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Abstract Recent studies on quantum Fisher information (QFI) have been
focused mostly on qubit systems within the context of how entanglement helps
surpassing the classical limit of separable states and the limit that a given
entangled system can achieve for parameter estimation. However, there are
only a few works on bound entangled systems. In this work, we study the
QFI of a system of the smallest dimension that bound entanglement can be
observed: A bipartite quantum system of two particles of three-levels each.
An interesting property of this state is that depending only on a parameter,
the state can be separable, bound entangled or free entangled. We show that
QFI exhibits a smooth and continues increase with respect to this parameter
throughout the transition from separable to bound entangled and from bound
entangled to free entangled regions. We show that in any region, this state
is not useful for sub-shot noise interferometry. We also relate the QFI of this
state with its geometric discord and show how these two properties exhibit a
similar behavior throughout this transition.
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Quantum entanglement is at the heart of quantum mechanics and non-

classical correlations between systems have been studied mostly from the per-
spective of entanglement [1]. There is still a lot to study on multipartite en-
tanglement which appear in classes that cannot be converted to each other via
LOCC [2], whereas the entanglement of bipartite systems has been understood
better. There are well established measures for quantifying the entanglement
of bipartite systems based on the negative eigenvalues of the partially trans-
posed density matrix of the system [3,4]. Criteria based on such a negativity,
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i.e. negative partial transpose (NPT) implies entanglement and entanglement
implies inseparability but it was shown that not all inseparable states im-
ply NPT, i.e. there are non-separable systems with positive partial transpose
(PPT) [5,6]. This kind of entanglement is called bound entanglement which
constitutes the limits of entanglement distillation [7]. It was shown that it
is possible to activate a three-level bipartite bound entangled state [8] and to
superactivate a four-partite two-level state [9]. Although it is impossible to dis-
till maximally entanglement from it, bound entanglement is surprisingly not
useless for quantum information tasks: it can be used as a resource to share
a secret key [10,11]. Generation and activation of bound entangled states has
also been experimentally demonstrated in various settings [12–15].

On the other hand, quantum discord has been proposed as a new measure
of non-classicality [16], such that the quantum discord Q(ρ) of a bipartite
state ρ on a system Ha ⊗ Hb with reduced density matrices ρa and ρb is
given by Q(ρ) = minΠa{I(ρ) − I[Πa(ρ)]}, where minimum of is over von
Neumann measurements on party a and the state after the measurement is
Πa(ρ) = Σk(Π

a
k⊗Ib)ρ(Πa

k⊗Ib) with Ib being the identity operator onHb [18].
The geometric discord D(ρ) of a state ρ is defined as D(ρ) = minχ||ρ− χ||2,
where the minimum of the square of Hilbert-Schmidt norm of the operators
ρ and χ is over the set of zero-discord states χ, i.e Q(χ) = 0 [17–20]. In [21],
several well-known bound entangled states have been analyzed, including a
special one that we will study below.

Quantum Fisher information (QFI) which characterizes the sensitivity of a
quantum system with respect to the changes of a parameter of the system has
been shown to be a multipartite entanglement witness: If the mean quantum
Fisher information per particle of a state exceeds the so called shot-noise limit
i.e. the ultimate limit that separable states can provide, then the state is
multipartite entangled [22]. The converse is not generally true because not all
pure multipartite entangled states achieve this limit, i.e. they are not useful for
sub-shot-noise interferometry even if optimized by local operations [23]. It is
also shown that the superposition of coherent spin states can surpass the shot-
noise limit although they cannot surpass alone [24] and GHZ states provide
the largest sensitivity, achieving the fundamental, so called Heisenberg limit
[25]. Recently the quantum Fisher information has been further studied both
theoretically and experimentally [26–45]. Since separability is a key issue both
in QFI and in bound entanglement, a natural direction is to study the QFI
of bound entangled states, especially from the point of view of usefulness for
sub-shot-noise interferometry: it would be interesting to find a useful bound
entangled state. Hyllus et al. studied two classes of bound entangled states,
i.e. Dur states [46] and Smolin states [47,48] and showed that both of these
states are not useful [49] but recently a family of bound entangled states were
found to be useful [50].

In this work, we study the quantum Fisher information of the bipartite
three-level state given in [8]. This state is interesting because i) it turns to
be a separable, bound entangled or a free entangled state, depending on the
parameter of the state, and ii) when it is bound entangled, if assisted with
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Fig. 1 (Color online) The lower bound of the geometric discord of the state for the regions
of concern (the upper bound that could be derived for a specific region is given with the
dotted curve) as presented in Ref.[21]. For α ≥ 2, Since the classification of the state is not
known for α < 2, we plot the bounds in that region dashed.

sufficiently many free entangled states, it can be liberated (activated). The
state is given in [8] as

σα =
2

7
|Ψ+⟩⟨Ψ+|+

α

7
σ+ +

5− α

7
σ−, (1)

where

|Ψ+⟩ =
|00⟩+ |11⟩+ |22⟩√

3
, (2)

σ+ =
|01⟩⟨01|+ |12⟩⟨12|+ |20⟩⟨20|

3
, (3)

and

σ− =
|10⟩⟨10|+ |21⟩⟨21|+ |02⟩⟨02|

3
. (4)

This state is separable for 2 ≤ α ≤ 3, bound entangled for 3 < α ≤ 4 and free
entangled for 4 < α ≤ 5. An entanglement binding channel mapping to this
state is also constructed in [51]. The geometric discord of this state is studied
in [21] and it was shown that depending on the α parameter of the state, the
geometric discord D(σα) has lower and upper bounds,

1

49
(9− 5α+ α2) ≤ D(σα) ≤

1

294
(49− 25α+ 5α2). (5)

for 5−
√
5

2 ≤ α ≤ 5+
√
5

2 and the lower bound could be found as 1
49 ≤ D(σα)

elsewhere and again this bound is not claimed to be tightest. We plot these
bounds in Fig. 1: Since the state is not known to be separable or free or bound
entangled for α ≤ 2, we plot that region dashed black and we are interested in
the regions 2 ≤ α ≤ 3 (separable), 3 < α ≤ 4 (bound entangled) and 4 < α ≤ 5
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Fig. 2 (Color online) Quantum Fisher information of the state for α ≥ 2 where the state is
separable, bound entangled and free entangled, respectively. Since the classification of the
state is not known for α ≤ 2, we plot the bounds in that region dashed.

