
SECURITY OF CHAOTIC CRYPTOSYSTEMS

CAHIT ÇOKAL
B. S., Electronics Engineering, Işık University, 2006

Submitted to the Graduate School of Science and Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

IŞIK UNIVERSITY
2008

IŞIK UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SECURITY OF CHAOTIC CRYPTOSYSTEMS

CAHIT ÇOKAL

APPROVED BY:

Assoc. Prof. Ercan SOLAK (Işık University) —————————–
(Thesis Supervisor)

Assist. Prof. Olcay Taner YILDIZ (Işık University) —————————–

Assist. Prof. Onur KAYA (Işık University) —————————–

APPROVAL DATE:

SECURITY OF CHAOTIC CRYPTOSYSTEMS

Abstract

In this thesis, we tried to show the weaknesses of chaotic cryptosystems. We

break four chaos-based cryptosystems and proved our attacks.

In our first cryptanalysis, we broke a cryptosystem based on two dimensional

chaotic maps. We first reveal a portion of the secret key using a chosen-ciphertext

attack. After revealing this porion, we used it to reveal the other portions of the

secret key. We developed three types of attack using algebraic properties of the

permutations in revealing the rest. We finally published two papers for this break.

In our second cryptanalysis, we broke a cryptosystem that encrypts and de-

crypts images with chaotic map lattices. Here we first show that the encryption

algorithm is not invertible for some cases. We showed why these cases not work,

and gave some suggestions to improve the algorithm. However, we showed that the

algorithm still is not invertible due to finite precision arithmetic. Furthermore, we

gave some suggestions to develop the algorithm. At the end of our work, we gave a

break for the modified algorithm. Finally, we published a comment for the wrong

cases.

In our third cryptanalysis, we broke a chaos-based image encryption algorithm,

which uses a two-dimensional chaotic map to shuffle the image pixels and a three-

dimensional chaotic map to change the gray levels of the pixels. We used a chosen-

plaintext attack and a known-plaintext attack to break the algorithm. Applying

either our chosen-plaintext attack or our known-plaintext attack the cryptosystem

yields the secret parameters successfully. We published a paper for this break.

Our final cryptanalysis was on an image encryption algorithm based on two-

dimensional chaotic maps. We showed that the chaotic map can be revealed using

a chosen-ciphertext attack. The attack does not depend on which type of map is

used. The attack uses some algebraic properties of permutations and graphs.

ii

KAOTİK ŞİFRELEME ALGORİTMALARININ GÜVENLİĞİ

Özet

Bu tezde kaotik şifreleme algoritmalarının zayıflıklarını göstermeye çal ıştık.

Dört tane kaotik şifreleme algorimasını kırdık ve ataklarımızı ıspatladık.

İlk analizimizde iki boyutlu kaotik fonksiyonlarla çalışan bir algortmayıkırdık.

İlk olarak gizli şifrenin bir kısmını önceden belirlenmiş şifrelenmiş mesaj atak meto-

dunu kullanarak buluyoruz. Bu kısmı bulduktan sonra, bulunmuş kısmı kullanarak

kalan kısımlarını bulmaya çalışıyoruz. Permutasyonların matematiksel özelliklerini

kullanarak kalan kısmı bulmak için üç tane atak ürettik. Kırma işlemlerimizi gösteren

iki adet makale ile yayınladık.

İkinci analizimizde tek boyutlu kaotik fonksiyonları kullanarak resim şifreleyen

bir algoritmayı kırdık. İlk olarak algoritmanın bazı durumlarda geri dönüşü mümkün

olmayan sonuçlar ürettiğini gösterdik. Bunların sebeplerini ve bu durumları düzeltmek

için önerilerimizi açıkladık. Fakat bu düzeltmelere rağmen algoritmada sonlu sayı ar-

itmetiği kullanıldığı için, düzeltilmesi imkansız olan durumlar oladuğunu gösterdik.

Daha sonra, algoritmayı düzenlemeye yönelik bazı öneriler doğrultusunda algorit-

mayı yeniden kurguladık. Son olarak, yeniden kurgulanmış olan bu algoritmayı

kırdık. Algoritmadaki geri dönüşümü mümkün olmayan bu durumları göstermek

icin yazılmış olan makaleye atıfta bulunduk.

Üçüncü analizimizde iki boyutlu ve üç boyutlu kaotik fonksiyonları kullanarak

resim şifreleyen bir algoritmayı kırdık. Algoritma iki byutlu fonksiyonu resmin pik-

sellerini karistirmak iın, üç boyutlu olanını da resmin gri değerlerini değisştirmek

için kullanıyor. Onceden belirlenmiş mesajları şifreleme metodunu kullanan atağı

uygulayarak gizli şifrenin bulunabildiğini gösterdik. Ayrıca önceden belirlenmemiş

fakat önceden bilinen mesajları şifreleme metodunu kullanan atak ile de aynı işlemin

yapılabildiğini de gösterdik. Son olarak, bu çalışmalarımızı gösteren bir makale

yayınladık.

Son analizimiz iki boyutlu kaotik fonksiyonları kullanan bir resim şifreleme al-

goritması üzerine idi. Önceden belirlenmiş şifrelenmiş mesaj atak metodunu kulla-

narak gizli şifreyi bulabileceğimizi gösterdik. Atak kullanılan kaotik fonksiyona bağli

değildir. Bu atakta permutasyonarın ve grafiklerin bazı özelliklerini kullanıyoruz.

iii

Acknowledgements

First of all, I am glad to finish my Master of Science in Computer Engineering,

in Işık University.

I am very pleased to work with my supervisor Assoc. Prof. Ercan SOLAK

during my masters. I thank him due to his help and patience. He helped me to learn

anything about the project regularly. Even he gave me many advices while taking

my graduate courses. Also, I am glad to be his teaching assistant in undergraduate

laboratory courses.

I also thank Prof. Yorgo ISTEFANOPULOS, the Dean of Engineering Faculty

of Işık University, and my friends Uğur KIRMIZIBEKMEZ and Ahmet SOYLU for

their advices to choose Işık University for Master of Science. I thank all my other

friends for their encouragement and support during my graduate studies.

This work was supported by The Scientific and Technological Research Council

of Turkey (TÜBİTAK) under Project No. 106E143, and I thank TÜBİTAK for

scholarship I got through the project.

My family also encouraged and supported me spiritually and financially during

my Master of Science, so I thank them for their kindness.

Finally, I thank my wife for her endless support.

iv

To Mercan...

