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Abstract

In two recent papers [5] and [6], we generalized some classical results
of Harmonic Analysis using probabilistic approach by means of a d-
dimensional rotationally symmetric stable process. These results allow
one to discuss some boundedness conditions with weaker hypotheses.
In this paper, we study a multiplier theorem using these more general
results. We consider a product process consisting of a d-dimensional
symmetric stable process and a 1-dimensional Brownian motion, and
use properties of jump processes to obtain bounds on jump terms and
the Lp(Rd)-norm of a new operator.
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1. Introduction and Preliminaries

Classical multiplier problems have been studied for a long time using techniques
of Analysis. For nearly 40 years, a probabilistic approach has been developed which
allowed further studies in Operator Theory. The early probabilistic techniques
were based on properties of Brownian motion and martingales. In late 1970’s and
early 1980’s this study was generalised to a setup where Markov processes were
in focus. Some early research was done by P.A. Meyer. He presented in [7, 8, 9]
probabilistic techniques which were used to prove boundedness of Littlewood-Paley
functions by means of martingales. After the presentation of these new techniques,
boundedness results on Lp(Rd) were revisited. In early years, the main approach
was to develop alternative proofs of classical results in the language of probability.
Later some generalisations followed. We recommend the reader [2, Chapter IV] to
have a grasp of the probabilistic approach to this theory when Brownian motion
is considered as the Markov process of interest.

Together with the boundedness of operators, multiplier theorems, among which
there are Mihlin’s and Marcinkiewicz’ [2, IV.5], are also widely studied from the
probabilistic point of view. Well-known multiplier theorems became the focus of
this research, and it was aimed to determine whether their constraints could be
generalised by the tools of Martingale Theory. One of these studies was done by
N. Bouleau and D. Lamberton in [4] where the Authors proved boundedness of
an operator using a product of a Markov process with a stable process. Their
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2

arguments yields a new multiplier theorem with a new set of conditions. The
condition is the integrability of a bounded Borel measurable function with respect
to a kernel corresponding to their product process.

Our motivation originates from aforementioned paper [4]. In the their work,
N. Bouleau and D. Lamberton worked with a general type of processes. However
the tools of the general case are restrictive. In a previous paper [5], we focused on
a specific process, namely a symmetric stable process, and we replaced Brownian
motion of the classical setup with this stable process. By means of these processes,
we introduced new types of Littlewood-Paley operators, and proved boundedness
results which could not be proved for general Markov processes. These new opera-
tors present an opportunity to study multiplier results obtained in [4] once again.
Now we have a set of more specific tools using which we aim to prove a new mul-
tiplier theorem in this paper and present an application of our new boundedness
results.

In [5] and later in [6], we studied some operators related to classical Littlewood-
Paley Theory. For this purpose, we adapted probabilistic approach to the theory.
In the classical setup, one uses a d+ 1-dimensional Brownian motion in the upper
half space of Rd×R+ and let it run until the process hits the boundary. In our work,
we replaced d-dimensional component of Brownian motion with a symmetric stable
process and kept 1-dimensional Brownian motion as is. Under this new setup, we
introduced some new operators, and we proved their boundedness under certain
conditions.

First of all, we introduce some preliminary results from [5] and state references
for details in this section. Throughout the paper c will denote a positive constant.
Its value may change from line to line.

We consider a d-dimensional right continuous (rotationally) symmetric α-stable
process Yt for α ∈ (0, 2), that is, Yt is a right continuous Markov process with
independent and stationary increments whose characteristic function is E(eiξYs) =
e−s|ξ|

α

, ξ ∈ Rd, s > 0. The function p(s, x, y) will denote its (symmetric) transition
density such that

Px(Ys ∈ A) =

∫
A

p(s, x, y) dy,

and Ps will denote the corresponding semi-group Ps(f)(x) = Ex(f(Ys)). Here Px is
the probability measure for the process started at x ∈ Rd, and Ex is the expectation
taken with respect to Px. A well-known property of symmetric α−stable processes
is that the transition density p(s, x, 0) satisfies the scaling property

p(s, x, 0) = s−d/αp(1, x/s1/α, 0), x ∈ Rd, s > 0,(1.1)

which can be verified by using the characteristic function.
Similarly, we denote a one-dimensional Brownian motion (independent from

