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Compressive Spectral Method for 
the Simulation of the Nonlinear 
Gravity Waves
Cihan Bayındır

In this paper an approach for decreasing the computational effort required for the spectral simulations 
of the fully nonlinear ocean waves is introduced. The proposed approach utilizes the compressive 
sampling algorithm and depends on the idea of using a smaller number of spectral components 
compared to the classical spectral method. After performing the time integration with a smaller 
number of spectral components and using the compressive sampling technique, it is shown that the 
ocean wave field can be reconstructed with a significantly better efficiency compared to the classical 
spectral method. For the sparse ocean wave model in the frequency domain the fully nonlinear ocean 
waves with Jonswap spectrum is considered. By implementation of a high-order spectral method it is 
shown that the proposed methodology can simulate the linear and the fully nonlinear ocean waves 
with negligible difference in the accuracy and with a great efficiency by reducing the computation time 
significantly especially for large time evolutions.

The signals, with majority of the components are zero, are called sparse signals. Like majority of the signals in 
the nature, the ocean waves are sparse either in the time or in the frequency domain. Therefore the compressive 
sampling technique can be thought as a very efficient tool for measuring or simulating the ocean waves. In this 
paper it is shown that the efficiency of the compressive sampling technique can also be used for the improvement 
of the computational simulation efforts of the ocean waves.

The linear and fully nonlinear ocean gravity waves are considered in this study. Ocean waves are simulated 
by implementation of a high order spectral method in which the spectral derivatives are evaluated using the fast 
Fourier transforms (FFT) over the periodic domain. Time integration is carried out using a 4th order Runge-Kutta 
method. The proposed approach, which can be named as compressive spectral method, depends on the idea of 
using smaller number of spectral components compared to the classical spectral method. Performing time inte-
gration with smaller number of spectral components and using the compressive sampling technique, it shown 
that the ocean wave field can be modeled with a significantly better efficiency compared to the classical spectral 
method. The sparsity property of the wave field in the frequency domain which has the Jonswap form is used and 
l1 minimization step of the compressive sampling algorithm is applied in the frequency domain.

It is shown that by using a smaller number of spectral components and the compressive sampling technique, 
ocean waves can be simulated very efficiently compared to the classical spectral simulation with a larger num-
ber of spectral components. Also it is shown that the accuracy difference between two models is of negligible 
importance. Therefore it is shown that the proposed compressive spectral method can be a very efficient tool in 
simulations of fully nonlinear ocean waves.

Methodology
Review of a Linear Ocean Wave Model.  Many different approximate equations are developed to model 
the ocean waves. Also there are various models which solve the fully nonlinear kinematic and dynamic boundary 
conditions1. In order to discuss the efficiency of the proposed technique first linear ocean waves are considered. 
Linearized kinematic and dynamic boundary conditions for the ocean waves at z =  0 are given as

η ϕ ϕ η− = + =g0 0 (1)t z t

where η and ϕ denote the water surface fluctuation and the velocity potential, respectively1. Although this set 
of equations can be solved analytically to yield sinusoidal waveforms, in order to discuss the advantages of the 
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compressive sampling technique, a numerical spectral method is implemented for simulating the linear ocean 
waves. In a periodic domain with arbitrary depth h, the velocity potential ϕ can be expressed by
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where F and F−1 denote the Fourier and inverse Fourier transformations respectively. In this paper only one 
dimensional waves are studied.

This set of equations are solved with a 4th order Runge-Kutta method for time integration in order to sim-
ulate the linear ocean waves for various initial linear ocean wave profiles. Initial linear ocean wave fields are 
constructed by an inverse FFT algorithm using random spectral components with total energy described by the 
Jonswap spectrum. Details and further discussion can be seen in1.

Review of Wave Model for Fully Nonlinear Waves.  The high order spectral method summarized in this 
section is first presented in4; which models the nonlinear ocean surface waves on the surface of an ideal fluid. An 
implementation of this model both in 1D and 2D can be seen in1–3,5.

