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SEARCHING FOR THE OPTIMAL ORDERING OF

CLASSES IN RULE INDUCTION

Abstract

In this thesis, we work on rule induction algorithms, basically Ripper. These

algorithms solve aK > 2 class problem by transforming it into a sequence ofK−1

two class problems. As a heuristic, these algorithms learn classes in the order of

increasing prior probabilities. Although the heuristic works well in practice, there

is much room for improvement. We propose two algorithms for that purpose.

The first algorithm, namely Forward Ordering Search (FOS) starts with the order-

ing heuristic provided and searches for better orderings by swapping consecutive

classes. For a dataset with K classes, the ordering space will be as large as K!.

Since FOS is an example of Steepest Ascent Hill Climbing (Gradient Search),

starting with the heuristic ordering will only give local maximum in the search

space. In order to improve the performance, we use 10 random initial orderings

as in Random-Restart (Steepest Ascent) Hill-Climbing. The best performance

between 10 random initial orderings is the result of Random-Restart FOS.

The second algorithm, namely Pairwise Error Approximation (PEA), transforms

the ordering search problem into an optimization problem and uses the solution of

the optimization algorithm to extract the optimal ordering. In this algorithm, the

number of random orderings to construct the optimization problem is a parameter

and we try several values of this parameter to see the effect on the performance.

We compare our algorithms with the original Ripper on 13 datasets from UCI

repository [1]. Experimental results show that, our algorithms produce rule sets

that are significantly better than those produced by Ripper proper in general

and the number of rules and conditions of the produced rule sets are comparable

with Ripper proper. Even though the accuracy of Random-Restart FOS is better

than FOS, the time complexity of the algorithm is far worse than FOS. The

average error estimation results of PEA promote the consistency of our pairwise

assumption and show the relationship between the accuracy and the number of

random orderings to extract the optimal ordering.
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KURAL ÇIKARIMDA OPTİMAL SINIF

SIRALAMASINI ARAMA

Özet

Bu tezde, CN2 ve Ripper kural çıkarım algoritmaları üzerinde çalıştık. Bu algo-

ritmaların ortak özelliğiK > 2 sınıflı veri kümelerini sınıflandırırken, K−1 adet 2

sınıflı probleme çevirerek sınıflandırmalarıdır. Bulgusal yaklaşıma göre, bu algo-

ritmalar sınıfları, artan önsel olasılıklarına göre öğrenirler. Biz de çalışmamızda,

kural çıkarım algoritmalarının sınıf sıralamalarına bağlı olarak performanslarının

nasıl değişeceğini araştırırız. Bu amaçla, iki algoritma sunarız.

Sunulan ilk algoritma, FOS (ileriye doğru-sıralama arama algoritması), ilk olarak

bulgusal yaklaşımın sıralamasıyla başlar. Yan yana sınıfların yer değişimleri ile

oluşturulmuş sıralamaları, daha iyi performans elde edildiği sürece, iteratif şekilde

karşılaştırır. Bu arama En Dik Tırmanış Algoritması’ na bir örnek olduğu için

tüm arama uzayında ancak yerel bir başarı noktası bulacak şekilde gerçekleşir.

Tüm arama uzayı, K > 8 sınıflı veri kümeler için 8!’ den büyük bir uzaydır.

Bu nedenle, performansı arttırmak için Rasgele-Başlangıç Dik Tırmanış Algorit-

ması’ nda olduğu gibi, rasgele 10 farklı başlangıç sıralamasıyla FOS algoritmasını

çalıştırırız. Bu sonuçların en iyisi, Rasgele-Başlangıç FOS’ un sonucunu belirler.

Sunduğumuz ikinci algoritma olan İkili Hata Yaklaşıklaması Algoritması, sıralama

arama problemimizi, sıralamaların sınıf ikililerini kullanarak, optimizasyon prob-

lemine çevirir. Problemin çözümünü optimal sıralamayı bulmak için kullanırız.

Optimizasyon probleminin parametreleri olarak rasgele sıralamalar üretiriz ve

çeşitli sayıda rasgele sıralamalarla, sıralama sayısının performansa etkisini gözlemleriz.

Algoritmalarımızın sonuçlarını Ripper kural çıkarım algoritmasıyla 13 veri kümesi

üzerinde karşılaştırırız. Elde ettiğimiz sonuçlar genel olarak, bulduğumuz sıralamaların

performans ve karmaşıklıkları açısıdan daha iyi kural kümeleri oluşturduğunu

gösterir. Ayrıca Rasgele-Başlangıç FOS algoritmasının performansının FOS’ tan

iyi olmasına rağmen, algoritmanın karmaşıklığının FOS’ tan kat kat fazla olduğunu

gözlemleriz. Son olarak, PEA algoritması için hesapladığımız ortalama kestirim

hatası sonuçları, algoritmayı oluşturmamıza neden olan varsayımımızın tutarlılığını

destekler ve dogru sonuçlarla rasgele sıralama sayısı arasındaki ilişkiyi gösterir.
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Chapter 1

Introduction

In everyday life, people unconsciously have various classification problems in their

minds. People, brands, technologies, automobiles, etc. are classified using the

data which is collected intentionally or unintentionally. The collected data are

processed in human brain among neurons and a classification decision is made.

These decisions might be vital in some cases. In a world with numerous data

and complicated circumstances, human brain is inadequate to process all that

data. Machine learning, a field of computer science, aims to accomplish these

classification tasks that the human brain can not cope with ease.

In this thesis, we work on the area of rule induction, specifically the classical

form of the rule induction that is called propositional rule induction (attribute-

value rule learning) [2]. Propositional rule induction algorithms produce rule sets

as the main model. Rule sets contain rules and each rule consists of conditions

merged via AND’s and classifies class Ci. Rule induction algorithms have various

advantages: (i) They are easy to understand and modify. (ii) They learn fast

and can be used on very large data sets with a large number of instances. (iii)

They do their own feature extraction/dimensionality reduction and can be used

on data sets with a large number of features.

The most common application areas of rule induction algorithms are data mining,

pattern recognition, bioinformatics, natural language processing, etc. PRISM [3],
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JoJo [4], AQ [5], RIPPER [6], PREPEND [7], CN2 [8] are some examples of the

propositional rule induction algorithms.

There are two main groups of rule induction algorithms: Separate-and-conquer

algorithms and divide-and-conquer algorithms. This thesis is mainly related with

the algorithms following separate and conquer strategy [9]. According to this

strategy, when a rule is learned for class Ci, the covered examples are removed

from the training set. This procedure proceeds until no examples remain from

class Ci in the training set.

If we have two classes, we separate positive class from negative class. But if we

have K > 2 classes, as a heuristic, every class is classified in the order of their

increasing prior probabilities, i.e., in the order of their sample size. The aim of

this thesis is (i) to determine the effect of this ordering on the performance of the

algorithms and (ii) to propose better algorithm for selecting the ordering. We

propose two algorithms to find the optimal class ordering.

First algorithm, forward ordering search (FOS), does Steepest Ascent Hill Climb-

ing (Gradient Search) -which is similar to the Best First Search- in the ordering

space. It starts from the heuristic’s class ordering and at each step, the neighbor

ordering that has the smallest error is selected. The algorithm terminates when

none of the neighbor orderings has less error than the current best ordering.

Second algorithm, pairwise error approximation (PEA), assumes that the error

of an ordering is the sum of K(K − 1)/2 pairwise errors of classes. We train

N random orderings and use the error of them as training data to estimate the

pairwise errors. Given the estimated pairwise errors, the algorithm searches for

the optimal ordering exhaustively.

In the beginning of the thesis, we work with CN2 and Ripper. Later on, we

see that Ripper is usually significantly better than CN2, and we choose Ripper

to continue with. In FOS, since the algorithm has a local optima problem, in

2



order to improve the performance of the algorithm, we run the algorithm with 10

different initial orderings, and called this algorithm Random-Restart FOS.

For PEA algorithm, we investigate if the size of the random set of orderings affect

the performance of the algorithm. We train Ripper with N = 10, 20, 30, . . . ,

100 random orderings and for each N , the algorithm exhaustively searches for

the optimal ordering. After all, we compare the performances of the obtained

orderings.

This thesis is organized as follows: We briefly survey rule induction algorithms

in Chapter 2. In Chapter 3, we discuss the base algorithm Ripper. In Chapter 4,

we discuss our motivation and explain our proposed algorithms FOS and PEA.

The experimental results are demonstrated in Chapter 5, and we conclude in

Conclusion.
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Chapter 2

Rule Induction Algorithms

Rule induction algorithms produce a classification model consisting of rules. The

role of the rules is to classify the examples of the dataset, matching up with their

class labels. There are two types of rules: Propositional rules and first order logic

rules. This thesis deals with propositional rules. Propositional rules contain a

conjunction of terms and a class label assigned to an instance that is covered by

the rule [9]. The terms are of the form xi = v, xi < θ or xi ≥ θ, depending on

respectively whether the input feature xi is discrete or continuous. An example

rule containing two propositions for class C1 is

IF (x0 < 1.9) AND (x1 = “green”) THEN Class = C1

where feature x0 is continuous and feature x1 is discrete.

A rule set is a list of rules induced by the rule induction algorithms. An example

rule set for famous iris problem is:

If F3 < 1.9 and F4 ≥ 5.1 Then Class = “iris-setosa”

Else

If F3 < 4.7 Then Class = “iris-versicolor”

Else Class = “iris-virginica”

4



In this example, rule set contains two rules and each rule classifies one class.

Examples which are not covered by neither of the rules, are covered by the default

rule as iris-virginica.

