN EDGES

AND DOUBLE GRAPHS

MAHDIEH AZARI1, §

Abstract. Topological indices are numerical parameters of graph which characterize
its topology and are invariant under graph isomorphism. They are applied in theoretical
chemistry for the design of chemical compounds with certain physicochemical proper-
ties or biological activities. The Wiener index, hyper-Wiener index, degree distance,
and Gutman index are among the best-known distance-based topological indices with
known applications in chemistry. In this paper, we study the edge version of these graph
invariants for a collection of graphs named double graphs.
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1. Introduction

All graphs considered in this paper are finite, simple and connected. Let G be such a
graph with vertex set V (G) and edge set E(G). The degree dG(u) of a vertex u ∈ V (G)
is the number of edges incident to u. Two distinct edges e = uv and f = zt of G are said
to be adjacent if they have a vertex in common. The line graph L(G) is the graph whose
vertices correspond to the edges of G with two vertices being adjacent if and only if the
corresponding edges are adjacent in G. The degree dG(e) of an edge e = uv ∈ E(G) is
defined as the degree of the corresponding vertex e in the line graph of G which is equal to
dG(e) = dG(u) + dG(v)− 2. We denote by NG(e) the set of all edges adjacent to e ∈ E(G)
and by δG(e) the sum of degrees of all edges adjacent to e, i.e., δG(e) =

∑
f∈NG(e) dG(f).

The distance dG(u, v) between the vertices u, v ∈ V (G) is defined as the length of any
shortest path in G connecting u and v. The distance sum (also called status) DG(u)
of a vertex u ∈ V (G) is the sum of distances between u and all other vertices v of G,

i.e., DG(u) =
∑

v∈V (G) dG(u, v). We denote by D
(2)
G (u), the sum of squares of distances

between a vertex u ∈ V (G) and all other vertices v of G, i.e., D
(2)
G (u) =

∑
v∈V (G) dG(u, v)2.
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The distance dG(e, f) between the edges e = uv and f = zt of G is defined as the
distance between the corresponding vertices e and f in the line graph of G. This distance
is equal [20] to

dG(e, f) =

{
0 if e = f,
min{dG(u, z), dG(u, t), dG(v, z), dG(v, t)}+ 1 if e 6= f.

We denote by DG(e), the sum of distances between an edge e ∈ E(G) and all other edges

f of G, i.e., DG(e) =
∑

f∈E(G) dG(e, f), and by D
(2)
G (e), the sum of squares of distances

between an edge e ∈ E(G) and all other edges f of G, i.e., D
(2)
G (e) =

∑
f∈E(G) dG(e, f)2.

A chemical graph or molecular graph of a chemical compound is a labeled graph whose
vertices correspond to the atoms of the compound and edges correspond to the chemical
bonds. In the context of π systems, a molecular graph is one that is connected and has a
maximum degree at most 4 (see, for example, [16]). A topological index is a real number
related to a graph which is invariant under graph isomorphism, that is it does not depend
on the labeling or the pictorial representation of a graph. Topological indices help us to
predict certain physicochemical, biological, and pharmacological properties of molecules
like boiling point, enthalpy of vaporization, stability, energy, etc.

The Wiener index, introduced by Wiener [38] in 1947, is the first topological index
recognized in chemical graph theory. The Wiener index of a graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

DG(u),

where the first summation runs over all unordered vertex pairs of G. This invariant
is used for modeling the shape of organic molecules and for calculating several of their
physicochemical properties [38].

The edge-Wiener index of a graph G was defined by Iranmanesh et al. [20] as

We(G) =
∑

{e,f}⊆E(G)

dG(e, f) =
1

2

∑
e∈E(G)

DG(e),

where the first summation runs over all unordered pairs of edges of G. The edge-Wiener
index of a graph can also be introduced as the Wiener index of its line graph. Further
information on the edge versions of the Wiener index can be found in [19] and the references
quoted therein.