Ys) by Zs and the probability measure for the process started at t > 0 by Pt.
The process of interest is the product Xs = (Ys, Zs) started at (x, t) ∈ Rd × R+,
the corresponding probability measure and the expectation are P(x,t) and E(x,t),
respectively. Next, define the stopping time T0 = inf{s ≥ 0 : Zs = 0} which is
the first time Xt hits the boundary of Rd × R+. Note that the first exit time T0

depends only on Zs due to the independence of Zs and Ys.
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To provide a connection between probabilistic and deterministic integrals, we
will use two main tools; a new measure Pma and the vertical Green function.
Denoting the Lebesgue measure on Rd by m(·), we define the measure Pma by

Pma =

∫
Rd

P(x,a)m(dx), a > 0.

Note that this is not a probability measure. Let Ema denote the “expectation”
with respect to this measure. We note that for any measurable set A in Rd,

Pma(XT0
∈ A) =

∫ ∫ ∞
0

∫
1IA(y)p(s, x, y)dy Pt(T0 ∈ ds)m(dx)

=

∫ ∞
0

∫ ∫
1IA(x+ y)m(dx) p(s, 0, y)dy Pt(T0 ∈ ds) = m(A),(1.2)

and so the law of XT0 under this new measure is m(·). Throughout this paper, we
will use dx to denote Lebesgue measure on Rd. Just to emphasize the connection
between the measure Pma and the Lebesgue measure, sometimes we will use m(dx)
instead of dx. But both of them should be treated as the same measure.

Second, for a positive Borel function f , the vertical Green function is given by

Ea
[∫ T0

0

f(Zs) ds

]
=

∫ ∞
0

(s ∧ a)f(s)ds.(1.3)

This property will be used together with the new measure Pma in Section 3.
Harmonic functions play a key role in showing boundedness of Littlewood-Paley

operators. Here we adapt the probabilistic interpretation of a harmonic function.
A continuous function u : Rd × R+ → R is said to be harmonic (with respect to
the process Xt) if u(Xs∧T0

) is a martingale with respect to the filtration Fs =
σ(Xr∧T0 : r ≤ s) and the probability measure P(x,t) for any starting point (x, t) ∈
Rd ×R+. One way to obtain such a harmonic function is to start with a bounded
Borel function f : Rd → R and define an extension u by

u(x, t) := E(x,t)f(YT0
) =

∫ ∞
0

Exf(Ys)Pt(T0 ∈ ds)

where Pt(T0 ∈ ds) is the exit distribution of one-dimensional Brownian motion
which is given by

µt(ds) := Pt(T0 ∈ ds) =
t

2
√
π
e−t

2/4ss−3/2ds

(see [7]). By a slight abuse of notation, we will denote both the function on Rd and
its extension to the upper-half space by the same letter, that is, ft(x) := f(x, t) =
E(x,t)f(YT0). Next, we define the semi-group Qt =

∫∞
0
Psµt(ds). This semi-group

provides us a representation of the extension

ft(x) = f(x, t) = Qtf(x) =

∫
f(y)

∫ ∞
0

p(s, x, y)µt(ds)dy.

We note that this is a convolution with the probability kernel

qt(x) =

∫ ∞
0

p(s, x, 0)µt(ds)
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which is radially decreasing in x (see [5, Section 3]) and its Fourier transform is

q̂t(·) = e−t|·|
α/2

.(1.4)

An immediate result is that both of the semi-groups Pt and Qt are invariant
under the Lebesgue measure, that is,∫

Ptf(x)m(dx) =

∫
f(x)m(dx) =

∫
Qtf(x)m(dx).(1.5)

This follows from the symmetry of the kernels and the invariance under the dual
action.

One of the key tools in proving certain inequalities is the density estimates on
p(s, x, 0). Although there is an infinite series expansion, it is not very easy to work
with. For this purpose, we will use the two-sided estimate

c1 (s−d/α ∧ s

|x− y|d+α
) ≤ p(s, x, y) ≤ c2 (s−d/α ∧ s

|x− y|d+α
)(1.6)

(s, x, y) ∈ R+ × Rd × Rd, which allows us to control the tail of the transition
density. In addition, we will need to control the derivative of p(s, x, 0). The
following Lemma provides this control. Let ∂kxj denote the kth partial derivative

in the direction of jth coordinate.