There are two basic groups of rule induction algorithms: Separate-and-conquer

algorithms (also called as sequential covering algorithms) and divide-and-conquer

algorithms. Separate-and-conquer algorithms [9] find the best rule that explains

the part of the training set recursively. Each iteration, it separates the examples

(even false positives) those are covered by this rule from the training set. This

procedure proceeds until no examples remain.

Divide-and-conquer algorithms (tree induction algorithms) greedily find the best

split that separates data according to some predefined impurity measure such as

information gain, entropy, Gini index, etc. After dividing the examples according

to the best split, the algorithms conquer the resulted partitions recursively. C4.5

is famous example of tree induction algorithms, which searches for the best split

and the best feature at each node with respect to the information gain [10].

Separate and conquer algorithms have some common processes. Figure 2.1 shows

a generalized pseudocode, which is valid for almost all separate and conquer

algorithms. For each class Ci, the initial rule is determined and the conditions are

added to the rule with respect to the search direction. Then, the rule is simplified

and this simplification is called pre-pruning. After pre-pruning, the rule is added

to the rule set with respect to the search strategy. Finally, constructed rule set

is simplified and this simplification is called post-pruning.

5



1 Rule Set SeparateConquer(D)
2 for each class Ci

3 while D contains positive examples
4 Rule = rule with respect to search direction
5 while Rule covers negative examples
6 Grow-Rule(Rule, search direction, D)
7 Pre-Prune(Rule, D)
8 Add Rule to the Rule Set with respect to search strategy
9 Remove examples covered by Rule from D
10 Post-Prune(Rule Set, D)
11 return Rule Set

Figure 2.1: Pseudocode for separate and conquer algorithms with dataset D

2.1 Search Direction

2.1.1 Top-down

Top-down search starts with choosing the most-general rule, ‘true’, as the initial

rule which covers all training data. The rule is then specialized by adding con-

ditions. After each specialization, the new rule covers a subset of the previously

covered data.

2.1.2 Bottom-up

The bottom-up strategy starts with the most-specific rule which usually covers

single example. Each iteration generalizes the rule by removing conditions. After

each generalization, the new rule covers new examples plus previously covered

data.

2.1.3 Bi-directional

Bi-directional approach is a combined version of top-down and bottom-up strate-

gies. The initial rule might be (i) the most-general rule, (ii) the most-specific rule
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or (iii) a random rule, which is neither specific nor general. It allows to use both

generalization and specialization operators.

2.2 Search Strategy

2.2.1 Hill-Climbing

Hill climbing is a search technique used in artificial intelligence. It is also used

in rule induction algorithms to find the best rule for a given training set. First,

an initial rule is defined depending on the search direction (top-down or bottom

up). After that, the initial rule is improved iteratively. When there is no further

improvement for the rule, the search stops. This usually returns a local optima.

2.2.2 Beam search

One who avoids to stick in the local optimum of hill-climbing, might choose beam

search for better performance. In addition to considering the best rule, beam

search also keeps track of a fixed number of alternatives [9]. While hill-climbing

has to decide upon a single improvement at each step, beam search finds the best

refinement over all alternative rules.

2.2.3 Best-First

This technique searches for the best rule in the rule space over a training set. It

stores all candidate rules after each refinement process of a rule and selects the

best candidate rule. It is similar to Beam-Search approach with an infinite beam

size.

7



2.2.4 Stochastic

Stochastic search aims to avoid local optima. For that purpose, it makes more

than one refinements to a rule at a time (for higher jumps) and makes random

refinement over the rules. The rules which are more promising have higher chance

to be improved. Genetic algorithm is an example of stochastic search, it allows

refinements over random conditions of the rules by cross-over with another rule.

2.3 Pruning

Pruning methods prevent over-fitting and cope with noisy data.

2.3.1 Pre-pruning

In pre-pruning after construction of a rule, the conditions of the rules are pruned

one by one and the condition that causes the most increase in information gain

measure is chosen to be removed. Pruning stops when there is no improvement.

2.3.2 Post-pruning

After the completion of the classification model, the rules are pruned if their

removal decreases the error on training set and this method is called post-pruning.

2.4 Survey

Table 2.1 demonstrates some separate and conquer algorithms with their search

techniques and strategies.

The first application of Ant Colony Optimization (ACO) task is the Ant-Miner

algorithm [11]. Ant-Miner uses separate and conquer strategy. Each path con-

structed by an artificial ant is mapped into a classification rule. Artificial ant

8



Table 2.1: Examples of Separate and Conquer Algorithms
Search Strategy Search Direction Pruning

Alg. Hill Climb.BeamBest FirstStoch.TopBottomBi-directPre Post
Ant-Miner X X X
Ant-Miner+ X X X

AQ X X X
AQ15 X X X X
ATRIS X X X
BEXA X X X X X
CN2 X X X X
DLG X X X
GBAP X X
GROW X X X
IREP X X X X
JoJo X X

LERILS X X X X
POSEIDON X X X X
PREPEND X X
PRISM X X
REP X X X
SIA X X X

SWAP-1 X X X

starts with an empty rule and iteratively adds term to the rule [12]. After con-

struction of a rule it is immediately pruned. When an ant completes its rule, the

amount of pheromone is updated and another ants start to construct their rule,

using the new amounts of pheromone to guide its search [13]. There are several

versions of this sequential covering algorithm Ant-Miner+ [14], GBAP [15].

Ant-Miner+ is an improved version of Ant-Miner and it defines the environment

as a directed acyclic graph. All ants begin in start vertex and walk through their

environment to the end vertex, they construct a rule step by step.

AQ [5] algorithm performs top down search strategy and selects a random exam-

ple. It specializes the most general rule until it still covers the selected example,

but none of the negative examples. For that reason, constructed rules of AQ are

dependent on specific examples.

9



AQ15 [5] uses rigid constraints about total number of specializations. It con-

structs specializations at most the total number of attributes per iteration.

ATRIS [16] combines stochastic local optimization with deterministic local op-

timization. For stochastic search it uses simulated annealing based algorithms

and for deterministic search it performs variants of k -opt algorithms. K -opt is a

local search strategy which starts with a tour and improves the tour iteratively

by performing a sequence of k -opt moves. Each k-opt move replaces k edges in a

tour with k new edges.

BEXA [17] aims, not to exclude potential specializations as avoiding the useless

ones. For that purpose it allows dynamic restrictions on the number of con-

structed specializations: (i) The prevent-empty-conjunctions restriction, prevents

conjunctions that cover no positive examples. (ii) The irredundancy restriction,

constructs conditions as conjunctions with only a few terms. (iii) The uncover-

new-negatives restriction, ensures each newly excluded value or interval to uncover

at least one new negative instance.

CN2 [8] specializes conditions via either adding a new conjunctive term or remov-

ing a disjunctive element. It chooses a larger search space for the specialization

process to examine all specializations of a condition. Thus, CN2 includes the

rules which do not fit the training data perfectly as well. CN2 also uses rigid con-

straints about total number of specializations as AQ15. It constructs only pure

conjunctions and pure means an expression containing only elementary atoms

[18]. The main goal of these restrictions is to reduce the learning time but the

main problem is that they may cause to lose some important specializations and

allow potentially useless specializations.

DLG [19] is a variant of AQ family, using generalization.

GBAP [15] uses Ant Colony Optimization as its search technique and is guided

by a context-free grammar.
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GROW [20] is an alternative method for over-fit and simplify technique of REP.

It adds the most promising generalization of a rule to an initially empty theory,

instead of removing the most useless rule or condition from the over-fitting theory

[21].

I-REP [22] applies the integration of pre-pruning and post-pruning. This algo-

rithm immediately prunes the rule, after learns it and uses prune set for that

purpose. During the post-pruning, the algorithm deletes any final sequence of

conditions from the rule.

The algorithm JoJo [4] is a standard separate and conquer algorithm which en-

ables to add or relax one term at a time using bi-directional strategy.

LERILS [23] has two parts. (i) It creates a large rule pool from randomly chosen

positive examples and, (ii) combines the rules in the rule pool to obtain a final

rule set. Both parts use randomized local search with a version of a minimum

description length heuristic. For each class, these parts try to find an optimal

subset of constructed pool of rules iteratively.

POSEIDON [24] is a standard separate and conquer algorithm using beam-search

with top-down strategy.

Examples belonging to the most common class should be handled by the default

rule for the efficiency. For that purpose, PREPEND [7] puts the new learned rule

before the previously learned rules during the construction of the rule set. Thus,

the most general rule will be learned first and will placed at the end of the list as

default rule.

PRISM [3] is based on ID3. It induces modular rules to avoid some disadvantages

of decision trees. For each class, during the construction process of the rules

the training set is restored to its initial state. Hence the classes are considered

separately, their order of training is immaterial.

REP [25] divides training data into a growing set and a pruning set. It starts with

an initial rule set that over-fits the growing set. Then, it simplifies the rule set

11



and during pruning it deletes any single condition or any single rule that increases

error on the pruning set.

SIA [26] performs genetic algorithm to obtain the best rule set. SIA constructs

candidate rules and these rules constitute the generation of the genetic algorithm.

During the construction of the rules, random generalizations are applied to the ex-

amples in a bottom-up manner. The generation produces new rules, by applying

cross-over between the conditions of the two rules randomly.

SWAP-1 [27] uses bi-directional search strategy, it allows conditions to swap in

and out. Rules are constructed by these swapping operations of the conditions.