Following6, the velocity potential at the ocean surface is denoted by φ φ η=
  x t x x t t( , ) ( , ( , ), )s  where η is the 

water surface fluctuation and φ is the velocity potential. Using φs, it is possible to show that potential flow of water 
waves on an deep fluid can be formulated as a canonical Hamiltonian system;
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where H is the Hamiltonian which is the total energy of the wavefield. The details of this derivation can be seen 
in6. Employing the transformations
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the classical kinematic and dynamic boundary conditions can be written as1
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where Pa is the atmospheric pressure, ρ is the density of water and the horizontal gradient is ∇ = +
 

i j() () ()h x y . 
Using eigenfunction expansion, the velocity potential can be expressed as1,4
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For deep water the shape function ψ takes the form of a decaying exponential so that1,4
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where h is the water depth1,4. Using Taylor series expansion about mean water level and perturbation series up to 
an arbitrary order S, the φz can be written as
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By utilizing the efficient FFTs on a periodic domain one can evaluate φz using (10–12). So that (7,8) can be solved 
numerically. In this study time integration is performed by a 4th order Runge-Kutta method7, all spatial derivatives are 
calculated in the wavenumber domain and all multiplications for nonlinear terms are done in the physical space. Details 
of the numerical method used to solve this set of equations can be seen in1,4. Details of the numerical spectral methods 
can be seen in8,9.
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Review of the Compressive Sampling.  After it has been introduced to the scientific community with 
a seminal paper10, compressive sampling (CS) has become a core research area in the last decade. Today it is 
widely used in various branches of applied mathematics, physics and engineering and some studies such as the 
development of a single pixel video camera system aim to make use of this efficient technique in digital systems 
as well. In summary, CS states that a sparse signal can be reconstructed from fewer samples than the samples 
that Nyquist-Shannon sampling theorem states. In this section we try to sketch a brief summary of the CS for the 
oceanographers.

Let η be a signal of length N and a K-sparse signal, that is only K out of N elements of the signal are nonzero. 
Using orthonormal basis functions with transformation matrix ψ, η can be represented in terms of basis func-
tions. Typical transformation used today are the Fourier, wavelet or discrete cosine transforms just to mention 
few. Therefore it is possible to write η ψη= ˆ  where η̂ is the transformation coefficient vector. Discarding the zero 
coefficients of η which is a K-sparse signal one can obtain η ψη= ˆs s where ηs is the signal with non-zero compo-
nents only.

The underlying idea of the CS is that a K-sparse signal η of length N can exactly be reconstructed from 
M ≥  Cμ2(ξ, ψ)K log(N) random measurements with a very high probability, where C is a positive constant and 
μ2(ξ, ψ) is the mutual coherence between the sensing basis ξ and transform basis ψ10. For the recovery of a sparse 
spectra the M samples are taken in physical domain or for the recovery of the sparse signal in the physical domain 
the M samples are taken in the spectra. Taking M random projections and by using the sensing matrix ξ one 
obtains g =  ξη. Therefore the problem can be formulated as

η ξψη=ˆ ˆgmin under constraint (13)l1

where η η= ∑ˆ ˆl i i1
. So that among all signal which satisfies the given constraints, the l1 solution of the CS prob-

lem is given as η ψη= ˆCS .
l1 minimization is only one of the alternatives which can be used for this optimization problem. There are 

some other algorithms in literature to recover the sparse solutions such as reweighted l1 minimization or greedy 
pursuit algorithms10. Details of the CS can be seen in10,11.

