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Abstract

We find the first non trivial “SAYD-twisted” cyclic cocycle over the
groupoid action algebra under the symmetry of the affine linear trans-
formations of the Euclidian space. We apply the cocycle to construct
a characteristic map by which we transfer the characteristic classes
of transversely orientable foliations into the cyclic cohomology of the
groupoid action algebra. In codimension 1, our result matches with
the (only explicit) computation done by Connes-Moscovici. We carry
out the explicit computation in codimension 2 to present the trans-
verse fundamental class, the Godbillon-Vey class, and the other four
residual classes as cyclic cocycles on the groupoid action algebra. For
the general codimension we show that the introduced explicit cochain
is always a Hochschild cocycle and its cyclic homology class is non-

trivial.
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1 Introduction

Following Connes-Moscovici [2], let A := C°(FT) x I'. Here FT is
the oriented frame bundle over R", and I' is a discrete subgroup of
Diff  (R™), the group of orientation preserving diffeomorphisms of R™.

For an arbitrary I', the cyclic cohomology of A is not known [1, Sect.
II1.2]. However, there is a map, even in the level of complexes,

Her(ap, C) oV HP(Ar) (1.1)

VvanEst W

H,(F*,C).

from the Gelfand-Fuks cohomology of a,,, the Lie algebra of formal
vector fields on R™, that factors through the twisted cohomology com-
puted by the Bott bicomplex [1, Prop. III.2.11]. One notes that a
basis for the Gelfand-Fuks classes are known, [4], but it is difficult to
transfer them to the cyclic cohomology of A. The reader is referred
to [3] for a complete account of this computation in codimension 1.

The Hopf-cyclic cohomology, invented by Connes-Moscovici [2], made
it possible to have a very explicit characteristic map

X : HP(H,Cs) — HP(A), (1.2)

where H := H,, is the Connes-Moscovici Hopf algebra of codimension
n, Cs is the canonical one dimensional SAYD module over H, and 7
is the canonical trace on A.



Although (1.2) has a simple presentation on the level of complexes, and
HP(H,Cs) is canonically isomorphic to Hgr(ay,, C), the isomorphism
is not easy to present [2, 11|. Therefore, from the point of view of
(1.2), the obstacle to transfer the characteristic classes of transversely
orientable foliations to the cyclic cohomology of A is to find a basis
of the representatives of the Hopf-cyclic classes of H. There is an
intensive ongoing study [9, 10, 11] on the Hopf-cyclic cohomology of
the geometric bicrossed product Hopf algebras such as H.

In the present paper we develop a new characteristic map, whose
source is the Hopf-cyclic cohomology of K := U(g¥,,), the enveloping
algebra of the general linear Lie algebra gf,,. Since the Hopf algebra IC
is not as sophisticated as H, one expects, by the conservation of work,
a more sophisticated characteristic map and SAYD module than .,
and Cs respectively.

In fact, the first step of our mission was taken in [13], where the au-
thors showed that the truncated Weil algebra is a Hopf-cyclic complex.
As a result, the characteristic classes of transversely orientable folia-
tions can be calculated from HC(KC,V'). Here V := S(gf)q2n, the
algebra of n-truncated polynomials on ¢¢,, is a canonical and non-
trivial SAYD module over K.

The backbone of this new characteristic map is a SAYD twisted cyclic
n-cocycle ¢ € CE(A,V) by which we apply the cup product intro-
duced in [8] by Khalkhali and the first named author. We use the
explicit formula derived in [12] to compute the characteristic classes
of foliations as cyclic cocycles in HC(A) via

Xo : HC*(K,V) = HC*™™(A), x,(z) =z Up. (1.3)

In order to test our method we first carry out the computation for
codimension 1 and observe that our result matches with the classes
obtained by Connes-Moscovici in [3]. The result of [11] shows that
the amount of work in codimension 2 is not comparable with that of
codimension 1. However, we completely determine the representatives
of all classes in HC'(K, V), in addition to an explicit formula for ¢ €
HCE(A,V). Then (1.3) yields our desired cyclic cocycles in HC(A).
For the general codimension n, we introduce a Hochschild cocycle in
CR(A,V) and prove that its cyclic cohomology class is nontrivial.

Throughout the paper, all vector spaces and their tensor products are
over C unless otherwise is specified. We use the Sweedler’s notation



for comultiplication and coaction. We denote the comultiplication of
a coalgebra C by A : C' — C ® C and its action on ¢ € C by A(c) =
ca) ® cz). The image of v € V under a left coaction V:V - C RV
is denoted by V(v) = v__,. ® v_,., summation suppressed. By the
coassociativity, we simply write A(cu)) ® ¢y = ¢y @ Ace)) = cay @
¢y ® ). Unless stated otherwise, a Lie algebra g is finite dimensional
with a basis {X;|1 < i < n} and a dual basis {#"|1 < i < n}. In
particular, for g = g/, we use {Y/ |1 < 4,5 < n} for a basis and
{9;. |1 < 1,7 < n} for a dual basis. We denote the Weil algebra of g
by W(g), and W (g)2n stands for the n-truncated Weil algebra of g.
We denote the Kronecker symbol by 5; We also adopt the Einstein
summation convention on the repeating indices unless otherwise is
stated. Finally, for the sake of simplicity we use

Bo1) @+ @ Bo(g) i= D sgn(0) B(1) @+ @ By
0€Sy

for any set of objects {Bi,...,B;}. Here S, is the group of all per-
mutations on ¢ objects and sgn(co) stands for the signature of o.

2 Preliminaries

In this section we recall the definition of Hopf-cyclic cohomology, the
Connes-Moscovici characteristic map, and basics of the cyclic coho-
mology of Lie.

2.1 Hopf-cyclic cohomology with coefficients

Let H be a Hopf algebra, § : H — C be a character, and o be a
group-like element o € H. The pair (6, 0) is called a modular pair in
involution (MPI for short) if

§(c) =1, and S?=Ad,, (2.1)
where Ad,(h) = cho™!, for any h € H, and Ss is defined by
Ss(h) = d(ha))S(he), heH. (2.2)

A vector space M is called a right-left stable-anti- Yetter-Drinfeld mod-
ule (SAYD for short) over H if it is a right H-module, a left H-
comodule, and for any v € V and h € H

V(’I?’Lh) = S(h(3))m<71> hﬂ) ®m<o> 'h(Q)a Mgy Moy =M. (23)
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Using 6 and o one endows °Cs := C with a right module and left
comodule structures over H.

Let M be a right-left SAYD module over H and C an H-module
coalgebra, i.e. , A(h(c)) = ha(cay) @ he) (ce)), and e(h(c)) = e(h)e(c),
for h € H and c € C.

We have the cocyclic module

Cr(C, M) := P CH(C, M), CH(C, M) :=MoyC®""  (2.4)

q=>0

0;: CL(C, M) = CHY(C, M), 0<i<q+1 (2.5)
Di(m®HCO®---®cq)=m®60®-~®A(ci)®--~®cq,
Vrimeg @ @) =

0 1 0
M o, QHC(2) @C Q- -- ®Cq®m<71>(c (1)),

s5;: CL(C, M) — CL (O, M), 0<j<q-—1 (2.6)
5j(m®HCO®"'®hq):m®HCO®"‘®E(Cj+1)®"'®0q,
ty: C%(C, M) — C%(C, M), (2.7)

t‘Z(m OH CO ORRE ®Cq) =M_os @H Cl ®-®cf ®7n<71>(60)'

Using the above operators one defines the Hochschild coboundary b
and the Connes boundary operator B,

q+1
b: CH(C, M) = CHHCM), b= (1), (2.8)
=0
q . .
B:C%L(C,M) — CiH(C, M), B:= (Z(_nw) 5,1t (2.9)
=0

We denote the cyclic cohomology of C%,(C, M) by HC%,(C, M).
For C = H, with the multiplication action, the map

j M R H®(n+1) S M H®n, (2 10)
TJmegh’ - @h") =mh’y @ S(he) - (h'®@---@h").

identifies the standard Hopf-cyclic complex (2.4) with

C(H,M) =@ CUH, M), CUH M):=MeH®.  (211)

q>0



moh @ - h)=me1hl®- - @ h,

ai(m®h1®...®h‘1):m®h1 ---®hi(1)®hi(2)®---®hq,
Dqul(m@hl@"'@hq) Mo Q' ® e @hem .,
5j(m®h1®...®hq):m®h1 ...®5(hj+1)®...®hq’

t(m®h1®---®hq) :m<0>h1(1) ®S(h1(2))-(h2®"'®hq®m

<—1>)'

Let A be a H-module algebra, that is, a (left) H-module and
h(ab) = ha)(a)he)(b), h(la) =e(h)la, Vh e H,a € A.