(free entangled). The upper bound that could be derived for a specific region
is plotted with dotted curve.

The ultimate limit for the precision of the parameter ϕ of a state ρ(ϕ) with

the unbiased estimator ϕ̂ is provided by the Cramér-Rao bound ∆ϕQCB , i.e.

∆ϕ̂ ≥ ∆ϕQCB ≡ 1/
√
NmF where Nm is the number of experiments and

F is the quantum Fisher information of the state. One can consider that
the state acquires the parameter ϕ by a rotation operator Uϕ = exp(iϕJ−→n ),

i.e. ρ(ϕ) = UϕρU
†
ϕ, where J−→n is the angular momentum operator in the −→n

direction acting on each particle. The maximal quantum Fisher information F
over the directions i.e. F = max{Fx, Fy, Fz} of a possibly mixed state ρ can
be found by [26]

F (ρ) = cmax (6)

where cmax is the largest eigenvalue of the symmetric matrix C of which
elements are given as

Ckl =
∑
i ̸=j

(λi − λj)
2

λi + λj
[⟨i|Jk|j⟩⟨j|Jl|i⟩+ ⟨i|Jl|j⟩⟨j|Jk|i⟩], (7)

where, λi,j and |i⟩, |j⟩ are the eigenvalues and the associated eigenvectors of
the density matrix of the state and k, l ∈ {x, y, z}.

A detailed analysis on the diagonal and off-diagonal elements of the C ma-
trix has been provided in [23,52,53]. In particular, if the C matrix is diagonal,
then the eigenvalues of the matrix are the diagonal terms and therefore the op-
timal direction lies at x, y or z. In the three level case, the angular momentum
operators are given as:

Jx =
1√
2

0 1 0
1 0 1
0 1 0

 , Jy =
i√
2

0 −1 0
1 0 −1
0 1 0

 , Jz =

1 0 0
0 0 0
0 0 −1

 . (8)
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Fig. 3 (Color online) QFI of the state ρ(α) in x and y directions, plotted with solid and
dashed lines, respectively.

We find the eigenvalues as

λ1 = 0.285714,
λ2,3,4 = 0.238095− 0.047619α and

λ5,6,7 = 0.047619α.

Substituting these eigenvalues (and the associated eigenvectors) with the
angular momentum operators to Eq.(7), the C matrix is easily constructed.
Similar to GHZ states [26] and W states [37], the off-diagonal elements of the
C matrix of the state σα are found to be zero, and the diagonal elements of
the C matrix represent the sensitivity of the state in each direction: The two
non-zero elements of the C matrix are found to be

Cxx = −0.516575
0.14966+(−0.0113379+0.00226757α)α+

α(0.29572 +α(−0.0418673+(−0.0069107+0.00069107α)α))
0.14966+(−0.0113379+0.00226757α)α ,

Cyy = 1.90476 + (−1.52381 + 0.304762α)α.

(9)

Since Czz = 0, this state does not provide phase sensitivity in z-direction
and as shown in Fig.3, the sensitivity in x-direction is always greater than
the sensitivity in the y-direction. Therefore the quantum Fisher information
of this state turns to be F (σα) = Cxx, which we plot in Fig.2. On the contrary
to the QFI of GHZ states under decoherence [26], QFI of this state does not
exhibit any breaking points even at the transition points. Note that at α = 5,
λ2,3,4 vanish, therefore instead of Eq.(7) provided in [26], the more recent
expression for calculating the quantum Fisher information of non-full rank
density matrices provided in [54–56] is more accurate.

We observe that for the region 2 ≤ α ≤ 5+
√
5

2 , both F (σα) and the lower
bound of D(σα) exhibit the same behavior, reaching their minimum points at
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α = 2.5. For α ≥ 5+
√
5

2 the lower bound of quantum discord could be found
to be 1/49.

Our work suggests that if the QFI and the lower bound of the discord

exhibit the same behavior not only for 5−
√
5

2 ≤ α ≤ 5+
√
5

2 but for values of
α, then the lower bound of the discord may be 1

49 (9− 5α+ α2). We also find
that the state σα is not useful for sub-shot noise interferometry, since there
is an example separable state ρsep = |11⟩⟨11| achieving F (ρsep) = 8 which is
greater than F (σα) < 3.5.

In conclusion, we have studied the quantum Fisher information of a bi-
partite three-level state which is either separable, bound entangled or free
entangled state, depending only on the parameter of the state. Relating the
quantum discord of the state in these regions, we have shown that the lower
bound of the quantum discord and the quantum Fisher information of the
state exhibit the same behavior for the region of transition from separable
to bound entangled. We have also shown that quantum Fisher information
of the state does not surpass that of the best separable ones, therefore this
state is not useful for sub-shot noise interferometry not only when it is bound
entangled but also when it is free entangled.
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