Proposed Methodology.  In a classical spectral method let N be the number of the spectral components 
used for the representation of a signal. N is generally desired to be as large as possible that the computational 
effort allows. Here we introduce the compressive spectral method which states that by using M spectral compo-
nents with M < <  N and using the CS technique to construct the N-component signal at the last step of the time 
evolution from M components, it is possible to obtain a very efficient computational method especially for very 
long time evolutions. The selection of the M spectral components has to be done carefully depending on the 
width of the K-sparse wave profile in order to satisfy the lower limit of M =  O(K log(N/K)) condition of the CS 
algorithm where O denotes the order of symbol. For example for a 10-sparse signal with 1000 elements, that is for 
K =  10 and N =  1000 one would need M =  O(20) components for the exact recovery of the 10-sparse signal by 
the CS. If a smaller M is used then the exact recovery of the sparse signal may become impossible. If a higher M is 
used that exact recovery can be done but one starts to lose the undersampling ratio advantage of the CS.

The CS theory states that M samples has to be chosen randomly. However for the many of the phenom-
ena we encounter in the oceanography we have the priori knowledge about which spectral components will be 
nonzero. Some examples are sideband waves with few nonzero spectral components, Jonswap spectrum with 
more energy in the smallers wavenumbers, triangular spectrum of the rational rogue wave solutions of the non-
linear Schrödinger equation12 just to name a few. Therefore in order to make a more accurate recovery of the 
sparse spectra with nonzero components located in the lower wavenumbers we take M equally spaced samples 
in the physical ocean surface. Our undersampling ratio becomes r =  N/M. This deterministic uniform sampling 
causes r replicas to appear in the recovered spectrum by the CS. We only need and keep the energy in the smaller 
wavenumber components and filter out the r −  1 aliasing high wavenumber replicas of the spectrum.

Starting from the initial conditions, time stepping is performed for only selected M spectral components. 
After the time stepping, the N point signal is reconstructed from M components with the help of the l1 minimiza-
tion technique of the CS theory. It is shown that the methodology offered in here can reduce the computational 
effort significantly compared to the classical spectral method with N components while the accuracy difference 
in the results is negligible. In order to ensure the stability of the schemes both for the classical and the pro-
posed compressive spectral methods, a small dt must be selected to satisfy the CFL condition. For example for 
L =  500 m, N =  2048, M =  256 the dt =  10−5 value is selected. This strict requirement is imposed by the classical 
spectral method, not by the proposed compressive spectral method. That is dxN =  L/N is smaller than dxM =  L/M, 
so in order to satisfy CFL condition (upper bounded dt/dx), smaller dt must be selected for the classical method. 
The proposed method also relaxes this restriction.

A similar approach has been introduced by us and discussed in13,14 where the waves which are sparse in the 
time domain are considered however in this paper the sparsity property of the frequency spectrum, which is in 
Jonswap form, is used to test the proposed method for the simulation of the linear and the fully nonlinear ocean 
waves.

Results
Results for Linear Ocean Wave Simulations.  In the Fig. 1, the Jonswap spectra of the N =  1024 compo-
nent classical spectral method and the M =  256 component compressive spectral method proposed are compared. 
The two methods are in excellent agreement as it can be seen in the figure. The normalized root-mean-squared 
difference between two spectra is 0.0045 for this simulation.
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By means of an inverse FFT, it is possible to construct the ocean surface with linear waves which is not neces-
sarily sparse. In the Fig. 2, the water surface fluctuations of the classical N =  1024 component spectral method and 
the M =  256 component compressive spectral method proposed are compared. The two methods are in excellent 
agreement as it can be seen in the figure. The normalized root-mean-square difference between two profiles is 
0.0052 for this simulation.

In the Fig. 3, the Jonswap spectra of the N =  2048 component classical spectral method and the M =  256 
component compressive spectral method proposed are compared. The two methods are in excellent agreement 
as it can be seen in the figure. The normalized root-mean-square difference between two spectra is 0.0044 for this 
simulation.

Again by means of an inverse FFT, it is possible to construct the ocean surface with linear waves which is 
not necessarily sparse. In the Fig. 4, the water surface fluctuations of the N =  1024 component classical spectral 
method and the M =  256 component compressive spectral method proposed are compared. Again the two meth-
ods are in excellent agreement in terms of accuracy. The normalized root-mean-square difference between two 
profiles is 0.0048 for this simulation.