v

Table of Contents

Abstract ii

Ozet iii

Acknowledgements iv

Table of Contents vi

List of Figures viii

List of Abbreviations ix

1 Introduction 1

1.1 Block Ciphers . 2

1.1.1 Substitution Permutation Networks (SPN) 2

1.2 Classical Block Cipher Examples . 4

1.2.1 Data Encryption Standard . 4

1.2.2 Advanced Encryption Standard . 4

1.2.3 Description of AES . 5

1.2.4 Encryption Algorithm of AES . 5

1.3 Attack Types and Cryptanalysis . 6

1.3.1 Cryptographic Attacks . 6

1.3.2 Brute Force Attacks . 7

1.4 Chaos and Cryptography . 7

2 Our Methodology of Cryptanalysis 9

2.1 The Purpose of the Thesis . 9

3 Cryptanalysis of an Algorithm that Uses Discretized Two Dimen-

sional Chaotic Maps 10

3.1 Two-Dimensional Chaotic Maps . 10

3.2 Description of the Cryptosystem . 11

3.3 Key Space Weakness . 15

3.4 Chosen Ciphertext Attack on Ks . 15

3.4.1 rm ≡ 0 mod 16 . 16

3.4.2 rm 6≡ 0 mod 16 . 18

3.5 Attacking the Function E . 20

3.5.1 Sampling E . 20

3.5.2 Permutation Orbit Attack . 21

3.5.3 Expansion Attack . 28

vi

3.5.4 Skipping Attack . 29

3.6 Simulation Results . 31

3.7 Concluding Remarks . 33

4 Cryptanalysis of Chaotic Map Lattice Based Systems 34

4.1 Description of the Cryptosystem . 34

4.2 Analysis . 36

4.3 Suggested Improvements and the Modified Cryptosystem 40

4.4 Chosen Plaintext Attack on Modified Algorithm 41

4.5 Simulation Results . 43

4.6 Concluding Remarks . 44

5 Cryptanalysis of a Chaos-Based Image Encryption Algorithm 45

5.1 Arnold’s Cat Map . 45

5.2 Chen’s Chaotic System . 45

5.3 Description of the Cryptosystem . 46

5.3.1 Encryption Algorithm . 47

5.4 Chosen-Plaintext Attack . 47

5.4.1 Extracting K . 48

5.4.2 Extracting M . 48

5.5 Known-Plaintext Attack . 49

5.5.1 Extracting M . 49

5.5.2 Extracting K . 50

5.6 Simulation Results . 50

5.7 Concluding Remarks . 53

6 Cryptanalysis of a Chaotic Cryptosystem Based on Two Dimen-

sional Chaotic Maps 54

6.1 Baker’s Map . 54

6.1.1 Two-Dimensional Baker’s Map . 54

6.1.2 Discretized Baker’s Map . 55

6.2 Description of the Algorithm . 55

6.3 Chosen Ciphertext Attack . 57

6.4 Implementation Details . 62

6.5 Simulation Results . 64

6.6 Concluding Remarks . 66

7 Conclusion 67

References 68

Curriculum Vitae 70

vii

List of Figures

1. 1 Substitution permutation network . 3

3. 1 The master key of encryption scheme, taken from [11] 12

3. 2 The S-box for encryption, taken from [11] 13

3. 3 The inverse S-box for decryption, taken from [11] 13

3. 4 The round operations of encryption scheme 14

5. 1 Chaotic behavior of Chen’s system . 46

5. 2 a) Plaintext P1 b) Plaintext P2 c) ∆P d) ∆C 52

5. 3 Chen key K . 53

6. 1 Baker’s Map . 55

6. 2 The causality paths for the permutation given in Eq.(6. 9) 59

6. 3 The sets obtained after operation L . 62

viii

List of Abbreviations

ECB : Electronic Codebook

CBC : Cipher Block Chaining

CTR : Counter

CFB : Ciphertext Feedback

OFB : Output Feedback

SPN : Substitution Permutation Networks

DES : Data Encryption Standard

FIPS : Federal Information Processing Standard

NSA : National Security Agency

AES : Advanced Encryption Standard

TDCM : Two-Dimensional Chaotic Maps

ROL : Rotate Left

ROR : Rotate Right

TEA : Tiny Encryption Algorithm

D/A : Digital to Analog

A/D : Analog to Digital

ix

Chapter 1

Introduction

Cryptography is the science of concealing a message during communication.

Plaintext is the raw message, which the sender wishes to transmit to the receiver(s).

Encryption is the process of transforming plaintext using an algorithm to make

it unreadable to anyone except those possessing special knowledge. The resulting

output of the encryption process is called as ciphertext. Decryption is the reverse

of the encryption algorithm to recover the concealed message. To transform either

the plaintext into ciphertext or ciphertext into plaintext we need encryption and

decryption algorithms.

Transposition means the movements of plaintext characters into new positions

in the ciphertext based on the algorithm. Swapping is a transposition method, for

example. Certainly, there can be more than one transposition inside the algorithm,

if needed.

Substitutions are done by using mapping techniques. Mapping is a method of

replacing the characters (or blocks) by other characters (or blocks). The method can

be done by inversion, displacement or shift of the characters. The mapping technique

can be more complex. For example, characters are encoded with binary sequences

in computers, and these sequences can be manipulated via boolean operations for

the encryption [1].

Encryption and decryption may be done by using a symmetric key or asym-

metric keys, private and public keys. In symmetric encryption both the transmitter

and the receiver uses the same secret key. On the other hand, public key cryptog-

raphy uses a public and a private key for each side. The plaintext is encrypted via

the public key of the receiver side, and the receiver decrypts the ciphertext by using

his own private key. Public keys are published and anyone can reach it.

The first known use of cryptography was done by Julius Caesar. During World

War 2, cryptology was advanced rapidly. Machines were produced only for encryp-

tion and decryption of messages. Enigma cipher machine is invented by the Ger-

mans. It was broken successfully by the Polish before the war had even started.

British used the Polish methods to break the Enigma messages during the war [2].

Cryptology relies heavily on advanced mathematics, number theory, in the

1

modern world. Hence, those wishing to study modern cryptology are advised to

study advanced mathematics.

1.1 Block Ciphers

Block ciphers may be either symmetric-key or public-key. The main focus of

this section is symmetric-key block ciphers; public-key encryption is addressed later

in this chapter.

In block ciphers, the transmitter side divides the plaintext into n-bit blocks

and encrypts them into n-bit ciphertext blocks. The recipient side computes the

same plaintext blocks by decrypting the received ciphertext blocks. Because the

process is a symmetric encryption-decryption, the key used by the receiver and

transmitter are the same. The block ciphers are the same as the classic codebook

method, except the book. In classical codebook method, there is a list of the words

and the codewords tuples, and the book should be kept securely against attackers.

However, in the block ciphers the codewords are computed via an algorithm, instead

of having a book, due to the fact that the alphabet size is too large to be stored in

a book. The only thing to be kept secure is the symmetric key [3].

The content of the codebook depends on the key. A change in key causes a

very effective change in the codebook. There are 2k different codebooks assuming

that the key is k-bit long. Hence, by changing the key we can avoid the codebook

attack.

Block ciphers can be used in different ways, called modes of operations, ac-

cording to the connections between the plaintext or ciphertext blocks. Some of the

popular modes of operations are; electronic codebook mode (ECB), cipher block

chaining mode (CBC), counter mode (CTR), ciphertext feedback mode (CFB), out-

put feedback mode (OFB) and so on. There are detailed explanations of modes of

operations in [3, 4, 5, 6].

1.1.1 Substitution Permutation Networks (SPN)

For a secure block cipher, confusion and diffusion are two sine qua non prop-

erties, which were identified in the paper of Claude Shannon [7], “Communication

Theory of Secrecy Systems” published in 1949.

Confusion is defined, in Shannon’s original definition, as making the relation-

ship between the key and the ciphertext as complex and involved as possible, and

confusion is defined to be the property that redundancy in the statistics of the

plaintext is “dissipated” in the statistics of the ciphertext. Namely, diffusion is the

dependency of output bits on input bits.

2

A substitution permutation network (SP network or SPN) is a series of linked

mathematical operations used in block ciphers. S-boxes and P-boxes are used, in

these networks, to transform blocks of input bits into output bits. Many modern-

day cryptosystems use product cipher methods. Product ciphers are a combination

of permutation and substitution operations to achieve both confusion and diffusion

respectively. They commonly use iterated cipher methodology today. Iterated cipher

means that the cipher consists of a round function and a key scheduling algorithm.

The cryptosystem proceeds the same round operations Nr times, where Nr is the

number of rounds.

A well-designed S-box should have the feature that at least half of the output

bits change when only a bit is inverted from the input (this is termed the Strict

Avalanche Criterion). This also means that each output bits depends on every input

bits. This also is an essential property for S-boxes. Either a single S-box is so narrow

that it provides a limited amount of confusion nor a P-box do. Even though they

provide limited confusion individually, a well-designed SPN having enough rounds

causes good diffusion and confusion so that every input bit is fully diffused across

every output bit of the whole message.

Let us use a random binary key K with a previously defined length. There

should be Nr round keys (also called subkeys), produced by using K and the

key scheduling algorithm. The key schedule (round keys) is denoted by the list

(K1, ..., KNr). The key scheduling algorithm is public.

The round function, say F , needs two inputs; a round key (Kr) and a cur-

rent state, denoted by wr−1. To calculate the next state, we use the procedure;

wr = F (wr−1, Kr). The Plaintext P is defined to be the initial state, w0, and the

ciphertext, C, is defined to be the final state, wNr .

Figure 1. 1 Substitution permutation network

Figure 1. 1 shows a single round of iterated block cipher encryption function.

The figure includes substitutions via S-boxes and permutations.

3

1.2 Classical Block Cipher Examples

1.2.1 Data Encryption Standard

Data Encryption Standard (DES), was jointly developed in 1974 by IBM and

USA government (US patent 3,962,539), is an example of symmetric secret key

encryption scheme, and became a standard in 1977. The Encryption scheme uses

a 56-bit key, can be cracked by only a brute force attack with a moderate effort.