1.1. Lemma. For k = 1, 2 and j = 1, ..., d

i.
∣∣∣∂kxjp(1, x, 0)

∣∣∣ ≤ c(1 ∧ 1

|x|k

)
p(1, x, 0) and

ii.
∣∣∣∂kxjp(t, x, 0)

∣∣∣ ≤ c(t−k/α ∧ 1

|x|k

)
p(t, x, 0) whenever t > 0.

Proof. First note that (ii.) follows from (i.) once we use the scaling property

p(t, x, 0) = t−d/αp(1, x/t1/α, 0).

Hence it is enough to prove part (i.).
The density function p(1, x, 0) is obtained by Fourier inversion of e−|x|

α

. More-
over, the function xβe−|x|

α

is integrable for any multi-index β. Hence the density
function and all of its partial derivatives are bounded.

Another way to obtain the density function is to use gα/2, the density of an α/2

stable subordinator whose Laplace transform is given by
∫∞

0
e−λvgα/2(t, v)dv =

e−tλ
α/2

. Using gα/2, we can express the density as

p(1, x, 0) =

∫ ∞
0

1

(4πs)d/2
e−|x|

2/(4s)gα/2(1, s)ds.(1.7)

This can be verified by taking the Fourier transform of the Equation (1.7). For
some constant M > 0, and |x| > M , we can obtain the first partial derivative in
x1,

∂1
x1
p(1, x, 0) = −2πx1

∫
1

(4πs)(d+2)/2
e−|x|

2/(4s)gα/2(1, s)ds.(1.8)
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Temporarily, let us denote the d-dimensional density function by p(d)(1, x, 0) and
define x̃ = (x, 0, 0) ∈ Rd+2 whenever x ∈ Rd. The equation (1.8) can be written
as

∂1
x1
p(d)(1, x, 0) = −2πx1p

(d+2)(1, x̃, 0)

and hence using the upper-bound in (1.6)∣∣∣∂1
x1
p(d)(1, x, 0)

∣∣∣ ≤ c

|x|d+α+1

which gives the result for k = 1. The case k = 2 is similar when we observe that

∂2
x1
p(d)(1, x, 0) = −2πp(d+2)(1, x̃, 0) + 4π2x2

1p
(d+4)(1, x, 0)

where x = (x̃, 0, 0) ∈ Rd+4. �

2. A Bound on Jump Terms

In this section, we will discuss some preliminary results on our jump process.
One can find the details for general jump processes in [3]. First, let us define
a new martingale by Mt = f(Xt∧T0

) where Xt is the product process explained
in the previous section and f is a bounded measurable function. Mt is a jump
process and, moreover, Mt has at most countably many jumps (see [3, Ch. 17.1,
p 132] for the details). So we can label these jumps as T1, T2, ... so that each Ti is
either predictable or inaccessible with disjoint graphs. Moreover, the process Mt

has jumps only at these times Ti and jump sizes are bounded. Here we do not
assume that Ti’s are ordered, that is, i < j does not imply Ti < Tj .

Now consider the process

Ant = ∆MTn1I{t≥Tn}1I{|∆YTn |<|ZTn |2/α}.

We note that this process makes a jump of size ∆M at time Tn and constant
afterwards if the jumps size is small, that is, if the jump size |∆YTn | < |ZTn |2/α.
(In this paper, a jump at time Tn is referred as a large jump, if its size is
|∆YTn | ≥ |ZTn |2/α.) Since the vertical component Zt of Xt is continuous, the
jumps correspond to those of the horizontal component Yt. So this process ignores
large jumps of Mt.

Since f is real-valued, we can write Ant as a difference of two increasing pro-
cesses, one with positive jumps and the other with negative jumps. Hence Ant
admits a compensator, say Ãnt . So the process Mn

t obtained as

Mn
t = Ant − Ãnt

is a martingale. Note that M −Mn has no small jumps at time Tn. Moreover,
Mn’s are pairwise orthogonal, since each of them correspond to jumps at different
times. In other words,

∆Mn
t ∆Mm

t = 0

whenever n 6= m for all t > 0. Then by the orthogonality Lemma [3, Lemma 17.2],
we obtain

E(x,a)(Mn
∞M

m
∞) = 0

and also

E(x,a)

(
Mn
∞(M∞ −

m∑
i=1

M i
∞)

)
= 0



6

for n ≤ m. Then using this orthogonality property, we can write

E(x,a)
[
(M∞)2

]
= E(x,a)

[
(M∞ −

m∑
i=1

M i
∞ +

m∑
i=1

M i
∞)2

]

= E(x,a)

[
(M∞ −

m∑
i=1

M i
∞)2 + (

m∑
i=1

M i
∞)2

]

≥ E(x,a)

[
(

m∑
i=1

M i
∞)2

]

=

m∑
i=1

E(x,a)
[
(M i
∞)2

]
.

