
A COMBINED ALGORITHM FOR PLACEMENT OF
RECTANGULAR VEHICLES IN A FERRY

BÜŞRA PAŞALI
B.S., Industrial Engineering, Isik University, 2010

Submitted to the Graduate School of Science and Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
in

Industrial Engineering

IŞIK UNIVERSITY
2013

ISIK UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

A COMBINED ALGORITHM FOR PLACEMENT OF RECTANGULAR
VEHICLES IN A FERRY

BÜŞRA PAŞALI

APPROVED BY:

Assoc. Prof. Çaglar AKSEZER Işık University

(Thesis Supervisor)

Assoc. Prof. Seyhun ALTUNBAY Işık University

Assoc. Prof. Aydın YÜKSEL Işık University

APPROVAL DATE:/..../....

A COMBINED ALGORITHM FOR PLACEMENT OF

RECTANGULAR VEHICLES IN A FERRY

Abstract

Management of inland maritime transportation is an important task since it has
a costly operation environment, as well as public service responsibility with safety
and speed concerns. A typical operation involves multiple ferryboats, assigned to
transport both passengers and vehicles between two stationary points. Effective
management of resources (ferries, crew, fuel etc.) to meet the increasing demand
has become the primary objective of planners working in this area.

This research focuses on an uninvestigated part of the general problem: Find-
ing the ideal layout of vehicles on ferryboats. Optimal placement initiative will
remedy both the trip utilization rate and financial indicators of the organization.
However, an optimal solution is usually not available due to complicated nature
of the problem, such as sequencing and embarking restrictions. Here, a heuristic
approach is proposed in order to find the best solution by abiding the restrictions
of vehicle placement algorithm.

The proposed procedure seeks the best position of a given sized (or categorized)
vehicle inside a ferryboat under first come first served sequencing rule restriction.
The problem at hand may be thought as a sub-echelon of the well-known knapsack
and bin-packing algorithms, and benefits from both philosophies in the proposed
algorithm. Economical and operational effects of the proposed procedure were
illustrated by comparing its application on a real ferry line data gathered from
the Sirkeci-Harem route operating in the city of Istanbul.

Key Words: ferryboat layout, vehicle placement heuristic, maritime

ii

DİKDÖRTGEN ARAÇLARIN FERİBOTLARA

YERLEŞTİRİLMESİ İÇİN BİRLEŞİK BİR ALGORİTMA

Özet

Deniz ulaşımı güvenliği ,hızlı oluşu ve düşük maliyetli olması dolayısıyla önemli
bir konudur. Feribotlar iki kıyı arasında yolcu ve araç taşıyabilen deniz taşıt-
larıdır.Deniz ulaşımındaki beklenen büyüme feribotlara olan talebi de arttıra-
caktır.Bu alandaki kaynakların (feribot, çalışanlar,yakıt v.b) etkin bir şekilde
yönetimi bu alanda çalışan uzmanların ana amacıdır.Bu çalışmada daha once
çalışılmamış bir konu olan feribota araçların en iyi şekilde yerleştirilmesi üzerinde
çaılşılmıştır.Araçların en uygun şekilde yerleştirilmesi kurum kârını da arttıra-
caktır. Fakat problemin karmaşık yapısından dolayı en iyi çözümü bulmak her
zaman mümkün değildir. Bu yüzden bu çalışmada en iyi çözümü bulabilmek için
sezgisel bir algoritma önerilmiştir.

Bu algoritma “ilk gelen yerleştirilir” kuralına uygun olarak yerleştirilecek araçlara
en uygun konumu bulmaktadır. Bu algoritma çok bilinen Sırtçantası Algorit-
ması ve Paketleme Algoritmalarının bir uzantısı olarak düşünülüp değiştirilerek
geliştirilmiştir. Bulunan bu çözümün ekonomik ve operasyonel etkisi gerçek bir
feribot hattı olan Eskihisar-Yenikapi hattı verisiyle test edilmiştir.

Anahtar Kelimeler: Deniz ulaşımı, sezgisel algoritma, araç yerleştirme, arabalı
feribot

iii

Acknowledgements

I would like to thank to my supervisor, Assoc. Prof. Çağlar AKSEZER for his
guidance. I am very grateful to my family and my friends for their encouragements
during my graduate studies.

iv

To my family. . .

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Organization . 2

2 Literature Review 3
2.1 Heuristic Algorithms . 3
2.2 First Fit Bin Packing Algorithm 4
2.3 Bottom Left Algorithm . 5
2.4 Knapsack Algorithm . 6

3 Methodology 7
3.1 The Algorithm . 7

3.1.1 Vehicle Placement Algorithm: No Balance 8
3.1.2 Vehicle Placement Algorithm: Balance Constraint 8
3.1.3 Vehicle Placement Algorithm: Balance at the Peripheries . 9
3.1.4 Vehicle Placement Algorithm: Balance at the Center . . . 10
3.1.5 Vehicle Placement Algorithm: Momentum Law 11

3.2 Solution Process of The VPP . 12

4 Vehicle Placement Algorithm (VPA) 16
4.1 Maritime Transportation . 16
4.2 Inland Ferryboat System . 16
4.3 The Current Situation at Ferry System 17

4.4 Objective of the Problem . 19
4.5 Constraints of the Problem . 19
4.6 Assumptions of the Problem . 19
4.7 Solutions of the Problem . 20

4.7.1 Solution of VPA: No Balance 21
4.7.2 Solution of VPA: Balance 21
4.7.3 Solution of VPA: Balance at the Peripheries 22
4.7.4 Solution of VPA: Balance at the Center 23
4.7.5 Solution of VPA: Momentum Law 24

4.8 Results and Analysis . 25
4.8.1 Comparing The Algorithms 25
4.8.2 Validation . 27

Conclusion 33

References 34

Curriculum Vitae 37

Appendix 38

List of Tables

4.1 Percentage of Placed Vehicles for Proposed Algorithms 26
4.2 Revenue of AS vs. Revenue of MS 29
4.3 Ticket Fares . 30
4.4 Number Placed Vehicles of AS and MS 32

viii

List of Figures

3.1 Flow chart of Vehicle Placement Algorithm: No Balance Constraint 9
3.2 Flow chart of Vehicle Placement Algorithm: Balance Constraint . 11
3.3 Flow chart of Vehicle Placement Algorithm: Balance at the Pe-

ripheries . 12
3.4 Flow chart of Vehicle Placement Algorithm: Balance at the Center 14
3.7 Ferryboat:SADABAT . 14
3.5 Flow chart of Vehicle Placement Algorithm:Momentum Law . . . 15
3.6 The Solution Procces . 15

4.1 Vehicle Placement Process . 18
4.2 Vehicle Types . 20
4.3 Output of VPA:No Balance . 21
4.4 Output of VPA:Balance . 22
4.5 Output of VPA:Balance at the Peripheries 23
4.6 Output of VPA:Balance at the Center 24
4.7 Output of VPA:Momentum Law 25
4.8 Chart of Percentage of Placed Vehicle vs. Percentage of Type 1 . 27
4.9 Chart of Percentage of Placed Vehicle vs. Percentage of Type 2 . 28
4.10 Chart of Revenues . 30
4.11 Chart of Total Placed Vehicles . 31

ix

List of Abbreviations

AS Automated System

BL Bottom Left

MS Manual System

VPP Vehicle Placement Problem

VPA Vehicle Placement Algorithm

BPP Bin Packing Problem

FCFS First Come First Serve

x

Chapter 1

Introduction

1.1 Motivation

Vehicle Placement Problem (VPP) involves assignment of parking or storage lo-

cation to cars, vans, and trucks in a two dimensional closed environment such as

garages, barges, and ships. Placing vehicles in a ferry is a complicated task and to

the best of our knowledge there isn’t any study regarding VPP in the literature.

Achieving the highest occupancy rate in a ferryboat is an important task for

managers and captains to raise the operational efficiency and profitability. This

study aims to analyze whether there is a need for an automated vehicle placement

system instead of random assignment procedure, in order to obtain higher amount

of space utilization in inland waterway ferries. In this thesis, a new algorithm

is suggested for solving vehicle placement problem that is guaranteed to give

solutions that are not too far away from the optimal solution.

Because of the fact that algorithms in the literature couldn’t solve this problem

directly we have suggested a combined algorithm for solving vehicle placement

problem that is guaranteed to give solutions that are not too far away from the

optimal solution.

Development of an algorithm for solving the VPP in a ferry has difficulties, which

stem from geometry of vehicles and ferries. The constraints, that should be con-

sidered are; types of vehicles to be placed, capacity of the ferry, and balance of

1

the ferry and distance between vehicles. In addition, vehicles should be han-

dled according to the First Come First Served (FCFS) sequencing rule, it is the

concept of an online algorithm is used to formalize the realistic scenario, where

the algorithm receive its input incrementally and need to make decisions without

knowing the rest of the input. Such algorithms are required in situations where

solutions need to be generated over time and the input is only completely known

at the end of processing.

1.2 Contributions

This thesis introduces a combined vehicle placement algorithm consisting of three

algorithms, Bin-Packing algorithm, Bottom-Left algorithm and Knapsack algo-

rithm. When we place vehicles according to this combined algorithm and auto-

mate the vehicle placement algorithm, it provides lots of benefits to organization

and people.

1.3 Thesis Organization

The remainder of the thesis report is organized as follows. Chapter 2 overviews

the previous work and literature, which is related to the general concept of the

problem. Chapter 3 introduces the methodology and later Chapter 4 provides

details of the problem and describes the steps of the developed algorithm. Finally,

we present conclusions drawn from this research, as well as applied results and

possible future work.