Then one endows V @ A®"*! with the action of H as

(v® PR---® qq) -h =mha ® S(h(q+2))a0 - ® S(h(z))aq. (2.12)
We set

C%(A, V) = Hompy (V @ A" C) (2.13)

as the space of H-linear maps. It is checked in [5] that for any v®a :=
1Rad’®---®a"t? €V ® A2 the morphisms
Dip)vea)=pved®.. . @dd™ ®...0d"), 0<i<n,
(Onr19) (v @) = (v, @ (S v )a" N’ ®@a' @ ... @ d"),
(cip)(v@d)=pred®..0del®...0d" "), 0<i<n—1,
(To)(v® @) = (v, @ (ST v )a") ®a” @ ... @a" )

define a cocyclic module structure on C}; (A, V), whose cyclic coho-
mology is denoted by HCg (A, V).

One uses HCy(H,V) and HCy (A, V) to define a cup product
HCY (A, V)® HCYL(H,V) — HCPTI(A),

whose definition can be found in [12, §].

As the simplest example, one notes that the cup product with the 0-
cocycle 7 € C%(A, 7Cs) defines the Connes-Moscovici characteristic
map (2, 3],

Xxr: HC*(H/° Cs) - HC*(A)

(W@ @h")(a®®- - ®a") =T7(a’h(a)... K" (a™)).



2.2 Lie algebra (co)homology
In this subsection we summarize our work in [13] on the cyclic coho-
mology of Lie algebras with coefficients in SAYD modules.

Let g be a Lie algebra and V be a right g-module. Lets recall the Lie
algebra homology complex

C(g,V) =P Cyla.V), Cy(g.V):=A9gQYV, (2.15)
q>0

with the Chevalley-Eilenberg boundary map

2 Cy(g, V) X (9. V) 2BV (2.16)
q—1
Ocp(Xo A - A Xg1®v) =D (1) XA AXi A A X1 @0 Xit
i=0

> CDHIXL X AKgA AKX A AXG A A X @,
0<i<j<q-1
The homology of the complex (C(g,V),dcr) is called the Lie algebra
homology of g with coefficients in V', and it is denoted by He(g, V).
In a dual fashion, one defines the Lie algebra cohomology complex

W(g,V)=EPWig V), WgV)=Hom(rg, V),  (2.17)
q>0

where Hom(A%g, V') is the vector space of all alternating linear maps
on g®? with values in V. The Chevalley-Eilenberg coboundary

VI W (g, V) S W2 g, V) T (218
is defined by
dep(a)(Xo,..., X)) = Y (~1)"a([X;, X;j], Xo... X, X, X+

0<i<j<q
q . o~
> (1) a(Xo, ..., X, Xg) - X
1=0
(2.19)

Alternatively, we may identify W9(g, V') with A?g*®V and the cobound-
ary dcg with

dcg(v) = 0" ®@v-X;, dep(B®v) =dr(B)@v -0 ALV X,

. 1 . .
dar : APg* — NPTl dgr(6Y) = f§c;keﬂ A GF (2.20)



The cohomology of the complex (W(g,V),dcg), the Lie algebra coho-
mology of g with coefficients in V, is denoted by H®(g, V).

We are particularly interested in the SAYD modules over the universal
enveloping algebra U(g) of a Lie algebra g, and by [13], such SAYD
modules are obtained from the SAYD modules over the Lie algebra g.

Definition 2.1 ([13]). A vector space V is a left comodule over the
Lie algebra g if there is a linear map

Vg: V=gV, Vg(v) = vy @ vy (2.21)

such that
V2] A V-1 ® vy = 0,

where
Vi—2) ® V-1 ® Vjo} = V-1 ® (Vo) ~1 @ (Vio1 )1 -

It is clear that left g-comodules and right S(g*)-modules are identical.

Definition 2.2 ([13]). Let V' be a right module and left comodule over
a Lie algebra g. We call V' a right-left anti- Yetter-Drinfeld module
(AYD module) over g if

V(v X) = vy @vp - X + [vi-1, X] @ vy (2.22)
Moreover, V is called stable if
Vio] *+ V[-1] = 0. (2.23)

Finally, V is said to be unimodular stable if V_g is stable,where § :=
Troad: g — C, and V_; is the deformation of V via

vaX :=v-X —6(X)v.

Example 2.3. The truncated polynomial algebra V = S(g*)izn, of a
Lie algebra g, is a unimodular SAYD module over g with the coadjoint
action and the Koszul coaction defined by

Vi:V—ogRV, VK(’U) = ZXZ & v, (2.24)
=1



Next, by using SAYD modules, we generalize the Lie algebra (co)homology
complexes. Let us start with the Lie algebra homology by introducing
the complex

Cle,V)=PnrgaV, 0=dce+k (2.25)
i>0

with the Chevalley-Eilenberg boundary and the Koszul coboundary
oK : C’n(g, V) — Cn+1 (g, V), 8}((6 X U) = V-1 AN e X V. (2.26)

Applying the Poincaré duality, see [13, Prop. 4.4], we obtain

W(s,V)=Preg @V (2.27)
i>0

with d = dcg + dk, where dcg : W™(g,V) — W"Hl(g, V) is the
Chevalley-Eilenberg coboundary and

dK : Wn(gv V) — Wnil(Q? V)7 dK(a ® U) = [‘(Ulfll)(a) @ Vo]«

Here «(X) denotes the contraction by X.

In particular, we recover the (truncated) Weil algebra [13]:

Wi(g,S(g") =W(g),  W(g,5(g")m) = W(g)ezn- (2.28)

3 SAYD-twisted cyclic cocycles

In this section we fix K to be a cocommutative Hopf subalgebra of
a Hopf algebra H, A an H-module algebra, and V a SAYD module
over K. We aim to develop a machinery to produce cyclic cocycles
in HCk (A, V). In the first subsection we introduce equivariant Hopf-
cyclic cohomology HCk(H,V,N), where N is a SAYD module over
H. In the second subsection we construct a cup product

HCY.(H,V,N)® HC%(A,N) — HCY (A, V).

In the third and fourth subsections we apply the results of the first
two subsections to produce a nontrivial SAYD-twisted cyclic cocycle
over the groupoid action algebra under the symmetry of the general
linear Lie algebra with coefficients in the truncated polynomials on
this Lie algebra.



3.1 Equivariant Hopf-cyclic cohomology

For a SAYD module N over H and a module-comodule V over K we
define the graded space

Cx(H,V,N) = @ CL(H,V,N),
q>0 (3.1)
C?:= C§.(H,V,N) := Homg (V, N @y H®).

More precisely, ¢ € C? if and only if for any v € K and any v € V
P(v-u) = ¢(v) - u, (3.2)

where the right action of K on N @y H®?t! is the usual diagonal
action, i.e.

(n®n e o hY) - u=n®g hDU(l) ® -+ @ hugy). (3.3)
For ¢ € C’}I((H, V,N) and v € V, we use the notation

s(v) = 6(v) " @n ()" @+ @ $(v)". (3.4)

Let us define the morphisms d; : C? — CT!, s; : C1 — C97!, and
tq : C1 — C? as

di(#)(v) =0i(d(v)), 0<i<gq

yr(O)) = Dgir (D00, )) 4 S(v-_.) s
sj(@)(v) =s;(d(v)), 0<j<qg—1,

tq(@)(v) = tg(d(vps ) S (v 1),

where the right action < of K on N ®z H®9*! is defined by
nogh’ @ - @h)aqu=noyh’ @ - @ h? !t hiu, (3.6)

and the morphisms (9;,5;,t) are the usual morphisms of the cocyclic
module Cy(H, N) defined in (2.5), (2.6) and (2.7).

Theorem 3.1. If V and N are SAYD modules over K and H re-
spectively, then the morphisms d;,s; and t define a cocyclic module
structure on Cx(H,V,N).

10



Proof. Let us prove that the morphisms d;, s;, and ¢ are well-defined.
To this end, it suffices to check that ¢, dg, and s, are well-defined as
the other morphisms are made of these three. For dy and s,, the task
is obvious as A : H - H ® H and ¢ : H — C are multiplicative
respectively. As for ¢, we have

((JS (U y) ( ((U : y)<0>)) < S((U : y)<—1>)

=7(d(V o) Y) <S(Ye)S(v__i2 )y
— () " @n 6(0) "y @ - ® ¢(0) " Yarn) S (Yiars)S (0, )y
= (U)[ ! <0> QH ¢(v)[l]y(3) Q...

¢(U)[ Yara) @ ¢(U)[71]<_1> ¢(U)[O]y(2>5(y(q+a>)S(U<_1>)yu)
1

= (U) <> @H ¢(v)[1]y(1) X ...
- @ 6(0) "y ® d(v)

[—1] [0]
<—1> ¢(U) S(v<—1> )y(Q+1)

=t(¢(v)) - y.
(3.7)

In the second and the sixth equalities we use the fact that K is co-
commutative.