Hence we see

m∑
i=1

E(x,a)
[
(M i
∞)2

]
= E(x,a)

[
(

m∑
i=1

M i
∞)2

]
≤ E(x,a)

[
(M∞)2

]
<∞

for any positive integer m, and so the series
∑m
i=1 E(x,a)

[
(M i
∞)2

]
converges. We

conclude that
∑m
i=1M

i
t converges in L2(P(x,a)), say to Ut. So Ut is the purely

discontinuous part of Mt consisting of small jumps. Hence [U ]t =
∑

0≤s≤t(∆Us)
2.

Denoting the continuous part by M c
t , we write

Mt = M c
t + Ut + Ũt

where Ũt is the part corresponding to large jumps. Since Zt is Brownian Motion,
two processes ∆Ut and

1I{t<T0}(f(Yt, Zt)− f(Yt−, Zt))1I{|Yt−Yt−|<|Zt|2/α}

are indistinguishable. Moreover,

[M ]t = 〈M c〉t +
∑

0≤s≤t

(∆Ms)
2

and

[M ]∞ ≥ [U ]∞.

Then by the Burkholder-Davis-Gundy Inequality

Ema |Ut|p =

∫
E(x,a)|Ut|pm(dx)

≤
∫

E(x,a)

(
sup

0≤s≤t
|Us|p

)
m(dx)

≤ c
∫

E(x,a)[U ]
p/2
t m(dx)

and so

Ema |U∞|p ≤ cEma [U ]p/2∞ ≤ cEma [M ]p/2∞ .
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After using the Burkholder-Davis-Gundy Inequality once again and applying Doob’s
Inequality, we have

Ema [M ]
p/2
t ≤ cEma

(
sup

0≤s≤t
|Ms|p

)
≤ cEma |Mt|p

which leads to

Ema [M ]p/2∞ ≤ cEma |M∞|p

and hence by (1.2)

Ema |U∞|p ≤ cEma |M∞|p = c

∫
|f(x)|pPma(XT0

∈ dx)(2.1)

= c

∫
|f(x)|pm(dx)(2.2)

= c ‖f‖pp.(2.3)

3. A Multiplier Theorem

Let r(t) be a bounded Borel function on R+ and α ∈ (0, 1). Define

Tf(x) =

∫ ∞
0

t · r(t)
∫
|h|<t2/α

[−(Qtτh/2 −Qtτ−h/2)2](f)(x)
dh

|h|d+α
dt(3.1)

where τh is the translation operator given by

τhf(x) = f(x+ h)

and Qtf is the extension of f to upper-half space Rd × R+ as described before,
that is,

Qtf(x) = ft(x) = f(x, t) = E(x,t)f(YT0).

First we should note that the semigroup Qt commutes with the translation opera-
tor. This follows from the commutative property of the semigroup Ps of the Lévy
Process Ys with τh. To be clear,

Qtτhf(x) =

∫ ∞
0

Psτhf(x)µt(ds) =

∫ ∞
0

τhPsf(x)µt(ds)

=

∫ ∞
0

Psf(x+ h)µt(ds) = τhQtf(x),

for any x ∈ Rd. Hence by using the commutativity of operators Qt and τh and
the semigroup property of Qt, we can write

−(Qtτh/2 −Qtτ−h/2)2f = (2Q2t −Q2tτh −Q2tτ−h)f

= 2f2t(x)− f2t(x+ h)− f2t(x− h).

In this form, it is easy to see that T is linear, that is, for any f, g ∈ Lp and c ∈ R,
we have T (cf + g) = cTf + Tg.