The hyper-Wiener index of acyclic graphs was introduced by Randić [33] in 1993. Then
Klein et al. [25] generalized Randić’s definition for all connected graphs in 1995. The
hyper-Wiener index of a graph G is defined as

WW (G) =
1

2

(
W (G) +W (2)(G)

)
,

where

W (2)(G) =
∑

{u,v}⊆V (G)

dG(u, v)2 =
1

2

∑
u∈V (G)

D
(2)
G (u).

The edge hyper-Wiener index of a graph G was defined by Iranmanesh et al. [22] as

WWe(G) =
1

2

(
We(G) +W (2)

e (G)
)
,

where

W (2)
e (G) =

∑
{e,f}⊆E(G)

dG(e, f)2 =
1

2

∑
e∈E(G)

D
(2)
G (e).
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This invariant is used for the representation of computer networks and enhancing lattice
hardware security.

The degree distance was introduced by Dobrynin and Kochetova [6] and at the same
time by Gutman [12] as a weighted version of the Wiener index. The degree distance of a
graph G is defined as

DD(G) =
∑

u∈V (G)

dG(u)DG(u) =
∑

{u,v}⊆V (G)

(
dG(u) + dG(v)

)
dG(u, v).

It was proved in [12] that, in the case of trees the Wiener index and degree distance are
closely related.

The edge-degree distance of a graph G was put forward by Iranmanesh et al. [21] as

DDe(G) =
∑

e∈E(G)

dG(e)DG(e) =
∑

{e,f}⊆E(G)

(
dG(e) + dG(f)

)
dG(e, f).

The Gutman index was introduced by Gutman [12] in 1994 as a kind of vertex-valency-
weighted sum of the distances between all pairs of vertices in a graph. The Gutman index
of a graph G is defined as

Gut(G) =
∑

{u,v}⊆V (G)

dG(u)dG(v)dG(u, v) =
1

2

∑
u∈V (G)

dG(u)SG(u),

where

SG(u) =
∑

v∈V (G)

dG(v)dG(u, v).

This invariant reflects exactly the same structural properties of a molecular as the Wiener
index does.

The edge-Gutman index of a graph G was defined by Iranmanesh et al. [21] as

Gute(G) =
∑

{e,f}⊆E(G)

dG(e)dG(f)dG(e, f) =
1

2

∑
e∈E(G)

dG(e)SG(e),

where

SG(e) =
∑

f∈E(G)

dG(f)dG(e, f).

See [3, 4, 5] for more informatation on the edge version of the hyper-Wiener index, degree-
distance, and Gutman index.

The first Zagreb index of a graph G was introduced by Gutman and Trinajstić [13] in
1972 and the second Zagreb index was proposed by Gutman et al. [14] in 1975 as

M1(G) =
∑

u∈V (G)

dG(u)2 =
∑

uv∈E(G)

(
dG(u) + dG(v)

)
, M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

The forgotten topological index ( F-index) was first introduced by Gutman and Trina-
jstić [13] in 1972 as

F (G) =
∑

u∈V (G)

dG(u)3 =
∑

uv∈E(G)

(
dG(u)2 + dG(v)2

)
,
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and revived by Furtula and Gutman [10] in 2015. It can be easily observed that,∑
e∈E(G)

δG(e) = M1(L(G)) = F (G) + 2M2(G)− 4M1(G) + 4|E(G)|,

∑
e∈E(G)

dG(e)δG(e) = 2M2(L(G)).
(1)