Therefore, it is considered to be expired by many cryptologists. A variance of the

DES, named as Triple-DES (3DES or TDES), is used today, and is known to be

more secure. The block size of the plaintext and ciphertext blocks are 64-bits long.

The original algorithm was using 64-bit key and started out as the “Lucifer”

algorithm developed by IBM. After it was adopted as Federal Information Processing

Standard (FIPS) standard 46-3 and ANSI standard X3.92, the US National Security

Agency (NSA) made several modifications and reduced the key size to 56-bits.

Description of DES

DES is a block cipher that transforms fixed-length string of plaintext bits into

a ciphertext cit string of same length using a public algorithm, consisting a series

of complicated operations [5]. The size of the plaintext and ciphertext blocks is 64

bits. DES uses a secret symmetric key either in encryption and decryption. The

key appears to be 64-bits long; however, the used part of the key is only 56-bits.

The unused eight bits are used for parity check merely, and are discarded thereafter.

Hence, the effective key length is 56-bits.

Overall Structure

There are 16 rounds, which are identical. The algorithm consists also an initial

and a final permutation, termed IP and FP, aside from 16 rounds. IP and FP are

inverses of each other. Namely, FP undoes the procedure of IP.

After IP, the plaintext block is split into two halves, and the processes are

applied alternately to them. This is the Feistel method [3], and the method ensures

that the encryption and decryption algorithms are very similar. The only difference

of the decryption algorithm is that the subkeys are applied in reverse order. This

structure simplifies the hardware implementation due to the fact that there is no

need for different encryption and decryption algorithms.

1.2.2 Advanced Encryption Standard

The Advanced Encryption Standard (AES), is the winner of the contest, held

in 1997 by the US Government, after the Data Encryption Standard was found too

4

weak because of its small key size and the technological advancements in processor

power. Fifteen candidates were accepted in 1998 and based on public comments

the pool was reduced to five finalists in 1999. In October 2000, one of these five

algorithms was selected as the forthcoming standard. The winner algorithm was a

slightly modified version of the Rijndael’s.

1.2.3 Description of AES

AES is an iterated block cipher with a fixed block size of 128 and a variable

key length. The different transformations operate on the intermediate results, called

state. The state is a rectangular array of bytes and since the block size is 128 bits,

which is 16 bytes, the rectangular array is of dimensions 4 × 4. The cipher key is

similarly pictured as a rectangular array with four rows. The number of columns of

the cipher key is equal to the key length divided by 32 [6].

The key schedule and the encryption algorithm involves several operations

and work similarly. The operations of the encryption algorithm are explained in the

following section.

1.2.4 Encryption Algorithm of AES

The algorithm involves four stages which are called as, SubBytes, ShiftRows,

MixColumns and AddRoundKey. The operations are so simple that their hardware

or software implementations are very easy. AES has 10 identical rounds. The only

difference is that the tenth round omits the MixColumns step. This modification

makes the encryption and decryption algorithm identical.

Step 1. In SubBytes step, the algorithm uses a fixed S-box, given in [6], and sub-

stitutes the bytes of the state with the bytes in the fixed S-box. The S-Box

is invertible and is constructed by the composition of two transformations.

the first transformation is taking the multiplicative inverse in Rijndael’s

finite field [6]. The second one applies an affine transformation which is

documented in the Rijndael documentation.

Step 2. In ShiftRows step, the rows of the state are shifted to the left with fixed

amounts. The first row is shifted by 0 byte, the second row is shifted by

1 byte, the third row is shifted by 2 bytes and the last row is shifted by 3

bytes.

Step 3. In MixColumns step, the four bytes of each column of the state are com-

bined using an invertible linear transformation. The MixColumns function

takes four bytes as input and outputs four bytes, where each input byte af-

fects all four output bytes. Together with ShiftRows, MixColumns provides

5

diffusion in the cipher. The operations of MixColumns step is described in

detail in [6].

Step 4. In AddRoundKey step, the subkey is combined with the state using

simple bitwise XOR operation. The subkey is derived from the cipher key

by the means of the key schedule [6].

1.3 Attack Types and Cryptanalysis

Cryptographic attacks are designed to subvert the security of cryptographic

algorithms, and they are used to attempt to decrypt data without prior access to a

key. Cryptanalysis deals with the weaknesses of cryptosystems.

Here I will try to describe some common attack types. There are many applied

attack types in [3]. You can see many more attacks in [3] other than those I describe.

1.3.1 Cryptographic Attacks

There are six related cryptographic attack methods; three plaintext-based

methods and three ciphertext-based methods. The plaintext based methods are:

known plaintext attack, chosen plaintext attack and adaptive chosen plaintext at-

tack. The ciphertext based methods are: ciphertext-only attack, chosen ciphertext

attack and adaptive chosen ciphertext attack.

Known-Plaintext Attack

A known-plaintext attack is a cryptographic attack in which an attacker has

the plaintext and the corresponding ciphertext.

Ciphertext-Only Attack

Here, the attacker is assumed to have access only to a set of ciphertexts. The

attack is completely successful if the corresponding plaintexts can be deduced. Even

the attacker may reveal the secret key, which is a better result. The ability to obtain

any information at all about the underlying plaintext is still considered a success.

With simple ciphers, such as the Caesar Cipher, frequency analysis can be used to

break the cipher [8].

Chosen-Plaintext Attack

In a chosen plaintext attack the attacker has the ability to obtain the cipher-

texts of the plaintexts of his choice. This appears, at first glance, to be an unrealistic

model. It certainly is unlikely that an attacker could force a human cryptographer

6

to encrypt large amounts of plaintexts of the attacker’s choice. On the other hand,

modern cryptography is implemented in software or is hardwired and is used for a

diverse range of applications. For many cases, it is often very feasible to apply a

chosen-plaintext attack.

In both adaptive attacks, a cryptanalyst chooses further plaintexts or cipher-

texts (adapts the attack) based on prior results.

Chosen-Ciphertext Attack

A chosen-ciphertext attack is an attack on a cryptosystem in which the crypt-

analyst chooses ciphertext and causes it to be decrypted with an unknown key and

accesses the corresponding plaintext. As I mentioned in chosen plaintext attack,

even though the attack appears unlikely to be performed, it usually is very feasible

to perform due to the modern technology and the implementations.

The adaptive chosen-ciphertext attack is an interactive form of chosen-ciphertext

attack in which an attacker sends a number of ciphertexts to be decrypted, then uses

the results of these decryptions to select subsequent ciphertexts

1.3.2 Brute Force Attacks

A brute force attack systematically attempts every possible key. It is most

often used in a known plaintext or ciphertext-only attack. Given a finite key length

and sufficient time, a brute force attack is always successful. Encryption algorithms

can become susceptible to brute force attacks over time as CPU speeds increase. The

easiest remedy for the brute force attack is to increase the key length. For example,

56-bit DES key can be cracked within days using specialized hardware. However, if

a machine could crack one DES key per second, it would take 149 trillion years to

crack a 128-bit AES key [8].

1.4 Chaos and Cryptography

The most attractive feature of deterministic chaotic systems is the highly un-

predictable and random-looking nature of chaotic signals. There are some common

features of chaos and cryptography such as sensitivity to initial conditions and pa-

rameters, random like behavior and unstable orbits with long periods, depending

upon the precision of the numerical implementation. In cryptography, rounds of

encryption lead to the desired diffusion and confusion properties of the algorithm.

Similarly, chaotic map iterations spread the initial region over the entire phase space.

This is similar to the diffusion and confusion properties since the parameters of the

chaotic map may represent the key of the encryption algorithm [9, 10].

7

Below items show the differences between classical and chaotic cryptography

simply.

1. Classical cryptography works with integer values on finite fields, however

chaotic cryptography works with continuous values using fixed or floating point

representation.

2. Classical cryptography makes digital realization by integer arithmetic, however

chaotic cryptography makes digital realization by non integer arithmetic.

A block encryption algorithm can be written as a discrete time dynamical

system:

xn+1 = F (xn)

where x0, the initial condition, is the plaintext to be encrypted, and the final state

xk is the ciphertext. Since we can express a chaotic map by a similar equation. This

property shows that a slight change in a digit of an initial condition spreads over

almost the whole output [9, 10].

