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Abstract—Blind and noncooperative identification of the
transmission parameters of unknown communication signals
has been employed both in military and civilian applications.
Multiple-Input-Multiple-Output (MIMO) transmission systems
emerging in the last decade pose new challenges to the signal
identification systems, one of which is the identification of the
Space-Time Block Code (STBC) used in the transmission. In
this work, we present a novel STBC classification algorithm that
exploits the joint wide sense cyclostationary characteristics of
the coded transmit signals as discriminating features. Compared
to existing algorithms, the proposed method can discriminate
between a large number of different STBCs.

I. INTRODUCTION
The identification of the transmission parameters of un-

known communication signals within the context of spectrum
monitoring and surveillance, commonly referred to as signal
identification, has been a popular and significant research area,
and the methodologies developed for this purpose have been
employed both in military and civilian applications. The main
task of signal identification is the blind and non-cooperative ex-
traction of the parameters specific to the transmission method
used by the unknown transmitter, such as modulation type,
carrier frequency, bandwidth, employed multiple access and
frequency spreading methods, etc.

Because of the increasing diversity and complexity in
the communication techniques employed in digital wireless
communication systems, the existing methods used in signal
identification need to be constantly extended and improved
to include newly emerging wireless digital transmission tech-
niques. The multiple input multiple output (MIMO) communi-
cation systems emerging in the last decade, which use multiple
antennas for transmission, represent such an example, as they
present new transmission parameters to be identified, which are
not found in conventional single antenna transmission, such as
the employed space-time block code (STBC) .

In this work, the problem of the STBC classification is
investigated, which can be considered as a multiple hypothesis
testing problem, with each hypothesis corresponding to a
STBC from the set of possible STBC’s Φ, and the decision is
made based on a finite number of observations of the received
signal corrupted by fading and noise. Recently, a maximum
likelihood approach has been proposed for the classification of
the space-time block codes employed in a MIMO system [1],

This work has been supported by the TUBITAK (The Scientific and
Technological Research Council of Turkey) Grant Nr. 112E020

which, however, suffers from a high computational complexity,
and requires a-priori information about the channel parameters,
code timing (i.e. the beginning and the end of each transmitted
code block), and the modulation type employed in the trans-
mission, limiting its use in practice. In [2], a classification
strategy is proposed based on the space-time correlations in
the received signal induced by the coding operation, which,
however, fails to acknowledge the cyclostationary nature of
these correlations, that, if recognized and exploited properly,
provides additional information for the classification task. In
the binary hypothesis test proposed in [3] the cyclostationarity
of the received MIMO signal induced by the space time
block code is exploited for the first time for discriminat-
ing between space time coded and uncoded (i.e. spatially
multiplexed) MIMO signals, however, discrimination between
different codes is not considered. In [4], a STBC classification
method is proposed, which provides robustness against trans-
mission impairments by exploiting the cyclostationarity of the
received signal vector, making use of the fact that STBCs of
different block lengths exhibit cyclostationarity with different
cyclic frequencies, however, discrimination between codes
which exhibit cyclostationarity with the same cyclic frequency,
(i.e.codes with the same block length) is not considered. In [5],
the use of fourth order cyclic statistics of the received signal
has been proposed for discriminating between Alamouti coded
and spatially multiplexed MIMO signals, which requires only
a single receive antenna.

In this work, we propose a novel STBC classification
algorithm that, similar to [3] and [4], uses second order
cyclostationary statistics as discriminating features. However,
unlike those two algorithms, it estimates the discriminating
features after blindly compensating the effects of the MIMO
channel and recovering a noisy version of the original trans-
mit signal, which leads to a finer discriminatory capability
between different STBCs, and makes the algorithm capable
of discriminating between the codes which have the same
cycle frequencies, i.e. the STBCs with the same code block
length. Thus, compared to the existing methods, the proposed
algorithm is capable of discriminating between a larger number
of codes. Furthermore, the algorithm does not require any a-
priori information on the number of transmit antennas, the
modulation type of the transmit signals, the SNR or the channel
matrix.
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II. SYSTEM MODEL
In this work, we consider a MIMO system with nt transmit

and nr receive antennas, where nr ≥ nt. The received signal
vector at time instant k, r[k] = [r1[k], . . . , rnr

[k]]T can be
expressed as:

r[k] = Hs[k] + w[k] (1)

where s[k] = [s1[k], . . . , snt
[k]]T is the transmit signal vector

of length nt, w[k] is is the circular complex additive white
Gaussian noise vector with variance σ2

w , H is the nr × nt

channel matrix, whose elements [H]i,j represent the channel
cofficients between i’th receive and j’th transmit antenna,
and are modeled as independent zero-mean circular complex
Gaussian random variables with unit variance. In this work,
the MIMO channel is assumed to be a frequency flat block
fading channel over the observation interval.Without loss of
generality, we assume unit power transmit signals.