Some molecular graphs can be obtained from simpler molecular graphs by using oper-
ations on graphs. Certainly, computing topological indices of the constructive structures
is much easier than the main structure. Hence, studying topological indices of graph op-
erations specially those can generate molecular graphs is one of the important subjects in
chemical graph theory. One of such operations is the double operation whose definition
was first appeared in a paper by Indulal and Vijayakumary [18], where this operation was
used to construct non-cospectral but equienergetic graphs. A few years later, motivated
by completely different reasons, Munarini et al. [28] proposed the concept of double
graphs, and studied elementary properties of these graphs, extensively. After the paper
by Munarini et al., double graphs attracted a great interest and various properties of this
structure studied in the literature. See, for example, [17, 27, 31, 39] for some nice results on
double graphs from pure mathematics perspective. The double operation has also received
attention in the context of chemical graphs and topological indices. Dehghan-Zadeh et al.
[8] used double graphs to construct infinite classes of connected graphs, with cyclomatic
number greater than 4, for which a conjecture of Fajtlowicz [9] regarding the comparison
between Randić index (see [32]) and radius of graphs holds. After that, with the purpose
of investigation of Alveoli in Human lungs by using topological indices, Lukesha et al.
[26] applied double graphs by considering the alveoli as a connected graph and determined
topological indices for healthy and ruptured alveoli by using double operation. Ganie et
al. [11] investigated the energy and Laplacian energy of double graphs. Huang et al. [15]
studied resistance distances and Kirchhoff index (see [24]) of double graphs. Sardar et al.
[35, 36], used double graphs to compute closed formulas for some degree-based topolog-
ical indices of silicon carbide Si2C3-I[p, q] and circumcoronene series of benzenoids Hm.
Besides, double graphs were used in various papers to ease some calculations especially
in computing topological indices of chemical graphs (see, for example, [1]). In this paper,
we propose a formula for the distance between two edges in double graphs and apply our
results to compute the edge version of the Wiener, hyper-Wiener, degree distance, and
Gutman indices of double graphs in terms of the respective indices of the parent graph.
Our paper continues the line of research of some recent papers [2, 7, 23, 29, 30, 34, 37]
studying topological indices of double graphs.

2. Main results

We start this section with definition of double graph.

Definition 2.1. Let G be a graph with vertex set V (G) = {v1, v2, ..., vn}. The double
graph D[G] of G is obtained by taking two distinct copies X = {x1, x2, ..., xn} and Y =
{y1, y2, ..., yn} of G by preserving the primary edge set of each copy and adding the edges
xiyj and xjyi for every edge vivj ∈ E(G) (see Figure 1).

It is worth noting that, the double graph of the complete graph Kn is just the graph
obtained by deleting a perfect matching from the complete graph K2n, which is just the
well-known cocktail party graph.

From the definition 2.1, D[G] has 2n vertices and 4m edges, where m is the number of
edges of G.
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Figure 1. The double graphs of 3-cycle and 4-cycle.

Lemma 2.1. [28] The degree of each vertex in D[G] is given by

dD[G](xi) = dD[G](yi) = 2dG(vi).

Lemma 2.2. [23] The distance between each pair of vertices in D[G] is given by

dD[G](xi, xj) =dD[G](yi, yj) = dG(vi, vj), dD[G](xi, yj) =

{
dG(vi, vj) if i 6= j,
2 if i = j.

In the following lemma, we compute the degree of an edge and the distance between
two edges in double graph. The results follow from Lemmas 2.1 and 2.2 and the proofs
are therefore omitted.

Lemma 2.3. The following hold:

(1) For each edge vivj ∈ E(G),
dD[G](xixj) = dD[G](yiyj) = dD[G](xiyj) = dD[G](xjyi) = 2dG(vivj) + 2;

(2) For each pair of edges vivj , vrvs ∈ E(G),
dD[G](xixj , xrxs) = dD[G](yiyj , yrys) = dG(vivj , vrvs),

dD[G](xixj , yrys) =


dG(vivj , vrvs) + 2 if {r, s} = {i, j},
dG(vivj , vrvs) + 1 if r ∈ {i, j} or s ∈ {i, j}, {r, s} 6= {i, j},
dG(vivj , vrvs) if r, s /∈ {i, j};

dD[G](xiyj , xrys) =


dG(vivj , vrvs) + 2 if r = j, s = i,
dG(vivj , vrvs) + 1 if r = j, s 6= i or s = i, r 6= j,
dG(vivj , vrvs) if r = i, s = j or r, s /∈ {i, j};

dD[G](xixj , xrys) = dD[G](yiyj , yrxs) =

{
dG(vivj , vrvs) + 1 if s ∈ {i, j},
dG(vivj , vrvs) if s /∈ {i, j}.