2

Chapter 2

Literature Review

Placement is an important topic at Operations Research area; it may be used in

box placement, pallet placement, rectangular placement etc. Packing problems

are optimization problems that are concerned with finding a good placement of

multiple items in larger containing regions.[1] The usual objective of the allocation

process is to maximize the material utilization and hence to minimize the “wasted”

area. The research in this thesis is about placing vehicles to a ferry in two-

dimensional environment. Placement problems are solved mainly via heuristic and

meta-heuristic algorithms. This type of problems are NP-hard non-deterministic

polynomial-time hard), means "at least as hard as any NP-problem," although

it might, in fact, be harder. A problem is NP-hard if and only if there is an

NP-complete problem. NP-complete problem is means that it cannot be solved

in polynomial time in any known way. NP-Hard and NP-Complete is a way of

showing that problems are not solvable in realistic time.[2] Heuristic algorithms

are used in this research; the reason of the usage of heuristic algorithms will be

explained at the forthcoming sections.

2.1 Heuristic Algorithms

Heuristic techniques have long been used to quickly solve optimization problems

to find an exact solution for an optimization problem in real practice is sometimes

3

less practical in comparison to using an easily computed method of acquiring near-

optimal solutions. When the problems grow larger in size, obtaining the exact

solutions can take excessive computational time and storage space. In such cases,

the results obtained by a complex, time consuming method may be no more

attractive than near optimal solutions. Further considering the imprecision of

the real-world problem data, and the approximate nature of some formulations,

obtaining a precise solution in reality may seem meaningless. Obtaining a near-

optimal solution in a reasonable computational time may be advantageous and

more practical.[3]

It is essential to note that it would be useful to develop algorithms that can

ultimately be used in real systems. An exact algorithm produces optimal solutions

but may have a running time that could make it infeasible in real systems. On the

other hand, a heuristic could run fast but there are no warranties on the solution

excellence.

In this chapter we review several heuristic algorithms for solving placement prob-

lems. These algorithms not directly refer to placement problems but they should

be assimilated to this problem. The proposed algorithms are first fit Bin Pack-

ing Algorithm, Bottom Left Algorithm and Knapsack Algorithm. They will be

detailed at following sections.

2.2 First Fit Bin Packing Algorithm

Two-dimensional bin packing problems has been studied in the literature exceedingly.[4]

The researchers have solved that kind of problems with a variety of algorithms.

Especially, a huge amount of work has been done on on-line and off-line approxi-

mation algorithms. See [5] for a survey on approximation algorithms and [6] for

an overview of on-line algorithms. Bin packing is an optimization problem in

which we are given an instance consisting of a sequence of items and the goal is

to pack these items into the smallest possible number of bins of unit size.[7] First

4

fit bin packing algorithm packs each item into the first bin where it fits, possibly

opening a new bin if the item does not fit into any currently open bin.

The objective of the BPP is to load all the items while minimizing the number

of used bins. The problem has been extensively studied in the past decades,

producing several exact and heuristic methods.[8]

2.3 Bottom Left Algorithm

The Bottom-Left (BL) algorithm makes the layout as stable as possible so that

placed items cannot move farther downward or leftward. Baker et al. defines

The Bottom-Left (BL) algorithm like sorting the items by non-increasing width,

and packs the current item in the lowest possible position, left just. This method

can not be used at online algorithms because the input is not been known at the

beginning of solution.[9]

Two dimensional BL problems can be categorized into orthogonal problems (where

pieces are rectangular) and irregular problems.[10] Orthogonal problems have re-

ceived greater attention from the academic community, as they are less geomet-

rically complex. The best-known results for the established benchmark problems

have been achieved using the best-fit heuristic which is presented, discussed and

evaluated by researchers.[11]

There are some heuristics which belongs to the class of bottom-left (BL) pack-

ing heuristics to combine an order-based genetic algorithm. In order to reduce

computational complexity the heuristic does not necessarily place an item at the

lowest available BL position. However, it preserves BL stability in the layout.[12]

There is an evolutionary algorithm, which is combined with a heuristic routine.

This routine is similar to the BL-heuristic and places items in the position that is

closest to the lower-left corner of the object. Comparisons with a mathematical

programming algorithm show that the evolutionary approach is computationally

more efficient.[13]

5

2.4 Knapsack Algorithm

The Knapsack problem is a general resource allocation problem in which a single

resource is assigned to a number of alternatives with the objective of maximizing

the total return.This model is also know as the fly-away kit problem or the cargo-

loading problem.[14]

The Knapsack algorithm has been used to model various decision making pro-

cesses and finds a variety of real world applications: processor allocation in dis-

tributed computing systems, cutting stock, capital budgeting, project selection,

cargo loading, and resource allocation problems. Industrial applications find the

need for satisfying additional constraints such as urgency of requests, priority and

time windows of the requests, and packaging with different weight and volume

requirements.[15]

6

Chapter 3

Methodology

The algorithm presented in this thesis provides solution for vehicle placement into

a ferry by a proposed combined algorithm. The primary objective is to place all

vehicles at the queue into ferry of various sizes such that the total area of the

used bins is minimized. This chapter describes the algorithm at a high level and

presents rationale for the approach.

3.1 The Algorithm

We introduce a heuristic algorithm to solve the problem. Use of a modeling ap-

proach is not appropriate since there are certain operational restrictions. One of

the reasons is the enforced First Come First Serve (FCFS) sequencing rule. In Roll

on-Roll off (RORO) ships; the placement problem may be solved with modeling

approach because the input scheme is known before placement by reservations or

long embarking windows and FCFS rule is not mandated. In the ferries however,

we couldn’t know what will be the input and inter-arrival rate of the vehicles. The

other reason for solving the problem with a heuristic algorithm is the time con-

straint of the problem. The vehicles are waiting at the queue and the ferry must

depart at its scheduled time. So the problem should be solved simultaneously.

7

3.1.1 Vehicle Placement Algorithm: No Balance

In this approach; the algorithm firstly detects the type of the vehicle and then

places it to the bottom left of the ferry. When the next vehicle comes in, it checks

the type again and then searches for empty space at the first row and then places

the vehicle to the right of the first vehicle. Then algorithm restarts from the first

step for each vehicle. Flow chart of Vehicle Placement Algorithm: No Balance

Constraint and Pseudo-code illustrates the steps of the Vehicle Placement without

balance constraint.

Algorithm 1 VPA:No Balance
Look at the type of the vehicle N
while Ferry is not full do

for row zero to row n do
search for empty cells if there is an empty cell then
Place N to the empty cell

else
Go to next cell

end if
end for

end while

3.1.2 Vehicle Placement Algorithm: Balance Constraint

Balance is important for safety of the ferry, if one side of the ferry is bulkier than

the other than this creates a dangerous state for all passengers and vehicles. Also,

balance negatively affects the speed of the ferry resulting in lower fuel efficiency.

Placement of type 1 vehicles in this algorithm is similar to “Vehicle Placement

Algorithm: No Balance Constraint” It checks the type of the vehicle and then

search for empty places in the ferry. If it finds an empty place at the bottom left

then it checks the number of the vehicles at the left and right side. If both sides

are in balance then the vehicle is placed to the first proper place. When the ferry

is full and there is no empty space the algorithm ends. At Flow chart of Vehicle

Placement Algorithm With Balance Constraint and pseudo-code the steps of the

algorithm may be seen.

8

Figure 3.1: Flow chart of Vehicle Placement Algorithm: No Balance Constraint

3.1.3 Vehicle Placement Algorithm: Balance at the Peripheries Con-

straint

At the previous section the balance is calculated according to number of vehicles

at both sides of the ferry. But that algorithm may not provide an accurate balance

according to momentum laws. So at this algorithm; the heavy vehicles placed at

the peripheries of the ferry layout (first and last column of the ferry). Firstly

9

Algorithm 2 VPA:Balance Constraint
Look at the type of the vehicle N while Ferry is not full do
for row zero to row n do

search for empty cells if N is type 1 then
Place N to the empty cell which is dedicated to type 1

else
if Number of Type 2 at left> Number of Type 2 at right then

Place N to the right
else

Place N to the left
end if

end if
end for

end while

these grids were reserved to type 2 vehicles, after they have placed and if there is

no truck at the queue, type 1 vehicles are placed to reserved cells.The details of

this algorithm may be seen at the below pseudo-code and figure 3.3.

Algorithm 3 VPA: Balance at the Peripheries
Look at the type of the vehicle N while Ferry is not full do
for row zero to row n do

search for empty cells if N is type 1 then
Place N to the empty cell which is dedicated to type 1

else
Place N to the empty cell which is dedicated to type 2

end if
if there is no type 2 at the queue and type 2 cells are empty then

Take type 1 from queue and place to these cells
end if

end for
end while

3.1.4 Vehicle Placement Algorithm: Balance at the Center Constraint

This model is similar to VPA:Balance at the Peripheries; at this model heavy

vehicles are placed to the center of the ferry. Two columns at the center are

reserved to type 2 vehicles; firstly they are are placed if there is empty cell and no

other type 2 at the queue; at that time type 1 vehicles fill the empty cells. The

details of this algorithm may be seen at the below pseudo-code and figure 3.4.