Let us next show that Cx (H,V, N) is a cocyclic module, that is,

djdi = didj_l, 1< j, 8$58; = 8iSj+1, /) S] (3.8)
diSj_l 1< ]
sidi={1d, ifi=jori=j+1 (3.9)

di_lsj 1>7+1;

tq+1di = difltq, 1< <qg+1, thrldO = dq+1 (310)
ty—15i = Si—1tg, 1<i<q—1, tgso=sg1ty (3.11)
it = 1d, . (3.12)

The equalities (3.8), (3.9) and (3.11) follow directly from their coun-
terparts for the operators 9;,5; and t.

11



We check (3.10) for ¢ = g + 1. Indeed

tq+1(dg11(9))(v) = tg41(dg11(9) (v ) <S((v 1))
Q+1(DQ+1(¢(U<0><O>))<]S( <0><— 1>)) (U< 1>)
Q+1(aq+1<¢(v<0 )) (U<71>)) ( Ve 2>)

= tq—i‘l (¢(v<0>) 71]<0> QH ¢(v<0>) 2 & ¢(U<O>> Q-

O(00)" © (00 ) ”<_1><z><v<o>>“” bS(.y2)) 9S(v_y.)

1]

= 0(v00) s BH G(0) @ @ B(v,) @
6(v0.) o bv) S <v )@
¢<v<o>>“”<,l>¢< ) @S__,.)

= 6(v.0.) o BHB(0,) ® @ (v )"

(0]

A (6(0) e Blos) s<v<_l>>)
=2, ([6(ve0) "z S 00 <0>>[” @ ®P(v)" B

¢(U<o>)[_l]<—1>¢(v<0> } Vet )

=0,(ty(p(v_y.)) aS(v_ 1)) —d( q(9))(v).
(3.13)

A simple calculation then yields

t71(9) (v)

= ¢(v) LO> D1 Do)y D(00) S0 ) ®
L® ¢ <o>> Y (v) S )@

= (v ”<o>¢<v<o>>“”<,1> @n dvy.) S(v.,.)

-® Qb( <0>) (’U<7q71>)
[=1] [0] ld]
= ¢( <O>) OH ¢(U<0>)O S(U<—1>) - ® ¢(U<0>) ! S(’U<_q_1>)
= ¢( <O>) : (U<—1>) = ¢(U<0> ’ S(U<—1>)) = ¢(U)7
where the last equality follows from [6, Lemma 4.9]. O

We denote the cyclic cohomology of Cx(H,V,N) by HCk(H,V,N).
One notes that by taking K = C and V = C the usual Hopf-cyclic
cohomology HC(H, N) is recovered.

12



3.2 Equivariant characteristic map

Let V and N be SAYD modules over K and H respectively. We define
U CL(H,V,N)® C%(A,N) — CL(A, V), (3.14)
V(o) (v@ag® - @ ag)
= 0(6(v) " @ ()" (a0) @ B(v) " (@) @ -+ @ $(v) " (ag)). (3.15)

One may check that W is a map of cocyclic modules, where on the left
hand side we consider the product of two cocyclic modules. This is
enough to produce a generalization of the cup product in Hopf-cyclic
cohomology [8, 12].

We define a bicocyclic module by tensoring (2.13) and (3.1). The
bigraded module in the bidegree (p, q) is then defined by

CP4 = Homg (V, N @y H*P™') @ Hompg (A®IT N) (3.16)

N
with the horizontal structure 9; = 9; ®1d, ?j —s®Idand 7 = t®Id,
and the vertical structure 10; = Id ®0;, 10; = Id ®0; and 17 = Id ®7.
—

Obviously (C**, 9, 3, ?,T@, 10, 17) defines a bicocyclic module.
Now let us define the map

T : D! — Homg (V @ A% C), (3.17)

V(p@YP)(v®ag® - @ ag)

(1] (0] [ (a)
= (p(v)  ®B(v) (a0) @ ¢(v) (a1) @ -+ @ (v) " (ag)),

where D*® denotes the diagonal of the bicocyclic module C**®. It is a
cocyclic module whose gth component is C%? and its cocyclic structure

maps are 0; := 8 0 10;, 0 := a]o 1o, and 7 := To 1T,
Proposition 3.2. The map V¥ is a map of cocyclic modules.

Proof. Let us first show that W is well-defined. Indeed, using the fact
that ¢ is K-linear, we see that

V(¢ @) (vka) @ S(k@i) (@) @ - @ S(ke)(a?))

— P(d(vk) " @ p(0k) " S (kiern) (%) @ -+ @ (vka)) " S(ke ) (af))

(—1]

= P (p(v)
=e(k)¥(p @) (ved®-- ®al).

13
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Next, we show that ¥ commutes with the cocyclic structures. To this
end, it suffices to show the commutativity of ¥ with zeroth coface, the
last codegeneracy and the cyclic operator. We check it only for the
cyclic operators and leave the rest to the reader.

T<\1/(¢®z/z)) (v@ad®- - ®al)
— U(¢@¢)(v <0>®s << @) ©a @@ ath)
= P(Pvps) " @ Plvys)” *1<v<_1>><aq>®
6(v)" (") @ @ B(v_y.) " (a).
On the other hand we have
V(tp@ 1Y) (v@a® - ®al)
= Ty(to(v >“” t(0)” (@) ® - t¢< )" (%))
= 9(0(vs) s ®STHB(000) e )B(00n) s 0(vs)”
S(w__)@) @ 6(v)" (@) @ @ pv)" (aT7h))
= P(Pvas) @ Bvgs)” (v, ) (a)E
$(v02) " (@) @ @ Bluy.)” (a?).
The proof is as § = S~1. O

-1

Theorem 3.3. Assume that K is a cocommutative Hopf subalgebra of
a Hopf algebra H, A is a H-module algebra, and V and N are SAYD
modules over K and H respectively. Then the map V¥ defines a cup
product

HCY.(H,V,N)® HC%(A,N) — HCY (A, V). (3.18)

Proof. Let [¢] € HCY.(H,V,N) and [¢)] € HC} (A, N). Without loss
of generality we assume that ¢ and 1 are respectively cyclic cocycles
horizontally and vertically. This implies that ¢ ® ¢ is a (b, B) cocycle
of degree p + ¢ in total compex of C**. On the other hand, by the
cyclic Eilenberg-Zilber theorem [7], the total complex of C** is quasi-
isomorphic with D* via the Alaxander-Witney map AW. So, AW (¢®
¥) is a (b, B) cocycle in D*®. Since ¥ is cyclic, we conclude that
U(AW (¢ ®¢)) defines a class in HCL (A, V). O

One notes that for K = C and M = C, the trivial SAYD module over
K, the above cup product becomes the one defined in [8, 12].
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3.3 Equivariant charactrestic map for 4,

In this subsection we apply the equivariant characteristic map of Sub-
section 3.2 to produce the desired cyclic cocycle on the groupoid action
algebra A := C(F*) xT.

Let us first recall the Connes-Moscovici Hopf algebra H := H,, from
[2, 3]. To this end, let h,, be the Lie algebra generated by

(X0, Y7, 00,0 lisg ke by e =1,...,n, r € N} (3.19)
with relations
D/ij7yke] = (%szg - 5fij? [Y;jan] = (%Xh [XIWXA =0,
5;‘1681...& = [Xfm s [Xfu(s;k] - ']7 [5;'k€1...frv 5;‘%’@’1_._(;,] =0,

. r A A (3.20)
MR _]:E §4 5 . A X A
P 73132733 Jr Js J132733---Js—1PJs+1---Jr P 7132733 Jr
s=1

ikt oty = ity by 7T E S
As an algebra, #H is U(h,) modulo the (Bianchi-type) identities

53% - 5;‘1% = 0j, Sk — 0 - (3.21)

The coalgebra structure of H is defined by a Leibniz rule that makes
A an H-module algebra.

In order to describe the action of H explicitly, let us first identify F'*
with R" x GLT(n,R) and use the local coordinates (z,y) € F*. A
typical element of the algebra A is a finite sum of ), f;U. gi, where U;

stands for ¢; ' € T and f; € C°(F*). The elements of H then act as

8 * *
Xk:ygﬁa Xk(fU¢) = Xk(f)U¢7
Vi O iUy = YU, (322)
Y,
Styt, (FUE) =Vonor0, () f UG,

where

Viker.o. (@) = Xe, -+ Xo, (Vi1 (9)),

V@)@, y) = (¥ ¢'@) " 0, (@) - ) vl

(3.23)
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Therefore, for any a,b € A we have the Leibniz rule
Y/ (ab) = Y7 (a)b + a Y] (b),
Xi(ab) = Xi(a)b + a Xp(b) + 84y (a) Y/ (), (3.24)
8ty (ab) = 851.(a) b+ a 6%, (b).