Theorem 2.1. The edge-Wiener index of D[G] is given by

We(D[G]) = 16We(G) + 4M1(G). (2)
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Proof. Corresponding to each edge vivj ∈ E(G), there exist four edges xixj , yiyj , xiyj , xjyi ∈
E(D[G]). Then

DD[G](xixj) =
∑

xrxs∈E(D[G])

dD[G](xixj , xrxs) +
[
dD[G](xixj , yiyj)

+
∑

yiys∈E(D[G]):
s 6=j

dD[G](xixj , yiys) +
∑

yryj∈E(D[G]):
r 6=i

dD[G](xixj , yryj)

+
∑

yrys∈E(D[G]):
r,s 6=i,j

dD[G](xixj , yrys)
]

+
[ ∑
xryi∈E(D[G])

dD[G](xixj , xryi)

+
∑

xryj∈E(D[G])

dD[G](xixj , xryj) +
∑

xrys∈E(D[G]):
s 6=i,j

dD[G](xixj , xrys)
]
.

Now from Lemma 2.3, we get

DD[G](xixj) =
∑

vrvs∈E(G)

dG(vivj , vrvs) +
[(
dG(vivj , vivj) + 2

)
+

∑
vivs∈E(G):

s 6=j

(
dG(vivj , vivs) + 1

)
+

∑
vrvj∈E(G):

r 6=i

(
dG(vivj , vrvj) + 1

)

+
∑

vrvs∈E(G):
r,s 6=i,j

dG(vivj , vrvs)
]

+
[ ∑
vrvi∈E(G)

(
dG(vivj , vrvi) + 1

)
+

∑
vrvj∈E(G)

(
dG(vivj , vrvj) + 1

)
+

∑
vrvs∈E(G):

s 6=i,j

dG(vivj , vrvs)
]

=DG(vivj) +
(
2 +DG(vivj) + dG(vi)− 1 + dG(vj)− 1

)
+
(
2DG(vivj) + dG(vi) + dG(vj)

)
=4DG(vivj) + 2

(
dG(vi) + dG(vj)

)
.

By symmetry, for each edge vivj ∈ E(G), we have

DD[G](yiyj) =DD[G](xiyj) = DD[G](xjyi) = DD[G](xixj)

=4DG(vivj) + 2
(
dG(vi) + dG(vj)

)
.

(3)

Now from the definition of the edge-Wiener index and Eq. (3), we obtain

We(D[G]) =4× 1

2

∑
xixj∈E(D[G])

DD[G](xixj)

=2
∑

vivj∈E(G)

(
4DG(vivj) + 2

(
dG(vi) + dG(vj)

))
=16We(G) + 4M1(G).

from which Eq. (2) follows. �

Theorem 2.2. Let G be a graph on m edges. The edge-hyper Wiener of D[G] is given by

WWe(D[G]) = 16WWe(G) + 8M1(G)− 6m. (4)
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Proof. Let vivj ∈ E(G). Then

D
(2)
D[G](xixj) =

∑
xrxs∈E(D[G])

dD[G](xixj , xrxs)
2 +

[
dD[G](xixj , yiyj)

2

+
∑

yiys∈E(D[G]):
s 6=j

dD[G](xixj , yiys)
2 +

∑
yryj∈E(D[G]):

r 6=i

dD[G](xixj , yryj)
2

+
∑

yrys∈E(D[G]):
r,s6=i,j

dD[G](xixj , yrys)
2
]

+
[ ∑
xryi∈E(D[G])

dD[G](xixj , xryi)
2

+
∑

xryj∈E(D[G])

dD[G](xixj , xryj)
2 +

∑
xrys∈E(D[G]):

s 6=i,j

dD[G](xixj , xrys)
2
]
.