The Jonswap spectra of the N =  1024 component classical spectral method and the M =  128 component com-
pressive spectral method proposed are compared in the Fig. 5. The results of the two methods agrees well however 
it can be realized that using a smaller M causes the difference to increase although still it is of negligible impor-
tance. This is mainly due to the fact that for a smaller M the sparsity condition becomes critical. The normalized 
root-mean-square difference between two spectra is 0.0036 for this simulation.
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Figure 1.  Comparison of the energy spectra of the classical spectral method and the proposed compressive 
spectral method for linear waves with N = 1024, M = 256. 
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Figure 2.  Comparison of the water surface fluctuation of the classical spectral method and the proposed 
compressive spectral method for linear waves with N = 1024, M = 256. 
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Again by means of an inverse FFT, it is possible to construct the ocean surface with linear waves which is 
not necessarily sparse. In the Fig. 6, the water surface fluctuations of the N =  1024 component classical spectral 
method and the M =  128 component compressive spectral method proposed are compared. The two methods are 
in very good agreement as it can be seen in the figure. The normalized root-mean-square difference between two 
profiles is 0.0165 for this simulation.

All of the results presented above show promising evidence for the accuracy of the proposed method for the 
linear ocean wave simulations. Additionally the computational efforts required to run the various configurations 
for the linear ocean wave simulations are summarized in the Table 1.

The average computation times of 50 realizations given in the Table 1 are in the units of seconds. The compu-
tation times are measured on a Dell Vostro 1700 laptop with dual core of 1.8 GHz and 1 GB RAM which is used 
to run the MATLAB code. As it can be seen on the table, for a very small number of time steps the compressive 
spectral method does not provide any improvement in the computational effort. This is mainly due to the com-
putational effort required by the l1 minimization. However as the number of time steps gets bigger, the computa-
tional effort significantly reduces while the differences in the wave profiles are of negligible importance. Therefore 
compressive spectral method provides a great computational efficiency compared to the classical spectral method 
for the ocean wave simulations which are sparse in frequency domain.

Results for Fully Nonlinear Monochromatic Waves.  In this section we solve the governing equations 
for the fully nonlinear model described above by the classical spectral method and by the proposed compressive 
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Figure 3.  Comparison of the energy spectra of the classical spectral method and the proposed compressive 
spectral method for linear waves with N = 2048, M = 256. 
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Figure 4.  Comparison of the water surface fluctuation of the classical spectral method and the proposed 
compressive spectral method for linear waves with N = 2048, M = 256. 



www.nature.com/scientificreports/

6Scientific Reports | 6:22100 | DOI: 10.1038/srep22100

spectral method for a monochromatic wave. In the Fig. 7, the spectra of the of the N =  1024 component clas-
sical spectral method and the M =  256 component compressive spectral method proposed are compared for a 
monochromatic wave. The two methods are in excellent agreement as it can be seen in the figure. The normal-
ized root-mean-square difference between two profiles is 0.0230 for this simulation. Water surface fluctuation is 
obtained by taking the inverse FFT of this spectra and is shown in the Fig. 8 where the water surface fluctuations 
of the N =  1024 component classical spectral method and the M =  256 component compressive spectral method 
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Figure 5.  Comparison of the energy spectra of the classical spectral method and the proposed compressive 
spectral method for linear waves with N = 1024, M = 128. 
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Figure 6.  Comparison of the water surface fluctuation of the classical spectral method and the proposed 
compressive spectral method for linear waves with N = 1024, M = 128. 

N M # of Time Steps Class. Meth.-Time (sec) Prop. Meth.-Time (sec) Normal Rms Diff.

1024 128 30000 61.90 8.91 0.0036

1024 256 70000 146.03 48.92 0.0052

1024 256 90000 189.31 55.89 0.0066

1024 256 120000 256.55 52.04 0.0070

2048 256 60000 341.09 232.16 0.0048

Table 1.   Comparison of Temporal Cost of the Classical Spectral vs Proposed Method-Linear Wave 
Simulations.
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proposed are compared. The two methods are in excellent agreement as it can be seen in the figure. The normal-
ized root-mean-square difference between two profiles is 0.0006 for this simulation.