In a MIMO system using a STBC, the transmit signal
vector s[k] is generated by parsing the independent and identi-
cally distributed modulated information bearing symbols x[k]
into blocks of length Q, and mapping them to the transmit
antennas according to a coding rule, which can be represented
by an nt × Nblock code matrix, where Nblock is the duration
of the code block. In the case of spatial multiplexing (SM)
MIMO systems, however, the information symbols are mapped
directly to the transmit antennas, which can be considered as
a special case of STBC with Q = nt and Nblock = 1.

The task of the proposed STBC classification algorithm is
to identify, from a set of different possible STBCs Φ, the STBC
that is being used in the received unknown MIMO signal. The
code matrices of the STBCs considered in this work are listed
in the Appendix. We consider codes designed for nt = 2, 3
and 4 and block lengths Nblock =2,4 and 8. Furthermore, the
case of SM is considered separately for each nt.

III. THE STBC CLASSIFICATION STRATEGY
In this work, we propose to exploit the joint wide-sense cy-

clostationary characteristics of the components of the transmit
signal vector s[k], which is induced by the space-time block
coding operation, as discriminating features for classification.

A. Cyclostationarity:Preliminaries
Two discrete time random processes s1[k] and s2[k] are

called jointly wide-sense cyclostationary if either the time
varying cross correlation function (TVCCF) Rs1s2 [k, τ ] =
E{s1[k]s∗2[k − τ ]} or the conjugate time varying cross correla-
tion function (CTVCCF) Rs1s∗2

[k, τ ] = E{s1[k]s2[k − τ ]} (or
both) exhibits a periodicity in the time index k. Clearly, such
a periodicity allows the following Fourier series representation
for the TVCCF and the CTVCCF functions:

Rs1s2 [k, τ ] =
∑

α=2πl/K

Rα
s1s2 [τ ]e

jαk, (2)

and
Rs1s∗2

[k, τ ] =
∑

α=2πl/L

Rα
s1s∗2

[τ ]ejαk (3)

where K and L are the fundamental periods of the respec-
tive crosscorrelation functions, and the sums are taken over
the integer multiples of the fundamental cyclic frequencies
α0 = 2π/K and α′

0 = 2π/L respectively. The Fourier
series coefficients, Rα

s1s2 [τ ] and Rα
s1s∗2

[τ ], which depend on
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Fig. 1. The CCCF functions between different components of the transmit
signal for various STBCs.

the cycle frequency parameter α and the lag parameter τ are
referred to as the cyclic crosscorrelation function (CCF) ad
the conjugate cyclic crosscorrelation function (CCCF) respec-
tively. Obviously, these functions are only nonzero for the
values of α which are integer multiples of the fundamental
cyclic frequency, and for processes, which do not exhibit
joint cyclostationarity, Rα

s1s2 [τ ] = Rα
s1s∗2

[τ ] = 0 ∀ α, τ . Two
random processes are said to exhibit joint conjugate wide-
sense cyclostationarity at a specific pair (α = αi, τ = τj)
if Rαi

s1s∗2
[τj ] ̸= 0. Similarly, two random processes are said to

exhibit joint (nonconjugate) wide-sense cyclostationarity at a
specific pair (α = αi, τ = τj) if Rαi

s1s2 [τj ] ̸= 0.

B. The Classification System
It can be shown that the space-time block coding operation

performed by the MIMO transmitter induces joint wide-sense
cyclostationarity between the components of the transmit sig-
nal vector s[k], with a fundamental cycle frequency 2π/Nblock.
Figures 1(a) to (d) display examples of the the CCCF functions
for various signal component pairs for codes C1, C2, C3 and
C4 (for the corresponding code matrices, see equations (8), (9),
(10) and (11) in the Appendix). It can be shown that for each
code, the CCCF and CCF functions present unique patterns
on the (α, τ) plane. These patterns are independent of the
modulation type employed and only depend on the structure
of the corresponding STBC, and therefore, can be exploited
for discriminating between different codes. In this work, we
propose using the presence or absence of joint wide sense
(conjugate and non-conjugate) cyclostationarity between the
components of the transmit signal vector s[k] at specific (α, τ)
pairs as features for classification.