Accordingly,
AY/)=Y/®@1+10Y/, (3.25)
A(85) = 05 @ 1+ 1@ 0y, (3.26)
A(Xp) =X, ®1410 X+ 0 @Y. (3.27)
For simplicity, we will also employ the notation
0%y, = 6;'1651...&7 Y, = Yij a= <;> . (3.28)

Let us also set go := gln, V = S(g¢)[2n With the canonical SAYD
module structure over K := U(go) as recalled in (2.3), and N = C;
the SAYD module over H where § : H — C is the character defined
on the generators by

S(Y7) =61, 8(Xk) = 0(0p,.0,) =0, 1<ijikl <m. (3.29)

Applying the cup product (3.18) with the canonical trace 7 € C’% (A,N),
[2], we get the characteristic map

X5 HCL(H,V,N) — HC{(A,V)
XA w@ag® - @ ag) = 7 (6(0) " (a0) -+ 6(0) " (ay) ),

as a mechanism to obtain ”SAYD-twisted” cyclic cocycles. We con-
clude this section by the identification of C{-(KC, V, N) with (V*@ N ®
H® )90 where V* = Home(V,C) and gp acts on V* @ N @ H®? via

(3.30)

q

p@1eh e 0h)Z=-) ¢01eh' e -adz(h)® - @I
i=1

+¢262Z) @ @h+¢-ZR1h @@ hi (3.31)

Here, the action of go on V* is defined by (¢ - Z)(v) = —¢(v - Z).

Accordingly, the aforementioned identification is given by the map

IT:(V*®@N®HP)® — CL(H,V,N)

IR1M @ @ h1)(v) = ¢(v) On Iy ®h' @ -+ @ Al (3.32)
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Proposition 3.4. The map Z, defined in (3.32), is an isomorphism
of vector spaces.

Proof. Let us first check that Z is well-defined. Indeed,

I(¢®1®h1®---®hq)(v-Z):¢(U-Z)®H1H®h1®...®hq
=—(¢-Z)v) Oy ly@h! @ @ h?

q
:_Zé(v)®7—£1H®h1®‘--®adz(hi)®...®hf1
i=1
+8(2)p(v) @y ly@h' @ @ hI

==Y )@y ly@h' @ - @adz(h’) @ - @ h
=1

q
+o(0) @ Z@N @ @hI+ Y $(v) Ol ®h @ @ZN @ @ hl
=1

= () @1ly@ht®---@hl) Z=T(p10ht @ - @ 1) (v))- Z.

Next, we introduce an inverse map for Z. To this end we fix a basis
for V, say {v1,...,vm}, with a dual basis {v!,...,v™} for V*. Then,

IV CLH,V,N) = (V¥ @ N @ H¥9)% (3.33)
I7Y(¢) =

S v o) oo 1) @ S(ow) @) - (s()) @ @ o0
i=1

is inverse to Z, and is independent of the choice of bases. ]

As a result, we can transfer the cocyclic structure of Ci(H,V, N) to
EVENH)™ :=@P€&:, E£:=V"@NoH ).  (3.34)
q>0
This way we obtain the cocyclic structure with the cofaces
0,: 81— &£ 0<i<qg+1,
50<¢®1®h1®...®}ﬂ):¢®1®1®h1®...®hq7
26PR1IOM @ Oh)=¢R1h ® - @AMK)® - @ hi,

004101 @ @hY) =V'(vi.) 1R @ @M ® S(vi_,.),
(3.35)
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the codegeneracies

§;:81—&17 0<j<q-1
50R1eh e o) =010~ @ -2 ® - @ h,
(3.36)

and the cyclic operator

1, &1 — &9,

¥Q(¢® 1® hl Q- ® hq) = Vi¢(vi<0>) ®1® S’v(hl) : (h2 ®---@hl® S(Ui<—1>))'
(3.37)

3.4 A SAYD-twisted cyclic cocycle in codi-
mension 1

In this subsection we keep the setting of Subsection 3.3 for n = 1. We
construct an explicit equivariant cyclic 1-cocycle ¢ € C ,lc (A, V).

Let {R} be the basis for g as the dual basis of {Y := Yj'} for go. Let
also {1, R} be the basis of V' and {1*, S} as the dual basis for V*.

For I"®1® X, S®1®d6 €&, we define

o1 Ve A®? 5 C,

PV . (3.38)

wo=Xx3(1"®1®X), ¢1=x3(S®1®d).

Lemma 3.5. The 1-cochain w9 — w1 s a Hochschild 1-cocycle.

Proof. Using (3.26) and (3.27) we have

b(po — ¢1)((al + ) ® ag ® a1 ® az) = (po — 1) ((al + B0) ® apar ® az)
— (o — 1) ((al + BO) ® ap @ araz) + (o — ¢1)((al 4+ B0) @ azap @ ay)

— (o — ¢1)(af R Y (az)ap ® a1)

= ar(apa1 X (a2)) — at(apX (a1a2)) + at(aapX (a1)) + a7(Y (az2)apdi(ar))

— Br(agalél(ag)) + ﬁT(aoél(alag)) — 57‘((12&051(@1)) = 0.
(3.39)

O]

Proposition 3.6. The I-cocycle g — 1 is cyclic.
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Proof. By using the ¢ invariancy of 7, (3.26) and (3.27) we have

t(po — 1) ((al 4+ B0) ® ag @ a1) = (po — ¢1)((al + B8) ® a1 ® ag)

= (po — ¢1)(ab ® Y (a1) ® ao)

= ar(a1 X (ap)) + at(Y(a1)d1(ap)) — B1(a1d1(aop))

= —at(apX(a1)) + B7(agdi(a1)) = —(po — ¢1)((al + B0) ® ag R ay).

O

3.5 A SAYD-twisted cyclic cocycle in codi-
mension 2

As in the previous subsection, we keep the setting of Subsection 3.3
for n = 2. We introduce an explicit cyclic 2-cocycle ¢ € CZ(A, V).

Let {R; | 1 < 4,5 < 2} be the dual basis of gy with the pairing

(Y7, RF) = 65i. We take
k p
< , 3.40
< ! ) - ( q >} (340

as a basis for V which is simplified by {1, R* R%|a < b}. The dual
basis for V* is expressed by {1%,S,, Sap | a < b}.

{1,3;1,35}25

We recall from [13] that the Koszul coaction (2.24) gives rise to a
K-coaction by the formula

VK:V—>’C®V,
1
VK(l):1®1+Ya®R“+§YaYb®Rab,

Vik(RY) =1® R*+Y, ® R?,
Vi (R?®) =1® R™.

(3.41)

We decompose V =V @ Vi @ Va, where Vy = C(1), Vi = C(R%), and
Vi = C(R®). Using this decomposition, any 1) € Hom(V ® A%+! C)
is decomposed uniquely as 1) = 1o + 11 + ¢2 by ;i = Y|y, g aea+1.
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We now consider the linear map v : V ® A®? — C with components
Do = X9 <711* 018 Xy @ Xor) + 721" © 10 81y © Xoo) Ya

+ ’731* ®1® 5(10(1)560_(2))/}) ® Yy + 741* ®1® 6ao‘(1)a(2) ® Ya) >

by = X (ﬁlsa ©1® 6% 1) ® Xy + 25 © 1® Xo1) ® 6% )
+ B354 ® 1 ® 6% (10 5(2) @ Yo+ B1Sa © 1 ® Yy @ 6%5(1)0%5(2)
+ 554 ® 1 ® 6%, (1) Y ® 65 (2) + B6Sa ® 1 ® 8% (1) Vs ® 6%5(2)
+ 8180 ® L ® 6% (1) ® 62 Y + BsSa ® 1 ® 8% (1) ® 6% (2) V3

+ 595, ®1® A((Saa(l)a(Q))>?

Py = x4 (Oanb 188 (1) @ g2 + @282 © 1 ® 851y @ 5a0(2))’

Our aim is to determine the coefficients «;, 3;, vk, such that 1 is a
cyclic 2-cocycle. To do so we prove a series of technical lemmas.

Lemma 3.7. For any o, B, Vi, (by)2 = 0.

Proof. The result follows directly from the application of the Hochschild
coboundary map and the fact that 6%; are derivations of A. O

On the next move, we determine «;, 1 < i < 2, in such a way that
RS C’,ZC(.A, V) is a cyclic cocycle on Vo @ A®™,

Lemma 3.8. For oy = a, we have (11)2 = 1s.

Proof. By definition of the cyclic operator, we have
TY(R™ ® ag @ a1 ® ag) = 1h2(R?® ® ay @ ag ® ay). (3.42)
Hence, by the integration by parts property [3, (3.4)],
tp(R® @ ag ® a1 ® ag) =
T (ao(—5aa(1))5ba(z)(al)a2> +oT <a05ba(2)(al)(—5aa(1))(a2)>
a7 (a0(=8(1))8 (2 (ar)az ) + az7 (a080% () (a1) (~ 8" 1)) (a2)

= a7 (ao5ba(1)(a1)5aa(2)(a2)> + ot (ao5“a(1)(a1)5ba(2)(a2)> :
(3.43)

Therefore, (t1))o = 1o if and only if a1 = . O
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As a result we set
)= =T (3.44)

On the next step, we find a constraint on f;’s such that v is a
Hochschild cocycle over V; @ A® 9+,

Lemma 3.9. We have (bY); = 0 if and only if

Br—PB3+Br+r=0

Bs+fg+r=0
—By— B+ Bz =0

B2 — Bs + Bs (3.45)
Bs— P =0
—B4— B =0
—B5 + Br = 0.