Weakest Link pruning strategy is used during the post-pruning of the rules. This

strategy starts with an initial rule set and each subsequent rule sets are gener-

ated by pruning the rule set from its weakest link, i.e, it is pruned by deleting

single rules or single components causing maximum increase in information gain

measure. Strategy produces ordered rule sets in decreasing complexities.
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Chapter 3

Ripper

In this study, we use Ripper as the base algorithm for searching the optimal class

ordering. Ripper, Repeated Incremental Pruning to Produce Error Reduction, is

an Irep [22] based rule induction algorithm. It basically learns rules, generates a

rule set, optimizes the rule set and finally returns the rule set. The algorithm is

formally called RIPPERk since the learned rule set is optimized k times, typically

twice [6].

The pseudocode of Ripper is given in Figure 3.1. When there are K > 2 classes,

the classes of the dataset are increasingly sorted according to their prior proba-

bilities resulting in the permutation, π (Line 1). For each class π(p), its examples

are considered as positive and the examples of the remaining classes Cp+1, ..., CK

are considered as negative (Line 4). Rules are grown (Line 9), pruned (Line 10)

and added (Line 16) one by one to the rule set. If the recent rule set’ s description

length is 64 bits more than the previous rule set’s description length rule adding

stops and the rule set is pruned (Lines 12-14). The description length of a rule set

is the number of bits to represent all the rules in the rule set, plus the description

length of examples not covered by the rule set [28]. Ripper uses

DescLen =‖ k ‖ +klog2
n

k
+ (n− k)log2

n

n− k
(3.1)
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1 Ruleset Ripper(D,π)
2 RS = {}
3 for p = 1 to K
4 Pos = π(p), Neg = π(p+ 1), . . ., π(K)
5 RSp = {}
6 DL = DescLen(RS,Pos,Neg)
7 while D contains positive samples
8 Divide D into Grow set G and Prune set P
9 r = GrowRule(G)
10 PruneRule(r, P )
11 DL’ = DescLen(RSp + r, Pos, Neg)
12 if DL’ > DL+ 64
13 RS = PruneRuleSet(RSp + r, Pos, Neg)
14 return RS
15 else
16 RSp = RSp + r
17 Remove examples covered by r from D
18 for i = 1 to 2
19 OptimizeRuleset(RSp, D)
20 RS = RS + RSp

21 return RS

Figure 3.1: Pseudocode for learning a ruleset using Ripper on datasetD according
to ordering π

1 Rule GrowRule(D)
2 r = {}
3 while r covers negative examples
4 Use exhaustive search to find best condition c
5 r = r ∪ c
6 return r

Figure 3.2: Pseudocode for growing a rule using dataset D

bits to send rule r with k conditions, where n is the number of possible conditions

that could appear in a rule and ‖k‖ is the number of bits needed to send the

integer k [6]. If there are no remaining positive examples (Line 7) rule adding

stops. After learning a rule set, it is optimized twice (Line 18).

Figure 3.2 shows pseudocode of the growing a rule. Learning starts with an

empty rule (Line 2), and conditions are added one by one. At each iteration the

14



1 Rule PruneRule(r)
2 improved = True
3 Ebest = rvm(r)
4 while improved
5 improved = False
6 for each condition c in r
7 r = r − c
8 E = rvm(r)
9 if ( E ≥ Ebest)
10 improved = True
11 remove = c
12 Ebest = E
13 r = r ∪ c
14 if improved
15 r = r−remove
16 return r

Figure 3.3: Pseudocode for pruning rule r

algorithm finds the condition with maximum information gain on the dataset D

(Lines 4) by using the following formula:

Gain(R′, R) = s(log2
N ′

+

N ′ − log2
N+

N
) (3.2)

where N is the number of examples, N+ is the number of true positives covered

by rule R and N ′, N ′
+ represent the same descriptions for the candidate rule R′.

s is the number of true positives after adding the condition in R [29] [28]. When

the best condition is found, we add that condition to the rule (Lines 5). We stop

adding conditions to a rule when there are no negative examples left in the grow

set (Line 3).

The pseudocode for pruning a rule is given in Figure 3.3. We search for a condition

whose removal causes the most increase in rule value metric (Lines 9-12) and if

such a condition is found, we remove it (Lines 14-15). Rule value metric is

calculated by
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1 Ruleset PruneRuleSet(RS, Pos, Neg)
2 for each rule r in RS in reverse order
3 DL = DescLen(RS, Pos, Neg)
4 DL’ = DescLen(RS − r, Pos, Neg)
5 if DL’ < DL
6 RS = RS − r
7 return RS

Figure 3.4: Pseudocode for pruning ruleset RS on dataset D

1 Ruleset OptimizeRuleset(RS,D)
2 for each rule r in RS
3 Divide D into Growset G and Pruneset P
4 rreplace = GrowRule(G)
5 PruneRule(rreplace, P )
6 rrevise = GrowRule(G,r)
7 PruneRule(rrevise, P )
8 RSreplace = RS - r + rreplace
9 RSrevise = RS - r + rrevise
10 E = Error(RS)
11 Ereplace = Error(RSreplace)
12 Erevise = Error(RSrevise)
13 rmin = The rule with min(E, Ereplace , Erevise)
14 RS = RS - r + rmin

15 return RS

Figure 3.5: Pseudocode for optimization of rule set RS on dataset D

Rvm(R) =
p− n

p+ n
(3.3)

where p and n are the number of true and false positives in the pruning set. We

stop pruning when there is no more improvement in rule value metric (Line 4).

The pseudocode for pruning a ruleset is given in Figure 3.4. We search for a rule

whose removal decreases the description length of the rule set (Lines 2-4). If such

a rule is found it is removed from the rule set (Lines 5-6).

The pseudocode for optimizing a rule set is given in Figure 3.5. In the optimiza-

tion phase, two alternatives are grown for each rule (Line 2). The replacement
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rule, is grown (Line 4) and pruned (Line 5) starting with an empty rule. The

revision rule, is grown (Line 6) and pruned (Line 7) starting with the current

rule. These two rules and the original rule are compared and the one with the

smallest error on D (Lines 10-13) is selected and replaced with the original rule

(Line 14).
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Chapter 4

Proposed Algorithms

4.1 Motivation

Propositional rule induction algorithms learn a rule set from a training set. An

example rule set containing two rules for famous iris problem is:

If F3 < 1.9 and F4 ≥ 5.1 Then iris-setosa

Else

If F3 < 4.7 Then iris-versicolor

Else iris-virginica

Sequential covering algorithms, learn rules to separate a positive class from a

negative class. In the example above, Ripper first learn rules to separate class

iris-setosa from both classes iris-versicolor and iris-virginica, then learn rules to

separate class iris-versicolor from class iris-virginica.

At each iteration of the covering algorithms, the examples (even false positives)

covered by the rule is removed from the training set. Removing examples during

the training, causes order dependencies between rules [2]. The last learned rule

is dependent on the previous rules and their covered examples.

While testing an example, the sequential covering algorithm considers each rule

in an order. The first rule that covers the example, defines the predicted class of
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Figure 4.1: For two different class orderings, separation of data and learned rule-
sets.

the example. There is an alternative unordered testing technique which checks all

the rules and take a vote over the rules that cover the example. This technique

is not considered in our study.

In the training part, the ordering of classes is selected heuristically and may not

be optimal in terms of error and/or complexity. Common approach that is used

in covering algorithms is, training the classes in the order of their increasing prior

probabilities. In Figure 4.1 we see an example case, where two different orderings

produce two different rule sets with the same error but different complexity, one

composed of four rules with six terms, other composed of three rules with four

terms. Although we prefer the second ordering, the heuristic may lead us to the

first ordering.

After we realize that the heuristic ordering is not the optimal one, we search for

an optimal ordering of classes in the ordering space. Since during training every
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class affects the training set of the next class to be trained, first we focus on

consecutive changes in the ordering space.

4.2 Forward Ordering Search (FOS)

Our first proposed algorithm, namely forward ordering search, views optimizing

the ordering of classes in Ripper as a search in the state space of all possible

orderings. In our case, the search space contains all possible permutations of

classes. Although the search space is finite, it is not possible to train/validate all

orderings and select the best one from K! distinct orderings. Hence, there is a

need to find the best ordering by visiting only a small part of the search space.

Forward search algorithm starts from an initial state and we define an exchange

operator that modify the ordering and allow moving from one state to another.

We select the ordering that the heuristic provides as the initial state. Although

not the optimal ordering, the heuristic ordering generally works well.

At each iteration of the exchange operator, the state evaluation function compares

the goodness value of the next state(s) with the current state and accepts/rejects

the operator depending on whether the goodness value is improved or not. The

state evaluation function trains and validates the Ripper algorithm via 10×10-fold

cross-validation with the ordering(s) corresponding to the next state(s) and favors

the most accurate ordering. We stop the search when no candidate improves the

current best. Another possibility is to stop when the error rate falls below a

certain level, or when a fixed number of iterations are made. The pseudocode of

FOS is given in Figure 4.2.

When there are K > 2 classes, the classes of the dataset are increasingly sorted

according to their prior probabilities and this is initial heuristic permutation, π

(Line 1). neighborPermutations() method (Figure 4.3) is the exchange operator

that generates the next states. Let say we have the ordering C1C2C3 . . . CK−1CK .