Results for Fully Nonlinear Trichromatic Waves (Sidebands).  In this section we solve the governing 
equations for the fully nonlinear model described above by the classical spectral method and by the proposed 
compressive spectral method for a trichromatic wave. In the Fig. 9, the water surface fluctuations of the N =  1024 
component classical spectral method and the M =  256 component compressive spectral method proposed are 
compared for a trichromatic profile, that is a wavefield with three wavenumber components. This is also known 
as the sidebands example, a wavefield with one central wavenumber component and two side neighbour com-
ponents of this central wavenumber. The steepness for this surface is ka ≈  0.1. The two methods are in excellent 
agreement as it can be seen in the figure. The normalized root-mean-square difference between two profiles is 
0.0034 for this simulation. In the Fig. 10, the water surface fluctuations of the N =  1024 component classical spec-
tral method and the M =  256 component compressive spectral method proposed are compared for the trichro-
matic wavefield. The normalized root-mean-square difference between two profiles is 0.0059 for this simulation 
and agreement is excellent.

As discussed in the review of compressive sampling section above, for a K-sparse frequency series at least 
M =  O(K log(N/K)) samples are needed for the exact reconstruction. Therefore it is important to analyze how the 
proposed method will perform in the case of spectral broadening. For this purpose we consider the nonlinear 
wave interactions. We test the proposed method with longer temporal runs. Generally speaking, a time scale 
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Figure 7.  Comparison of classical spectral method and proposed compressive spectral method for the 
spectra of a monochromatic wave N = 1024, M = 256. 
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Figure 8.  Comparison of classical spectral method and proposed compressive spectral method for a 
monochromatic wave N = 1024, M = 256. 
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of 25Tp is sufficient for nonlinear interactions to be developed5,15 where Tp is the peak wave period. We test the 
method with a run time of 50Tp. The resulting spectra for this simulation is presented in the Fig. 11 and the cor-
responding water surface fluctuation which is obtained by applying inverse FFT on this spectra can be seen in the 
Fig. 12. The normalized root-mean-square differences between two profiles are 0.0106 and 0.0073 for these two 
figures, respectively.

As it can be realized from the figures above, the method also works well in the case of spectral broadening 
due to nonlinear interactions. The spectra exhibits energy increase in higher and lower wavenumbers. For tri-
chromatic waves, the M =  O(K log(N/K)) condition of the compressive sampling is not strict because initially 
only three wavenumbers has energy and after the time stepping long enough to cause some interactions (for this 
example 50Tp is used) the energy has spread to only few other wavenumber components. Although there is spec-
tral broadening, the spectra still satisfies the M =  O(K log(N/K)) condition of the compressive sampling since K 
remains small, therefore the proposed compressive spectral method works well.

Results for Fully Nonlinear Waves with Jonswap Spectrum.  In this section we solve the governing 
equations for the fully nonlinear model described above by the classical spectral method and the proposed com-
pressive spectral method for a wave field described by a Jonswap spectra. For small evolution times the results 
are no different than the results presented in linear wave simulations sections since nonlinear interaction do not 
develop within short time. Therefore we concentrate on runs with time scales long enough for the nonlinear inter-
actions to be developed. However it is known that high order spectral method is subjected to high wavenumber 
instability in the form of a sawtooth function in the spatial domain which becomes more critical for longer runs. 
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Figure 9.  Comparison of classical spectral method and proposed compressive spectral method for a 
spectra with sidebands N = 1024, M = 256. 
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Figure 10.  Comparison of classical spectral method and proposed compressive spectral method for a 
profile with one central wavenumber and two sidebands N = 1024, M = 256. 
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Therefore in order to obtain stable solutions smoothing filter must be applied. One possible form of the smooth-
ing filter is given in1,4 and applied to η and φs in the Fourier domain. The effects of the smoothing filter such as 
the decay of the total wave energy is discussed in1,4. In compressive spectral method we propose smoothing filter 
is applied to M components and those components are the first M components of the classical smoothing filter 
with N terms.