Proof. Recalling the Koszul coaction (3.41) in the last coface,
bI/J(Ra RagR@ a1 Qaz ® ag) =
1 (R* ® agar ® az ® az) — Y1(R* ® ag ® aras ® as) (3.46)

+ 17[)1(R‘1 ®ay® a1 @ (12(13) — (Ra X azag @ a1 K ag)
+ 12(R™ @ Yy(az)ap @ a1 ® as).

Therefore, as a result of the tracial property [3, Thm. 6] and the
faithfullness [3, (3.12)] of the trace, we have (b); = 0 if and only if

(Br— B3+ Br+71)1®0%1) @62 @Yy + (Bs + s + 1)1 R 051y ® 0% 2y ® Y},
+(=B2— Bs+ B3)1 @ 801y @Yy ® 0% 2y + (B1 — B5)1 ® Y}, ® 6% (1) ® 602
+ (81— Bs)1 @Y, ® 6% (1) ® 0% 2) + (—B5 + Br)1 ® §%(1) ® Yy ® 6749y = 0.

Accordingly we get the system (3.45). O

On the next step we determine ;s in such a way that ¢ € CZ(A,V)
is a cyclic cocycle over (Vi @ Vo) @ A®™.

Lemma 3.10. We have (7)1 = 1 if and only if
pr=p2=-r, B3=ps=ps=—Ps=Pr=s5s,

1 (3.47)
Bg=—-r—s, Bg= 57’4—3.
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Proof. By the Koszul coaction, we have
tY(R*®@ag®a1®ag) = Y1 (R*®as®@ap®ay) —wg(R“b®Yb(a2)®ao®a1).
Accordingly,

(R ® ap ® a1 ® ag) =
BT (6% 1) (a0) Xo(2)(a1)az) + Bt (Xp1y(a0)d®, )(al)a2)

+,337’< o(1 )5 0(2)((10)1/5 ap) a2> + Bat (Y}, (ao) (5a a2>
+ Bs7 (5(10(1)1@(@0)51)0( 2) (@1 az) + BeT (51)0(1)Yb )% (2)(a az)
+ B (5 (1)(@0)8%(2)Ys(a1) a2) + BsT (560(1) (a0)d az)
+ Bo7 (A (6% 5(1)0(2)) (a0 ® a1)ag) —r7 (6ao' 2)(a1)Yb(02)>
- TrT ((51)0(1) (ao)daa(g)(al)Y},(ag)> .
(3.48)
By the integration by parts property, (¢1)1 = 1 if and only if
Br—PB2=0
B2 — B3+ Pa—PB5+ Bs+ Pr—PBs =0
B1—2B2+ 201 — 205 — 285 — 209 =0
B2+ B6+Br+r=0
B2 — B3+ 05+ Bs —Bs =0 (3.49)
Bs+pPs+r=0
B3+ 85+ Bs —Pr=0
B3 —Bs=0
—B2+ B5 — B — 289 = 0.
Solving the systems (3.45) and (3.49) we obtain (3.47). O

Finally we determine 74, 1 < k < 4 such that ¢ € CZ(A, V) is a
Hochschild cocycle.

Lemma 3.11. We have (0v))o = 0 if and only if

M="72=T Y3=74=S. (3~50)
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Proof. By the Koszul coaction (3.41),

bzp(1®ao®a1®a2®a3) =
1/10(1 ® apga; @ as Q CL3) — ¢0(1 ® ap @ araz @ ‘13)
+o(1 ® ag ® a1 ® aza3) — Yo(1 ® azag ® a1 & az)

1
+ 11 (R ® Yy(a3)ap ® a1 ® az) — §¢2(Rab ® YpYa(az)ag ® a1 ® az).
As a result, (by))g = 0 if and only if

N (=18 8% (1) © Ya © Xo(a) + 18 Xo(1) @ %) @ Yo )+
72 (1 ®0%1) @ Xp2) @Yo +1®6%1) @Y, ® Xy9
F1®6%0) ® 8 Ya @Y + 108 1) © pz) YbYa) +
’)/3( —1®0%%1)0%(2) @Yy ® Yy — 1 ® Y, ® 60%(1)0 5 (2) ® Yo
—1®0% )Y ® 0@ @Y, —1®6% 1) ®@ eV, ® Y,

— 180V ® 8%(1) @ Yo = 10 0505 ® 0%(1) Y, @ Vo

— 711 @ A8 (1)0(2) @ Yo — 71 ® 8751y ® X2y ® Y

+ 11 ® X,p(1) ® 6%(2) @ Yo + 51 ® 6% (16 2 @ Y, ® Y,

+51 @Y, ® 0% 1)0%5(2) ® Ya + 51 ® 6%(1) Vs ® 0700y ® Yy

— 5106 1)V ® 0% @) @ Yo+ 51 ® %1y ® 602V ® Yo

F (-1 =89)1080) ® @Y @Y, + (g +5)1 QA (6 1)0(2) @ Ya

— 11 ® 8% 1) ® 8¥y(2) ® VYo — gl DA (0% 1)0(2) © Ya = 0.
(3.51)
Hence we obtain (3.50). O

Proposition 3.12. The cochain ) : V®.A®3 — C is a cyclic 2-cocycle
if and only if (3.44), (3.47), and (3.50) are satisfied. The resulting
cocycle is then a SAYD-twisted cyclic cocycle.

Proof. We note that 1 is a Hochschild cocycle, i.e. by = (b)) +
()1 + (by)2 = 0, if and only if (b)) = 0, t = 0,1,2. We see that
()2 = 0 via Lemma 3.7, (b); = 0 via Lemma 3.9, (by)g = 0 via
Lemma 3.11.

23



On the other hand v is cyclic, i.e. 790 = 9, if and only if (79); = 1y,
t =0,1,2. Indeed, for £ = 1 Lemma 3.10, for £ = 2 Lemma 3.8 yields
the claims. As for t = 0 we have

tY(1®ag®a; ®az) = Yo(l®az ® ag ® a1) — Y1 (R* @ Ya(az) ® ag ® ay)
+ %%(R“b ® YyYa(az) ® ag ® az).
Accordingly,
t(1 ® ag ® a1 ® az) = (3.52) + (3.53) + (3.54) + (3.55)
with
rT (Xg(l)(ao)Xg(Q)(al)@) +rT <(5a0-(1)(aO)XO—(Q)Ya(al)GQ)

+ 5T (5%(1)52(2)3’5)(@0)5/@(@1)az> + sT (5ag(1)a(2) (aO)Ya(al)CQ)u
(3.52)

rr(8(1)(@0) Xo(a) (a1)Ya(az) ) + 77 (Xo(1) (@0)8° o3y (1) Ya(az) )
— 57 (%0108 2y (00) Yola1)Yalaz) ) = 57 (Vi(a0)3 (1) 8% z) (1) Yaa2)
+ (r+ 8)7(52(1)(a0)5aa(2)1@(a1)Ya(a2)) — ST (5'10(1)5/1:(@0)52(2)(al)Ya(@))

+ 7 (52(1)3/17(610)5%(2)(al)Ya(az)) — 8T (5aa(1)(a0)5g(2)yb(a1)ya(a2))7

(3.53)
(*% a 5)T<A (6o (n)0(2) (00 ® al)Ya(a2)>, (3.54)

and
%T(5“0(1)(ao)éf,(Q)(al)}@Ya(ag)> + %7- (63(1)(%)5&0(2)(al)YbYa(ag)).
(3.55)

Using once again the integration by parts property to put the above
expressions into the standard form 7(agh'(a1)h?(az)), we obtain

tp(1®ag ® a1 ®az) = Po(l ® ap ® a1 ® az).

We can simplify this cocycle as follows.
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Theorem 3.13. The cochain ¢ = @o + p1 + 2 € C2(A, V),
P2 = X1 (Sab ®1® 6%(1) ® 0’0(2) + Sab ® L ® 85 (1) ® 6%@))
(3.56)
p1 = X$q< -5 ®1® (5ag(1) ® XU(Q) —S.®1® Xg(l) ® 5(10(2)

1
— 8. ®1® 8% 1) ® 6% Ys + 3% @1 A(5a0(1)0(2))> (3.57)

o =X (1" 10 X,1) @ Xg2) + 1" @10 8% 1) @ Xp2)Ya) ,
(3.58)

is cohomologous to Y which is defined in Proposition 3.12.