The exchange operator creates the following K − 1 candidate orderings: C2C1C3

. . . CK−1CK , C1C3C2 . . . CK−1CK , C1C2C4 . . . CK−1CK , . . ., C1C2C3 . . . CKCK−1
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1 FOS(D, π)
2 πbest = π
3 visited[ ] = {False}
4 improved = True
5 while improved
6 improved = False
7 maxDifference = 0
8 πππ = neighborPermutations(πbest)
9 for i = 1 to K − 1
10 if !visited[πππi]
11 Ebest = Error(Ripper(D, πbest))
12 E = Error(Ripper(D, πππi))
13 difference = Ebest - E
14 visited[πππi] = True
15 if difference > maxDifference
16 maxDifference = difference
17 πbest = πππi

18 improved = True
19 return (πbest, Ebest)

Figure 4.2: Pseudocode of FOS on datasetD withK classes and heuristic ordering
π

1 πππ neighborPermutations(π)
2 for i = 1 to K − 1
3 πππi = π
4 Swap(πππi, i, i+1)
5 return πππ

Figure 4.3: Pseudocode of neighborPermutations(), for an ordering π on a dataset
with K classes

(Line 8). Unvisited states are trained with Ripper and error values are kept (Lines

11-12). If there is an improvement in error, we update the best ordering value

(Line 17). If the algorithm can not find a better ordering, it returns current best

ordering with its error (Line 19).

Figure 4.4 shows an example run of FOS algorithm for a dataset with 3 classes.

The algorithm starts with the heuristic ordering N  �. The average error of the

heuristic ordering is 0.35. The best of the two candidate orderings,  N �, has

an average error of 0.13 and is better than the current best ordering. Therefore
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Figure 4.4: An example run of FOS algorithm for a dataset with K = 3.

1 RR - FOS (D, πH)
2 (πbest, Ebest) = FOS (D, πH)
3 for j = 1 to 10
4 πj = RandomOrdering()
5 (π, E ) = FOS (D, πj)
6 if E < Ebest

7 Ebest = E
8 πbest = π
9 return πbest

Figure 4.5: Pseudocode of RR - FOS on datasetD withK classes and the heuristic
ordering πH

is accepted as the new best ordering. In the second iteration, the new candidate

 � N with an average error of 0.11 is better than the current best ordering, and

is accepted as the new best ordering. In the third iteration, the new candidate

with an average error of 0.29 is not better than the current best ordering and the

algorithm stops.
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FOS is an example of Steepest Ascent Hill Climbing [30] and the problem with

this algorithm is, it may get stuck in a local optima. In order to improve the

performance of the algorithm, we use Random - Restart (Steepest Ascent) Hill

Climbing. We run FOS algorithm with 10 random initial orderings in addition to

the heuristic ordering. The output of Random-Restart FOS is the ordering with

the best error rate among 11 distinct orderings.

The pseudocode of Random-Restart Fos is given in Figure 4.5. Since, we gener-

ate ten random orderings, the “for loop” is up to ten (Line 4). For each random

ordering we run FOS algorithm (Line 5) and compare the error of the ordering

with current best error (Line 6). We update best error if we find a better order-

ing (Line 8). After completing all random orderings, the algorithm returns the

ordering with minimum error (Line 9). Not surprisingly, the results of RR-FOS

are more accurate than FOS.

4.3 Pairwise Error Approximation (PEA)

4.3.1 Theory

Our second proposed algorithm, pairwise error approximation, assumes that the

expected error of an ordering, that is, the expected error of the Ripper algorithm

trained with that ordering, is the sum of K(K − 1)/2 pairwise expected errors of

classes.

Formally, the expected error of the Ripper algorithm with ordering π is defined

as

Êπ =
K−1∑
j=1

K∑
k>j

eπ(j)π(k) (4.1)

where π(j) represents j’ th class in permutation π and eπ(j)π(k) represents the

error contribution of separation of class π(j) from class π(k). For example, the
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Figure 4.6: The expected error of the ordering 123 and its components (eij’s) for
a dataset with K = 3.

expected error of the ordering π = 123 (three class problem) is defined as

Ê123 = e12 + e13 + e23 (4.2)

eπ(j)π(k) contains two types of instances (See Figure 4.6):

• False positives, instances of class π(k) covered by the rules of class π(j).

• False negatives, instances of class π(j) covered by the rules of class π(k).

Since we can not estimate eπ(j)π(k)’ s from a single ordering, we run Ripper al-

gorithm N times with N random orderings πi and get the test errors Eπi
. The

average estimation error over N runs is defined as

Etotal =
1

N

N∑
i=1

(Eπi
− Êπi

)2 (4.3)
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For example, for a dataset with three classes, if we train Ripper with orderings

123, 132 and 213, the average estimation error is

Etotal = [(e12+e13+e23−E123)
2+(e13+e12+e32−E132)

2+(e21+e23+e13−E213)
2]/3

(4.4)

In order to minimize the average estimation error, we take the partial derivatives

of Etotal with respect to all possible pairs eπ(j)π(k)’s and solve the following system

of linear equations

∀j,k
∂Etotal

∂ejk
= 0 (4.5)

with ejk’s as unknown variables.

System of linear equations is in Ax = B form. If we have the error rates of all

K! orderings, the elements of the coefficient matrix A will be

∀i, j, k, l s.t 0 < i 6= j 6= k 6= l ≤ K, K > 3,

• A[π(i), π(j)][π(i), π(j)] = K!/2.

• A[π(i), π(j)][π(k), π(l)] = K!/4

• A[π(i), π(j)][π(k), π(j)] = K!/3

• A[π(i), π(j)][π(k), π(i)] = K!/6

• A[π(i), π(j)][π(j), π(k)] = K!/6

• A[π(i), π(j)][π(i), π(k)] = K!/3

For example, for a dataset with K = 4 classes, there are 4! orderings and the

coefficient matrix A is:
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A =
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For datasets with more than 6 classes, it is not feasible to run all permutations to

get the coefficient matrix, so we work with a limited number of random orderings

N and construct matrix A with these orderings. The solution set of the linear

equations B keeps, for each pair, the sum of the test errors of the orderings that

the pairs occur.

After solving the linear equation, we have the error contributions of all class pairs

eπi(j)πi(k) and we can estimate the error of any ordering πi using Equation 4.1

without actually running Ripper with that ordering πi. We search all possible

class orderings to get the optimal ordering exhaustively:

πoptimal = argmin
πi

Êπi
(4.6)

4.3.2 Algorithm

The pseudocode of PEA is given in Figure 4.7. The algorithm tries to estimate

the expected error contribution of each pair of classes. There are K ∗ (K − 1)

pairs for a dataset with K classes. It initially generates N random orderings
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1 PEA(D)
2 Ebest = ∞
3 for i = 1 to N
4 πππi = RandomOrdering()
5 EEEπi

= Error(Ripper(D, πππi))
6 A = constructCoefficientMatrix(π)
7 B = constructSolutionSet(π, E)
8 e = A−1 B
9 for i = 1 to K!
10 E = 0
11 for j = 1 to N
12 for k = j + 1 to N
13 E += eπi(j)πi(k)

14 if E < Ebest

15 Ebest = E
16 πbest = πππi

17 return πbest

Figure 4.7: Pseudocode of PEA for dataset D with K classes.

1 constructCoefficientMatrix(πππ)
2 for i = 1 to N
3 for j = 1 to K − 1
4 for k = j + 1 to K
5 for l = 1 to K − 1
6 for m = l + 1 to K
7 A[πi(j)πi(k),πi(l)πi(m)] + +
8 return A

Figure 4.8: Pseudocode of constructCoefficientMatrix for a dataset withK classes
where πππ holds N orderings.

(Line 4). Then Ripper is trained with these N orderings via 10 × 10-fold cross-

validation (Line 5). Then, we count the number of occurrences of the pairs within

N orderings. This gives us the coefficient matrix (Line 6). For every pair we sum

the test errors of the orderings they occur and this result constitutes the solution

set of the linear equations (Line 7). We solve the linear equations and find the

estimated errors of all pairs (Line 8). The optimal ordering with minimum total

estimation error is returned by the algorithm (Lines 9-16).

The method constructCoefficientMatrix (See Figure 4.8) has an outer loop with
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1 constructSolutionSet(πππ, EEE)
2 for n = 1 to N
3 for i = 1 to K − 1
4 for j = i+ 1 to K
5 Bπn(i)πn(j) += En

6 return B

Figure 4.9: Pseudocode of constructSolutionSet for a dataset with K classes. πππ
holds N orderings and EEE holds validation errors of those orderings.

N iterations to consider N orderings in πππ (Line 2). It counts how many times

the class at index j comes before the class at index k, at the same time the class

at index l comes before the class at index m in N orderings (Lines 3-7).

The pseudocode in Figure 4.9 shows the construction of the solution set, B.

Method searches N orderings for every pair π(i), π(j). The error of a pair is the

sum of the validation errors of the orderings in which this pair occurs (Line 5).
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Chapter 5

Experiments

5.1 Setup

We work with 22 different datasets from UCI repository [31]: 10 of them have

three, 3 of them have four, 1 of them has five, 1 of them has six, 3 of them have

seven and 10 of them have ten classes. The datasets with K ≤ 6 classes are

used only for testing the accuracy of the heuristic ordering (See Table 5.2). The

datasets we use in our study are the datasets with K > 6 (See Table 5.1).

The error rates of CN2 and Ripper are very close to each other. Since heuristic

ordering works better in Ripper (See Table 5.2), we decide to continue on Ripper.

We compare the performance of our proposed algorithms FOS, RR-FOS and PEA

with original Ripper in terms of generalization error, number of rules and number

of conditions in the rule sets they generate. We use 10×10-fold cross-validation

to generate training and test sets and paired t test [32] to compare algorithms

with a confidence level of α = 0.05. For PEA algorithm, we applied Friedman

and post-hoc Nemenyi test to analyze the effect of N .