It should be noted that at the receiver, the signal s[k] is
not available, and although the components of the received
signal r[k] also exhibit joint cyclostationarity with the same
cyclic frequency as the transmit signal s[k], the code-specific
patterns described above cannot be recovered from r[k] due to
the fact that each receive antenna receives a linear mixture
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Fig. 2. The Block Diagram of the Proposed STBC Classfication Algorithm.

of the components of the transmit signal, which leads to
a self-interference between the components of the transmit
vector, making the discrimination between the codes with the
same fundamental cycle frequencies impractical. Thus, the
classification approach proposed in this work requires the blind
compensation of the channel effects in order to recover a
noisy version of the transmit signal, which in turn, is used for
estimating the code-specific features. In this work, we propose
to use blind source separation (BSS) techniques to recover
the transmit signal from the noisy linear mixture r[k] prior
to the classification. However, most of the BSS techniques
found in the literature require a-priori knowledge about the
number of sources, i.e., in our case, the number of the transmit
antennas used in the transmission. Since this information is not
available at the receiver due to the non-cooperative nature of
the scenarios considered in this work, the number of antennas
needs to be detected prior to the channel compensation. The
information on the number of antennas, besides being required
for the blind channel compensation, can also be used as a
feature for discriminating between different subsets of codes.
Since each STBC is designed for a specific number of transmit
antennas nt, the knowledge of the number of antennas reduces
the set of all possible codes Φ, amongst which the unknown
STBC is to be classifed, to only those designed for that specific
nt.

Figure 2 displays the structure of the STBC classification
algorithm proposed in this work. First, the number of transmit
antennas nt is extracted from the received signal. This infor-
mation is used for blindly compensating the channel effects
and recovering a noisy version of the transmit signal, s̃[k],
which in turn, along with the estimate of nt, is used for the
estimation of the code-specific features and classification.

IV. DETECTION OF THE NUMBER OF TRANSMIT
ANTENNAS

Detecting the number of narrow band sources impinging
on an array of sensors is a well investigated problem in the
context of array signal processing and bearing estimation.
The most common approach for this task found in existing
literature is to use an information theoretic criterion such as
the minimum description length (MDL) [6]. The information
theoretic approach employed in MDL is a general approach
for choosing a model that best fits the data from a family of
possible models. The MDL criterion for the antenna number
detection can be formulated as:

n̂t = arg min
k=1,2,...

{−log
(

ΛR(r[0], . . . , r[N − 1]|Ĥk, σ̂
2
k

)

+ 0.5(2knr + 1)log(N)}, (4)
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Fig. 3. Antenna number detection using GMDL for Gaussian and several
non-Gaussian signals.

where ΛR(.) denotes the likelihood function of the received
signal, and Ĥk and σ̂2

k are the maximum likelihood estimates
of the channel matrix and the noise variance for the k’th
hypothesis, respectively and N is the length of the observation
interval (See [6] and [7] for details on the general MDL
problem).

Clearly, for the case considered in this work, where the
transmit signals are space-time coded digitally modulated
signals from a discrete alphabet, using the exact likelihood
function of the received signal in the MDL criterion for
antenna number detection requires a large amount of a-priori
information such as the modulation type, the code block timing
(i.e. the beginning and the end of each code block), and
the employed STBC, which are unknown in our scenario
(see, for example [8]). Furthermore, minimizing (4) over all
possible transmit signals for this case would require a high
computational power, especially for higher order modulations
and a large nt. These two issues limits the use of the exact
MDL for this task in practice. However, for complex gaussian
distributed source signals, the MDL criterion reduces to a
simple closed form expression and depends only on the second
order statistics of the received signal.

n̂t = arg min
k=1,2,...,nr−1

− log

⎛

⎝

∏nr

i=k+1 l
1

(nr−k)

i
1

(nr−k)

∑nr

i=k+1 li

⎞

⎠

(nr−k)N

+
1

2
k(2nr − k) logN,

(5)

where l1 > l2 > . . . > lnr
represent the ordered eigenvalues of

the estimated sample correlation matrix of the received signal,
R̂ = 1

N

∑N−1
k=0 r[k]r[k]† [6]. Clearly, this MDL detector,

commonly referred to as the Gaussian MDL (GMDL) requires
very little a-priori information and much less computational
power.