Second, we will show that this operator is well-defined on C∞c (Rd), the space
of smooth and compactly supported functions, which is dense in Lp(Rd). For this
purpose, let f ∈ C∞c (Rd). Since r is a bounded function and

2f2t(x)− f2t(x+ h)− f2t(x− h) = (f2t(x)− f2t(x+ h)) + (f2t(x)− f2t(x− h)) ,
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it is enough to consider the following two integrals:

I1 =

∫ 1

0

t

∫
|h|<t2/α

(f2t(x+ h)− f2t(x))
dh

|h|d+α
dt

and

I2 =

∫ ∞
1

t

∫
|h|<t2/α

(f2t(x+ h)− f2t(x))
dh

|h|d+α
dt.

To bound the first integral, note that

|f2t(x+ h)− f2t(x)| ≤
∫ ∞

0

∫
|f(y + h)− f(y)|p(s, x, y)dy µ2t(ds)

≤ c‖∇f‖∞|h|.
Then

|I1| ≤ c‖∇f‖∞
∫ 1

0

t

∫
|h|<t2/α

dh

|h|d+α−1
dt ≤ c‖∇f‖∞.(3.2)

To bound the second integral we use Lemma 1.1. We observe that

|p(s, x+ h, y)− p(s, x, y)| ≤ c|h|s−1/αp(s, ξ, y) ≤ c|h|s−1/αs−d/α.

Hence

|f2t(x+ h)− f2t(x)| ≤
∫ ∞

0

∫
|f(y)||p(s, x+ h, y)− p(s, x, y)|dy µ2t(ds)

≤ c‖f‖1|h|
∫ ∞

0

s−(d+1)/αµ2t(ds)

≤ c‖f‖1|h| t−(2d+2)/α.

Then

|I2| ≤ c‖f‖1
∫ ∞

1

t · t−(2d+2)/α

∫
|h|<t2/α

dh

|h|d+α−1
dt ≤ c‖ f‖1.(3.3)

Hence T is well-defined on C∞c (Rd).
We note that the above are finite if α ∈ (0, 1). Although the tools on the jump

processes in section 1 works whenever α ∈ (0, 2), the operator T is well-defined if
α < 1. Hence we restrict our result to the case α ∈ (0, 1).

Our main result is that T is a bounded operator on Lp.

3.1. Theorem. T , as defined in (3.1), is a bounded operator on Lp(Rd) for p > 1
and α ∈ (0, 1).

Proof. Let f ∈ C∞c (Rd), r be a bounded Borel function and T be as defined
in (3.1). Without loss of generality we may assume r is positive valued, since
otherwise we can write this function as a combination of positive and negative
parts, r+ − r−, and apply the argument to both r+ and r−.

We prove the statement in four steps.
In the first step, we will use the purely discontinuous martingale Ut which was

defined in the previous section. By means of Ut, let us define a new martingale

Vt =

∫ t

0

r(Zs)dUs
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where Zs is the 1-dimensional Brownian component of Xs. By considering

∆Vt =

∫ t

t−
r(Zs)dUs = r(Zt)∆Ut

= 1I{0≤t≤T0}1I{|∆Yt|<|Zs|2/α}(f(Yt, Zt)− f(Yt−, Zt)) · r(Zt)
and using Burkholder-Davis-Gundy inequality, we can bound the expectation of
this martingale. That is,

Ema |V∞|p =

∫
E(x,a)|V∞|pm(dx) ≤ c

∫
E(x,a)[V ]p/2∞ m(dx)(3.4)

≤ c
∫

E(x,a)[U ]p/2∞ m(dx) ≤ c
∫

E(x,a)|U∞|pm(dx) ≤ c ||f ||pp

by the Inequality (2.1).
Now let q be the conjugate exponent of p so that (1/p) + (1/q) = 1 and g be a

compactly supported smooth function in Lq(Rd) ∩ L2(Rd). Similar to before, we
denote the extension of g by Qtg(x) or by g(x, t). We also denote the martingale
which is obtained from g by Nt = g(Xt∧T0

).
By the product rule for martingales with jumps (see [1, pp.231]) we obtain

Ema(V∞N∞) =

∫
E(x,a)(V∞N∞)m(dx) =

∫
E(x,a)

(∑
t>0

∆Vt∆Nt

)
m(dx).

Note that

∆Vt∆Nt = 1I{0≤t≤T0}1I{|∆Yt|<|Zs|2/α}r(Zt) · (f(Yt, Zt)− f(Yt−, Zt))

·(g(Yt, Zt)− g(Yt−, Zt)).