Now by Lemma 2.3, we get

D
(2)
D[G](xixj) =

∑
vrvs∈E(G)

dG(vivj , vrvs)
2 +

[(
dG(vivj , vivj) + 2

)2
+

∑
vivs∈E(G):

s6=j

(
dG(vivj , vivs) + 1

)2
+

∑
vrvj∈E(G):

r 6=i

(
dG(vivj , vrvj) + 1

)2
+

∑
vrvs∈E(G):

r,s 6=i,j

dG(vivj , vrvs)
2
]

+
[ ∑
vrvi∈E(G)

(
dG(vivj , vrvi) + 1

)2
+

∑
vrvj∈E(G)

(
dG(vivj , vrvj) + 1

)2
+

∑
vrvs∈E(G):

s 6=i,j

dG(vivj , vrvs)
2
]

=D
(2)
G (vivj) +

(
4 +D

(2)
G (vivj) + 3(dG(vi)− 1) + 3(dG(vj)− 1)

)
+
(
2D

(2)
G (vivj) + 2(dG(vi)− 1) + dG(vi) + 2(dG(vj)− 1) + dG(vj)

)
=4D

(2)
G (vivj) + 6

(
dG(vi) + dG(vj)

)
− 6.

By symmetry, for each edge vivj ∈ E(G), we have

D
(2)
D[G](yiyj) =D

(2)
D[G](xiyj) = D

(2)
D[G](xjyi) = D

(2)
D[G](xixj)

=4D
(2)
G (vivj) + 6

(
dG(vi) + dG(vj)

)
− 6.

Hence

W (2)
e (D[G]) =4× 1

2

∑
xixj∈E(D[G])

D
(2)
D[G](xixj)

=2
∑

vivj∈E(G)

(
4D

(2)
G (vivj) + 6

(
dG(vi) + dG(vj)

)
− 6
)

=16W (2)
e (G) + 12M1(G)− 12m.
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Now from the definition of the edge-hyper Wiener index and Eq. (2), we obtain

WWe(D[G]) =
1

2

(
We(D[G]) +W (2)

e (D[G])
)

=
1

2

(
16We(G) + 4M1(G) + 16W (2)

e (G) + 12M1(G)− 12m
)

=16WWe(G) + 8M1(G)− 6m.

from which Eq. (4) follows. �

Theorem 2.3. The edge-degree distance of D[G] is given by

DDe(D[G]) = 16
(
2DDe(G) + 4We(G) + F (G)−M1(G) + 2M2(G)

)
. (5)

Proof. From the definition of the edge-degree distance and definition 2.1, we obtain

DDe(D[G]) =4
∑

xixj∈E(D[G])

dD[G](xixj)DD[G](xixj).

Now by Lemma 2.3 and Eq. (3), we obtain

DDe(D[G]) =4
∑

vivj∈E(G)

(
2dG(vivj) + 2

)(
4DG(vivj) + 2

(
dG(vi) + dG(vj)

))
=4

∑
vivj∈E(G)

(
8dG(vivj)DG(vivj) + 4dG(vivj)

(
dG(vi) + dG(vj)

)
+ 8DG(vivj) + 4(dG(vi) + dG(vj))

)
.

Using the fact that dG(vivj) = dG(vi) + dG(vj)− 2, we obtain

DDe(D[G]) =4
(

8DDe(G) + 4
(
F (G) + 2M2(G)− 2M1(G)

)
+ 16We(G) + 4M1(G)

)
.

from which Eq. (5) follows. �

Theorem 2.4. Let G be a graph with m edges. The edge-Gutman index of D[G] is given
by

Gute(D[G]) =64Gute(G) + 64DDe(G) + 64We(G) + 32M2(L(G))

+ 64F (G) + 128M2(G)− 176M1(G) + 128m.
(6)
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Proof. Let vivj ∈ E(G). Then

SD[G](xixj) =
∑

xrxs∈E(D[G])

dD[G](xrxs)dD[G](xixj , xrxs) +
[
dD[G](yiyj)dD[G](xixj , yiyj)

+
∑

yiys∈E(D[G]):
s 6=j

dD[G](yiys)dD[G](xixj , yiys)

+
∑

yryj∈E(D[G]):
r 6=i

dD[G](yryj)dD[G](xixj , yryj)

+
∑

yrys∈E(D[G]):
r,s6=i,j

dD[G](yrys)dD[G](xixj , yrys)
]

+
[ ∑
xryi∈E(D[G])

dD[G](xryi)dD[G](xixj , xryi)

+
∑

xryj∈E(D[G])

dD[G](xryj)dD[G](xixj , xryj)

+
∑

xrys∈E(D[G]):
s 6=i,j

dD[G](xrys)dD[G](xixj , xrys)
]
.