In [7] it has been shown that the GMDL is not very
sensitive to the actual distribution of the transmit signals,
and can be used for source number detection even when
the transmit signals are known to be non-Gaussian, if using
the exact distribution of the transmit signals turns out to
be prohibitive in practice. In Fig. 3, the use of GMDL for
detecting the number of transmit antennas in a MIMO system
with space time coding has been investigated via Monte Carlo
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simulations, where the detection performance of GMDL with
gaussian transmit signals is compared to the GMDL with
QPSK modulated MIMO signals in a block fading Rayleigh
channel for nt = 2 and 3, and an observation length of
N = 1000 symbols. For nt = 2, the codes SM2 and
CAlamouti are employed, and a receiver with nr = 4 is chosen,
whereas for nt = 3 SM3 and C2 and C3 has been used
with nr = 6 (see the Appendix for the corresponding code
matrices). The simulation results show that both for nt = 2
and nt = 3, the loss in detection performance for nongaussian
cases is very small compared to the gaussian case. Clearly, the
use of the GMDL for the antenna number detection for MIMO
communication signals leads to a good detection performance
with reasonable computational complexity. Hence, we employ
the GMDL detector in the proposed classification algorithm in
the antenna number detection block.

V. BLIND CHANNEL COMPENSATION
In the MIMO context, the received signal can be considered

as a linear mixture of the nt transmit signal components, each
of which correspond to one of the transmit antennas, plus
noise. The task of the blind channel compensation block is
to separate this linear mixture into its components in order
to recover a noisy version of the transmit signal, which can
be then used for the extraction of code specific features. The
framework of blind source separation (BSS) is a useful tool for
this task. BSS is an umbrella term for computational methods
employed for blindly separating linear mixtures of random
processes into their individual components [9]. The various
BSS algorithms found in the literature differ in the basic
assumptions they make about the signal structure, the cost
function they use for separating the signal components and
the method used to solve the resulting optimization problem.
In this work, we propose to use the joint approximate diagonal-
ization of eigenmatrices (JADE) algorithm, which is a popular
BSS method based on the maximization of a criterion function
which employs the fourth order cumulant statistics of the
received signal vector [10]. Although initially designed with
the assumption of statistically independent signal components,
it has been shown in [11] that the JADE algorithm exhibits
a robustness to the time dependencies between the transmit
signal components introduced in the signal vector by the space
time block coding operation. Note that the JADE algorithm,
like many BSS techniques, inherently contains phase and per-
mutation ambiguities [9], i.e. the components of the recovered
signal vector contain random phase rotations and their order
is randomly interchanged, which should be taken into account
by the feature extraction and classification blocks.

VI. FEATURE EXTRACTION AND CLASSIFICATION
The task of the feature extraction and classification block

is to classify the STBC employed in the transmit signal by
using the estimate of the number of transmit antennas n̂t

and the recovered transmit signal vector s̃[k], which contains
phase and permutation ambiguities. The information on the
number of transmit antennas nt is used at the classification
subsystem as a feature to discriminate between the sets of
codes designed for different nt, reducing the set of possible
STBCs considered in the classification to the set of codes
designed for that particular number of transmit antennas.
Thus, the task of feature extraction and classification can be
tackled for each value of n̂t separately. For each case, we

Fig. 4. The decision tree employed in classification for n̂t = 3.

estimate the CCCF and/or CCF of the components of the
recovered signal vector at specific (α, τ) pairs, appropriately
chosen to enable discrimination between different codes, and
employ the presence or absence of cyclostationarity at those
(α, τ) pairs as discriminating features for classification. The
presence of cyclostationarity at each (α, τ) pair is detected by
using the generalized likelihood ratio test (GLRT) proposed
by Giannakis and Dandawate in [12], modified for detecting
joint cyclostationarity. The insensivity of the GLRT to phase
offsets ensures the robustness of the classification algorithm to
the phase ambiguities discussed above.

A. Classification for n̂t = 2
For n̂t = 2, the classification is performed within the

set Θ2 = {SM2, CAlamouti}, thus the classification problem
reduces to a binary hypothesis test. As discussed in section
III, the signal vector s̃[k] does not exhibit any joint wide sense
cyclostationarity in the case of SM2, whereas it is nonzero for
α = π and τ = 1 for the Alamouti code. Thus for this case, it is
sufficient to detect the absence or presence of cyclostationarity
at (α = π, τ = 1) for the decision between the two hypotheses.
Note that for n̂t = 2 , the permutation ambiguities in s̃[k] can
be ignored.