Throughout the rest of this section, we will denote the above function by Λ for
the sake of simplicity. We write for any (x, y, t) ∈ Rd × Rd × R+

Λ(x, y, t) = 1I{|y−x|<|t|2/α}r(t) · (f(y, t)− f(x, t)) · (g(y, t)− g(x, t)).

Then we have

Ema(V∞N∞) = Ema

 ∑
0≤s≤T0

Λ(Ys−, Ys, Zs)

 .(3.5)

If we use the Lévy system formula [5, Theorem 1] here, we obtain

Ema(
∑

0≤s≤T0

Λ(Ys−, Ys, Zs)) =

∫
E(x,a)

 ∑
0≤s≤T0

Λ(Ys−, Ys, Zs)

m(dx)

= c

∫
E(x,a)

(∫ T0

0

∫
Λ(Ys, Ys + h, Zs)

dh

|h|d+α
ds

)
m(dx).

The semigroup Pt is invariant under the measure m. Hence the last line equals

c

∫
Ea
(∫ T0

0

∫
Λ(x, x+ h, Zs)

dh

|h|d+α
ds

)
m(dx).(3.6)
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Next, if we set

βx(t) =

∫
Λ(x, x+ h, t)

dh

|h|d+α

and write βx = β+
x − β− where β+

x and β−x are positive and negative parts of
the function, respectively, then we can apply the Green Kernel of the vertical
component (i.e., the Brownian component) to the integrals

Ea
(∫ T0

0

β+
x (Zs) ds

)
− Ea

(∫ T0

0

β−x (Zs) ds

)
.

Then the integral in (3.6) becomes

Ema(
∑

0≤s≤T0

Λ(Ys−, Ys, Zs))(3.7)

= c

∫ ∫ ∞
0

(t ∧ a)

∫
Λ(x, x+ h, t)

dh

|h|d+α
dtm(dx).(3.8)

In the second step, we will express Tf in terms of the above integral. For this
purpose, we will denote the usual inner product by 〈·, ·〉 and write

〈f, g〉 =

∫
f(x)g(x)m(dx).

If g is as taken before, we can write

〈Tf, g〉 =(3.9) ∫
g(x)

∫ ∞
0

t r(t)

∫
|h|<t2/α

(
Qtτh/2 −Qtτ−h/2

)2
(f)(x)

dh

|h|d+α
dtm(dx).(3.10)

By the Inequalities (3.2) and (3.3) and using the assumption that g is compactly
supported and continuous, we conclude that this inner product is bounded, that
is,

|〈Tf, g〉| ≤ c‖r‖∞(‖∇f‖∞ + ‖f‖1)‖g‖1 <∞.

Hence one can use Fubini to interchange the order of integrals in (3.9) to write

〈Tf, g〉 =

∫ ∞
0

t r(t)

∫
|h|<t2/α

〈
(
Qtτh/2 −Qtτ−h/2

)2
(f), g〉 dh

|h|d+α
dt .

At this point, as a side note, we observe that this inner product relates to
−→
Gf,α

which was defined in [5] by

−→
Gf,α(x) =

[∫ ∞
0

t

∫
|h|<t2/α

[ft(x+ h)− ft(x)]2
dh

|h|d+α
dt

]1/2

.

To see this, we use commutativity of τh and Qt, symmetry of Qt and linearity
of the inner product.
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< −(Qtτh/2 −Qtτ−h/2)2f, g >

=< 2Q2tf −Q2tτ−hf −Q2tτhf, g >

=< Q2tf −Q2tτ−hf, g > − < Q2tτhf −Q2tf, g >

=< τ−hQ2tτhf − τ−hQ2tf, g > − < Q2tτhf −Q2tf, g >

=< Q2tτhf −Q2tf, τhg > − < Q2tτhf −Q2tf, g >

=< Q2tτhf −Q2tf, τhg − g >
=< Qt(Qtτhf −Qtf), τhg − g >
=< Qtτhf −Qtf,Qt(τhg − g) >

=< Qtτhf −Qtf,Qtτhg −Qtg >

=

∫
(Qtf(x+ h)−Qtf(x))(Qtg(x+ h)−Qtg(x))m(dx)

=

∫
(ft(x+ h)− ft(x))(gt(x+ h)− gt(x))m(dx).