There are many types of chaotic maps in the classes of one-dimensional, two-

dimensional and three-dimensional. In this report I give some cryptosystems based

on some of these types.

8

Chapter 2

Our Methodology of Cryptanalysis

2.1 The Purpose of the Thesis

Computer science is developing rapidly, consequently, it is getting easier to

attack a cryptosystem, for an attacker. There are many attack types introduced

by cryptanalysts as well, from day to day. Hence, there is a considerable need for

cryptanalysts to test and protect cryptosystems, in use, against these new attacks

and improvements, before the attackers do.

One of the areas of cryptology, is chaos, and there are lots of proposed chaotic

cryptosystems in literature. It is necessary to analyze the security of chaotic cryp-

tosystems.

Our aim was to analyze the security of some chaos-based cryptosystems, using

the classical attack types and new attacks if possible. It is possible to produce new

attack types using mathematical features of the chaotic functions used in cryptosys-

tems. In the case of introducing new attack types, the attacks may be generalized

to all the chaotic cryptosystems.

9

Chapter 3

Cryptanalysis of an Algorithm that Uses Discretized Two

Dimensional Chaotic Maps

A chaotic cryptosystem [11], based on two-dimensional chaotic maps, was pub-

lished on Physics Letters A. In this chapter, I describe our cryptanalysis and a

complete break [12, 13] of the proposed cryptosystem. The cryptosystem involves

discretized two-dimensional chaotic maps (TDCM) and chaotic S-boxes inside the

round functions.

The definitions of proposed TDCM are given in Section 3.1. Then I give

our description for the proposed cryptosystem in detail, in Section 3.2. There are

symbolic differences between the proposed algorithm and our description. The dif-

ferences make the algorithm easier to understand. In Section 3.3, I show that the

secret key contains redundancies and some interrelated parameters inside. These

facts reduce the effective key length. Next, I demonstrate our chosen ciphertext

attack, which reveals a portion of the key, in Section 3.4. The attack varies with

respect to the round number. In Section 3.5, I describe three different attacks, which

can be applied in combination. The names of the attacks are the permutation orbit,

expansion and skipping attacks. The attacks effectively yield the rest of the key

when they work in a combination. We produced the attacks using some features

of permutations stated in the section. In Section 3.6, I illustrate the success of

our break with simulation results. All types of attacks are used in given examples.

Finally, I give our concluding remarks about the break, in Section 3.7.

3.1 Two-Dimensional Chaotic Maps

The Standard map [14] (also known as Chirikov-Taylor map or Chirikov stan-

dard map) is a two dimensional chaotic map. The TDCM is an area-preserving

chaotic map from a square with side 2π onto itself.

The map is discretized for use in the proposed cryptosystem. The discretized

version of Standard Map is given in [11] as

xn+1 = xn + yn+1 mod N (3. 1)

yn+1 = yn + Ksin
2πxn+1

N
mod N

10

We may prefer round function in order to have integer values for discretized Standard

Map. Result of second line in Eq.(3. 2) should be rounded.

Arnold’s Cat Map is described in [15]. It is possible to define a discrete anal-

ogous of the cat map. One of this map’s features is that image being apparently

randomized by the transformation but returning to its original state after a number

of steps. The discretized Cat Map is given in [11] as

[

xn+1

yn+1

]

=

[

a11 a12

a21 a22

][

x

y

]

mod N. (3. 2)

where the determinant (a11 × a22 − a12 × a21) = 1.

Baker’s Map is a chaotic bijection of the unit square I × I onto itself, and is

described in [16]. The discretized version of Baker’s Map is given in [11] as

xn+1 =
N

kj
(xn −Nj) + yn mod N/kj ,

yn+1 =
kj

N
(yn − yn mod N/kj) + Nj (3. 3)

where k0+k1+. . .+kt = N , k0+k1+. . .+kj = Nj, 0 ≤ yn ≤ N , Nj ≤ xn ≤ Nj+kj+1,

0 ≤ j ≤ t− 1, k0 = 0.

3.2 Description of the Cryptosystem

The cryptosystem is a block cipher, which is based on 16-bit block sizes of

plaintext and ciphertext. The preliminary process is to partition plaintext into

fixed-size blocks. Plaintext and ciphertext sequences Pi, Ci, 1 ≤ i ≤ n, are given as

Plaintext : P1P2 · · ·Pn,

Ciphertext : C1C2 · · ·Cn.

The secret key of proposed cryptosystem is a collection of several parameters,

used in different parts of the algorithm. The key parameters are (r, m, t, C0, Ks, Kc).

This collection is defined as the master key, in [11]. The parameters of master

key are; number of rounds for encryption and decryption processes r, circular shift

amount m, iteration number of chaotic maps t, the initial ciphertext block C0, which

is used for the initial value, initial value of subkey Ks, and collection of TDCM

parameters Kc. Figure 3. 1 illustrates parameters of master key clearly.

The subkey, Ki, is used in encryption of each plaintext block Pi. And the

initial subkey is

K0 = Ks. (3. 4)

11

Figure 3. 1 The master key of encryption scheme, taken from [11]

The preliminary work for encryption of each plaintext block Pi is to update the

subkey. Update process for Ki is given as

Ki =

{

Ki−1 ⊕ Ci−1 if Ci−1 6= Ki−1,

Ki−1 if Ci−1 = Ki−1.
(3. 5)

ith plaintext block is encrypted subsequently as

Ci = E(Ki, Pi), (3. 6)

where function E is the encryption function and involves the following round oper-

ations.

v0 = Pi,

vj = σ(vj−1 ⊕ ROL(Ki, jm)), 1 ≤ j ≤ r, (3. 7)

Ci = vr.

vj denotes the output of round j. The output of last round is the ciphertext block Ci,

of the corresponding plaintext block Pi. ROL(·, jm) denotes the rotate left operation

(circular left shift) by jm bits. As the round number increases, the rotation amount

increases also. The amount of rotation is derived using number of rounds r. The

relation is given as

m =

{

⌊16/r⌋ r ≤ 16,

1 else.
(3. 8)

The round function σ is a collection of several functions and given as

σ = w ◦ z−1 ◦ TDCMt
Kc
◦ z ◦ S. (3. 9)

In Eq.(3. 9), S represents the substitution box (S-box). For a good confusion,

encryption algorithm involves S-box, which is designed using iterations of chaotic

functions. The mapping process is invertible and works with 16-bit quantities. S-

box is not key dependent, so its value is not secret, and does not change for an

algorithm. The S-box is designed to have desirable nonlinear properties. [17] gives

examples of S-boxes, shown in Figure 3. 2 and Figure 3. 3.

z maps 16-bit quantities to 2D vectors of integers, and is also an invertible

12

Figure 3. 2 The S-box for encryption, taken from [11]

Figure 3. 3 The inverse S-box for decryption, taken from [11]

mapping. First 16-bit plaintext block is split into two bytes, and each byte is

used as one of the integer coordinates in 2D discrete state space. For example,

z(0x1A27) = [26, 39] because 26 = (1A)16 and 39 = (27)16.

TDCMt
Kc

denotes the TDCM process. Chaotic map is iterated t-times, and

chaotic system parameters are denoted by Kc. The choice of chaotic map depends

on algorithm design, and is a part of the algorithm. The proposed cryptosystem

[11] considers The Standard Map, Generalized Cat Map, and Generalized Baker’s

Map. In order to have an invertible encryption operation chaotic maps must be

13

one-to-one and onto (bijective). Next mapping function z−1 takes the output of

TDCM as input and maps the final 2D state of TDCM to a 16-bit integer.

At the end of each round, the bytes are swapped, and the process is denoted

by w in Eq.(3. 9).

Figure 3. 4 The round operations of encryption scheme

All the round operations are illustrated in Figure 3. 4. Here the function

f(Ks, Ci−1, m) includes the shift and update operation, which is expressed in Eq.(

3. 5).

After encryption of plaintext block Pi, the block key is updated again for next

plaintext block Pi+1. The update process is given as

Ki ← ROL(Ki, rm). (3. 10)

Total shift amount in Ki is rm. Since Ki has 16-bits, the effective amount of rotation

on Ki is rm mod 16 in encryption of one block. Same round processes continues

until all plaintext blocks are converted into ciphertext blocks.