5.2 Motivation

We want to analyze the accuracy of the heuristic ordering - the ordering according

to increasing prior probabilities of classes - that the rule induction algorithms use.
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Table 5.1: Description of the datasets. d: Number of attributes, K: Number of
classes, n: Sample size

Dataset d K n
balance 4 3 625
car 6 4 1728
cmc 9 3 1473
dermatology 34 6 366
hayesroth 4 3 160
iris 4 3 150
led7 7 10 3200
leukemia1 5327 3 72
leukemia2 11225 3 72
mfeatfac 216 10 2000
mfeatfou 76 10 2000
mfeatmor 6 10 2000
mfeatpix 240 10 2000
mfeatzer 47 10 2000
nursery 8 5 12960
ocr 256 10 600
optdigits 64 10 3823
pendigits 16 10 7494
segment 19 7 2310
shuttle 9 7 58000
splice 60 3 3175
srbct 2308 4 83
tae 5 3 151
vehicle 18 4 846
wave 20 3 5000
wine 13 3 178
winequality 11 7 6497
yeast 8 10 1484

For that purpose, we run Ripper and CN2 with all possible orderings of classes

for datasets with K ≤ 6. We use 100×10-fold cross-validation to generate train-

ing and test sets and compare heuristic ordering with other orderings. Table 5.2

shows the ranking of the heuristic ordering for those datasets. As seen in Table

5.2, the heuristic ordering is not optimal in general. Although the heuristic or-

dering performs the best among 3 datasets, when the number of classes increases

the performance of the heuristic ordering significantly diminishes. For example,
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Table 5.2: The rank of the heuristic ordering in K! orderings on CN2 and Ripper
for datasets K ≤ 6.

Dataset Ripper CN2
balance 4/6 3/6
cmc 3/6 3/6

hayesroth 1/6 1/6
iris 3/6 1/6

leukemia1 1/6 1/6
leukemia2 1/6 5/6
splice 2/6 4/6
tae 5/6 6/6
wave 5/6 6/6
wine 2/6 2/6
car 17/24 19/24
srbct 4/24 1/24
vehicle 24/24 24/24
nursery 20/120 109/120

dermatology 330/720 505/720

on Vehicle dataset the heuristic ordering gets the worst performance among all

possible orderings. Similarly, on Dermatology dataset nearly the half of the order-

ings are better than the heuristic ordering. These results support our claim that

the heuristic ordering is not the best and there is much room for improvement.

5.3 FOS and RR - FOS Results

Table 5.3 shows average and standard deviation of the error rates of rule sets

produced by Ripper, FOS, and RR - FOS. Entries in bold face show the superiority

of an algorithm on both of the algorithms and the entries in italic face show the

superiority of an algorithm on one of algorithms. We see from the results that,

although heuristic ordering works well in general, it is not the optimal and FOS

helps us to find significantly better orderings than the heuristic ordering in terms

of error rate. FOS is significantly better than Ripper on twelve datasets out of

thirteen datasets. RR - FOS is significantly better than Ripper on all datasets and

also significantly better then FOS on seven datasets (led7, mfeatfou, mfeatmor,
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Table 5.3: Average and standard deviation of error rates of the rule sets produced
by Ripper, FOS, and RR - FOS

Dataset Ripper FOS RR - FOS
led7 31.01 ± 2.63 29.58 ± 2.75 28.74 ± 2.68
mfeatfac 11.78 ± 2.41 11.20 ± 2.07 11.20 ± 2.07
mfeatfou 30.88 ± 3.04 29.49 ± 3.29 27.09 ± 3.17
mfeatmor 31.82 ± 2.95 30.48 ± 2.53 27.93 ± 2.55
mfeatpix 12.88 ± 2.60 11.59 ± 2.46 11.14 ± 2.00
mfeatzer 32.13 ± 2.78 31.49 ± 2.78 31.26 ± 2.86
ocr 26.56 ± 5.73 25.25 ± 5.78 22.91 ± 4.83
optdigits 10.95 ± 1.74 9.84 ± 1.61 8.75 ± 1.67
pendigits 5.31 ± 0.89 5.15 ± 0.78 4.53 ± 0.86
segment 6.71 ± 1.85 4.39 ± 1.48 4.28 ± 1.41
shuttle 0.03 ± 0.02 0.01 ± 0.01 0.01 ± 0.01
winequality 46.51 ± 1.71 46.22 ± 1.74 46.18 ± 1.53
yeast 43.5 ± 4.12 42.54 ± 3.75 42.54 ± 3.75

mfeatpix, ocr, optdigits, pendigits). These indicate that the orderings produced

by RR - FOS construct more accurate rule sets than the orderings produced by

FOS.

Table 5.4 shows average and standard deviation of rule counts of the rule sets

produced by Ripper, FOS, and RR - FOS. The second table shows pairwise

comparison results on the rule counts by paired-t test. These results indicate

that the produced ordering by RR - FOS generates rule sets those have better

complexities than FOS and Ripper’ s heuristic ordering. We also see that the

heuristic ordering generates rule sets having worse complexities than the ordering

of FOS.

Table 5.5 shows average and standard deviation of condition counts of the rule

sets produced by Ripper, FOS, and RR - FOS. The second table shows pairwise

comparison results on the condition counts by paired-t test. These results indicate

that although we are trying to optimize the error rates of the rule sets, optimized

rule sets have also less or equal complexity than the unoptimized rule sets. We

also see that the orderings generated via RR-FOS produce rule sets with better

complexities than FOS, besides their accuracy.
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Table 5.4: The first table gives the average and standard deviation of rule counts
of the rule sets produced by Ripper, FOS, and RR - FOS. The second table shows
pairwise test results on the rule counts.

Dataset Ripper FOS RR - FOS
led7 15.3 ± 1.5 15.8 ± 1.2 14.4 ± 1.6
mfeatfac 21.7 ± 1.8 21.8 ± 1.5 21.8 ± 1.5
mfeatfou 18.9 ± 1.9 19.1 ± 2.3 18.7 ± 2.0
mfeatmor 17 ± 1.7 17.3 ± 1.8 15.3 ± 1.9
mfeatpix 21.3 ± 1.9 20.6 ± 2.2 22.4 ± 2.5
mfeatzer 21.7 ± 1.6 21.1 ± 1.9 21.7 ± 1.9
ocr 13.5 ± 1.9 14.1 ± 1.3 14.4 ± 1.43
optdigits 39.9 ± 2.1 38.3 ± 2.1 36.2 ± 3.1
pendigits 53 ± 2.3 54 ± 1.8 46.1 ± 2.1
segment 16.9 ± 1.2 14.9 ± 1.3 13.2 ± 0.9
shuttle 11.3 ± 0.6 8.9 ± 0.5 8.1 ± 0.3
winequality 8.3 ± 1.4 8.5 ± 1.7 8.9 ± 1.5
yeast 11.4 ± 1.5 10.7 ± 0.9 10.7 ± 0.9

Ripper FOS RR - FOS
Ripper - 0 0
FOS 2 - 0
RR - FOS 5 6 -

Table 5.6 shows the number of visited orderings of FOS and RR-FOS. We see

that the complexity of RR-FOS is 10 times more than FOS on 4 datasets (led7,

mfeatfac, mfeatfou, winequality). This indicates that although RR - FOS is more

accurate than FOS, the number of orderings (states) visited by RR - FOS is much

more than the orderings visited by FOS. The reason of this result is that RR -

FOS runs FOS for 10 times with different initial orderings. On the other hand, in

the remaining datasets since FOS has a deficiency of sticking into a local optima

at the very first steps of the algorithm, the number of visited states might be very

small at some iterations of RR-FOS.
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Table 5.5: The first table gives the average and standard deviation of condition
counts of the rule sets produced by Ripper, FOS and RR - FOS. The second table
shows pairwise test results on the condition counts.

Dataset Ripper FOS RR - FOS
led7 22.7 ± 6.1 14.6 ± 6.1 12.4 ± 8.5
mfeatfac 41.8 ± 3.7 32.4 ± 3.8 32.4 ± 3.8
mfeatfou 29.8 ± 5.7 31.4 ± 7.5 31.5 ± 4.4
mfeatmor 35.1 ± 4.6 36.9 ± 3.9 35.4 ± 5.6
mfeatpix 137.2 ± 6.0 127 ± 6.4 120.8 ± 7.7
mfeatzer 179.5 ± 4.9 182.3 ± 4.9 162.1 ± 7.7
ocr 25.2 ± 4.9 22.7 ± 4.4 25.3 ± 4.6
optdigits 58.4 ± 5.4 57.4 ± 6.2 58.7 ± 9.6
pendigits 36.8 ± 8.6 38 ± 4.1 29.4 ± 8.5
segment 68.1 ± 5.2 67 ± 3.34 65.9 ± 1.7
shuttle 48 ± 1.7 46.4 ± 2.3 50.8 ± 0.9
winequality 48 ± 6.2 50.7 ± 6.9 47.2 ± 5.5
yeast 57.7 ± 4.1 60.9 ± 3.7 60.9 ± 3.7

Ripper FOS RR - FOS
Ripper - 1 3
FOS 3 - 0
RR - FOS 3 4 -

5.4 PEA Results

Table 5.7 shows average and standard deviation of error rates of the rule sets

produced by Ripper and PEA with N = 10, 20, 30, . . . , 100. We see that Ripper

using orderings produced by PEA constructs more accurate rule sets on 7 datasets

shuttle, segment, ocr, optdigits, pendigits, mfeatmor, led7 at least for 9 different

N values. We also see that PEA can not produce significantly better orderings

than the heuristic ordering on 3 datasets (yeast, mfeatzer, mfeatfac). We can

say that after exceeding 30 random orderings, the performance of PEA generally

increases on 6 datasets (segment, winequality, mfeatpix, mfeatfac, mfeatfou,led7 ).