10

Figure 3.2: Flow chart of Vehicle Placement Algorithm: Balance Constraint

3.1.5 Vehicle Placement Algorithm: Momentum Law

This model takes into consideration momentum laws practically. Same type of

vehicles are placed to the ferry layout equidistantly. According to algorithm, type

2 vehicles are started to placing from center line of the ferry and type 1 vehicles

are started from peripheries. Firstly they are placed to the left side and then

right side. Also; the number of each type of vehicles are equal at each side of

the ferry. It can be said that this algorithm places vehicles more balanced. The

details of this algorithm may be seen at the below pseudo-code and figure 3.5.

11

Figure 3.3: Flow chart of Vehicle Placement Algorithm: Balance at the Periph-
eries

3.2 Solution Process of the VPP

This study consists of analysis, design and development phases as shown in figure

.

Before developing the algorithm, we have talked with the organization that is

responsible for marine transportation in Istanbul. Also, we have learned the

12

Algorithm 4 VPA: Balance at the Center
Look at the type of the car N while Ferry is not full do
for row zero to row n do

search for empty cells if N is type 1 then
Place N to the empty cell which is dedicated to type 1

else
Place N to the empty cell which is dedicated to type 2

end if
if there is no type 2 at the queue and type 2 cells are empty then

Take type 1 from queue and place to these cells
end if

end for
end while

Algorithm 5 VPA: Momentum Law
Look at the type of the vehicle N while Ferry is not full do
for row zero to row n do

search for empty cells if N is type 1 then
if left side > right side then

Place N to the bottom right
else

Place N to the bottom left
end if

end if
if N is type 2 then

if left side > right side then
Place N to the right cell of center

else
Place N to the left cell of center

end if
end if

end for
end while

manual vehicle placement process from ferry flagmen, which is responsible for

placement within the ferry floor. We have developed requirements and constraints

of the problem via meetings. After analysis of the problem; the algorithm was

developed and code is written in Java programming language. The results were

tested via a case study, which is from line Sirkeci-Harem ferry. The picture of

that ferry is shown at figure 3.7

13

Figure 3.4: Flow chart of Vehicle Placement Algorithm: Balance at the Center

Figure 3.7: Ferryboat:SADABAT
14

Figure 3.5: Flow chart of Vehicle Placement Algorithm:Momentum Law

Figure 3.6: The Solution Procces

15

Chapter 4

Vehicle Placement Algorithm (VPA)

4.1 Maritime Transportation

Transportation is an important issue for economic and social relations of a coun-

try. Maritime transportation has a noteworthy place in the transportation sector

and it is the largest carrier of freight throughout the world. It is also valuable for

metropolises like Istanbul where traffic jams and environmental problems occur

frequently. Also, low risk of accidents and less air pollution increases the impor-

tance of maritime transportation. Ship, ferry, sea-bus, RORO ship are some of

the maritime transportation vehicles which are used to carry passengers, vehicles

and cargo. Ferryboats carries both vehicle and passenger for transportation. Al-

though Turkey has surrounded by water on three sides, maritime transportation

is effective just in Marmara region.

4.2 Inland Ferryboat System

In Turkey, ferry industry varies widely because of its geographical conditions

and there are lots of factors that affect public benefits. These factors are; cost

effectiveness, transportation demand, safety, economic development and environ-

mental issues.

16

Our study is based on Sirkeci-Harem ferry line of Bosphorus, which is operating

between European side and Asian side of the city. Local people generally prefer

this ferry because of traffic jam occurring on the bridges connecting the two shores.

At this line, ferries don’t accept big vehicles, thus serving only to motorcycles,

cars, SUVs, pickups and minibuses.

4.3 The Current Situation at Ferry System

“Vehicle Recognition System” reads plaques with the sensors and determines the

type of the vehicle, when vehicle arrive to the ticket office. After paying the fare

according to the type of their vehicle, they queue up and start waiting to embark.

Vehicles are getting placed to ferryboats by instructions of ferry flagmen. The

placement process may be seen at the below Figure 4.1. The flagman that is

standing in front of this queue is given the task to assign each of the cars to a

location on the ferryboat so as to minimize the free area of the ship. Because the

view of the flagmen is partially blocked, he can only see the first car of the queue

at a time. Once this car has been assigned to a position on the ship, the cars

move up and he sees the next car in the queue. Due to his years of experience,

the flagman knows exactly the space required a car once he sees it. For obvious

reasons, the assignment of a car cannot be changed once the decision has been

made. However, ferry flagmen bring balance to the ferry subjectively using his

personal eye observation experience.

17

Figure 4.1: Vehicle Placement Process

18

4.4 Objective of the Problem

The current situation approach, which we mentioned above, may take a long

time to load the ferryboat, increase waiting time for drivers and passengers. There

should be empty spaces and this situation decreases the profit of the organization.

Transporting more vehicles with less number of ferryboats increases the profit.

The objective of the problem is the optimal placement of vehicles in the ferryboat

and minimizing empty space. The other objective; which is also the starting point

of our thesis; we are investigating whether there is need for an automation system

to place vehicles in ferry.

4.5 Constraints of the Problem

The constraints of this problem are:

• Capacity of the ferry: Each ferry has different capacities it is not standard.

The chosen ferry, which is mentioned at previous section “SADABAT”, has

capacity 80 Type 1 vehicles.

• Balance of the ferry: It is important for safety; heavy vehicles shouldn’t be

at the same side of the ferry.

• Safety Distance between vehicles: It is independent of the vehicle type.

After parking of the vehicle passengers get off and open the doors. So there

should be enough space to prevent clash of the vehicles.

• First Come First Serve sequencing rule: The vehicles have to be placed

according to arrival sequence. There is no choice like ordering the vehicles

first then placing them to ferry.

4.6 Assumptions of the Problem

The assumptions of this problem are:

19

• Grid based design: The deck of the ferryboat has divided into parallel and

vertical lanes (grid based design) of equal width and equal length. Each cell

is wide enough to be able to contain any of the cars. And vehicles can only

be assigned to the prescribed cells according to VPA. This assumption may

eliminate the "Safety distance between vehicles" constraint.

However, new ferries has vertical park lines as we seen from "SADABAT"

in Figure 3.7.

• Vehicle types: There is wide variety of vehicles; but two of them have been

used in this thesis. The first reason of this; Sirkeci-Harem ferry line just

carries car, pickup, minibus and SUV. So the vehicles have been specified

as Type 1which refers to car and Type 2, which refers to pickup, minibus,

and SUV.

• Dimensions of the vehicles: In the daily life, the dimensions of vehicles

change according to their model but we assume that type 1 is one to one

cell and type 2 is one to two cell .The grid based design eliminates this

situations regardless of size vehicles fit to cells in our approach. as shown

in Figure 4.2 ; two type 1 vehicle (pink car) equals to one type 2 vehicle

(blue truck).

Figure 4.2: Vehicle Types

4.7 Solutions of the Problem

The problem was solved according to four different methods.After than the results

was compared .

20

4.7.1 Solution of VPA: No Balance

Balance of the ferry was mentioned constraint of the problem in 4.4. The details

of this algorithm are given in Chapter 3. The algorithm is solved with generated

random vehicle types and arrival sequence. The percentages of vehicle types are

changed and percentages of placed vehicles were analyzed. An example output

is shown in Figure 4.3 Output of VPA: No Balance constraint. 120 vehicles were

generated randomly and 75 % of vehicles were Type 1 and 25% of vehicles Type

2. As it can be seen from figure the heavy vehicles that are blue trucks in the

figure subsided at right side of the ferry layout.

Figure 4.3: Output of VPA:No Balance

4.7.2 Solution of VPA: Balance

The second VPA is solved with balance constraint . At manual placement flagmen

carries about balance of the ferry for safety of passengers. As like as VPA-without

21

Figure 4.4: Output of VPA:Balance

balance, the details of this algorithm are given in Chapter 3.120 vehicles were

generated randomly and 75% of vehicles were Type 1 and 25% of vehicles Type

2. The output may be seen at Figure 4.4 .As it is seen from figure the number

of heavy vehicles at left side is equal to 7 and right side is equal to 7. The ferry

is balanced according to arrival sequence. If one more type 2 vehicle had come it

would been placed to right side of the ferry layout.

4.7.3 Solution of VPA: Balance at the Peripheries

At the second model condition of balance is provided according to number of

vehicles at the left and right hand side,but this is not an accurate balance ac-

cording to momentum laws. So the heavy vehicles placed at peripheries of the

ferry layout. Firstly this grids were reserved to type 2 vehicles, after they have

placed and if there is no truck at the queue type 1 vehicles are placed to reserved

grids.120 vehicles were generated randomly and 75%of vehicles were Type 1 and

22

Figure 4.5: Output of VPA:Balance at the Peripheries

25% of vehicles Type 2. The output may be seen at Figure 4.5. As it is seen

from figure the number of heavy vehicles at left side is equal to 5 and right side

is equal to 4 and after type 2 vehicles have finished type 1 vehicles were placed

to peripheries.

However, it can be said that this method secures balance more than second model

because distance to the center of the ferry is equal of heavy vehicles.

4.7.4 Solution of VPA: Balance at the Center

Similar to the previous model (VPA: Balance at the Peripheries); heavy vehicles

placed at the same distance to the center of the ferry. At this model heavy

vehicle placed at nearest cells to center at the both left and right sides. Firstly

this grids were reserved to type 2 vehicles, after they have placed and if there is

no truck at the queue; type 1 vehicles are placed to reserved grids.120 vehicles

23

Figure 4.6: Output of VPA:Balance at the Center

were generated randomly and 75% of vehicles were Type 1 and 25% of vehicles

Type 2. The output may be seen at Figure 4.6. As it is seen from figure the

number of heavy vehicles at left side is equal to 5 and right side is equal to 4

and after type 2 vehicles have finished type 1 vehicles were placed to peripheries.