The decryption process is the symmetric inverse of encryption process. The

round operations, subkey update and swap operations are in reverse order. More-

over, inverse substitution and inverse chaotic map are used. The rotate left process

(ROL) is replaced with rotate right process (ROR) and the σ function takes the

mapping operations with reverse order. Also, S-box and TDCM are the inverse of

the original ones.

14

3.3 Key Space Weakness

The master key of the cryptosystem, which is described in previous section,

involves several secret parameters, r, m, t, C0, Ks and Kc. All of the parameters,

except TDCM parameter Kc, are formed in fixed length. r, m and t have 8 bits, C0

and Ks have 16 bits. The length of Kc depends on the chosen TDCM. For example,

Standard Map uses a single parameter, which is represented with 16 bits. In the case

of using Standard Map, master key has 72 bits. Revealing the secret keys using a

brute force attack requires 271 trails on average, which takes a huge amount of time

by the speed of today’s technology. On the other hand, the baker map is designed

using a variable length key, which makes harder to apply a brute force attack.

Effective key is the portion of secret key which could not be derived using

any other portion, or a part of the algorithm. Algebraic dependencies in a system,

among the key parameters, reduce the effective key size. The proposed cryptosystem

has a dependent portion and a redundancy in the master key, and unfortunately,

the effective key is only a subset of the master key.

If an attacker knows round number r, it is very easy to compute m using Eq.(

3. 8), since the algorithm is public. Due to this fact, one cannot choose the shift

amount m freely. Hence, the effective key does not include m,it should be treated

as an internal parameter derived using one of the secret parameters.

During preliminary processes for encryption of the first plaintext block P1,

Eq.(3. 5) also causes an effective reduction in master key. If an attacker knows

K1 = Ks⊕C0, there is no need to have any knowledge about either Ks or C0, since

the encryption algorithm does not use the initial value of neither Ks nor C0 in the

sequel. Indeed, Ks ⊕ C0 becomes a secret parameter, so we cannot treat either of

Ks and C0 as a secret parameter. We will assume without loss of generality that

C0 = 0x0000, in the succeeding sections.

Indeed, secret parameters of effective key are, r, t, C0 ⊕ Ks and Kc. One

may think that the collection of TDCM parameters makes the key size long enough

against a brute force attack in spite of the weaknesses. However, there are several

attacks to reveal the TDCM parameters. The attacks does not depend on which

type of TDCM is used and how long the parameter Kc is. The attacks are described

in subsequent sections in detail.

3.4 Chosen Ciphertext Attack on Ks

In this section, I will describe how an attacker can find the initial subkey Ks

without a knowledge about rest of the key. The attack differs with choice of round

number r. Hereafter, we assume that the attacker knows the parameter r. The

15

assumption is not restrictive since r is not too long to be revealed. The attacker

should try only 255 different nonzero values as a brute force attack on parameter r,

if he has efficient attacks to reveal the remaining secret parameters. Hence, in the

subsequent parts of this chapter, r will be considered to be known by the attacker.

The attacks we developed to reveal Ks and the rest has no high computational

requirements. The operations are so simple that the attacks are very efficient in

time. Moreover, they have little memory requirement.

There are two cases to be considered when attacking on Ks. The first case is

rm ≡ 0 mod 16 and the second one is rm 6≡ 0 mod 16. Our chosen ciphertext attack

differs for each of cases. The attacks are described in this section.

Note that the attacker does not know TDCM parameters, Kc and t, and just so

he has no knowledge about inside of function E. He only knows the round number

r.

3.4.1 rm ≡ 0 mod 16

Assume that the attacker chooses two ciphertext blocks as

C1 = C2 = j. (3. 11)

Using Eq.(3. 4) and Eq.(3. 6), the encryption of first block is

j = E(Ks, P1).

Since rm ≡ 0 mod 16, using Eq.(3. 10) the subkey of first block K1 becomes

ROL(Ks, rm) = Ks.

In the case when j = Ks, using Eq.(3. 5) and Eq.(3. 6) the subkey for second

block K2 and just so the encryption becomes

K2 = K1 = Ks ⇒ j = E(Ks, P2).

Indeed, the encryption of two block plaintext becomes

j = E(Ks, P1), j = E(Ks, P2).

Since E is bijective, we have P1 = P2 for fixed Ks.

However, in the case when j 6= Ks, the second subkey, after updating process,

becomes

K2 = K1 ⊕ C1 = Ks ⊕ j

16

so, we have

j = E(Ks, P1), j = E(Ks ⊕ j, P2).

In this case, most probably P1 6= P2. The first case, in which P1 = P2, yields a good

result to decide on if Ks = j.

The progress of chosen ciphertext attack on Ks proceeds as follows. After

choosing two ciphertext blocks C1C2 as in Eq.(3. 11), the attacker requests cor-

responding plaintext blocks. By comparing plaintext blocks, the attacker decides

whether j is a candidate for Ks. If the plaintext blocks are equal, j is a candidate.

By trying all the possibilities of two blocks of ciphertext and recording the results,

the attacker may have one or more candidates for Ks. There are 216 − 1 different

values for j. Hence, the attacker makes 216 − 1 trials in total.

The reason why the attacker may have more than one candidates even if j 6= Ks

is that we might have E(K1, P) = E(K2, P) for some K1 6= K2, and P . We have

another chosen ciphertext attack to eliminate false candidates. The attacker needs

to apply the following tests during elimination.

The attacker chooses two of the candidates, j1 and j2, and the corresponding

plaintext blocks P1 and P2 from the previous attack, which satisfy

j1 = E(Ks, P1), j2 = E(Ks, P2). (3. 12)

The elimination process proceeds by choosing new ciphertext blocks C1 and C2 as

C1 = j1 and C2 = j2. The attacker obtains the corresponding plaintext blocks P 1

and P 2. The attack helps the attacker only to decide whether j1 is the subkey or

not. Let’s see how P 1 and P 2 differ for each cases, which are j1 = Ks and j1 6= Ks.

When j1 = Ks, using Eq.(3. 4) and Eq.(3. 6), the encryption of first block

becomes

j1 = E(Ks, P 1).

After key update process shown in Eq.(3. 5) and Eq.(3. 6), second subkey and

encryption of second block becomes

K2 = K1 = Ks ⇒ j2 = E(Ks, P 2).

Indeed, when j1 = Ks, we have

j1 = E(Ks, P 1), j2 = E(Ks, P 2).

Comparing this with Eq.(3. 12), we obtain P 1 = P1 and P 2 = P2.

17

On the other hand, in the case j1 6= Ks we find the second subkey as

K2 = K1 ⊕ C1 = Ks ⊕ j1.

so, we have

j1 = E(Ks, P 1), j2 = E(Ks ⊕ j1, P 2).

Comparing this with Eq.(3. 12), we conclude P 1 = P1 and P 2 is a random 16-bit

integer.

Only P2 varies in two cases, so decision of the attacker has to depend on this

difference. The attacker decides j1 6= Ks only when P 2 6= P2. Since the first case

P 2 = P2 may occur even when j1 6= Ks, he cannot be sure whether j1 = Ks. Indeed,

the test can be concluded as j1 6= Ks only when P 2 6= P2.

The attacker now have a method to eliminate the false candidates for the

subkey. By continuing in this fashion, the attacker will have only one candidate for

Ks, and the attack will terminate successfully.

3.4.2 rm 6≡ 0 mod 16

In this case, the attacker chooses ciphertext blocks as

C1 = C2 = · · · = Ck−1 = 0, Ck = j, Ck+1 = 0, (3. 13)

where k = lcm(16,u)
u

and u = rm (mod 16). The attacker chooses k such that the

subkey repeats itself at (k+1)th block, that is K1 = Kk+1. Let’s see how the subkeys

are updated for the chosen ciphertexts in Eq.(3. 13) using Eq.(3. 4), Eq.(3. 5)

and Eq.(3. 10).

K1 = Ks, K2 = ROL(Ks, u), . . . , Kk = ROL(Ks, (k − 1)u)

and, last key depends on j, such that

Kk+1 =

{

j ⊕Ks if j 6= Ks,

Ks if j = Ks.

Hence, the attacker obtains

18

0 = E(Ks, P1), (3. 14)

0 = E(ROL(Ks, u), P2),

0 = E(ROL(Ks, 2u), P3),

...