Additionally, PEA orderings generate more accurate rule sets than heuristic or-

dering on 8 datasets with N = 100. These results show that our pairwise error

estimation works well in general.
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Table 5.6: Number of distinct orderings visited by FOS and RR - FOS.
Dataset FOS RR - FOS
led7 18 368
mfeatfac 33 332
mfeatfou 25 484
mfeatmor 340 698
mfeatpix 260 624
mfeatzer 232 536
ocr 80 457
optdigits 216 670
pendigits 58 345
segment 30 242
shuttle 59 467
winequality 12 228
yeast 166 474

Figure 5.1 shows Nemenyi’ s post hoc test results for error rates and it shows us

the effect of using different number of random orderings on accuracy. The test

finds that the results are significantly equal but N = 80 is the most accurate

one than the other N values on all datasets according to the rankings and it also

indicates heuristic ordering of Ripper is the significantly least accurate one.

The overall performance of PEA is worse on datasets yeast, mfeatzer, mfeatfac

and winequality. The unbalanced distribution of the samples through the classes

might be the reason on winequality (The distribution of sample sizes: nc1 = 30,

nc2 = 216, nc3 = 2138, nc4 = 2836, nc5 = 1079, nc6 =193, nc7 = 5) and yeast (The

distribution of sample sizes: nc1 = 244, nc2 = 429, nc3 = 463, nc4 = 44, nc5 =

35, nc6 = 51, nc7 = 163, nc8 = 30, nc9 = 20, nc10 = 5). These four datasets have

higher estimation error Etotal, as expected.

Table 5.8 shows average and standard deviation of rule counts of the rule sets

produced by Ripper and PEA with N = 10, 20, 30, . . . , 100. We see that, the

number of rules in the constructed rule sets via PEA orderings are significantly

less than the constructed rule sets via heuristic ordering on 4 datasets (shuttle,

segment, optdigits, pendigits). On these datasets, PEA produces not only signifi-

cantly accurate but also significantly less complex rule sets.
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Figure 5.1: Post-hoc Nemenyi test results of PEA (error rates).

Figure 5.2 shows Nemenyi’ s post hoc test results for rule counts. Although, the

test shows us the results are significantly equal, rankings show that exceedingN =

30 produce rule sets those are less complex in general. This result also indicates

that using more than 30 random orderings, not only increases the accuracy but

also reduces the complexity of the rule set constructed by the produced ordering

of PEA.

Table 5.9 shows average and standard deviation of condition counts of the rule

sets produced by Ripper and PEA with N = 10, 20, 30, . . . , 100. We see that

the rule sets, constructed via PEA orderings, have less number of conditions on

the same 4 datasets (shuttle, segment, optdigits, pendigits) than the rule sets

generated via heuristic ordering. Again on those datasets PEA generates better

models both in terms of generalization error and complexity.

Figure 5.3 shows Nemenyi’ s post hoc test results for condition counts. There

two groups that are significantly equal. It is difficult to make a generalization

about the effect of the number of the random orderings in condition count results

but ranking shows that Ripper and N values 90, 80 are generating rule sets with

significantly less conditions.

Table 5.10 shows the average estimation error (Etotal) of PEA with N = 10, 20, 30,
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Figure 5.2: Post-hoc Nemenyi test results of PEA (rule counts).
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Figure 5.3: Post-hoc Nemenyi test results of PEA (condition counts).

. . . , 100. We see that the orderings produced by PEA has an average estimation

error of less than 2 on all datasets except winequality and yeast. Additionally,

almost all datasets with N < 50, we achieve an average estimation error of less

than 0.0005.

These results are on the same random training orderings in order to get meaningful

results, we decide to calculate the average estimation errors (Etotal) using 10

different random test orderings.

Table 5.11 shows the average estimation errors Etotal obtained on these 10 test
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orderings. As expected, the average estimation errors usually decrease as the

number of the random orderings (N) increases. Since the average estimation

errors are quite small, these results promote our assumption that the error of

an ordering is approximately the sum of pairwise errors of classes. On the other

hand, the datasets mfeatzer, winequality and yeast have higher average estimation

errors and the accuracy of their constructed rule sets are lower than the other

datasets can be seen in Table 5.7.

One might wonder if every pair eπ(j)π(k) is guaranteed to appear in a set of used

random ordering in PEA. Table 5.12 shows, the average and standard deviation of

occurrences of each pair in N random orderings. We see that, each pair appears in

N random orderings approximately N / 2 times and also the standard deviations

show that the pairs have very low probability, not to be included in N random

orderings.

In this thesis, we do not limit the error estimations of the pairs eπ(j)π(k) can take.

Then by, we observe that some datasets have negative eπ(j)π(k) values and wonder

about if the negativity affects the error estimation of the orderings. Table 5.13

shows the percentages of the negative eπ(j)π(k)’s for each dataset. Although the

dataset shuttle has a very small average estimation error result in PEA, nearly

half of the eπ(j)π(k)’s are negative. On the other hand the datasets yeast, mfeatzer,

mfeatfac and winequality which we can not observe any improvement via PEA,

have high percentages of negative eπ(j)π(k)’s. This consequence shows that there

is no direct connection between performance and negativity of the eπ(j)π(k)’s but

we can say that preventing the negativity might increase the performance.
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Table 5.7: Average and standard deviation of error rates of the rule sets produced
by Ripper, PEA with N = 10, 20, 30, . . . , 100
D.set Shuttle Segment Winequality Ocr Optdigits
Rip. 0.04 ± 0.02 6.71 ± 1.85 46.52 ± 1.71 26.57 ± 5.73 10.95 ± 1.74
10 0.02 ±0.01 5.38 ± 1.53 63.40 ± 2.74 24.70 ± 6.33 10.45 ± 1.51
20 0.04 ±0.02 6.50 ± 1.60 65.46 ± 2.56 26.15 ± 6.09 8.49 ± 1.37
30 0.02 ±0.01 4.65 ± 1.51 46.74 ± 1.54 22.95 ± 5.68 8.73 ± 1.52
40 0.02 ± 0.01 4.48 ± 1.38 46.53 ± 1.52 21.82 ± 6.07 9.21 ± 1.61
50 0.02 ±0.01 5.07 ± 1.42 53.41 ± 1.93 24.90 ± 5.02 8.86 ± 1.33
60 0.02 ±0.01 5.25 ± 1.61 46.47 ± 1.60 25.32 ± 5.15 8.34 ± 1.55
70 0.02 ±0.01 4.68 ± 1.60 46.27 ± 1.90 23.58 ± 5.46 8.76 ± 1.68
80 0.02 ±0.01 4.48 ± 1.27 46.23 ± 1.74 23.93 ± 4.62 9.25 ± 1.57
90 0.02 ± 0.01 4.49 ± 1.42 46.51 ± 1.57 24.62 ± 5.73 9.03 ± 1.46
100 0.03 ± 0.01 4.48 ± 1.27 46.18 ± 1.71 22.57 ± 5.00 8.82 ± 1.42

D.set Pendigits Yeast Mfeatzer Mfeatmor
Rip. 5.32 ± 0.89 43.50 ± 4.12 32.14 ± 2.78 31.82 ± 2.95
10 4.69 ± 0.72 58.66 ± 4.90 36.94 ± 2.98 29.50 ± 2.71
20 4.62 ± 0.69 56.07 ± 4.94 31.96 ± 2.58 30.32 ± 3.11
30 4.64 ± 0.79 51.47 ± 5.04 36.29 ± 3.07 29.45 ± 3.06
40 4.92 ± 0.79 57.30 ± 4.91 41.20 ± 3.00 29.44 ± 3.33
50 4.79 ± 0.74 55.86 ± 4.61 32.26 ± 3.07 30.54 ± 3.12
60 4.72 ± 0.78 50.52 ± 4.60 36.92 ± 2.98 31.14 ± 3.08
70 4.77 ± 0.80 42.95 ± 3.81 37.54 ± 2.96 29.84 ± 3.34
80 4.76 ± 0.88 43.70 ± 3.99 36.58 ± 2.92 28.47 ± 2.87
90 4.68 ± 0.73 57.54 ± 4.37 38.69 ± 3.32 30.07 ± 3.11
100 4.96 ± 0.84 55.17 ± 4.66 38.38 ± 3.09 32.39 ± 2.71

D.set Mfeatpix Mfeatfac Mfeatfou Led7
Rip. 12.89 ± 2.60 11.79 ± 2.41 30.89 ± 3.04 31.01 ± 2.63
10 14.53 ± 2.33 12.83 ± 2.15 29.81 ± 3.39 30.40 ± 2.98
20 11.94 ± 2.32 11.68 ± 2.15 30.97 ± 3.13 29.78 ± 2.68
30 12.83 ± 2.19 12.32 ± 2.27 30.90 ± 3.50 30.14 ± 2.80
40 11.97 ± 2.15 11.89 ± 2.52 28.89 ± 3.22 29.92 ± 2.98
50 12.76 ± 2.45 13.63 ± 2.62 29.55 ± 3.86 29.86 ± 2.67
60 12.05 ± 2.30 12.30 ± 2.47 31.92 ± 3.57 29.48 ± 2.87
70 12.10 ± 2.54 12.43 ± 2.25 29.29 ± 2.99 30.16 ± 2.51
80 12.69 ± 2.48 12.35 ± 2.47 29.36 ± 2.95 29.66 ± 2.92
90 11.66 ± 2.21 11.82 ± 2.30 29.75 ± 3.27 29.56 ± 2.78
100 11.97 ± 2.25 11.53 ± 2.54 28.48 ± 3.51 31.12 ± 2.71
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Table 5.8: Average and standard deviation of rule counts of the rule sets produced
by Ripper, PEA with N = 10, 20, 30, . . . , 100