This model secures balance as like as third model but placement may be more

difficult according to arrival order of trucks.If most of them are placed before

small vehicles, placement of small vehicles may be difficult.

4.7.5 Solution of VPA: Momentum Law

Solution of this algorithm shows that same type of vehicles are placed to the

ferry layout equidistantly. According to algorithm; type 2 vehicles are started

to placing from center line of the ferry and type 1 vehicles are started from

peripheries. Firstly they are placed to the left side and then right side. Also;

the number of each type of vehicles are equal at each side of the ferry. It can

24

Figure 4.7: Output of VPA:Momentum Law

be said that this algorithm places vehicles more balanced. The details of this

algorithm may be seen at the below pseudo-code and Figure 4.7. 120 vehicles

were generated randomly and 75% of vehicles were Type 1 and 25% of vehicles

Type 2. The output may be seen at Figure 4.6. As it is seen from figure the

number of heavy vehicles at the columns nearest to center is equal to 4.

4.8 Results and Analysis

4.8.1 Comparing The Algorithms

All five heuristic solutions have been coded in Java an for benchmarking the

solutions a series of tests were run on the program. The percentages of type 1

and type 2 were changed for different combinations. The software run 21 times

with the same vehicle order and 120 vehicles was produced for query. The vehicle

types 1 and 2 was produced with different percentages. For example 5 percent of

25

the query is type 2 and 95 percent of the query is type 2. The change of vehicle

percentage was investigated by varying the rate of type of vehicles as you see in

Table 4.1 Percentage of Placed Vehicles for Proposed Algorithms. Then the data

in the table, was graphed for two types and algorithms at Figure 4.8 and Figure

4.9.

Figure 4.8 shows that percentage of placed vehicle vs. Percentage of type 1. As

we see from the graph while percentage of type 1 is decreasing the percentage

of placed vehicle of query decreases. Because the of type 2 vehicles take more

place in the ferryboat, so this decreases the fill rate. We have run the software

for 5 different algorithm but we have seen that there is no big difference between

the algorithms. It can only be said that VPA: Balance at the Peripheries and

VPA: Balance at the Center has lower fill rates. Because of the structure of

the algorithms; they have reserved cells, if the percentage of type 2 is low there

would be empty cells because type 2 couldn’t be placed type 2 instead of type 1

for reserved cells of type 1.

In contrast to previous graph (Figure 4.8), in Figure 4.9; if the percentage of type

2 vehicles increases the fill rate of the ferry decreases because of type 2 vehicles

take up large spaces in the ferry and most of the vehicle at the query have to

continue to wait for next ferry.

Table 4.1: Percentage of Placed Vehicles for Proposed Algorithms
Simulation Type 1% Type 2% VPA:No Balance VPA:Balance VPA:Balance Perip. VPA:Balance Center VPA:Momentum

1 0% 100% 39.17% 39.17% 25.67% 26.33% 42.50%
2 5% 95% 40.83% 40.00% 28.33% 28.67% 43.33%
3 10% 90% 40.83% 42.53% 31.67% 30.00% 44.17%
4 15% 85% 40.00% 43.33% 33.33% 30.00% 45.00%
5 20% 80% 42.50% 45.00% 36.67% 33.33% 45.83%
6 25% 75% 43.33% 45.83% 38.33% 35.00% 47.50%
7 30% 70% 44.17% 46.67% 40.00% 36.67% 47.50%
8 35% 65% 46.67% 48.33% 43.33% 41.67% 50.00%
9 40% 60% 48.33% 48.33% 43.33% 45.00% 51.67%

10 45% 55% 49.17% 48.33% 43.33% 46.67% 52.50%
11 50% 50% 50.83% 51.67% 46.67% 50.00% 54.17%
12 55% 45% 51.67% 52.50% 51.67% 51.67% 55.83%
13 60% 40% 53.33% 53.33% 53.33% 55.00% 56.67%
14 65% 35% 55.67% 55.67% 56.67% 55.00% 58.33%
15 70% 30% 55.83% 55.83% 56.67% 55.83% 59.17%
16 75% 25% 56.67% 57.50% 57.50% 56.67% 60.00%
17 80% 20% 58.33% 58.33% 58.33% 58.33% 61.67%
18 85% 15% 60.83% 60.83% 60.83% 60.83% 62.17%
19 90% 10% 61.67% 62.50% 62.50% 61.67% 63.00%
20 95% 5% 64.17% 64.17% 64.17% 64.17% 64.17%
21 100% 0% 66.67% 66.67% 66.67% 66.67% 66.67%

26

Figure 4.8: Chart of Percentage of Placed Vehicle vs. Percentage of Type 1

As we see from Figure 4.8 and Figure 4.9; while the rate of the generated vehicles

is changing we change the rate of the vehicles percentage of the placed vehicles

changes linearly. When we increase the rate of the type 2 vehicles which are trucks;

the ferry should take less vehicle or vice versa. However, if five algorithms are

compared it may be seen that there is not a significant difference. The difference

just can be seen at lower volume of Type 1 and higher volume of Type 2. The

first one shows that percentage of placed vehicle vs. Percentage of type 1. As

we see from the graph while percentage of type 1 is decreasing the percentage of

placed vehicle of query decreases. Because the of type 2 vehicles(big vehicles)

take more place in the ferry, so this decreases the percentage. We have run the

software for 5 different algorithm but we have seen that there is no big difference

between the algorithms. But we may say that Balance at the peripheries and

balance at the center has lower fill rates. Because as I have said before they have

reserved cells If the percentages of type 2 is low there are empty cells because we

couldn’t place type 2 instead of type 1

4.8.2 Validation

To validate combined VPA, real data was collected from the ferryboat, as men-

tioned at previous sections; “SADABAT”. It has capacity of 80 vehicles (If it is

27

Figure 4.9: Chart of Percentage of Placed Vehicle vs. Percentage of Type 2

just filled with Type 1 vehicle). Data belong to 50 journeys from Sirkeci to Harem

between the hours 11:00 and 16:30 in working day. The data shows that on the

average 48 type 1 vehicle and 12 type 2 vehicle is carried on that cruise. Also

flagman added that almost placement is like that except extraordinary days such

as holiday days. VPA-with balance constraint model was chosen for validation be-

cause it is more realistic for ferry system. The flagmen take into account balance

of the ferry by rule of thumb. flagman added that almost placement is like that

except extraordinary days such as holiday days. The model has been simulated 50

times on the program according to real data statistics. Percentages of the types

are like 75% Type 1 and 25% Type 2; these percentages determined according to

real data averages. So random data is produced according to these percentages

and also vehicles come to queue at random order. According to this simulation

while 48 type 1 vehicles could be placed in average, at the automated system 61

type 1 vehicles was placed in average. If two system are compared according to

revenue and waiting time at the queue, which can be said as performance cri-

teria of the model, the automated system seems better clearly. The results are

given in Table 4.2 and graph is drawn in Figure 4.10 to see the difference between

revenues.

The revenue is calculated according to ticket fare of the Sirkeci-Harem ferry line,

that are shown in Table 4.3. But, because of the assumptions the model has 2

28

Table 4.2: Revenue of AS vs. Revenue of MS
ID AS-type 1 MS-type 1 AS-type 2 MS-type 2 AS-Revenue(TL) MS-Revenue(TL)

1 55 54 12 9 652.20 591.74
2 58 40 11 16 655.29 575.72
3 56 50 12 11 653.45 586.82
4 59 46 10 13 656.79 582.88
5 61 46 9 13 658.89 583.02
6 66 51 7 10 664.30 588.59
7 65 52 8 10 662.84 589.37
8 55 51 12 10 652.35 588.42
9 62 47 9 12 659.99 584.08

10 60 53 10 9 657.44 590.99
11 61 43 9 14 658.75 579.77
12 64 44 8 14 661.53 580.49
13 57 43 12 14 653.80 579.47
14 62 50 9 11 659.36 587.38
15 62 52 9 10 659.62 589.05
16 59 55 10 9 656.41 592.79
17 68 39 6 17 666.34 574.52
18 64 48 8 12 662.47 585.25
19 58 55 11 9 654.87 592.63
20 68 42 6 15 666.69 578.02
21 72 52 4 10 671.37 589.77
22 64 48 8 12 662.54 585.20
23 64 48 8 12 662.51 584.80
24 62 47 9 12 660.05 584.18
25 60 41 10 15 657.79 577.20
26 59 52 10 10 656.52 589.47
27 62 44 9 14 659.90 580.68
28 57 48 12 12 654.04 585.42
29 63 45 9 13 660.73 582.06
30 61 50 10 11 658.20 587.39
31 62 44 9 14 659.96 580.49
32 67 47 6 13 665.51 583.73
33 57 53 11 10 654.20 590.07
34 65 44 8 14 662.66 580.06
35 61 48 10 12 658.18 585.47
36 61 39 10 16 658.43 575.36
37 68 45 6 14 666.45 581.24
38 61 47 10 13 658.24 583.59
39 61 48 9 12 659.16 584.79
40 56 45 12 13 653.21 581.99
41 64 42 8 15 661.59 577.93
42 59 47 10 12 656.56 584.22
43 70 48 5 12 669.11 584.91
44 63 48 9 12 660.57 584.90
45 54 42 13 15 650.43 577.97
46 62 46 9 13 659.32 582.21
47 61 55 10 8 658.10 593.15
48 59 46 10 13 656.62 582.53
49 65 46 7 13 663.37 583.12
50 51 40 15 16 647.09 575.52

AVG 61 47 9 12 659.12 584.01

29

Figure 4.10: Chart of Revenues

types of vehicles. So the unit fare for type 1 is 8,5 TL and unit fare for type 2 is

the average of the fares of SUV, minibus, midibus and truck that is 14,75 TL.