B. Classification for n̂t = 3
For n̂t = 3, the classification is performed within the set

Θ3 = {SM3, C1, C2, C3}. It should be noted that for nt > 2,
the permutation ambiguity in s̃[k] should be taken into account
in the classification block, since a cross correlation pattern
between two specific components of the transmit signal s[k]
may appear between two different components of the recovered
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signal vector s̃[k]. Thus, instead of looking for a specific cyclic
cross correlation pattern between a specific antenna pair for
discrimination, all three distinct CCCF functions are estimated
for each distinct pair of the components of s̃[k], and common
code-specific patterns in these CCCFs are exploited. For the set
Θ3 = {SM3, C1, C2, C3}, we choose the cyclic frequencies
α = 3π/4,π/2 and π and τ = 1, 2 and 3.The classification
algorithm for this case is summarized in the decision tree given
in Fig.4. The discrimination of C2 is performed by realizing
that C2 is the only code in Θ2 which exhibits conjugate
cyclostationarity at α = 3π/4. Since both C1 and C3 exhibit
conjugate cyclostationarity at α = π/2, the discrimination
between these two codes is performed by using the fact that
two of the three CCCF functions of C2 are nonzero for all three
values of τ = 1, 2 and 3 at α = π/2, whereas the CCCFs of
C3 at this cycle frequency are nonzero only for a single value
of τ . Finally the discrimination between C3 and SM3 can be
easily performed by testing for conjugate cyclostationarity at
α = π, τ = 1, 2, since spatial multiplexing signals do not
exhibit cyclostationarity at all.

C. Classification for n̂t = 4
For n̂t = 4, the classification is performed within the

set Θ4 = {SM4, C4, C5, C6, C7}. In this case, both the
CCF an CCCF functions between the signal components (i.e.
6 of each) are required for classification. The code C4 is
easily discriminated, since it is the only code that exhibits
conjugate cyclostationarity with α = 3π/4. Similarly, C7 is
discriminated by using the fact that it is the only code that
exhibits a nonzero CCF at α = π. The discrimination between
C5 and C6 is performed by comparing the CCCF patterns at
α = π. The detailed decision tree for this case is omitted due
to space restrictions.

VII. CLASSIFICATION RESULTS
In this section, the performance of the proposed algorithm

is evaluated for a rayleigh block fading channel using simula-
tions. We use the average probability of correct classification
Pcc as a performance measure, which is, assuming equiprob-
able hypotheses, given as

Pd =
1

M

M
∑

j=1

P (Hj |Hj) (6)

Where Hj represents the j’th hypothesis, each of which
corresponds to one of the elements in the set of all possible
codes Φ and M is the cardinality of the set Φ. In the
simulations two different code sets are considered. The set
Φ(1) consisting of codes designed for nt = 2 and 3, i.e.
Φ(1) = Θ2 ∪ Θ3 = {SM2, CAlamouti, SM3, C1, C2, C3}
(i.e M = 6), and the set Φ(2) containing STBCs designed
for nt = 2, 3, and 4, i.e. Φ(2) = Θ2 ∪ Θ3 ∪ Θ4 =
{SM2, CAlamouti, SM3, C1, C2, C3, SM4, C4, C5, C6, C7}
(i.e. M = 11). In the simulations, 1000 Monte Carlo runs
have been performed for each hypothesis, the observation
length of the signal blocks used for classification is chosen
as N = 1000, 1500 and 2000 and QPSK modulation is
employed. Note that for the antenna number detection using
GMDL, nr > nt is required. Thus, in the simulations for the
set Φ(1), nr = 4 and 6 is chosen, whereas for the set Φ(2),
nr = 6 and 8 is considered. Furthermore, for the GLRT,
the false alarm rate has been chosen as Pfa = 0.01. The
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Fig. 5. The classification performance of the proposed algorithm for the set
Φ(1) (M = 6).
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Fig. 6. The classification performance of the proposed algorithm for the set
Φ(2) (M = 11).

classification performance of the proposed algorithm for the
set Φ(1) is displayed in Fig.5. Clearly, a good classification
performance is achieved for relatively low SNR values,
especially for nr = 6. Fig. 6 displays the classification results
for the set Φ(2), which, similarly, exhibit a good classification
accuracy for both nr = 6 and 8. Both figures show that the
classification performance is highly dependent on the number
of receive antennas, due to he fact that both the channel
compensation and the antenna number detection blocks are
sensitive to nr. As expected, the classification performance
increases in both cases, as the observation length N increases.