D.set shuttle segment winequality ocr optdigits
Rip. 11.3 ± 0.7 16.9 ± 1.3 8.3 ± 1.4 13.5 ± 1.9 39.9 ± 2.1
10 8.6 ± 0.7 15.7 ± 1.2 9.9 ± 1.6 15.1 ± 1.4 36.7 ± 1.6
20 9.5 ± 1.1 15.0 ± 1.4 9.9 ± 1.7 14.8 ± 2.2 35.4 ± 2.2
30 8.5 ± 0.5 13.6 ± 1.3 7.9 ± 1.7 15.2 ± 1.5 38.8 ± 2.9
40 8.6 ± 0.5 13.2 ± 1.5 9.3 ± 2.1 15.4 ± 1.3 36.6 ± 3.0
50 8.8 ± 0.6 13.4 ± 1.5 8.6 ± 1.9 13.2 ± 2.0 35.5 ± 3.3
60 9.0 ± 0.8 12.0 ± 1.1 7.9 ± 2.1 13.3 ± 1.7 37.1 ± 3.1
70 9.0 ± 0.7 13.2 ± 1.9 9.7 ± 1.7 13.9 ± 1.3 35.8 ± 3.5
80 8.8 ± 0.8 14.6 ± 1.0 8.5 ± 1.7 14.1 ± 1.5 36.4 ± 2.7
90 8.6 ± 0.5 13.3 ± 1.3 7.5 ± 2.0 14.7 ± 1.3 36.4 ± 3.3
100 9.7 ± 0.9 14.6 ± 1.0 8.6 ± 2.0 14.6 ± 1.7 36.2 ± 2.3

D.set pendigits yeast mfeatzer mfeatmor
Rip. 53.0 ± 2.4 11.4 ± 1.5 21.7 ± 1.6 17.0 ± 1.7
10 48.8 ± 2.5 11.6 ± 1.6 19.1 ± 1.3 16.9 ± 2.4
20 48.1 ± 3.0 10.5 ± 1.4 21.4 ± 2.1 17.5 ± 1.6
30 48.7 ± 2.8 10.5 ± 1.1 20.2 ± 2.4 16.6 ± 2.3
40 48.8 ± 2.3 10.5 ± 1.1 18.8 ± 1.5 15.3 ± 2.4
50 48.0 ± 1.7 11.5 ± 2.3 22.2 ± 1.5 16.2 ± 2.0
60 46.0 ± 2.2 10.6 ± 1.7 19.6 ± 2.4 16.7 ± 1.4
70 50.5 ± 2.2 10.6 ± 0.8 18.7 ± 3.0 16.7 ± 1.9
80 47.8 ± 2.2 10.5 ± 1.1 20.5 ± 1.4 15.8 ± 1.8
90 49.5 ± 2.2 10.8 ± 1.9 18.0 ± 2.8 16.5 ± 0.9
100 50.7 ± 2.3 11.5 ± 1.7 18.3 ± 2.3 16.5 ± 1.7

D.set mfeatpix mfeatfac mfeatfou led7
Rip. 21.3 ± 1.9 21.7 ± 1.9 18.9 ± 2.0 15.3 ± 1.6
10 23.3 ± 2.3 22.2 ± 2.1 20.0 ± 2.7 15.9 ± 1.2
20 22.6 ± 1.6 20.1 ± 1.9 18.8 ± 2.5 15.1 ± 1.3
30 22.8 ± 1.4 21.7 ± 1.7 18.1 ± 1.7 16.0 ± 1.3
40 22.3 ± 1.6 20.7 ± 1.5 19.2 ± 1.9 13.8 ± 1.3
50 21.4 ± 1.6 23.7 ± 1.3 18.5 ± 1.4 16.6 ± 0.7
60 22.7 ± 2.3 21.6 ± 1.6 18.7 ± 1.8 14.1 ± 1.5
70 21.5 ± 1.4 22.0 ± 2.4 17.7 ± 1.7 15.1 ± 1.4
80 22.6 ± 1.9 21.8 ± 1.3 17.4 ± 1.8 15.6 ± 1.5
90 20.2 ± 0.6 21.9 ± 2.1 19.5 ± 1.3 15.4 ± 1.4
100 19.4 ± 2.3 21.8 ± 1.7 19.3 ± 2.2 14.6 ± 1.5
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Table 5.9: Average and standard deviation of condition counts of the rule sets
produced by Ripper, PEA with N = 10, 20, 30, . . . , 100

D.set shuttle segment winequality ocr optdigits
Rip. 22.7 ± 1.7 41.8 ± 5.2 29.8 ± 6.2 35.1 ± 4.9 137.2 ± 5.4
10 14.6 ± 1.9 34.5 ± 3.3 33.0 ± 6.4 38.3 ± 3.8 131.6 ± 8.6
20 19.3 ± 3.4 41.4 ± 4.0 34.5 ± 7.7 38.4 ± 5.0 113.9 ± 9.0
30 14.9 ± 1.8 29.9 ± 3.3 26.0 ± 7.4 35.4 ± 3.8 123.3 ± 9.8
40 15.0 ± 2.0 26.7 ± 4.2 31.9 ± 8.6 34.5 ± 2.5 118.4 ± 9.4
50 12.2 ± 0.9 28.7 ± 4.0 28.5 ± 7.3 33.2 ± 5.2 114.1 ± 10.5
60 16.1 ± 3.1 27.7 ± 2.7 28.5 ± 9.5 33.0 ± 3.8 114.1 ± 9.1
70 16.1 ± 2.3 26.9 ± 4.3 34.6 ± 7.7 35.8 ± 3.6 114.2 ± 12.7
80 15.1 ± 2.9 28.2 ± 3.2 31.4 ± 7.0 33.2 ± 4.8 119.0 ± 8.0
90 13.6 ± 1.6 25.5 ± 3.3 26.5 ± 8.5 35.9 ± 3.2 114.2 ± 9.1
100 18.2 ± 3.1 28.2 ± 3.2 31.0 ± 8.9 36.8 ± 2.5 115.1 ± 7.3

D.set pendigits yeast mfeatzer mfeatmor
Rip. 179.5 ± 8.7 25.2 ± 4.1 58.4 ± 4.9 36.8 ± 4.7
10 169.4 ± 9.8 25.8 ± 5.9 51.4 ± 5.1 35.0 ± 6.0
20 166.2 ± 11.4 25.7 ± 5.6 58.3 ± 5.1 36.1 ± 3.1
30 172.9 ± 12.6 27.3 ± 3.4 50.7 ± 6.3 33.4 ± 6.6
40 163.7 ± 8.7 25.0 ± 3.5 51.9 ± 6.5 28.5 ± 4.8
50 170.0 ± 9.7 29.2 ± 7.9 59.1 ± 4.7 31.2 ± 5.2
60 166.9 ± 5.4 27.5 ± 5.2 54.1 ± 6.6 36.4 ± 4.6
70 176.8 ± 7.9 25.0 ± 3.0 53.3 ± 9.6 34.3 ± 5.1
80 163.5 ± 8.1 24.4 ± 3.8 55.0 ± 4.9 29.2 ± 3.2
90 163.1 ± 10.3 23.7 ± 4.1 50.4 ± 8.0 32.9 ± 2.8
100 171.3 ± 4.7 28.0 ± 6.5 47.5 ± 6.7 32.8 ± 4.1

D.set mfeatpix mfeatfac mfeatfou led7
Rip. 68.1 ± 6.1 48.0 ± 3.8 48.0 ± 5.8 57.7 ± 6.2
10 79.0 ± 10.0 52.3 ± 4.8 53.1 ± 7.6 60.0 ± 6.7
20 70.8 ± 5.2 42.4 ± 4.4 47.4 ± 8.3 55.3 ± 6.9
30 73.0 ± 4.7 49.3 ± 4.4 49.1 ± 4.9 64.1 ± 5.9
40 70.2 ± 4.6 47.5 ± 3.5 50.8 ± 7.0 49.5 ± 6.9
50 73.4 ± 3.5 58.0 ± 3.8 46.7 ± 2.5 69.1 ± 3.1
60 73.3 ± 8.8 47.9 ± 4.4 50.3 ± 4.7 51.1 ± 6.5
70 69.3 ± 3.7 49.4 ± 4.6 44.3 ± 5.5 58.7 ± 6.5
80 71.6 ± 4.6 47.6 ± 3.4 43.7 ± 5.4 59.8 ± 4.7
90 62.5 ± 3.8 48.2 ± 2.9 53.2 ± 4.7 60.0 ± 6.8
100 59.6 ± 6.7 46.0 ± 4.7 47.6 ± 6.5 57.0 ± 7.7
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Table 5.10: The average estimation error Etotal of PEA with N = 10, 20, 30, . . . ,
100.
N led7 mfeatfac mfeatfou mfeatmor mfeatpix mfeatzer ocr
10 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0
50 0.021 0.003 0.146 0.194 0.003 0.316 0.046
60 0.049 0.053 0.181 0.954 0.046 0.531 0.332
70 0.115 0.044 0.484 0.433 0.060 1.264 0.253
80 0.206 0.041 0.563 0.801 0.093 1.734 0.633
90 0.137 0.061 0.683 1.718 0.092 1.528 0.768
100 0.190 0.061 0.602 1.471 0.100 1.895 0.492