Table 4.3: Ticket Fares

Type Of Vehicle Fare (TL)

Car 8.5

SUV 12

Minibus 12

Midibus 15

Truck 20

However, in regard to results placing more vehicles decreases waiting time at the

queue. According to result table automated system places 11 vehicles more in

average and if we assume average waiting time for a vehicle is 15 minutes, these

11 vehicles that couldn’t be placed with manual system to first ferry, would be

waiting for 15 minutes more. The number of excess placed vehicles can be seen in

Table 4.4 and in Figure 4.11. As a summary automated system for VPA places

30

Figure 4.11: Chart of Total Placed Vehicles

vehicles more efficiently and increases the revenue. Although there are some

assumptions; it may be said that VPA gives near optimal solutions because of it

is a heuristic model.

31

Table 4.4: Number Placed Vehicles of AS and MS
ID Total Placed with AS Total Placed with MS Difference

1 68 63 5
2 69 56 13
3 68 61 7
4 70 59 11
5 71 59 11
6 73 62 11
7 72 62 10
8 68 62 6
9 71 60 12

10 70 63 7
11 71 58 13
12 72 58 14
13 68 58 11
14 71 61 10
15 71 62 9
16 70 63 6
17 74 55 19
18 72 60 12
19 69 63 5
20 74 57 17
21 76 62 14
22 72 60 12
23 72 60 12
24 71 60 11
25 70 57 14
26 70 62 8
27 71 58 13
28 68 60 8
29 71 59 13
30 70 61 9
31 71 58 13
32 74 59 14
33 69 62 6
34 72 58 14
35 70 60 10
36 70 56 15
37 74 58 16
38 70 59 11
39 71 60 11
40 68 59 9
41 72 57 15
42 70 60 10
43 75 60 15
44 71 60 11
45 67 57 10
46 71 59 12
47 70 64 7
48 70 59 11
49 73 59 13
50 65 56 10

AVG 71 60 11

32

Conclusion

In this thesis, a combined algorithm is proposed for placement of rectangular

vehicles in a ferry. The algorithm, VPA, is a combination of First Fit Bin-Packing,

Bottom Left and Knapsack algorithms. VPA uses FCFS sequencing rule of First

Fit Bin Packing algorithm, placing the items to the bottom left of the layout

method from context of BL algorithm and filling knapsack with optimum capacity

objective of Knapsack algorithm.

VPA is developed in five variant ways that are VPA-No Balance, VPA-Balance ,

VPA-Balance at the Peripheries, VPA-Balance at the Center and VPA-Momentum

Law.Based on the results obtained in the previous chapter, the proposed models

were compared to each other but there seem no remarkable difference related to

number of vehicles placed to ferry floor. But balance is an important constraint

for safety of passengers and vehicles in the ferry. So the VPA-with balance con-

straint should preferably be used in real life.

Not only the efficiency of the proposed algorithms also the algorithm was evalu-

ated using randomly generated test cases and it has been tested on a realistic ferry

line data. Numerical tests were showed that the proposed VPA can improve the

placement results significantly compared to the actual data and provides quick

results.However; if an automated system is used, the revenue of the organization

may increase as shown in the report Also; the reasons have been shown to be NP-

complete and therefore practical solution for VPP tend to be a heuristic solution

that may not yield optimum results.

Although it is a heuristic method, the results show that the proposed combined

algorithm performs better than the current manual placement process. If this

model is used;

33

• Seaport efficiency will be improved,

• Queue delays will be minimized,

• Engine run times will decrease,

• Fuel cost for ferry will decrease,

• Profit of the organization will increase.

The contributions in this thesis are a new algorithm (VPA) which is a combi-

nation of First Fit Bin-Packing, Bottom Left and Knapsack algorithms and a

new research topic for optimization literature which is placement of rectangular

vehicles. Also as we know this research is the first demonstration of the vehicle

placement in a ferry.

34

References

[1] HopperE. Two Dimensional Packing utilising evolutionary algorithms and

other meta-heuristic methods,. PhD thesis, University of Wales, 2000.

[2] Garey et al. Computers and intractability: A guide to the theory of np-

completeness. W.H. Freeman Co., 1979.

[3] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional

packing problems: A survey. Volume 141 of Lodi et al. [8], 2002. doi:

10.1016/S0377-2217(02)00123-6. URL http://www.sciencedirect.com/

science/article/pii/S0377221702001236.

[4] LodiS.MartelloD.Vigo. Recent advances on two-dimensional bin packing

problems. Discrete Appl. Math., 123:379–396, 2002.

[5] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algo-

rithms for np-hard problems. pages 46–93, 1997. URL http://dl.acm.org/

citation.cfm?id=241938.241940.

[6] János Csirik and GerhardJ. Woeginger. On-line packing and covering

problems. 1442:147–177, 1998. doi: 10.1007/BFb0029568. URL http:

//dx.doi.org/10.1007/BFb0029568.

[7] György Dósa and Jiří Sgall. First fit bin packing: A tight analysis. ACM,

1998.

[8] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional

packing problems: A survey. European Journal of Operational Research,

141(2):241 – 252, 2002. ISSN 0377-2217. doi: 10.1016/S0377-2217(02)

35

00123-6. URL http://www.sciencedirect.com/science/article/pii/

S0377221702001236.

[9] B. Baker, E. Coffman, Jr., and R. Rivest. Orthogonal packings in two di-

mensions. SIAM Journal on Computing, 9(4):846–855, 1980. doi: 10.1137/

0209064. URL http://epubs.siam.org/doi/abs/10.1137/0209064.

[10] E. Hopper and B.C.H. Turton. An empirical investigation of meta-heuristic

and heuristic algorithms for a 2d packing problem. European Journal of

Operational Research, 2001.

[11] G.Kendall E.K.Burke and G.Whitwell. A new placement heuristic for the

orthogonal stock-cutting problem. Operations Research, 52(4):655–671, 2004.

[12] Stefan Jakobs. On genetic algorithms for the packing of polygons. European

Journal of Operational Research, 88(1):165 – 181, 1996. ISSN 0377-2217.

doi: 10.1016/0377-2217(94)00166-9. URL http://www.sciencedirect.

com/science/article/pii/0377221794001669.

[13] K. K. Lai and J. W. M. Chan. A evolutionary algorithm for the rectangular

cutting stock problem. 1997.

[14] Wei Shih. A branch and bound method for the multiconstraint zero-one

knapsack problem. The Journal of the Operational Research Society, 30(4):

369–378, April 1979.

[15] Chaitr S. Hiremath. New Heuristic And Metaheuristic Approaches Applied

To The Multiple-choice Multidimensional Knapsack Problem. PhD thesis,

Wright State University, 2008.

36

Curriculum Vitae

Busra Pasali was born on 22 July 1988, in Istanbul. She received his B.S. degree

in Industrial Engineering in 2010 from Isik University. She worked as a research

assistant at the Department of Industrial Engineering of Işık University from

2010 to 2011. Then she started to working at The Scientific and Technological

Research Council Of Turkey "TUBITAK" as researcher.

37

APPENDIX

package tr.edu.isikun.gui;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.EventQueue;

import java.awt.FlowLayout;

import java.awt.GridLayout;

import java.awt.Toolkit;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.text.MessageFormat;

import javax.swing.ImageIcon;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.border.EmptyBorder;

import javax.swing.border.LineBorder;

import tr.edu.isikun.algorithm.FerryParameters;

import tr.edu.isikun.algorithm.PlacementServicer;

38

public class FerryGUI extends JFrame {

private JPanel contentPane;

private static JPanel pnlFerry;

public static final int DISABLED_CELL = -1;

public static final int EMPTY_CELL = 0;

public static final int FILLED_CELL_T1 = 1;

public static final int FILLED_CELL_T2 = 2;

public static final int FILLED_CELL_T3 = 3;

public static final int TRUCK_CELL = 4;

private JMenuBar menuBar;

private JMenu mnFile;

private JMenuItem mntmExit;

private JMenu mnHelp;

private JMenuItem mntmAbout;

static int type = 0;

public static int carCount =120; //120 yap!

public static int ferrsVolume=0;

public static double per=0.0;

//miliSecond

// static long waitTime=200;

static long waitTime=0;

/**

* Launch the application.

*/

public static void main(String[] args) {

try {

39

FerryGUI frame = new

FerryGUI(type);

frame.setVisible(true);

frame.placeVehicles(type,

carCount);

// FerryGUI frame2 = new

FerryGUI(1);

// frame2.placeVehicles(1,

carCount);

// frame2.setVisible(true);

} catch (Exception e) {

e.printStackTrace();

}

// pnlFerry.

//Get Panel All Component

for(int i=0;i< pnlFerry.getComponentCount();i++){

JPanel asd=(JPanel) pnlFerry.getComponent(i);

//Get Visible State

if(!asd.isVisible()){

try {

Thread.sleep(waitTime);

} catch (Exception e) {

// TODO Auto-generated

catch block

e.printStackTrace();

}

40

asd.setVisible(true);

// if Visible state Red Then this Vehicle is

Truck

if(asd.getBackground().equals(Color.RED)){

System.out.println("Type 2");

//if Truck State is fist Column Then

add 13

if(i<4){

JPanel asdd=(JPanel)

pnlFerry.getComponent(i+13);

asdd.setVisible(true);

}else{

JPanel asdd=(JPanel)

pnlFerry.getComponent(i+14);

asdd.setVisible(true);

}

}else{

System.out.println("Type 1");

}

}

}

String infoMessage = "Bir sonraki feribota geciniz !";

41

JOptionPane.showMessageDialog(null, infoMessage, "INFO",

JOptionPane.INFORMATION_MESSAGE);

try {

int type = 1;

int carCount =90;

FerryGUI frame2 = new FerryGUI(type);

frame2.placeVehicles(type, carCount);

frame2.setVisible(true);

} catch (Exception e) {

e.printStackTrace();

}

// }

// });

// pnlFerry.