0 = E(ROL(Ks, (k − 2)u), Pk−1),

j = E(ROL(Ks, (k − 1)u), Pk),

and

0 =

{

E(j ⊕Ks, Pk+1) if j 6= Ks,

E(Ks, Pk+1) if j = Ks.
(3. 15)

Using Eq.(3. 14) and Eq.(3. 15), if he finds that P1 = Pk+1, then j = Ks.

While applying a chosen ciphertext attack the attacker ought to use this fact.

For all possible 16-bit nonzero numbers j, the attacker applies a chosen cipher-

text attack by choosing the ciphertext sequence in Eq.(3. 13). After analyzing the

corresponding plaintext blocks P1, · · · , Pk+1 as in Eq.(3. 14) and Eq.(3. 15), the

attacker decides whether j is a candidate for the subkey Ks. During this analysis

the attacker records the candidates. The attacker tries 216− 1 different values for j.

Even if j 6= Ks, the equality P1 = Pk+1 may occur with a very low probability.

Hence, the task should be elimination of the false keys as in first case. To eliminate

such a false key j, the attacker chooses the ciphertext sequence C1 = ROL(j, u),

C2 = 0 and obtains the corresponding plaintext sequence P 1P 2. Using Eq.(3. 4)

and Eq.(3. 6), encryption process of first block becomes

ROL(j, u) = E(Ks, P 1).

Due to the process in Eq.(3. 10), at the end of the encryption of first block, K1 be-

comes ROL(Ks, u) because the total amount of rotation process is u = rm (mod 16).

Hence, using Eq.(3. 5), the attacker obtains

0 =

{

E(ROL(j, u)⊕ ROL(Ks, u), P 2) if j 6= Ks,

E(ROL(Ks, u), P 2) if j = Ks.
(3. 16)

The attacker eliminates a false key using Eqns.(3. 14, 3. 16). If P2 6= P 2, the

attacker eliminates a false key j. However, if j = Ks, P2 = P 2 the test has no

conclusion. After repeating this process until one candidate remains, the attacker

will obtain the correct key.

19

As a result, the attacker can reveal a portion of the master key, Ks, either

rm ≡ 0 mod 16 or rm 6≡ 0 mod 16. The attack slightly differs for either cases.

3.5 Attacking the Function E

As we saw, revealing Ks does not depend on any other secret parameters.

The only parameter to be known is round number r. After revealing the subkey

Ks, the next task, for the attacker, is to reveal the remaining secret parameters.

Now, let’s see how the attacker proceeds revealing the other secret parameters t and

Kc. If an attacker has the subkey Ki and round number r, it will be enough to

break the whole algorithm by revealing the parameters t and Kc. Those parameters

specify the function E because the parameters are the iteration number and the

secret parameter of TDCM. Other operations, S, z, z−1 and w, are public and do

not depend on any secret parameter.

One may think that by the increase of weakness in the key, it would be possible

to apply a brute force attack for the remaining secret parameters. To apply a brute

force attack, the attacker needs to try all the possible values of t and Kc using a

known plaintext-ciphertext pair. For instance, by assuming that Kc has 32 bits, the

attacker has to try 239 different value for a brute force attack. However, we have

a general attack, which requires 216 chosen ciphertext/plaintext blocks, to reveal

rest of the key. Moreover our attacks have no high computational requirements.

Furthermore, our attacks do not become more complex with an increase in the key

size because they don’t depend on the choice of TDCM.

3.5.1 Sampling E

Here we will show that an attacker can obtain the ciphertext block C, en-

crypted using a subkey Ki and plaintext block P of his choice. Similarly, he can

obtain the plaintext block P , decrypted using a subkey Ki and ciphertext block C

of his choice. Indeed, the attacker is able to make a user to encrypt or decrypt a

chosen plaintext or ciphertext block with the subkey Ki of his choice. The only

thing for the attacker is to choose a subkey Ki and one of C or P in the relation

C = E(Ki, P), (3. 17)

and obtain the other. Note that the attacker already knows round number r, shift

amount m and the initial subkey Ks by applying the attacks described in preceding

sections. To see how the attacker can do this, the attacker applies the following op-

erations. First he chooses two plaintext blocks. Let’s write the encryption equations

for a sequence of two plaintext blocks as

20

C1 = E(Ks, P1),

C2 = E(ROL(Ks, rm)⊕ C1, P2). (3. 18)

Note that the proposed cryptosystem especially requires that ROL(Ks, rm)⊕C1 6= 0

for subkey to be updated.

By choosing C1 = Ki ⊕ ROL(Ks, rm), since ROL(Ks, rm) ⊕ C1 = Ki, the

second line in Eq.(3. 18) becomes

C2 = E(Ki, P2).

By using a two block decryption, we can obtain the desired plaintext block P , which

is decrypted via a chosen subkey Ki and plaintext block P . The second block is the

desired plaintext block. Therefore, in order to obtain the desired ciphertext block,

that is encrypted with an attacker defined subkey Ki, the attacker ought to choose

the ciphertext sequence C1C, in which C1 = Ki ⊕ ROL(Ks, rm), and obtains the

corresponding plaintext sequence P1P2. Let’s see the process more clearly as

C2 = E(ROL(Ks, rm)⊕Ki ⊕ROL(Ks, rm), P2) = E(Ki, P2).

Similarly, If he wants to know C for a particular P in Eq.(3. 17), he chooses the

plaintext sequence P1P and obtains C1C2. The desired ciphertext block C is the

second one, C2.

As a result of the attack described above, an attacker is able to sample the

function E using his choices of Ki and one of C and P , at any desired point (P, C)

of his choice.

Revealing the remaining secret parameters is equivalent to revealing the func-

tion σ in Eq.(3. 7). As stated above the mappings w, z, S are fixed and the attacker

already knows r, m, and Ki. An attacker can reveal the remaining parameters, t

and Kc if he has obtained r, m, and Ki. To achieve this, the attacker has to use

the attacks, described below, in a combination. Although the attacks work in a

combination, it sometimes is not needed to use all of the attacks together.

3.5.2 Permutation Orbit Attack

The function σ is composed of several invertible maps, so σ is also an invertible

map. The mapping is done from the set {0, 1, . . . , 216 − 1} onto itself. Indeed, we

can say that σ is a permutation on the set {0, 1, . . . , 216 − 1}. Permutation orbit

attack lets the attacker reveal some portions of permutation σ using some particular

21

choices of Ki.

The attacker chooses Ki such that the rotation process does not cause a change

in Ki. We can specify such subkeys as

ROL(Ki, m) = Ki. (3. 19)

Using such subkeys in Eq.(3. 7) makes the round process

vj = σ(vj−1 ⊕Ki), 1 ≤ j ≤ r.

Now, Let’s define a new permutation π, which is a modification of the permutation

σ, as

π(x) = σ(x⊕Ki). (3. 20)

Since Eq.(3. 10) has no effect in encryption process for the subkeys in Eq.(3. 19),

for x ∈ {0, 1, . . . , 216 − 1}, we can express the encryption process as

C = π ◦ π ◦ · · · ◦ π
︸ ︷︷ ︸

r times

(P) = πr(P).

By revealing a point in π such that Y = π(P), an attacker also reveals a point in σ

such that Y = σ(P ⊕Ki).

When choosing a subkey Ki, which turns the function E into the r−power of

a permutation, we should consider the shift amount m. For example, let us take

m = 2. The subkeys, that satisfy Eq.(3. 19), are 0101010101010101 (0x5555),

1010101010101010 (0xAAAA) and 1111111111111111 (0xFFFF). If m = 1, there

would be only one invariant subkey, that is (0xFFFF).

The attacker obtains different permutations π for each value of Ki that satisfies

Eq.(3. 19). We can show why they are different permutations clearly. Let’s assume

there are two different keys, K1 and K2, which turns the function E into the r−power

of a permutation. Note that if K1 6= K2, K1 ⊕ x 6= K2 ⊕ x. Also, let’s assume the

permutations πr
1 and πr

2 are the power permutations of E depending on K1 and K2

respectively. If π1(x) = Y and π2(x) = Z, then Y 6= Z. We can see this easily as

π1(x) = σ(x⊕K1) = Y and π2(x) = σ(x⊕K2) = Z. Note that K1 ⊕ x 6= K2 ⊕ x.