In the Fig. 13, the water surface fluctuations of the N =  2048 component classical spectral method and the 
M =  256 component compressive spectral method proposed are compared for a fully nonlinear ocean wave sur-
face defined by a Jonswap spectrum. The two methods are in excellent agreement as it can be seen in the figure. 
The normalized root-mean-square difference between two profiles is 0.0099 for this simulation. The correspond-
ing water surface fluctuation which is obtained by applying inverse FFT on for this spectra can be seen in the 
Fig. 14 with a normalized root-mean-square difference of 0.0104 between two profiles. As it can realized from the 
figures above and below, the method also works well in the case of spectral broadening due to nonlinear interac-
tions. The spectra exhibits energy increase in higher wavenumbers. Proposed method works well although there 
exists spectral broadening since the spectra still satisfies the M =  O(K log(N/K)) condition of the compressive 
sampling. As a numerical check; for a peak period of Tp =  12 s and significant wave height of Hs =  1 m, the N 
component Jonswap spectra decreases almost to zero at the 80th point of the wavenumber vector. Therefore for 
this case the two sided Jonswap spectra can be thought as 160-sparse function. Therefore for N =  1024 at least 
M =  O(160 log(1024/160)) =  O(129) sampling points are necessary. Although this requirement forces M to be 
bigger in the case of spectral broadening, the proposed method still performs significantly better in terms of 
computation time as discussed in the coming sections.
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Figure 11.  Comparison of classical spectral method and proposed compressive spectral method for a 
spectra with sidebands N = 1024, M = 256-nonlinear interactions. 
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Figure 12.  Comparison of classical spectral method and proposed compressive spectral method for a 
profile with one central wavenumber and two sidebands N = 1024, M = 256-nonlinear interactions. 
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As a further check on the spectral broadening, we consider a Jonswap type spectrum with energy concentrated 
around two peak periods initially. Such simulations can be beneficial for modeling shorter waves with more 
energy superimposed on longer wave trains as well as swell simulations. Again smoothing filter is applied in this 
simulation and a run time of 50Tp is used. As it can realized from the Figs 15 and 16, which show the spectra and 
water surface fluctuation respectively, the method also works well in the case of two peaked spectra. Although 
there exists spectral broadening, the spectra still satisfies the M =  O(K log(N/K)) condition of the compressive 
sampling therefore proposed compressive spectral method works well. If longer runs are performed with vari-
ous configurations higher values for M may be needed due on the restrictions on M. In that case the proposed 
compressive spectral method would be less efficient than itself with a smaller M, but still more efficient than the 
classical spectral method. However with the examples presented above it is shown the proposed compressive 
sampling method can accurately model the fully nonlinear ocean waves in the typical temporal and frequency 
range including the spectral broadening.

In reality, for example in very shallow water with many wave interactions and capillary components the spec-
trum would be too wide for the CS to make the exact recovery. So in that case since the sparsity property is not 
satisfies the proposed method would fail. However as the spectrum gets wider, the actual surface profile would 
get narrower and more sparse. Therefore in that case by means of a hybrid method it would be possible to switch 
to perform the CS in the physical domain by taking samples in the frequency domain. However this is a part of 
future study and not addressed in this paper.

All of the results presented above show promising evidence for the accuracy of the proposed method. 
Additionally the computational efforts required to run the various configurations are summarized in the Table 2. 
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Figure 13.  Comparison of classical spectral method and proposed compressive spectral method for a 
Jonswap spectrum with N = 2048, M = 256-nonlinear interactions. 