Proof. As a result of Proposition 3.12 we can write ) = ryp + s¢ for a
2-cochain ¢ = ¢g + ¢1 + ¢ given by

2 =10 (3.59)

¢1 = X7 (Sa ®1®6%(1)0 (2 @Yy + Sa ® 1RV, ® 6% (1)8 5 (2)

+ 8. ®1® 81 Y ® 0@ — Sa®1® 6%, 1)Yy ® 6% )

+ 8. ®1® 0% 1) ® 85V — Sa®1® 6 ,1) ® 8% @)Y

+t5®1® A(5aa(1>a<2>)) (3.60)

b0 = X7 (1* ®1®6%1)0 0@V © Yo+ 1" 018 0% (1)0(2) @ Ya) :
(3.61)

We note that

$1 = x5 (Sa ®1®A (5“0(1)5bo(2>Yb> +5%®1® A(5ao(1>a(2))) :
(3.62)
It is then straightforward to check that the 1-cochain ¢’ = ¢f,+ ¢} + ¢}
given by

¢5 =0 (3.63)
P = x5 (Sa ®1®6%1)0 02 Ys + Sa ®1® 6a0(1)0(2)> (3.64)
¢6 =0 (3.65)

is an equivariant cyclic 1-cocycle, and that

b = . (3.66)
0

25



3.6 A SAYD-twisted cyclic cocycle in general

codimension

Keeping the setting of Subsection 3.3, we prove in this subsection the

existence of a nontrivial cyclic n-cocycle ¢ € CE(A, V).

We first construct for each n > 0 a (non-trivial) Hochschild n-cocycle

0 € CR(H,V), o = x7r o I7Y(A,), for some A, € E".

Proposition 3.14. If the n-cochain

n

Ay, :Z(_l)ksalag...ak hata)z a;(n)
k=0

is a Hochschild n-cocycle in H, then

n 1— sgnz

ha= Y LY

{=k—sgn(i) j=0 =0 k=0

Nk @1 Oy gon (4)
( 1) Sa1a2 Qg ®h o(1),...,0(n+j) ® Fa(n—i—l—j) Ak+1--Gfsgn(i)

=

n+

is a Hochschild n 4+ 1-cocycle in Hyy1 for some

F* S Hn+1.

Y, 21.--Zm

Proof. As a notational convention for (3.68), we mean

(_1)kSala2---‘1k ® hgl(‘l.).?.?.,cr(n) ® FU(”+1)7ak+1-~~az

when ¢ = 57 =0, and

(_1)k5a1a2---ak hitl)%.,a(n—i—l) ® Fak+1- ay
when ¢ =0 and j = 1.
If (3.67) is a Hochschild n-cocycle, then
7 — k ai...a
b(An) = 3D Sasanan @b (R i)
k=0
n k k
n+1 a1 e, hal( )flk7 (n )®S( Qg1+
k=0 t=0 :
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As a result,
n—k ¢
Tai...a n -1 Taj...
b (hal(l),.l.c.,o(n)) =(-1) ( é!) R @ S(Y, Y,

o(1),...,0(n) k41 * ak+£)
£=0

(3.73)

for any 0 < k < n. Plugging this into E(An+1) = 0, we obtain

ok 7°G1...G- -Gy sgn (i) / a;
(—1)"Sa,...ax ®h0(1),...,o(n+j) ®A (FU(”+1—j)7“k+1"‘“5+sgn(i))

k (71)]6 ’}‘Z'alw-d\i"'a@rsgn(i)
> Seran @ ) i ©
l=k—sgn(i) j=0 i=0 k=0 t=0

n

Ya,)

(Yak7t+l <

S (Vay_yor - Yap) ® F% ) ,

0'(7’L+1—j)7 Ak+1---Ap4sgn(i)

(3.74)

where A’(u) := A(u)—u®1—1®u. Equality (3.74) yields an expression
for each Fy , of a fixed number of indexes, in terms of the ones with
smaller number of indexes. Using these equalities, we inductively find
all Fy , € H. We in fact have, up to constant multiples,

% =

o(nt+1—3), apq1--apre

a;
(FU(?H-l—j), Ak41---Qotsgn(i) ®

XU(TL+1)Yak+1 e ‘Yak+€7 i1=0,7=0, 14 7& 0,
Xon+1), 1=0,j=0,£=0 (3.75)
Oty i#0,j=00=0
6Ul(n+1)yak+l to Yak+é7 ? 7& 07 J = 07 14 7& 07
Yak+1"'Yak+l7 ’i:O,j:I.

]

Proposition 3.15. For any n > 0, A, € &", that is, A, is go-
mvariant.

Proof. The claim follows from the observation
Z Og(k) Bo(1) @+ @ By(r—1) @ By @ Bo(r41) @+ @ By(n)
= (3.76)
= 067" By1) @+ @ By(n)
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in view of the fact that the action of gy on V* is the adjoint action
T
Salag...ar : Yl-7 - Z Cgkb Sal...ak,l COpy1...Qr- (377)
k=1
O

Now recall the Connes periodicity exact sequence of the cyclic object
E=EV* N,H)™,

..LHCH(é’) ;-HH”(EJ) i_ch—l(g) $_ch+1(5) A

(3.78)
Having [A,] € HH"(E), its image B([A,]) € HC" () is a b+ B-
coboundary, therefore [A,] € ker(B) = Im([).

On the other hand, since we work over C, a field that contains Q,
HC™(E) = HY(E), where HY(E) is the cohomology of the quotient
E/ ~ of € by the action of the cyclic group, [14, Lemma 9.6.10], [?,
Sect. 2.4.2].

This indicates the existence of a class
[Al]l e HC™(E) (3.79)
represented by a cyclic n-cocycle such that I([A]]) = [A,].
Let us illustrate. For n =0
Ag =17, (3.80)
which is a Hochschild O-cocycle. It is also cyclic, therefore Af, = Ay.

For n = 1 we find

Al = ]_* ®7LU(1) — Sa ®EZ_(1), S Sl, fflo(l) = X, Eg(l) = 6]_,
(3.81)
which is a Hochschild 1-cocycle by

b(A1) = 1* ® b(hg) — Sq @ b(h%) — 1* ® h% ® S(Y,)

(3.82)
=-1"64QY -0+1"®H QY =0.

Since A; is cyclic, we have A} = A;. Note also that (3.81) is mapped,
by x5* o Z7!, to the 1-cocycle of Lemma 3.5.
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For n = 2 we find

* o 7 * o 1a * o T 1
Ay =17 @ ho1) @ Xo(2) + 1" @ hi(1) ® Xo(9)Ya + 17 @ ho(1)o(2) ® 57 5(Ya)
-5, ® 7"0’(1) ® (53(2) — 5. ® %3(1) ® Xo‘(2) — S, ® 7"2’(1) ® 53(2)YE)
+ Sap ® B 1) @ 0%y + Sap ® hly) @ 6%,
(3.83)

where o € So, 710(1) = X,(1), and E‘;(l) = 5g(1) (and hence }Nla(l)a(z) =
5§(1)U(2)). Then, b(A2) = 0 by
b(ho()) + hiqy @Ya =0,  and  b(hy) =0 (3.84)

which follows from (3.82).

Note that the Hochschild 2-cocycle (3.83) is not cyclic, yet, adding a
Hochschild 2-coboundary

~ 1 a

we obtain the cyclic 2-cocycle
/ 1 a 1 * a
Ay = A2+ 5 5 @ A0 (1)0(2) + 5 1 @ F51)0(2) @ Ya (3.86)

which is mapped, via x5 o Z7!, to the 2-cochain of Theorem 3.13.

4 The characteristic map with coeffi-
cients

In this section we construct a new characteristic map from the trun-
cated Weil complex of the Lie algebra gg to the cyclic complex of the
algebra A, and we illustrate it completely in codimensions n = 1 and
n = 2. We observe that the resulting cocycles in codimension 1 match
with those in [2, 3] by Connes-Moscovici .

Such a characteristic map is obtained by composing a series of maps

H(W (g0, V) —£> H(C(go, V) —= HC(K, V) —% HC(A).
(4.1)
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As it is shown in [13] the truncated Weil algebra is identical with
W(go,V). The Poincaré isomorphism ®p is defined in [13, Prop.
4.4]. The middle quasi-isomorphism is defined in [13, Thm. 6.2].
Finally the map X, is given by the cup product, in the sense of [8, 12],
with the SAYD-twisted cyclic cocycle ¢ defined in Proposition 3.6 for
codimension 1, in Theorem 3.13 for codimension 2, and in (3.79) for
the arbitrary codimension.

Let us recall the above mentioned cup product from [12]. Let C be a
H-module coalgebra and A be an H-module algebra that are equipped
with a mapping

C®A— A c®a—c(a) (4.2)

satisfying the conditions
(h-c)(a) =h-(c(a)), clab) =ca)(a)ex (b), (1) =ce(c)l. (4.3)
Let also V' be a SAYD module over a Hopf algebra H. One defines
U:Ch(C, V)@ CL(A, V) — CPTI(A) (4.4)
for any ¢ € C%L(A, V) andany z = v @y " ®--- @ P € CL(C, V),

(xU@)(ao® - @ apyq) == (4.5)
> (-850 - - 051y (O5(pra) - - Or(pe1): G0 ® -+ ® apyg)),

o€Sh(p,q)
where (2,00 ® -+ ® ap) == v @y (a®) @ - @ ¢"(a"), Sh(p, q) is the
set of all (p, ¢)-shuffle permutations, and &(n) = o(n) — 1.