This equality also shows that

〈Tf, g〉 =

∫ ∫ ∞
0

t

∫
Λ(x, x+ h, t)

dh

|h|d+α
dtm(dx)(3.11)

=

∫ ∫ ∞
0

t

∫
|h|<t2/α

(ft(x+ h)− ft(x))(gt(x+ h)− gt(x))
dh

|h|d+α
dtm(dx).

In the third step, we will find a bound for the inner product above. For this
purpose, we apply the Hölder Inequality first to get

|Ema(V∞N∞)| ≤ Ema(|V∞|p)1/p · Ema(|N∞|q)1/q.

By (3.4), we obtain Ema(|V∞|p)1/p ≤ c‖f‖p and also we have Ema(|N∞|q)1/q =
‖g‖q by (1.2) . Hence∣∣∣∣∫ ∫ ∞

0

(t ∧ a)

∫
Λ(x, x+ h, t)

dh

|h|d+α
dtm(dx)

∣∣∣∣ ≤ c‖f‖p‖g‖q(3.12)

for any a > 0, by (3.5) and (3.7). Now if we let a→∞, then we obtain

|〈Tf, g〉| ≤ c‖f‖p‖g‖q.(3.13)

Hence T is a bounded operator on C∞c (Rd) and it extends to Lp(Rd). �

3.2. Corollary. The function

m(ξ) = c |ξ|α
∫ ∞

0

t · r(t) e−2t|ξ|α/2 dt

is an Lp(Rd)-multiplier for p > 1 and α ∈ (0, 1).

Proof. In the theorem above, we proved that the operator T is bounded on Lp(Rd).
The multiplier of interest here is the multiplier corresponding to this operator. To
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see this, we take the Fourier transform of Tf and use Fubini’s theorem.

(̂Tf)(ξ) =

∫
Tf(x) eiξxm(dx)

=

∫
eiξx

∫ ∞
0

t · r(t)
∫ [
−(Qtτh/2 −Qtτ−h/2)2

]
(f)(x)

dh

|h|d+α
dtm(dx)

=

∫ ∞
0

t · r(t)
∫ ∫

eiξx
[
−(Qtτh/2 −Qtτ−h/2)2

]
(f)(x)m(dx)

dh

|h|d+α
dt

=

∫ ∞
0

t · r(t)
∫ ([

−(Qtτh/2 −Qtτ−h/2)2
]

(f)
)̂

(ξ)
dh

|h|d+α
dt

=

∫ ∞
0

t · r(t)
∫

([−Q2tτh −Q2tτ−h + 2Q2t])̂ (ξ) f̂(ξ)
dh

|h|d+α
dt

= f̂(ξ)

∫ ∞
0

t · r(t)
∫ [
−(Q2t)̂(ξ) e

−iξh − (Q2t)̂(ξ) e
iξh + 2(Q2t)̂(ξ)

] dh

|h|d+α
dt.

As stated in (1.4), Qt has the Fourier transform e−t|ξ|
α/2

. Hence we have the above
integral equals

= f̂(ξ)

∫ ∞
0

t · r(t)
∫ [
−e−iξh − eiξh + 2

]
e−2t|ξ|α/2 dh

|h|d+α
dt

= f̂(ξ)

∫ ∞
0

t · r(t) e−2t|ξ|α/2
∫ [
−(eiξh/2 − e−iξh/2)2

] dh

|h|d+α
dt

= f̂(ξ)

∫ ∞
0

t · r(t) e−2t|ξ|α/2
∫

4 sin2(ξh/2)
dh

|h|d+α
dt

= f̂(ξ)

∫ ∞
0

t · r(t) e−2t|ξ|α/2
∫

4 sin2(|ξ|uh/2)
dh

|h|d+α
dt

where u is the unit vector in the direction of ξ. Then the last line equals[
22−α

∫
sin2(uh)

dh

|h|d+α

]
f̂(ξ) |ξ|α

∫ ∞
0

t · r(t) e−2t|ξ|α/2 dt.

The first integral is finite for any α ∈ (0, 2). Hence the last line is equal to

c f̂(ξ) |ξ|α
∫ ∞

0

t · r(t) e−2t|ξ|α/2 dt,

which finishes our calculation.
�
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bered 14B103, at the Işık University, Istanbul, Turkey.

References
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[4] Bouleau, N. and Lamberton, D. Théorie de Littlewood-Paley-Stein et processus stables,
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