//Get Panel All Component

for(int i=0;i< pnlFerry.getComponentCount();i++){

JPanel asd=(JPanel) pnlFerry.getComponent(i);

//Get Visible State

if(!asd.isVisible()){

try {

Thread.sleep(waitTime);

} catch (Exception e) {

// TODO Auto-generated catch

block

e.printStackTrace();

42

}

asd.setVisible(true);

// if Visible state Red Then this Vehicle is Truck

if(asd.getBackground().equals(Color.RED)){

System.out.println("Type 2");

//if Truck State is fist Column Then add 13

if(i<4){

JPanel asdd=(JPanel)

pnlFerry.getComponent(i+13);

asdd.setVisible(true);

}else{

JPanel asdd=(JPanel)

pnlFerry.getComponent(i+14);

asdd.setVisible(true);

}

}else{

System.out.println("Type 1");

}

}

}

JOptionPane.showMessageDialog(null, infoMessage, "INFO",

JOptionPane.INFORMATION_MESSAGE);

43

try {

int type = 2;

FerryGUI frame3 = new FerryGUI(type);

frame3.placeVehicles(type, carCount);

frame3.setVisible(true);

} catch (Exception e) {

e.printStackTrace();

}

// }

//});

// pnlFerry.

//Get Panel All Component

for(int i=0;i< pnlFerry.getComponentCount();i++){

JPanel asd=(JPanel) pnlFerry.getComponent(i);

//Get Visible State

if(!asd.isVisible()){

try {

Thread.sleep(waitTime);

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

asd.setVisible(true);

// if Visible state Red Then this Vehicle is Truck

if(asd.getBackground().equals(Color.RED)){

44

System.out.println("Type 2");

//if Truck State is fist Column Then add 13

if(i<4){

JPanel asdd=(JPanel) pnlFerry.getComponent(i+13);

asdd.setVisible(true);

}else{

JPanel asdd=(JPanel) pnlFerry.getComponent(i+14);

asdd.setVisible(true);

}

}else{

System.out.println("Type 1");

}

}

}

JOptionPane.showMessageDialog(null, infoMessage, "INFO",

JOptionPane.INFORMATION_MESSAGE);

try {

int type = 3;

int carCount =90;

45

FerryGUI frame4 = new FerryGUI(type);

frame4.placeVehicles(type, carCount);

frame4.setVisible(true);

} catch (Exception e) {

e.printStackTrace();

}

for(int i=0;i< pnlFerry.getComponentCount();i++){

JPanel asd=(JPanel) pnlFerry.getComponent(i);

//Get Visible State

if(!asd.isVisible()){

try {

Thread.sleep(waitTime);

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

asd.setVisible(true);

// if Visible state Red Then this Vehicle is Truck

if(asd.getBackground().equals(Color.RED)){

System.out.println("Type 2");

//if Truck State is fist Column Then add 13

if(i<4){

JPanel asdd=(JPanel) pnlFerry.getComponent(i+13);

asdd.setVisible(true);

46

}else{

JPanel asdd=(JPanel) pnlFerry.getComponent(i+14);

asdd.setVisible(true);

}

}else{

System.out.println("Type 1");

}

}

}

JOptionPane.showMessageDialog(null, infoMessage, "INFO",

JOptionPane.INFORMATION_MESSAGE);

try {

int type = 4;

int carCount =90;

FerryGUI frame4 = new FerryGUI(type);

frame4.placeVehicles(type, carCount);

frame4.setVisible(true);

} catch (Exception e) {

e.printStackTrace();

}

for(int i=0;i< pnlFerry.getComponentCount();i++){

47

JPanel asd=(JPanel) pnlFerry.getComponent(i);

//Get Visible State

if(!asd.isVisible()){

try {

Thread.sleep(waitTime);

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

asd.setVisible(true);

// if Visible state Red Then this Vehicle is Truck

if(asd.getBackground().equals(Color.RED)){

System.out.println("Type 2");

//if Truck State is fist Column Then add 13

if(i<4){

JPanel asdd=(JPanel) pnlFerry.getComponent(i+13);

asdd.setVisible(true);

}else{

JPanel asdd=(JPanel) pnlFerry.getComponent(i+14);

asdd.setVisible(true);

}

}else{

System.out.println("Type 1");

48

}

}

}

JOptionPane.showMessageDialog(null, infoMessage, "INFO",

JOptionPane.INFORMATION_MESSAGE);

}

protected void placeVehicles(int produceType, int carCount)

{

if(0 == produceType)

{

PlacementServicer.produceRatedDistrubitionCarType(carCount);

PlacementServicer.runAlgorithm(FerryParameters.ferryState,FerryParameters.vehicles);

drawFerry(FerryParameters.ferryState);

}

if (1 == produceType)

{

PlacementServicer.produceRatedDistrubitionCarType(carCount);

PlacementServicer.runAlgorithm2(FerryParameters.ferryState2,FerryParameters.vehicles);

drawFerry(FerryParameters.ferryState2);

}

if (2 ==produceType)

49

{

PlacementServicer.produceRatedDistrubitionCarType(carCount);

PlacementServicer.runAlgorithm3(FerryParameters.ferryState3,FerryParameters.vehicles);

drawFerry(FerryParameters.ferryState3);

}

if (3 ==produceType)

{

PlacementServicer.produceRatedDistrubitionCarType(carCount);

PlacementServicer.runAlgorithm4(FerryParameters.ferryState4,FerryParameters.vehicles);

drawFerry(FerryParameters.ferryState4);

}

else if (4 ==produceType)

{

PlacementServicer.produceRatedDistrubitionCarType(carCount);

PlacementServicer.runAlgorithm5(FerryParameters.ferryState5,FerryParameters.vehicles);

drawFerry(FerryParameters.ferryState5);

}

}

private void drawFerry(int[][] ferryState) {

for (int row = 0; row < ferryState.length; ++row) {

for (int col = 0; col < ferryState[row].length;

++col) {

50

putLabel(ferryState[row][col]);

}

}

}

private void putLabel(int state) {

JPanel currentPanel = new JPanel();

currentPanel.setBackground(Color.RED);

if (state == DISABLED_CELL) {

// currentPanel.setBorder(new LineBorder(new

Color(0, 0, 0)));

currentPanel.setBackground(Color.GRAY);

}

else if (state == FILLED_CELL_T3) {

currentPanel.setBorder(new LineBorder(new

Color(0, 0, 0)));

currentPanel.setLayout(new BorderLayout(0,0));

currentPanel.setBackground(Color.RED);

JButton car3=new JButton();

car3.setBorder(null);

car3.setIcon(new

ImageIcon(FerryGUI.class.getResource("/resources/T2.2.png")));

// currentPanel.add(new Label("

"),BorderLayout.NORTH);

currentPanel.add(car3,BorderLayout.CENTER);

currentPanel.setVisible(false);

}

else if (state == FILLED_CELL_T2) {

51

currentPanel.setBorder(new LineBorder(new

Color(0, 0, 0)));

currentPanel.setLayout(new BorderLayout());

currentPanel.setBackground(Color.RED);

JButton car3=new JButton();

car3.setIcon(new

ImageIcon(FerryGUI.class.getResource("/resources/T2.1.png")));

// currentPanel.add(new Label("

"),BorderLayout.NORTH);

currentPanel.add(car3,BorderLayout.CENTER);

currentPanel.setVisible(false);

}

else if (state == FILLED_CELL_T1) {

currentPanel.setBorder(new LineBorder(new

Color(0, 0, 0)));

currentPanel.setLayout(new BorderLayout());

currentPanel.setBackground(Color.CYAN);

JButton car3=new JButton();

car3.setIcon(new

ImageIcon(FerryGUI.class.getResource("/resources/T1.png")));

// currentPanel.add(new Label("

"),BorderLayout.NORTH);

currentPanel.add(car3,BorderLayout.CENTER);

currentPanel.setVisible(false);

}

pnlFerry.add(currentPanel);

52

}

/**

* Create the frame.