Weset C =H : =K, V =5(g5)zn, A=A Then H acts on C
via multiplication, on A as (3.22) , and on V via the coadjoint action.
The construction yields for any ¢ € C¢(A, V) a characteristic map

Xo : CR(K, V) = C*F(A). (4.6)

4.1 The characteristic map in codimension 1

In this subsection we use the SAYD-twisted cyclic cocycle of Proposi-
tion 3.6 to illustrate (4.1) in codimension n = 1.

In order to verify that the new characteristic map is geometrically
meaningful, we compare its image with the transverse fundamental
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class TF := x-(TF) =, (X Y - Y @ X - 6,Y ®Y) € HC?*(A),

TF(ap® a1 ® az) =

=71(apX(a1)Y (a2)) — 7(apY (a1) X (az2)) — 7(agd1Y (a1)Y (a2)) (4.7)
and the Godbillon-Vey class GV := x,(GV) = x.(61) € HC*(A),

GV(ao ® al) = T(a051(a1)). (48)

The next step is to find the representative cocycles of H(W(go,V)).
Let {Y'} and {0} be a dual pair of bases for go and gj.

By the Vey basis [4], the cohomology of W (go)2 is spanned by
TF:=1¢€ S(g))z, GV:=0® R € g5 ® S(g5) (4.9)
Applying the Poincaré duality [13, Prop. 4.4], we obtain
Pp(l)=Y®1leg®V, Dp0@R)=RecV. (4.10)

Proposition 4.1. The Hopf-cyclic cohomology HC(IC,V') is gener-
ated by the classes

[R] € HCV(K, V), (4.11)

1
leY+ Re Y% € HCY(K, V). (4.12)

Proof. Tt is straightforward to check that R € CO(KC,V) and 1 ® Y +
%R@ Y?2 € CY(K,V) are cyclic cocycles. The claim, then follows from
the observation

1
n(R) = R, u(1®Y+§R®Y2) =1®Y, (4.13)
for the quasi-isomorphism

which, for any Lie algebra g, is the left inverse of the anti-symmetrization
map, see [3, 13]. O

Next we compute
Xe(0) (a0 ® a1) = (p U (0 ® 1))(ao @ a1)
=o(((0 ®1),a0 ® a1)) = ¢(0 ® ap ® a1) = —7(agd1(a1)),
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and in the same way,

1
Xo(1®Y + 5¢9®Y2)(a0 ®a; ®ag) =

1
> (1) 0me((O5e (1Y + 30 ® Y?), a0 ® a1 ® ag)) =
ceSh(1,1)

1
—Oop((1(1®Y + 59 ®Y?), a0 ® a1 ® as))+

1
D1p({(D(1®Y + 59 ®Y?), a0 ® a1 ® az))

= p(-1®aga; ®Y (a2) — 1@ agY (ay) @ ag — %0 ® apY?(a1) @ ay

- %0 ® apar ® Y(az) — 0 ® agY (a1) @ Y (as)) + (1 ® ap ® arY (az)
+ %0 ® ap ® a1Y?(az))

= (a0 (1) X (a2)) + 700X (1) (a2) + 57(a0Y (1)1 (a))

+ 5{aohi(@)Y(a2)) + 7(aoY (an)yY (a2)).

As a result,
1 1
Xp(1®Y + 0@ Y?) = x.(TF + 5b(51Y2)), (4.15)

that is, we obtain the transverse fundamental class up to a coboundary.
Similarly we obtain the Godbillon-Vey class

Xp(0) = —x7(GV). (4.16)

4.2 The characteristic map in codimension 2

In this subsection we exercise the machinery we developed in Subsec-
tion 3.3 for n = 2. We note that there is no such computations in the
literature that we know of.

Let us fix the following notation

c=Tr=Ri+R3€S(g), c2=RyRi € S(gp),
up =07 + 605,  ug =01 ANOIAOE,  w=0] NOI NG NG
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The Vey basis, [4], for W(go)u is then introduced by
{1, c%@ul, o @ Ui, Co @ ug, c%@w, C ®w}. (4.17)
Next, the Poincaré duality yields the 6 cocycles in the complex C(gg, V):
Dp(1) =1 Y] ANYZAYS AYZ,
Dp(ca@ur) =ca®@ (YPAYS AYy =Y AYE YY),
Dp(cf@u) =i @ (YEAYF AYE Y] AYEAYY),
Dp(ca @us) = 2 @Yy, Dp(c] ®@w) = cf,
Dp(c2 @w) = ca.
Let us label Y/ as ¥y := V], Yo:=Y?, Y3: =Y}, Y3:=VYZ

Proposition 4.2. The Hopf-cyclic cohomology HC(K, V') is gener-
ated by the classes

(7] € HCHK,V)
9G] = [ d (-1 ® (Yo(2) ® Yy(3) ® Y4
o€ES3
o) ® Yor) @ Yo )| € HC(K, V),
0] = | 3 (172 (Yo © Yoty @ Yoru
o€S3
~ Y1) ®@ Yy ® Yg(g))} e HO3 (K, V),
(%) := [c2 ® Y4] € HCY(K, V),
%3] =[] € HCO(K, V),
Ry = [ca) € HCO(K, V).

—_—

(4.18)

Proof. 1t is straightforward to check that %i,...,%4 and ¥ are
Hopf-cyclic cocycles and that

w(%#1) = DOp(co @ u1), p(H#2) =Dp(c2 ® uz),
((%#3) = Dp(cf ®w), u(%#1) =Dp(c2 ®w),
W(GY) =Dp(c; ®uy).
On the other hand,
(T F] = { Z (=171 ® Y1) ® Yy(2) ® Yo(3) ® Ya(4)] € EY*(K, V)

oESy
(4.19)
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is a cyclic cocycle in the Ej level of the spectral sequence that corre-
sponds to the natural filtration of V, [13, Thm. 6.2]. Hence

w(7 F) =Dp(1).
Therefore, the claim follows from [13, Thm. 6.2]. O

In this paper we do not complete the fundamental cocycle as we know
its counterpart as a cyclic cocycle over A by the following argument.
Let us recall the characteristic map

Xo : C*(K, V) — C*T2(A) (4.20)

for the SAYD-twisted cyclic 2-cocycle defined by the Theorem 3.13.
To this end, we first prove a generalization of [3, Prop. 18]. In view of
[10], H := H,, is realized as a bicrossed product Hopf algebra U >4 F<°P.
Here F is the commutative algebra of regular functions on the group
of diffeomorphisms which preserve the origin and with identity Jaco-
bian at the origin, and U = U(g¢3f"¢). The coaction involed in this
bicrossed product realization is recalled below

ViU — FP U,

‘ A A , 4.21
Xp = 10X +05, Y, Y/ —=10Y/. (21)

In the following proposition, for any 1 < j < m :=n? +n,

V() =Z._ . @ 0Z . 07, @10---01ecH™ (4.22)

<—7>

Proposition 4.3. The m := n? + n-cochain

TF :— (_1)(m71)! Z (_1)UVM<ZU(1)) . V(fo(m)) c &ML
0ESH

(4.23)
is a cyclic m-cocycle whose class [TF] € HC™(H) corresponds, by the

Connes-Moscovici characteristic map, to the transverse fundamental
class [TF] € HC™(A).

Proof. Let a' := f"U;ZZ_ € A, where 0 < i < m, f' € C>®(FtR?) and

1 € I'. Without loss of generality we assume that ¢y, ...19 = Id. The
cyclic cocycle TF € HC™(A) is given by the m-cocycle

TFa'®- - ®@a™) = / a®dat - - - da™, da’ :dfiU;Z_.
F+Rr '
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In order to prove the claim, we need to find k°, ..., h™ € H such that
TF®®---®a™) =7(h°@") - k™ (a™)). (4.24)

Indeed,

/ Odal - da™ — / PO%(drY) - (o . ) (dF™) =
F+Rn F+Rn
/F% BOCFYebo* (W (F1)) -+ (20" - o™ (B (F™) ) =

/ Id@o* @ - @ Yo" .. . Y)W @ @K (' & @ f™)w,
F+R»
(4.25)
where the volume form on the frame bundle is
w = /\ 0' A /\ wé (ordered lexicographically) (4.26)
' 1<i,j<n
In the above computation we use the notations
(R @ @h™)(fO @ @ f7) = hO(f7) ... A" (™),
and similarly for any ¢°, ..., g™ € C°(F*TR"),
(dep* @ @¢o* . v 1)’ © - @ g™)
= g"0"(g") .- 0" - Y17 (g™).
Here ¢*(g)(z,y) = g(¢(2),¢'(2) - ).
For any f € C2°(FTR™) we have

8‘fcl4-“f

af =55 oy

dyl = Xi(NO' + Y] (Nwj.  (4.27)

Therefore, for 1y € Diff(R"), and f°, f1 € C(FTR") we have
Fovo*(df') = f%o*( Xa(f")wo™ (07) + O™ (V7 (f1)o* (wi)
= fO%0" (Xi(f1)0" + fOvo™ (V7 (f1)) (vip (0)0F + wi)
(Id @) [(1 ® Xi + 6%, @ Y7 ) (f* @ 10" + 1@ Y7)(f* ® 1w
= (1 @0 ) (Xk)- 12 © (Xi) o) (/0 @ f1>0’“+
(Id @tho™) (V7)o ® (V) 00 ) (0 @ £1)w
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On the second equality we used [3, (2.16)], and on the third equality
we used (3.22). On the forth equality, the left coaction is (4.21).