VIII. CONCLUSION
A novel STBC classification algorithm is proposed that

exploits the joint wide-sense cyclostationary behaviour induced
in the transmit signal by the space time block coding operation.
Since the extraction of the code specific cyclic correlation
patterns requires the recovery of the transmit signal, blind
channel compensation is performed prior to the feature ex-
traction, which, in turn, requires the blind detection of the
number of transmit antennas. This task is performed using the
GMDL, an information theoretic criterion. Additionally, the
estimate of the number of transmit antennas is used as a feature
in the code classification for discriminating between codes
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designed for different numbers of transmit antennas. Compared
to the existing methods in the literature, the proposed algorithm
is capable of classifying a large number of different codes,
and exhibits good classification performance for relatively low
values of SNR.

APPENDIX
THE STBCS CONSIDERED FOR CLASSIFICATION

The classification algorithm proposed in this work is ca-
pable of discriminating between 11 different codes (note that
spatial multiplexing for a given number of transmit antennas
is also considered as a distinct code). The STBCs considered
in this work are listed below, categorized by the number of
transmit antennas they are used with.

A. STBCs designed for nt = 2
The set of space time block codes considered for nt = 2

is Θ2 = {SM2, CAlamouti}, where SM2 represents spatial
multiplexing with two transmit antennas, and the code matrix
of the Alamouti code designed for nt = 2 is given as [13]

CAlamouti =

[

x1 −x2
∗

x2 x∗
1

]

. (7)

B. STBCs designed for nt = 3
The set of space time block codes considered for nt = 3 is

Θ3 = {SM3, C1, C2, C3}, where SM3 represents spatial mul-
tiplexing with three transmit antennas, and the code matrices
of C1 [14],C2 [14]and C3 [15] are given as

C1 =

⎡

⎢

⎢

⎣

x1 −x2
∗ x∗

3√
2

x∗

3√
2

x2 x∗
1

x∗

3√
2

−x∗

3√
2

x3√
2

x3√
2

−x1−x∗

1+x2−x2
∗

2
x2+x∗

2+x1−x1
∗

2

⎤

⎥

⎥

⎦

,

(8)

C2 =

[

x1 −x2 −x3 −x4 x∗
1 −x∗

2 −x∗
3 −x∗

4
x2 x1 x4 −x3 x∗

2 x∗
1 x∗

4 x∗
3

x3 −x4 x1 x2 x∗
3 −x∗

4 x∗
1 x∗

2

]

,

(9)
and

C3 =

[

x1 0 x2 −x3

0 x1 x∗
3 x∗

2
−x2

∗ −x3 x∗
1 0

]

. (10)

C. STBCs designed for nt = 4
The set of space time block codes considered for nt = 4 is

Θ4 = {SM4, C4, C5, C6, C7}, where SM4 represents spatial
multiplexing with four transmit antennas, and the code matri-
ces of the codes C4 [14] ,C5 [16], C6 [17] and C7 [18] are
given as

C4 =

⎡

⎢

⎣

x1 −x2 −x3 −x4 x∗
1 −x∗

2 −x∗
3 −x∗

4
x2 x1 x4 −x3 x∗

2 x∗
1 x∗

4 −x∗
3

x3 −x4 x1 x2 x∗
3 −x∗

4 x∗
1 x∗

2
x4 x3 −x2 x1 x∗

4 x∗
3 −x∗

2 x∗
1

⎤

⎥

⎦

(11)
,

C5 =

⎡

⎢

⎣

x1 −x∗
2 x3 −x∗

4
x2 x∗

1 x4 x∗
3

x3 −x∗
4 x1 −x∗

2
x4 x∗

3 x2 x∗
1

⎤

⎥

⎦
, (12)

C6 =

⎡

⎢

⎣

x1 x∗
2 x3 x∗

4
x2 −x∗

1 −x4 x∗
3

x3 x∗
4 −x1 −x∗

2
x4 −x∗

3 x2 −x∗
1

⎤

⎥

⎦
, (13)

and

C7 =

⎡

⎢

⎣

x1 −x∗
2 −x∗

3 x4

x2 x∗
1 −x∗

4 −x3

x3 −x∗
4 x∗

1 −x2

x4 x∗
3 x∗

2 x1

⎤

⎥

⎦
. (14)
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