Permutations are one-to one and onto, so two different value cannot map to the

same value. Hence, we prove that the permutations are different.

An attacker can reveal the whole permutation πr. To achieve this, the attacker

needs totally 216 sampling processes, given in Section 3.5.1. He should obtain πr(P)

for every P in {0, 1, . . . , 216 − 1}, to reveal πr.

Permutation πr does not help the attacker to reveal σ. He needs to gather

information about the permutation π for revealing σ using Eq.(3. 20). Using

22

permutation orbit attack he can obtain some information about π.

Definition 3.5.1 [18] An ordered orbit of a permutation π on a finite set is the

ordered tuple (a0, a1, . . . , an−1) such that π(a0) = a1, π(a1) = a2, · · · , π(an−2) =

an−1, π(an−1) = a0. n is the length of the ordered-orbit. In other words, an orbit is

a subset of a permutation, which each value maps the next value circularly.

Theorem 3.5.2 [18] A permutation defined on a finite set partitions the set into

disjoint ordered-orbits.

I refer to an ordered orbit simply as an orbit hereafter. To find the orbits of a

permutation π defined on a set A, we start from any element a0 ∈ A and form the

orbit elements as (a0, π(a0), π
2(a0), . . . , π

n−1(a0)) until πn(a0) = a0. Here we found

an orbit with length n. To find another orbit we then select an unvisited element

b0 ∈ A and form the orbit just like the first orbit. By continuing in this fashion we

form all the orbits until there is no unvisited element in set A.

Note that if a0 is an element in an orbit of length n in the permutation π,

then, for all integers i,

πi(a0) = πi mod n(a0) (3. 21)

because the orbits are circular. After iterating the permutation π n times, we will

see the starting value as last mapped value. Hence the (n + 1)th iteration is equal

to 1st iteration.

Example 3.5.3 Let an orbit, α, of the permutation π has length n = 5 and is given

as α = {123, 323, 21, 223, 23} and let i = 7.

From the definition of the orbit we know π(123) = 323, π(323) = 21, π(21) =

223, π(223) = 23 and π(23) = 123.

Now, we can calculate π7(123) = π ◦ π ◦ π ◦ π ◦ π ◦ π ◦ π(123) = 21.

Also, the result of π7mod 5 = π2 = π ◦ π(123) = 21 which is equal to the result

of π7(123).

Lemma 3.5.4 Let α = (a0, a1, . . . , an−1) be an orbit of length n in the permutation

π, where gcd(n, r) = d. Then, α is split into d equal length orbits in πr. Moreover,

the elements a0, a1, . . . , ad−1 are in different orbits in πr.

Proof 3.5.5 The first thing to be proven is that any orbit in πr that contains aj,

0 ≤ j < n, has length n/d. Using the fact that lcm(n, r) ≡ 0 (modn) and Eq.(3.

21) we have

(πr)n/d(aj) = πrn/d(aj) = πlcm(n,r)(aj) = aj.

23

Thus, maximum length of an orbit in πr containing aj is n/d. Moreover, n/d is also

the minimum length. Let’s show this fact via a contradiction. Assume that there is

an integer i < n
d

such that ri ≡ 0 (mod n). This shows that ri is divisible by n.

Also, we know that ri is divisible by r. Hence, ri is a common multiple of n and

r. Furthermore, we have ri < lcm(n, r) and lcm(n, r) = rn/d. Since any common

multiplier cannot be smaller than the least one, this is a contradiction. Therefore,

any orbit in πr that contains aj has length n/d.

Second, we show that the elements a0, a1, . . . , ad−1 are in different orbits in

πr. To prove this fact let us again use a contradiction. Assume that there exists

integers i, j, 0 ≤ i < j < d, such that πrk(ai) = aj, for some integer k. Using the

definition of orbits we can also say that aj = πj−i(ai). Using this fact and Eq.(3.

21) we have rk ≡ j − i (modn). Now, as you see rk = j − i + xn where x is an

integer. Consequently, from the last equality we see that j − i must be divisible by

d, because xn and rk are also divisible by d. However, this is a contradiction since

0 ≤ i < j < d. As a result we see that a0, a1, . . . , ad−1 are in different orbits in πr.

Thus, α is split in πr into d non-overlapping orbits of length n/d each.

To see the Lemma 3.5.4 clearly, let’s give an example.

Example 3.5.6 Let an orbit, α, of the permutation π has length n = 8 and is given

as α = {123, 323, 21, 223, 23, 12, 345, 4} and let r = 6.

Since gcd(8, 6) = 2 the orbit α should be split into two new orbits in π6.

Repeating the same process in Example 3.5.3 for each element in α yields,

π6(123) = 345, π6(323) = 4, π6(21) = 123, π6(223) = 323, π6(23) = 21, π6(12) =

223, π6(345) = 23, π6(4) = 12.

Hence, from the mappings found, orbits of π6 which come from the orbit, α,

of permutation π are, α1 = {123, 345, 23, 21}, α2 = {323, 4, 12, 223}.

Moreover, you see that 123 and 323 are in different orbits which shows the

second fact of Lemma 3.5.4.

When the process in Example 3.5.6 is applied to all the orbits of π, resulting

orbits will be the orbits of πr.

Lemma 3.5.7 Let β = (b0, b1, . . . , bn−1) be an orbit in the permutation πr, and it

is the only orbit with length n. Then,

π(bj) = bj+r∗ (mod n), 0 ≤ j < n,

where r∗ is the multiplicative inverse of r in mod n, i.e. rr∗ ≡ 1 (mod n).

In other words, the orbit β is not split in πr, it is only shuffled during iterations

of rounds. And the shuffling formula is the given equality.

24

Proof 3.5.8 Let’s first show that gcd(n, r) = 1 using a contradiction. Assume that

gcd(n, r) = d and d > 1. As stated in Lemma 3.5.4, any orbit of length n in π is

split into d orbits in πr. Thus, only when there is an orbit of length nd in π, there

would be an orbit of length n in πr. However, we would have d orbits of length n in

πr in such a case. This is a contradiction since we assumed that there is only one

such orbit in πr. Therefore, gcd(n, r) = 1.

Now, let’s show that α, which is an orbit in π and contains the element b0,

contains all elements of β. As we know from the definition of an orbit, α contains

powers πi(b0) for all integers i. Hence, πrj(b0) is also an element of α for 1 ≤ j < n.

Moreover, πrj(b0) = bj, 0 ≤ j < n. Therefore, this is the proof which shows that α

contains all elements of β.

Let’s similarly show that β contains all the elements of α. Let aj = πj(b0) be

an element in α, and let k ≡ jr∗ (mod n), where rr∗ ≡ 1 (mod n). Certainly there

exists such an r∗ since gcd(n, r) = 1. By the construction of β in πr, (πr)k(b0) is in

β. Substituting k, we have

(πr)k(b0) = πrk(b0) = πrjr∗(b0) = πj(b0) = aj.

Therefore, β contains all the elements of α and during the conversion from the orbit

β in πr to the orbit α in π the elements are just shuffled, and we finally derive the

formula for the shuffle as

bi = (πr)i−j(bj), 0 ≤ i, j < n. (3. 22)

Choosing i = j + r∗ (mod n), and substituting in Eq.(3. 22), we obtain

bj+r∗ (mod n) = π(bj), 0 ≤ j < n.

Let’s give an example to show Lemma 3.5.7 more clearly.

Example 3.5.9 Let an orbit, α, of the permutation π has length n = 8 and is given

as α = {123, 323, 21, 223, 23, 12, 345, 4} and let r = 5.

Since gcd(8, 5) = 1 the orbit α should not be split into smaller orbits in π5.

Repeating the same process in Example 3.5.3 for each element in α yields,

π5(123) = 12, π5(323) = 345, π5(21) = 4, π5(223) = 123, π5(23) = 323, π5(12) =

21, π5(345) = 223, π5(4) = 23.

Hence, from the mappings found, orbits β of π5 which come from the orbit, α,

of permutation π is, β = {123, 12, 21, 4, 23, 323, 345, 223}.

Now, let’s construct back the orbit α from the orbit β using the formula in

Lemma 3.5.7.