On the other hand we have

(—=1) =08 O™ (df Yo vr ™ (df?) . . o™ - - P " (df™)
= 10"+ Y1 (™) . bo r* (dF) o™ (df ) f°

= (Ym-1- " (Xi(f™)0" +

Yot 0" (7 (F™) (i (Womor -+ ¥0)0 + 7))

(™ (K20 + 10" () () )0 + )
(Yo" (X0 + w0 (V7 (F)) ()6 + wh) ) - £

- (Id®@bo*®"'®¢0*---¢mfl*){

() @ @ (X)) 4 (V) @ @ (1) )] -

[((Xi)<—2> ® (Xi)<71> ® (X’i)<0> RIR---® 1>6i+
(V) oo ® (V)1 @ (V) @10+ @ D]

7

[((Xi)<71> ® (Xi)<0> RIR--® 1)92 +
() ® OF) o @100 1| } (P00 7).

)

(4.28)

On the third equality, we used the cocycle identity [10, (1.16)] in
order to obtain the expressions in H®™*! in the range of the coaction
(4.21). We reversed the order of the multiplication in (4.28) in order
to avoid obtaining elements in H®™*! involving Y/}, € H which do
not belong the PBW basis of H, [3, Prop. 3].

The coefficient of the volume form (4.26), which is an element H €
HE™F1 can now be expressed by carrying out the multiplication in
(4.28). Let (ZY,...,2™) = (X1,..., X, Y1, ..., Y,"), where the right
hand side is ordered lexicographically. Then

H=Y (~1)7v"(z°W)...v(z°0m), (4.29)

o€Sm

36



Finally, as a result of (4.25), (4.28) and (4.29), we have the element

TF :— (_1)(m—1)! Z (_1)Uvm(Za(1)) . V(Za(m)) c H®m+1
0€Sm
(4.30)
such that x,(TF) =TF € C™(A). O

Let us illustrate the proposition for n = 1. We have (Z!, Z?) = (X,Y),
m=12+1=2and

TF = (-1)" Y (-1)7V?*(27W)v(27?))

€Sy
= _<(X<—2> ® X<—1> ® X<0>)(Y<—1> ® Y<0> ® 1)_
(Ve ®Y. 0 8Y )X © X ©1))

=-1YRX-1®Y QY -V Y +10 XY +5HY QY
=1XQY-1Y®RX-10§HY QY.

Next we recall the isomorphism

Ui : C*(H,Cs) — D*(U, F,Cy)
U(ul b flo. . @u pa f1) = (4.31)
ul<7n>f1 @ u1<71> . 'un<71>fn ® u1<0> Q- un<0>

defined in [10] that identifies the Hopf-cyclic complex C*(#,Cs) of
the Hopf algebra H = U >« F with the diagonal subcomplex

D*(U,F,Cs) :=Cs 0 FZ* @U®". (4.32)

Remark 4.4. The transverse fundamental class [TF] € HC™ T (H,,, Cys)
defined in (4.23) corresponds to the class

IRXIA - AXyAYEA--AYY, (4.33)

in the total complex C**(g, F,Cys) [10, (3.37)], by the composition of
(4.31) and (4.14).

On the next move, we introduce the commutative diagram

CL(K, V) —% G (1, C) (4.34)

CjH“(_A)
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induced by (a decomposition of) the cup product (4.5) via a cyclic
cocycle p € CE(A, V) in the image of (3.30). Here T% : H®J — CI(A)
is the isomorphism defined in [3, (3.12)].

We are now ready to prove our claim. On the following proposition,
¢ € CZ(A,V) is the cyclic cocycle defined in Theorem 3.13.

Proposition 4.5. The cyclic cohomology class [7.F) € HC*(K,V)
is mapped by x, : HCY(KC, V) — HC®(A) to the transverse character-
istic class [TF) € HC%(A).

Proof. By the diagram (4.34) we understand that it is enough to ob-
serve [x,(7.#)] = [TF] € HC®(H). This, in turn, follows from

110 Ve ([Xp (T F)]) = p1 0 ha([TF]) = [1 @ X1 A X AY A AYS

(4.35)
thanks to the large kernel of (4.14). Hence the result follows since
14 0 1sq 18 an isomorphism on the level of cohomologies. O

In the following we present the images of the cyclic cocycles 477,
K, K2, X3 and X4 under the characteristic map x, : C*(K,V) —
C*T2(A). We do not display the detailed account of the computation
as it is lengthy and straightforward.
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3
Xe(@Y a0 @ -~ ®as) =Y ‘ Y 2 ()7 (=t

{ =7 (08l (@8 o VLG (@Y VL) )
7 (a08ly 0y (@)Y 55 @280 (03) Y ) (@)Y 6 (a5))
= (a8l @)V @V (@) o) w? (@)
7 (080 (@)Y o) (@)Y ) (“3)Y“k<(wg(( m(?) (05))
=7 (0¥ ) @)l 0y (a2)80, o (@) Vi ) (@)Y ) ()
+ 7 (a0 ) (@0)8 ) (@)Y (5 (@), ) (0a) ’“(7(2)))) %))
= (a0Y i) @)y (02) Y 5 (@) Ve S (@) (05))
= (a0 S @)Y 5 (@2)3 0 ()87, () ’“(7(21))) %))
7 (V) (VT 02 0V () 00)
= (a0 ) (@) ) @)Y 76 (@) ) (@), af’))}

Xw(g@g)(ao Q- Q a3)
= Z { —T a0520(1)<a1)5%0(2) (a2)Y5 (a3))

gESs
— 7(a067,(1)(01) 830 () (a2) Y3 (a3)) + T(a005, (1) (a1) Y5 (a2)07 55 (a3))

+7(a003, 1y (01) Y5 (a2)835 (9 (a3)) — T(a0Y5 (a1)855(1)(a2)87, (9 (a3))
— 7(a0YF (1)3%, 1) (a2)9%, (3 (a2)) }. (4.37)

Xe(#s)(ao @ ar @ az) = Y Y 2+ (=1)7T(a08,1)(a1)85 5 (a2)-

1<4,7<2 o€ Sy
(4.38)
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3
o) (a @ @ag) = > > <—1>0<—1>7<—1>k*1{

k=1 o0,v,nES2
))(

17](2) (aQ)Ylic(Ef(l as

) (a3)Y)

T (@)Y e )>)(“3)Y (:7((11))))
)
)

a052na)(a1 (
(

YA 7D (4062, o (a3 Y*;k(g"(§1)>))(a4)yf;’“
(
(

k(o (1)

2)
) (
Ylic((ag(l))))(QQ)é2n(2)(a3
E(o(2)) Ko (1)
Yo (@)Y
@)
5
@)
5
@)

k g
)(aQ)Y ((1))

k(a(1
)(GZ)YN ( ()%
u
( 1)
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)
)
)
2n(1 Y !
1n(1 Y, ) as)

) ’“(7 )

o(1
)30 (@)Y )

(
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(@) )

()30 (@)Y 65 (@3) V5 78y @0) 8 )
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Finally,
Xo(Z4)(ap ® a1 ® az) = p(c2 ® ag ® a1 @ az)
= 3 (17 {7 (@08 1) (0183, ) (a2)) + 7(a08%, 1) (@1)83, o (a2) }.

oc€S>
(4.40)

Remark 4.6. One knows that the characteristic map x, : C*(H,Cs) —
C*(A) is injective [2]. Since X, (T F), Xo(9Y), Xo(Z#1), Xp(#2),
Xo(#3), and x,(Z#4), are all in the range of x-, as a byproduct of our

study in this paper, one calculates cyclic cocycles representing a basis
for HP*(H,Cs).

Remark 4.7. Proposition 4.5 holds in arbitrary codimension too, that
is, the class [T Z] € HC™’ (IC, V) is mapped by x, : HC™ (K,V) —
HC™*(A) to the transverse characteristic class [TF] € HC™ T (A).

Indeed, for A}, of (3.79),
¢ € CR(AV) =xT1 o IT7H(AY), (4.41)

and by the kernel of (4.14) the only terms of [7.%] € HC™ (K, V) that
survive after the composition of (4.31) and (4.14), are those paired
with the image of 1* ® X, (1) ® - -+ ® X, () of A}, € ™. This yields,

1ovoa([Xp( 7 7)) = potha([TF)) = (1@ X1 A- - AXGAVEA- AV,
(4.42)
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