*/

public FerryGUI(int type) {

setIconImage(Toolkit.getDefaultToolkit().getImage(FerryGUI.class.getResource("/resources/check.png")));

// title

//setTitle("Structure Of Ferry");

if (0 == type)

setTitle("Structure Of Ferry with Balance

Constraint");

if (1 == type)

setTitle("Structure Of Ferry without Balance

Constraint");

if (2==type)

setTitle("Structure Of Ferry with Balanced

Constraint-Peripheries");

else if (3==type)

setTitle("Structure Of Ferry with Balanced

Constraint-Symmetry");

// close method

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// window bound

setBounds(100, 100, 763, 616);

53

setLocationRelativeTo(null);

menuBar = new JMenuBar();

setJMenuBar(menuBar);

mnFile = new JMenu("File");

menuBar.add(mnFile);

mntmExit = new JMenuItem("Exit");

mntmExit.setIcon(new

ImageIcon(FerryGUI.class.getResource("/resources/exit.png")));

mntmExit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent arg0) {

System.exit(0);

}

});

mnFile.add(mntmExit);

mnHelp = new JMenu("Help");

menuBar.add(mnHelp);

mntmAbout = new JMenuItem("About ...");

mntmAbout.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(rootPane,

"This project was made for thesis

demonstration.","About",JOptionPane.INFORMATION_MESSAGE);

}

54

});

mntmAbout.setIcon(new

ImageIcon(FerryGUI.class.getResource("/resources/info.png")));

mnHelp.add(mntmAbout);

contentPane = new JPanel();

contentPane.setBorder(new EmptyBorder(0, 0, 0, 0));

setContentPane(contentPane);

contentPane.setLayout(new BorderLayout(0, 0));

// Explanation panel

JPanel pnlExplanaiton = new JPanel();

contentPane.add(pnlExplanaiton, BorderLayout.NORTH);

pnlExplanaiton.setLayout(new

FlowLayout(FlowLayout.CENTER, 0, 0));

// Enter some info for user

JLabel lblFerrry = new JLabel("Ferry");

pnlExplanaiton.add(lblFerrry);

// ferry panel

pnlFerry = new JPanel();

pnlFerry.setBackground(Color.RED);

// pnlFerry.setBorder(new

EtchedBorder(EtchedBorder.LOWERED, null, null));

contentPane.add(pnlFerry, BorderLayout.CENTER);

pnlFerry.setLayout(new

GridLayout(FerryParameters.ferryState.length,

FerryParameters.ferryState[0].length, 0, 0));

55

}

}

//PlacementServicer

package tr.edu.isikun.algorithm;

import java.text.MessageFormat;

import java.util.Random;

import tr.edu.isikun.gui.FerryGUI;

import cern.jet.random.Poisson;

import cern.jet.random.engine.DRand;

import cern.jet.random.engine.RandomEngine;

public class PlacementServicer {

private static int countLeft;

private static int countRight;

public static int carPlaced;

public static int truckPlaced;

public static double per=0.0;

public static void producePoissonCarType(int count)

{

// int totalCount = 0;

56

double lambda = 1;

RandomEngine engine = new DRand(1);

Poisson poisson = new Poisson(lambda, engine);

int poissonObs = poisson.nextInt();

for(int i= 0 ; i < count; i++)

{

poissonObs = poisson.nextInt();

// if(totalCount<60){

FerryParameters.vehicles[i] = poissonObs;

// System.out.println("Gelen Ara[U+FFFD]

Tipi: " + poissonObs);

// }else{

poissonObs = 1;

FerryParameters.vehicles[i] = poissonObs;

// if(totalCount==50)

// break;

// }

//

// if(poissonObs == 1)

// totalCount++;

// else

// poissonObs += 2;

}

}

//

57

public static void produceRatedDistrubitionCarType(int

totalCount)

{

int type1Count = (totalCount *

FerryParameters.RATE_OF_CAR_TYPE_1) / 100;

int type2Count = (totalCount*

FerryParameters.RATE_OF_CAR_TYPE_2) / 100;

// fill %x type 1

for(int i= 0 ; i < type1Count; i++)

{

FerryParameters.vehicles[i] = 1;

}

// fill %y type 2

for(int i= 0 ; i < type2Count; i++)

{

FerryParameters.vehicles[i + type1Count] = 2;

}

// shuffle vehicles

shuffle(totalCount);

calculateVolume();

}

private static void calculateVolume() {

58

int volume = 0;

for (int i = 0; i < FerryParameters.vehicles.length;

i++) {

if (volume<65) {

if(FerryParameters.vehicles[i] == 1)

volume++;

else

volume +=2;

}else{

FerryParameters.vehicles[i] = 1;

volume++;

if(volume == 85){

FerryGUI.ferrsVolume = i;

break;

}

}

}

//

System.out.println(FerryGUI.ferrsVolume+"-------------------------");

// System.out.println(volume+"-------------------------");

}

// shuffle with one-pass algorithm

public static void shuffle(int totalCount)

{

Random randomNumbers = new Random(1);

59

// for each Card, pick another random Card and swap them

for (int first = 0; first < totalCount; first++)

{

// select a random number between 0 and 51

int second = randomNumbers.nextInt(totalCount);

// swap current Card with randomly selected Card

int temp = FerryParameters.vehicles[first];

FerryParameters.vehicles[first] =

FerryParameters.vehicles[second];

FerryParameters.vehicles[second] = temp;

} // end for

} // end method shuffle

public static void runAlgorithm(int[][] ferryState, int[]

vehicles) { // VPA:Balance

int countLeft=0;

int countRight=0;

int countRightTir=0;

int countLeftTir=0;

int x= 0, y=0;

carPlaced=0;

truckPlaced=0;

for (int carIndex = 0; carIndex < FerryGUI.ferrsVolume;

++carIndex)

{

if(vehicles[carIndex]==

FerryParameters.TYPE1_FERRY_STATE)

60

{

String

indexes=getLocation(ferryState,14);

//

System.out.println(indexes);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE1_FERRY_STATE;

carPlaced++;

//

countRight += FerryParameters.TYPE1_CELL_INCREASE;

}

}

//

if(vehicles[carIndex]==FerryParameters.TYPE2_FERRY_STATE)

{

if(countLeftTir>countRightTir)

{

61

String

indexes=getLocationRight(ferryState,14);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

countRight+=FerryParameters.TYPE2_CELL_INCREASE;

countRightTir++;

}

}

else if

(countLeftTir<=countRightTir)

{

String

indexes=getLocationLeft(ferryState,14);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

62

ferryState[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

countLeft+= FerryParameters.TYPE2_CELL_INCREASE;

countLeftTir++;

}

}

truckPlaced++;

}

}

per=1.0*(carPlaced+truckPlaced)/(FerryGUI.carCount);

String actualResult3 =

MessageFormat.format("{0,number,%#.##}", per);

System.out.println("Percentage of Placed Vehicle : "+

actualResult3);

System.out.println("Placed Vehicle : "+(carPlaced +

truckPlaced));

System.out.println("Waiting at the Queue :

"+(FerryGUI.carCount - (carPlaced+truckPlaced)));

}

public static void runAlgorithm5(int[][] ferryState, int[]

vehicles) { // VPA:Momentum Law

int countRightTruck=0;

int countLeftTruck=0;

63

int countRightCar=0;

int countLeftCar=0;

int x= 0, y=0;

carPlaced=0;

truckPlaced=0;

for (int carIndex = 0; carIndex < FerryGUI.ferrsVolume;

++carIndex)

{

if(vehicles[carIndex]==FerryParameters.TYPE1_FERRY_STATE)

{

if(countLeftCar>countRightCar)

{

String

indexes=getLocationRightCar(ferryState,14);

if(!indexes.equals(""))

{

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE1_FERRY_STATE;

countRightCar++;

}

}

else if (countLeftCar<=countRightCar)

{

String

indexes=getLocationLeftCar(ferryState,14);

if(!indexes.equals("")){

64

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE1_FERRY_STATE;

countLeftCar++;

}

}

carPlaced++;

}

if(vehicles[carIndex]==FerryParameters.TYPE2_FERRY_STATE)

{

if(countLeftTruck>countRightTruck)

{

String

indexes=getLocationRightTruck(ferryState,14);

if(!indexes.equals(""))

{

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

countRightTruck++;

65

}

}

else if (countLeftTruck<=countRightTruck)

{

String

indexes=getLocationLeftTruck(ferryState,14);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

countLeftTruck++;

}

}

truckPlaced++;

}

}

per=1.0*(carPlaced+truckPlaced)/(FerryGUI.carCount);

String actualResult3 =

MessageFormat.format("{0,number,%#.##}", per);

System.out.println("Percentage of Placed Vehicle : "+

actualResult3);

System.out.println("Placed Vehicle : "+(carPlaced +

truckPlaced));

66

System.out.println("Waiting at the Queue :

"+(FerryGUI.carCount - (carPlaced+truckPlaced)));

}

public static void runAlgorithm2(int[][] ferryState, int[]

vehicles) { // VPA:No Balance

int x= 0, y=0;

carPlaced=0;

truckPlaced=0;

for (int carIndex = 0; carIndex < FerryGUI.ferrsVolume;

++carIndex)

{

if(vehicles[carIndex]==

FerryParameters.TYPE1_FERRY_STATE)

{

String

indexes=getLocation(ferryState,14);

//

System.out.println(indexes);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

67

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE1_FERRY_STATE;

carPlaced++;

}

}

else

if(vehicles[carIndex]==FerryParameters.TYPE2_FERRY_STATE)

{

String

indexes=getLocation(ferryState,14);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

68

truckPlaced++;

}

}

}

per=1.0*(carPlaced+truckPlaced)/(FerryGUI.carCount);

String actualResult3 =

MessageFormat.format("{0,number,%#.##}", per);

System.out.println("Percentage of Placed Vehicle : "+

actualResult3);

System.out.println("Placed Vehicle : "+(carPlaced +

truckPlaced));

System.out.println("Waiting at the Queue :

"+(FerryGUI.carCount - (carPlaced+truckPlaced)));

}

public static void runAlgorithm3(int[][] ferryState3, int[]

vehicles) { // VPA:Balance at the Peripheries

int x= 0, y=0;

carPlaced=0;

truckPlaced=0;

for (int carIndex = 0; carIndex < FerryGUI.ferrsVolume;

++carIndex)

{

if(vehicles[carIndex]==

FerryParameters.TYPE1_FERRY_STATE)