Now by Lemma 2.3, we get

SD[G](xixj) =
∑

vrvs∈E(G)

(
2dG(vrvs) + 2)

)
dG(vivj , vrvs) +

[(
2dG(vivj) + 2)

)(
dG(vivj , vivj) + 2

)
+

∑
vivs∈E(G):

s 6=j

(
2dG(vivs) + 2)

)(
dG(vivj , vivs) + 1

)
+

∑
vrvj∈E(G):

r 6=i

(
2dG(vrvj) + 2)

)(
dG(vivj , vrvj) + 1

)

+
∑

vrvs∈E(G):
r,s 6=i,j

(
2dG(vrvs) + 2)

)
dG(vivj , vrvs)

]

+
[ ∑
vrvi∈E(G)

(
2dG(vrvi) + 2)

)(
dG(vivj , vrvi) + 1

)
+

∑
vrvj∈E(G)

(
2dG(vrvj) + 2)

)(
dG(vivj , vrvj) + 1

)
+

∑
vrvs∈E(G):

s 6=i,j

(
2dG(vrvs) + 2)

)
dG(vivj , vrvs)

]
=
(
2SG(vivj) + 2DG(vivj)

)
+
[
4(dG(vivj) + 1) + 2SG(vivj)

+ 2DG(vivj) + 2δG(vivj) + 2(dG(vi)− 1) + 2(dG(vj)− 1)
]

+
[
4SG(vivj) + 4DG(vivj) + 2δG(vivj) + 4dG(vivj) + 2(dG(vi) + dG(vj))

]
=8SG(vivj) + 8DG(vivj) + 12

(
dG(vi) + dG(vj)

)
+ 4δG(vivj)− 16.
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By symmetry, for each edge vivj ∈ E(G), we have

SD[G](yiyj) =SD[G](xiyj) = SD[G](xjyi) = SD[G](xixj)

=8SG(vivj) + 8DG(vivj) + 12
(
dG(vi) + dG(vj)

)
+ 4δG(vivj)− 16.

Now from the definition of the edge-Gutman index and Lemma 2.3, we obtain

Gute(D[G]) =4× 1

2

∑
xixj∈E(D[G])

dD[G](xixj)SD[G](xixj)

=2
∑

vivj∈E(G)

(
2dG(vivj) + 2

)(
8SG(vivj) + 8DG(vivj)

+ 12
(
dG(vi) + dG(vj)

)
+ 4δG(vivj)− 16

)
.

Using the fact that dG(vivj) = dG(vi) + dG(vj)− 2 and by Eq. (1), we obtain

Gute(D[G]) =2
∑

vivj∈E(G)

(
16dG(vivj)SG(vivj) + 16dG(vivj)DG(vivj)

+ 24dG(vivj)
(
dG(vi) + dG(vj)

)
+ 8dG(vivj)δG(vivj)− 32dG(vivj)

+ 16SG(vivj) + 16DG(vivj) + 24
(
dG(vi) + dG(vj)

)
+ 8δG(vivj)− 32

)
=64Gute(G) + 32DDe(G) + 48(F (G) + 2M2(G)− 2M1(G))

+ 32M2(L(G))− 64(M1(G)− 2m) + 32DDe(G) + 64We(G)

+ 48M1(G) + 16(F (G) + 2M2(G)− 4M1(G) + 4m)− 64m

=64Gute(G) + 64DDe(G) + 64We(G) + 32M2(L(G)) + 64F (G)

+ 128M2(G)− 176M1(G) + 128m,

from which Eq. (6) follows. �
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