Figure 14.  Comparison of classical spectral method and proposed compressive spectral method for a fully 
nonlinear periodic wave profile with N = 2048, M = 256-nonlinear interactions. 
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The average computation times of 50 realizations given in the table are in the units of seconds. The times are meas-
ured on a Dell Vostro 1700 laptop with dual core of 1.8 GHz and 1 GB RAM which is used to run the MATLAB 
code. As it can be seen on the table, for smaller number of time steps the compressive spectral method provides a 
small amount of improvement in the computational time. This is due to the computational effort required by the 
l1 minimization. However for the bigger number of time steps, the computational time is significantly improved 
while the differences in the wave profiles are of negligible importance. Therefore by reducing the computation 
time the compressive spectral method provides a great computational efficiency compared to the classical spectral 
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Figure 15.  Comparison of classical spectral method and proposed compressive spectral method for a 
Jonswap spectrum with N = 2048, M = 256-two peaked spectra. 
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Figure 16.  Comparison of classical spectral method and proposed compressive spectral method for a fully 
nonlinear periodic wave profile with N = 2048, M = 256-two peaked spectra. 

N M # of Time Steps Class. Meth.-Time (sec) Prop. Meth.-Time (sec) Normal Rms Diff.

1024 128 20000 116.98 38.71 0.0140

1024 256 20000 161.34 135.38 0.0011

1024 256 60000 366.88 152.26 0.0037

1024 256 100000 618.92 132.13 0.0019

2048 256 50000 705.15 601.74 0.0077

Table 2.   Comparison of Temporal Cost of the Classical Spectral vs Proposed Compressive Spectral 
Method-Full Spectrum Simulations.
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method and can be used as a tool in not only for ocean wave simulations but also many other phenomena in 
applied mathematics and physics.

Discussion
In this study compressive spectral method for the simulation of the linear and the fully nonlinear ocean gravity 
waves is introduced. The sparsity property of Jonswap frequency spectrum of the ocean waves is used for this pur-
pose. It is shown that by using a smaller number of spectral components and the compressive sampling technique, 
it is possible to reconstruct the ocean surface with negligible difference in accuracy compared to the classical 
spectral method which uses a bigger number of spectral components. It is shown that the proposed compressive 
spectral method improves the computational effort significantly compared to the classical spectral method while 
still correctly models the nonlinear ocean waves including spectral broadening. This improvement becomes more 
significant especially for large time evolutions.

References
1.	 Bayindir, C. Implementation of a Computational Model for Random Directional Seas and Underwater Acoustics. Master’s thesis, 

University of Delaware (2009).
2.	 Karjadi, E. A., Badiey, M. & Kirby, J. T. Impact of surface gravity waves on high-frequency acoustic propagation in shallow water. J. 

Acoust. Soc. Am. 127, 1787–1787 (2010).
3.	 Karjadi, E. A., Badiey, M., Kirby, J. T. & Bayindir, C. The effects of surface gravity waves on high-frequency acoustic propagation in 

shallow water. IEEE J. Ocean. Eng. 37, 112–121 (2012).
4.	 Dommermuth, D. G. & Yue, D. K. P. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 

267–288 (1987).
5.	 Mei, C. C., Stiassnie, M. & Yue, D. K. P. Theory and Applications of Ocean Surface Waves, Part 2: Nonlinear Aspects (World Scientific, 

Massachusetts, 2005).
6.	 Zakharov, V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Sov. Phys. JETP 2, 190–194 (1968).
7.	 Demiray, H. & Bayindir, C. A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution. 

Phys. Plasmas 22, 092105 (2015).
8.	 Canuto, C. Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, Berlin, 2006).
9.	 Trefethen, L. N. Spectral Methods in MATLAB (SIAM, Philadelphia, 2000).