N optdigits pendigits segment shuttle winequality yeast
10 0 0 0 0 0 0
20 0 0 0 0 0 0
30 0 0 0.017 0.107 10.146 0
40 0 0 0.060 0.102 11.969 0
50 0.007 0.001 0.025 0 20.410 0.149
60 0.012 0.003 0.037 0.007 17.686 2.684
70 0.023 0.007 0.059 0 10.661 3.865
80 0.046 0.008 0.047 0.055 22.761 5.292
90 0.032 0.010 0.066 0.048 21.793 6.197
100 0.037 0.008 0.069 0.240 21.410 7.151
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Table 5.11: The average estimation error Etotal calculated over 10 test orderings.
N led7 mfeatfac mfeatfou mfeatmor mfeatpix
10 2.65 ± 1.79 1.87 ± 1.50 3.72 ± 3.96 10.56 ± 13.75 3.13 ± 2.77
20 0.35 ± 0.60 0.37 ± 0.72 2.91 ± 2.21 6.54 ± 8.92 0.21 ± 0.22
30 1.34 ± 2.08 0.11 ± 0.12 7.79 ± 10.60 1.96 ± 3.24 0.14 ± 0.13
40 1.04 ± 1.50 0.18 ± 0.25 3.88 ± 6.14 3.40 ± 3.39 0.30 ± 0.46
50 0.93 ± 1.27 0.76 ± 0.78 1.97 ± 2.44 19.13 ± 24.80 0.05 ± 0.05
60 0.19 ± 0.25 0.06 ± 0.07 0.87 ± 0.76 4.70 ± 6.00 0.14 ± 0.13
70 0.11 ± 0.10 0.09 ± 0.13 0.45 ± 0.56 0.78 ± 1.24 0.09 ± 0.13
80 0.13 ± 0.22 0.04 ± 0.05 0.38 ± 0.35 2.17 ± 2.63 0.09 ± 0.09
90 0.06 ± 0.07 0.04 ± 0.07 0.13 ± 0.20 0.88 ± 0.98 0.02 ± 0.01
100 0.04 ± 0.04 0.03 ± 0.03 0.19 ± 0.15 0.23 ± 0.14 0.02 ± 0.02

N mfeatzer ocr optdigits pendigits
10 18.33 ± 26.3111.58 ± 10.47 1.08 ± 1.80 0.133 ± 0.14
20 7.22 ± 13.33 6.21 ± 4.81 0.07 ± 0.13 0.087 ± 0.10
30 2.50 ± 2.09 2.90 ± 3.43 0.08 ± 0.08 0.040 ± 0.06
40 6.54 ± 9.66 0.75 ± 1.30 0.12 ± 0.25 0.032 ± 0.02
50 13.35 ± 20.38 1.27 ± 1.45 0.11 ± 0.14 0.050 ± 0.05
60 3.14 ± 2.98 0.32 ± 0.25 0.07 ± 0.07 0.015 ± 0.02
70 1.97 ± 2.91 0.33 ± 0.29 0.03 ± 0.02 0.006 ± 0.01
80 2.54 ± 3.12 0.17 ± 0.15 0.02 ± 0.02 0.007 ± 0.01
90 1.30 ± 1.34 0.42 ± 0.81 0.02 ± 0.02 0.003 ± 0.00
100 0.94 ± 1.48 0.12 ± 0.16 0.01 ± 0.02 0.005 ± 0.01

N segment shuttle winequality yeast
10 0.497 ± 0.72 0 ± 0 124.41 ± 132.62 60.02 ± 61.05
20 0.863 ± 1.36 0.005 ± 0.004375.04 ± 585.84 8.06 ± 16.17
30 0.094 ± 0.09 0.366 ± 0.667 69.18 ± 87.25 12.05 ± 14.97
40 0.026 ± 0.04 0.045 ± 0.072 16.06 ± 22.36 42.99 ± 39.42
50 0.024 ± 0.03 0 ± 0 15.01 ± 17.12 72.34 ± 104.12
60 0.035 ± 0.04 0.001 ± 0.002 6.37 ± 3.66 10.93 ± 13.25
70 0.015 ± 0.02 0 ± 0 6.08 ± 8.14 9.66 ± 21.24
80 0.007 ± 0.01 0.002 ± 0.002 4.32 ± 3.57 4.50 ± 6.64
90 0.009 ± 0.01 0.002 ± 0.002 3.65 ± 4.08 3.83 ± 3.23
100 0.004 ± 0.01 0.012 ± 0.008 2.67 ± 2.53 3.95 ± 5.47
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Table 5.12: Average and standard deviation of occurrences of each pair in N
random orderings.

N led7 mfeatfacmfeatfoumfeatmor mfeatpix mfeatzer ocr
10 5 ± 1.4 5 ± 1.3 5 ± 1.3 5 ± 1.5 5 ± 1.6 5 ± 1.7 5 ± 1.5
20 10 ± 1.9 10 ± 2.1 10 ± 2.8 10 ± 1.8 10 ± 2 10 ± 2.6 10 ± 2.8
30 15 ± 3.8 15 ± 3.1 15 ± 2.4 15 ± 2.8 15 ± 2.3 15 ± 2.7 15 ± 2.1
40 20 ± 2.9 20 ± 3.8 20 ± 2.9 20 ± 3.5 20 ± 2.9 20 ± 2.8 20 ± 3.2
50 25 ± 3.8 25 ± 4.2 25 ± 4.1 25 ± 2.4 25 ± 4.9 25 ± 3.4 25 ± 3.5
60 30 ± 4.8 30 ± 3.2 30 ± 5.2 30 ± 3.1 30 ± 3.4 30 ± 4.2 30 ± 4.3
70 35 ± 3.8 35 ± 3.5 35 ± 4.5 35 ± 3.9 35 ± 3.5 35 ± 3.4 35 ± 4.3
80 40 ± 4.3 40 ± 4.6 40 ± 3.7 40 ± 5.7 40 ± 4.5 40 ± 4 40 ± 3.7
90 45 ± 6.4 45 ± 5 45 ± 4.8 45 ± 6.5 45 ± 5.3 45 ± 4.9 45 ± 5
100 50 ± 5 50 ± 4.3 50 ± 3.8 50 ± 6.2 50 ± 5.3 50 ± 4.6 50 ± 4.4

N optdigits pendigits segment shuttle winequality yeast
10 5 ± 1.7 5 ± 1.1 5 ± 1.8 5 ± 1.3 5 ± 1.5 5 ± 1.5
20 10 ± 2.1 10 ± 2.3 10 ± 2.2 10 ± 2.4 10 ± 2 10 ± 2.8
30 15 ± 3.1 15 ± 2.1 15 ± 2.2 15 ± 2.5 15 ± 3.2 15 ± 2.6
40 20 ± 3 20 ± 3.8 20 ± 2.4 20 ± 3.9 20 ± 3.3 20 ± 3.3
50 25 ± 3.8 25 ± 3.3 25 ± 2.6 25 ± 3.2 25 ± 2.5 25 ± 4
60 30 ± 3.7 30 ± 3.7 30 ± 5 30 ± 6.1 30 ± 4.7 30 ± 3.5
70 35 ± 3.9 35 ± 3.4 35 ± 4.2 35 ± 4.9 35 ± 6 35 ± 4.7
80 40 ± 5 40 ± 3.4 40 ± 4.5 40 ± 4.8 40 ± 4.8 40 ± 3.7
90 45 ± 6.2 45 ± 4.2 45 ± 5.8 45 ± 4.9 45 ± 3.8 45 ± 3.9
100 50 ± 4.1 50 ± 3.5 50 ± 3.8 50 ± 6.3 50 ± 8 50 ± 3.6
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Table 5.13: Percentage of the negative eπ(j)π(k) values for PEA algorithm

N led7 mfeatfac mfeatfou mfeatmor mfeatpix mfeatzer ocr
10 0 0 0 1.1 0 1.1 0
20 0 0 0 2.2 0 0 0
30 0 0 14.4 0 7.8 8.9 3.3
40 1.1 6.7 15.6 21.1 11.1 14.4 7.8
50 3.3 23.3 21.1 33.3 10 36.7 22.2
60 2.2 3.3 5.6 30 12.2 16.7 10
70 0 1.1 2.2 2.2 10 20 4.4
80 0 0 4.4 8.9 1.1 8.9 6.7
90 0 1.1 0 8.9 0 5.6 3.3
100 0 0 0 2.2 0 6.7 4.4

N optdigitspendigits segment shuttle winequality yeast
10 0 0 4.8 19 0 4.4
20 0 0 35.7 42.9 40.5 1.1
30 1.1 0 14.3 45.2 21.4 26.7
40 5.6 5.6 4.8 50 4.8 42.2
50 11.1 16.7 2.4 26.2 4.8 37.8
60 11.1 2.2 4.8 47.6 2.4 34.4
70 3.3 0 2.4 14.3 2.4 26.7
80 2.2 0 2.4 50 0 20
90 1.1 0 2.4 42.9 0 6.7
100 1.1 0 2.4 50 2.4 15.6
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Conclusion

Current heuristic approach used in Ripper that orders the classes in a dataset

according to their sample sizes, usually does not give the most accurate classifi-

cation. In this thesis, we propose two algorithms to improve this heuristic.

The first algorithm, FOS, is based on Steepest Ascent Hill Climbing in the order-

ing space and guaranteed to find a better ordering if there exist one. The second

algorithm PEA, does not guarantee to find a better ordering but its complexity

is usually better than FOS and the performance of the algorithm is satisfying.

We analyze the effect of the number of random orderings used for PEA and real-

ize that there is no major difference after exceeding a certain number of random

orderings. Since FOS algorithm searches for a local optimum, the proposed al-

gorithm Random-Restart FOS improved the accuracy of FOS by extending the

search space.

This study is the first step to realize the importance of the training ordering

of classes, later on we can pretend each ordering as a classifier and get better

classifiers by the ensemble of the orderings.
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