{

69

String

indexes=getLocation(ferryState3,14);

if(ferryState3[13][8]==FerryParameters.TYPE1_FERRY_STATE) {

indexes=getLocation2(ferryState3,14);

}

//

System.out.println(indexes);

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

//

if(Integer.valueOf(ferryState[x][y])==4){

ferryState3[x][y]=FerryParameters.TYPE1_FERRY_STATE;

carPlaced++;

}

}

// }

70

else

if(vehicles[carIndex]==FerryParameters.TYPE2_FERRY_STATE)

{

String

indexes=getLocation2(ferryState3,14);

//

System.out.println(indexes);

if(!indexes.equals("")){

x =

Integer.valueOf(indexes.split("-")[0]);

y =

Integer.valueOf(indexes.split("-")[1]);

ferryState3[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState3[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

truckPlaced++;

}

}

}

per=1.0*(carPlaced+truckPlaced)/(FerryGUI.carCount);

71

String actualResult3 =

MessageFormat.format("{0,number,%#.##}", per);

System.out.println("Percentage of Placed Vehicle : "+

actualResult3);

System.out.println("Placed Vehicle : "+(carPlaced +

truckPlaced));

System.out.println("Waiting at the Queue :

"+(FerryGUI.carCount - (carPlaced+truckPlaced)));

}

public static void runAlgorithm4(int[][] ferryState4, int[]

vehicles) { // VPA:Balance at the Center

int x= 0, y=0;

carPlaced=0;

truckPlaced=0;

for (int carIndex = 0; carIndex < FerryGUI.ferrsVolume;

++carIndex)

{

if(vehicles[carIndex]==

FerryParameters.TYPE1_FERRY_STATE)

{

String

indexes=getLocation(ferryState4,14);

if(ferryState4[13][8]==FerryParameters.TYPE1_FERRY_STATE) {

indexes=getLocation2(ferryState4,14);

}

72

if(!indexes.equals("")){

x=Integer.valueOf(indexes.split("-")[0]);

y=Integer.valueOf(indexes.split("-")[1]);

ferryState4[x][y]=FerryParameters.TYPE1_FERRY_STATE;

carPlaced++;

}

}

// }

//

//

if(vehicles[carIndex]==FerryParameters.TYPE2_FERRY_STATE)

{

String

indexes=getLocation2(ferryState4,14);

if(!indexes.equals("")){

73

x =

Integer.valueOf(indexes.split("-")[0]);

y =

Integer.valueOf(indexes.split("-")[1]);

ferryState4[x][y]=FerryParameters.TYPE2_FERRY_STATE;

ferryState4[x+1][y]=FerryParameters.TYPE22_FERRY_STATE;

truckPlaced++;

}}

}

per=1.0*(carPlaced+truckPlaced)/(FerryGUI.carCount);

String actualResult3 =

MessageFormat.format("{0,number,%#.##}", per);

System.out.println("Percentage of Placed Vehicle : "+

actualResult3);

System.out.println("Placed Vehicle : "+(carPlaced +

truckPlaced));

System.out.println("Waiting at the Queue :

"+(FerryGUI.carCount - (carPlaced+truckPlaced)));

}

74

public static String getLocation2(int[][] ferryState3,int

verticalCount){

for (int horizontal = 0; horizontal <verticalCount;

horizontal++) {

for (int vertical = 0; vertical < 14;

vertical++) {

if(ferryState3[horizontal][vertical]==4){

String

indexes=horizontal+"-"+vertical;

return indexes;

}

}

}

return "";

}

public static String getLocation3(int[][] ferryState3,int verticalCount){

for (int horizontal = 0; horizontal <verticalCount;

horizontal++) {

75

for (int vertical = 0; vertical < 14;

vertical++) {

if(ferryState3[horizontal][vertical]==4){

String

indexes=horizontal+"-"+vertical;

return indexes;

}

}

}

return "";

}

public static String getLocation(int[][] ferryState,int

verticalCount){

for (int horizontal = 0; horizontal

<verticalCount; horizontal++) {

for (int vertical = 0; vertical < 14;

vertical++) {

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

76

}

}

}

return "";

}

public static String getLocationRight(int[][] ferryState,int

verticalCount){

for (int horizontal = 0; horizontal <verticalCount;

horizontal++) {

for (int vertical = 7; vertical < 14;

vertical++) {

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

}

}

}

return "";

}

public static String getLocationLeft(int[][] ferryState,int

verticalCount){

77

for (int horizontal = 0; horizontal < verticalCount;

horizontal++) {

for (int vertical = 0; vertical < 7; vertical++)

{

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

}

}

}

return "";

}

public static String getLocationRightCar(int[][] ferryState,int

verticalCount){

for (int horizontal = 0; horizontal <verticalCount;

horizontal++) {

for (int vertical = 13; vertical >= 7;

vertical--) {

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

78

}

}

}

return "";

}

public static String getLocationLeftCar(int[][] ferryState,int

verticalCount){

for (int horizontal = 0; horizontal < verticalCount;

horizontal++) {

for (int vertical = 0; vertical < 7; vertical++)

{

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

}

}

}

return "";

}

public static String getLocationRightTruck(int[][]

ferryState,int verticalCount){

79

for (int horizontal = 0; horizontal <verticalCount;

horizontal++) {

for (int vertical = 7; vertical < 14;

vertical++) {

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

}

}

}

return "";

}

public static String getLocationLeftTruck(int[][] ferryState,int

verticalCount){

for (int horizontal = 0; horizontal < verticalCount;

horizontal++) {

for (int vertical = 6; vertical >= 0;

vertical--) {

if(ferryState[horizontal][vertical]==0){

String

indexes=horizontal+"-"+vertical;

return indexes;

80

}

}

}

return "";

}

}

//FerrryParameters

package tr.edu.isikun.algorithm;

import tr.edu.isikun.gui.FerryGUI;

public class FerryParameters {

public static int [][] ferryState = new int[][] {

// | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

| 9 | 10 | 11 | 12 | 13 |

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 ,

0 , -1 , -1 , -1 , -1 , -1 },

// line 0

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 1

81

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 2

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 3

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 4

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 5

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1, -1 , -1 , -1 },

// line 6

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 7

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 8

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 9

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 10

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 11

82

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 }, //

line 12

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 ,

0 , -1 , -1 , -1 , -1 , -1 },

// line 13

};

public static int [][] ferryState2 = new int[][] {

// | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

| 9 | 10 | 11 | 12 | 13 |

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , -1

, -1 , -1 , -1 , -1 }, //

line 0

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 1

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 2

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 3

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 4

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 5

83

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1, -1 , -1 , -1 }, //

line 6

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 7

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 8

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 9

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 10

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, // line

11

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , 0 , 0

, -1 , -1 , -1 , -1 }, // line 12

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , -1

, -1 , -1 , -1 , -1 }, //

line 13

};

public static int [][] ferryState3 = new int[][] {

// | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

10 | 11 | 12 | 13 |

84

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , -1

, -1 , -1 , -1 , -1 }, //

line 0

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 1

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 2

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 3

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 4

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 5

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1, -1 , -1 , -1 }, //

line 6

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 7

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 8

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 9

85

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, //

line 10

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, // line

11

{ -1 , -1 , -1 , -1 , 4 , 0 , 0 , 0 , 0 , 4

, -1 , -1 , -1 , -1 }, // line 12

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 , -1

, -1 , -1 , -1 , -1 }, //

line 13

};

public static int [][] ferryState4 = new int[][] {

// | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

10 | 11 | 12 | 13 |

{ -1 , -1 , -1 , -1 , -1 , 0 , 4 , 4 , 0 , -1

, -1 , -1 , -1 , -1 }, //

line 0

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 1

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 2

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 3

86

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 4

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 5

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1, -1 , -1 , -1 }, //

line 6

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 7

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 8

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 9

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, //

line 10

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, // line

11

{ -1 , -1 , -1 , -1 , 0 , 0 , 4 , 4 , 0 , 0

, -1 , -1 , -1 , -1 }, // line 12

{ -1 , -1 , -1 , -1 , -1 , 0 , 4 , 4 , 0 , -1

, -1 , -1 , -1 , -1 }, //

line 13

87

};

public static int [][] ferryState5 = new int[][] {

// | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

| 9 | 10 | 11 | 12 | 13 |

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 ,

0 , -1 , -1 , -1 , -1 , -1 },

// line 0

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 1

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 2

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 3

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 4

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 5

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1, -1 , -1 , -1 },

// line 6

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 7

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 8

88

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 9

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 10

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 },

// line 11

{ -1 , -1 , -1 , -1 , 0 , 0 , 0 , 0 ,

0 , 0 , -1 , -1 , -1 , -1 }, //

line 12

{ -1 , -1 , -1 , -1 , -1 , 0 , 0 , 0 ,

0 , -1 , -1 , -1 , -1 , -1 },

// line 13

};

// type

public static int[] vehicles = new

int[FerryGUI.carCount] ;

public static int FERRY_MAX_LINE = 13;

public static int TYPE1_FERRY_STATE = 1;

public static int TYPE2_FERRY_STATE = 2;

public static int TYPE22_FERRY_STATE = 3;

public static int TYPE1_CELL_INCREASE = 1;

public static int TYPE2_CELL_INCREASE = 2;

89

public static int TYPE22_CELL_INCREASE = 3;

public static int RATE_OF_CAR_TYPE_1 = 75; //write the

percentage of Type 1

public static int RATE_OF_CAR_TYPE_2 = 25; //write the

percentage of Type 2

public static int[] vehicles1=new int[FerryGUI.carCount]

;

}

90