10.	 Candès, E. J., Romberg, J. & Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency 
information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

11.	 Candès, E. J. Compressive sampling. Proceed. Intern. Congress of Mathematicians 3, 1433–1452 (2006).
12.	 Bayindir, C. Early detection of rogue waves by the wavelet transforms. Phys. Lett. A 380, 156–181 (2016).
13.	 Bayindir, C. Shapes and statistics of the rogue waves generated by chaotic ocean current. arXiv Preprint arXiv:1512.03584 (2015).
14.	 Bayindir, C. Compressive split-step Fourier method. TWMS J. of Apl. & Eng. Math. 5, 298–306 (2015).
15.	 Mori, N. & Yasuda, T. Effects of high-order nonlinear interactions on unidirectional wave trains. Ocean Eng. 29, 1233–1245 (2002).

Acknowledgements
The author wishes to express thanks to Prof. Dr. James T. Kirby for numerous critical comments and discussions. 
The author thanks the support of the Işık University.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Bayındır, C. Compressive Spectral Method for the Simulation of the Nonlinear Gravity 
Waves. Sci. Rep. 6, 22100; doi: 10.1038/srep22100 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves

	Methodology

	Review of a Linear Ocean Wave Model. 
	Review of Wave Model for Fully Nonlinear Waves. 
	Review of the Compressive Sampling. 
	Proposed Methodology. 

	Results

	Results for Linear Ocean Wave Simulations. 
	Results for Fully Nonlinear Monochromatic Waves. 
	Results for Fully Nonlinear Trichromatic Waves (Sidebands). 
	Results for Fully Nonlinear Waves with Jonswap Spectrum. 

	Discussion

	Acknowledgements
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Comparison of the energy spectra of the classical spectral method and the proposed compressive spectral method for linear waves with N = 1024, M = 256.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Comparison of the water surface fluctuation of the classical spectral method and the proposed compressive spectral method for linear waves with N = 1024, M = 256.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Comparison of the energy spectra of the classical spectral method and the proposed compressive spectral method for linear waves with N = 2048, M = 256.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Comparison of the water surface fluctuation of the classical spectral method and the proposed compressive spectral method for linear waves with N = 2048, M = 256.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Comparison of the energy spectra of the classical spectral method and the proposed compressive spectral method for linear waves with N = 1024, M = 128.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Comparison of the water surface fluctuation of the classical spectral method and the proposed compressive spectral method for linear waves with N = 1024, M = 128.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for the spectra of a monochromatic wave N = 1024, M = 256.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a monochromatic wave N = 1024, M = 256.
	﻿Figure 9﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a spectra with sidebands N = 1024, M = 256.
	﻿Figure 10﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a profile with one central wavenumber and two sidebands N = 1024, M = 256.
	﻿Figure 11﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a spectra with sidebands N = 1024, M = 256-nonlinear interactions.
	﻿Figure 12﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a profile with one central wavenumber and two sidebands N = 1024, M = 256-nonlinear interactions.
	﻿Figure 13﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a Jonswap spectrum with N = 2048, M = 256-nonlinear interactions.
	﻿Figure 14﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a fully nonlinear periodic wave profile with N = 2048, M = 256-nonlinear interactions.
	﻿Figure 15﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a Jonswap spectrum with N = 2048, M = 256-two peaked spectra.
	﻿Figure 16﻿﻿.﻿﻿ ﻿ Comparison of classical spectral method and proposed compressive spectral method for a fully nonlinear periodic wave profile with N = 2048, M = 256-two peaked spectra.
	﻿Table 1﻿﻿. ﻿  Comparison of Temporal Cost of the Classical Spectral vs Proposed Method-Linear Wave Simulations.
	﻿Table 2﻿﻿. ﻿  Comparison of Temporal Cost of the Classical Spectral vs Proposed Compressive Spectral Method-Full Spectrum Simulations.



 
    
       
          application/pdf
          
             
                Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves
            
         
          
             
                srep ,  (2016). doi:10.1038/srep22100
            
         
          
             
                Cihan Bayındır
            
         
          doi:10.1038/srep22100
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep22100
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep22100
            
         
      
       
          
          
          
             
                doi:10.1038/srep22100
            
         
          
             
                srep ,  (2016). doi:10.1038/srep22100
            
         
          
          
      
       
       
          True
      
   