25

First we found that r∗ = 5(mod 8). Then,

for j = 0, b0 = 123, π(b0) = b0+r∗ = b5 = 323,

for j = 1, b1 = 12, π(b1) = b1+r∗ = b6 = 345,

for j = 2, b2 = 21, π(b2) = b2+r∗ = b7 = 223,

for j = 3, b3 = 4, π(b3) = b3+r∗ = b0 = 123,

for j = 4, b4 = 23, π(b4) = b4+r∗ = b1 = 12,

for j = 5, b5 = 323, π(b5) = b5+r∗ = b2 = 21,

for j = 6, b6 = 345, π(b6) = b6+r∗ = b3 = 4,

for j = 7, b7 = 223, π(b7) = b7+r∗ = b4 = 23.

The reconstructed orbit α
′

= {123, 323, 21, 223, 23, 12, 345, 4} which is equal to

the orbit α.

Lemma 3.5.10 Let β = (b0, b1, . . . , bn−1) be one of the q orbits of length n in the

permutation πr. Let d be the least divisor of r larger than 1. Assume that q < d.

Then,

π(bj) = bj+r∗ (mod n), 0 ≤ j < n, (3. 23)

where r∗ is the multiplicative inverse of r in mod n, i.e. rr∗ ≡ 1 (mod n).

Proof 3.5.11 As stated in Lemma 3.5.4, the orbits are split in πr into d equal length

orbits, where d = gcd(n, r) and n is the size of the original orbit in π. Thus, if an

orbit is split in πr, there should be at least d orbits of equal length in πr.

Let’s show a contradiction to simply prove the thesis. Assume that gcd(n, r) =

d and d > q. As stated in Lemma 3.5.4, any orbit of length n in π is split into d

orbits in πr. Thus, only when there is an orbit of length nd in π, there would be an

orbit of length n in πr. However, we would have d orbits of length n in πr in such a

case. This is a contradiction since we assumed that there q orbits of length n in πr.

This fact shows that none of these orbits are split. Therefore, gcd(n, r) = 1.

As stated in Lemma 3.5.7, let β = (b0, b1, . . . , bn−1) be one of the q orbits of

length n in the permutation πr. The orbit α, which is an orbit in π and contains the

element b0, contains all elements of β. And similarly, β contains all the elements

of α. The elements are just shuffled during iterations of the permutation π. The

shuffling formula is given in Eq.(3. 23).

Using Lemma 3.5.7 and Lemma 3.5.10 we can reveal some portions of the

permutation π using the appropriate orbits in πr. However, there are some remaining

orbits , which we cannot be used to reveal more data from.

26

Lemma 3.5.12 Let β1 = (b1
0, b

1
1, . . . , b

1
n−1) and β2 = (b2

0, b
2
1, . . . , b2

n−1) be two orbits

of length n in πr. If π(b1
i) = b2

j for some i, j then

π(b1
i+k mod n) = b2

j+k mod n, 1 ≤ k < n.

Proof 3.5.13 Assume that we somehow now that π(b1
i) = b2

j for some i, j. We can

express the relation between b1
i and b1

i+k as πrk(b1
i) = b1

i+k. Operating by π on both

sides, we obtain πrk+1(b1
i) = π(b1

i+k), or πrk(π(b1
i)) = π(b1

i+k). Using π(b1
i) = b2

j , we

get πrk(b2
j) = π(b1

i+k). But the left hand side is just b2
j+k mod n and the result follows.

Let’s assume that the original orbit, which the orbits β1 and β2 comes from, is

α. Even though we are sure that these two orbits are come from α, we cannot say

that α is the composition of only these two since we cannot say that α is split into

exactly two orbits. The orbit α might be split into several orbits more than two.

Using Lemma 3.5.12 we can recover some more data if we have some sample

points from the orbits of unrecovered portion. Let’s give an example for Lemma

3.5.12.

Example 3.5.14 Let β1 = {123, 345, 23, 21} and β2 = {323, 4, 12, 223} are two of

the remaining orbits in πr and assume that we know that π(345) = 223.

By using this sample point we can say that π(23) = 323, π(21) = 4 and

π(123) = 12.

Or, let’s assume these two orbits comes from the orbit α in π, so we can say

that a portion of the orbit α is

α = {. . . , 345, 223, . . . , 23, 323, . . . , 21, 4, . . . , 123, 12, . . .}.

For second case please see Example 3.5.9.

After giving some necessary definitions, proofs and theorems, let’s see how an

attacker applies the permutation orbit attack. The attack proceeds as follows:

The attacker determines the appropriate subkeys Ki that satisfy Eq.(3. 19).

Let’s assume that there are k such subkeys. By using the sampling method shown

in Eq.(3. 18) and those subkeys Kj
i , the attacker finds E(Kj

i , P) for all P ∈

{0, 1, . . . , 216 − 1}. This is in fact πr
j that corresponds to Kj

i i.e. πr
j (x) = E(Ki, x),

for every x. After finding those permutations, the attacker starts to reveal some

portions of the permutation π using the given lemmas. He performs the following

steps for each Kj
i .

Step 1. Extract the power permutations πr
j by applying the sampling method given

in Eq.(3. 18) using all possible subkeys Kj
i shown in Eq.(3. 19).

27

Step 2. Compute all the orbits of the extracted power permutations using the method

shown in Algorithm ??.

Step 3. Select all lone orbits, which are stated in Lemma 3.5.7. Then, if there exist

such an orbit of length n1 in πr
j , use Lemma 3.5.7 to reveal n1 points in

πj . From those, reveal n1 points of σ using Eq.(3. 20). Repeat the same

process for all the lone orbits.

Step 4. Start to count the number of same sized orbits in πr
j . If there is a collection

of q orbits with same size, where q is less than the least divisor of r larger

than 1, then use Lemma 3.5.10 to reveal qn2 more points in πj , where n2 is

the length of an orbit in the collection. Then convert the revealed values of

π to the appropriate places in σ. Repeat all the processes to all the orbits.

Step 5. Do the above steps for each permutation πr
j and reveal different portions

of σ. Then, by Lemma 3.5.12, start to use the revealed points due to each

power permutation πr
j as a sample point for the other power permutations

if eligible.

To understand Step 5 more clearly let’s give more explanation. Let Rj ⊂

{0, 1, . . . , 216 − 1} be the points for which σ(Rj) is revealed using Steps 1, 2, 3 and

4 above with Kj
i for 1 ≤ j ≤ k. Let R = R1∪R2∪· · ·∪Rk. Let x ∈ R\Rj . Namely,

the attacker knows y = σ(x) but this point is revealed in either Step 3 or Step 4

for a key other than Kj
i . Then, πr

j contains two same length orbits β1 and β2 such

that x ⊕ Kj
i ∈ β1 and y ∈ β2. These orbits were not used in the Step 4 for Kj

i

above otherwise we would have x ∈ Rj . Hence, πj(x⊕Kj
i) = y. Then, the attacker

uses Lemma 3.5.12 with β1 and β2 to reveal some more points on σ. This, in turn,

adds points to R. The procedure is repeated until there are no points x satisfying

x ∈ R\Rj .

Furthermore, if the attacker uses any of the attacks explained below and some-

how obtains the new knowledge of a sample point in πj , and the point maps across

two orbits of length n3 in πr
j , then he uses Lemma 3.5.12 to reveal n3−1 more points

in πj .

3.5.3 Expansion Attack

The permutation orbit attack, which we described in previous section, partially

reveals the permutation σ. Here, we describe an attack, which we call as expansion

attack, which works with a partially revealed permutation σ.

Let’s denote the revealed portion of σ by R, and unrevealed portion of σ by

U . Hence, R and U are two disjoint subsets of {0, 1, . . . , 216− 1} such that R∪U =

28

{0, 1, . . . , 216−1}. Indeed, the attacker knows the value of σ(x) for every x ∈ R and

he does not know the value of σ(x) for any x ∈ U .

By using the sampling method described in preceding sections, an attacker

knows any triple (C, P, Ki) of his choice such that C = E(Ki, P). Assume that

the attacker has such a triple, where C ∈ U i. e. he does not know the value

which is mapped by σ to C. The attacker has P and Ki, so he can carry out

the calculations in the steps of Eq.(3. 7) until he arrives an unrevealed value

vj ⊕ ROL(Ki, (j + 1)m) ∈ U where j is the round number. He starts out with

v0 = P . He can calculate v1 if v0 ⊕ ROL(Ki, m) ∈ R since

v1 = σ(v0 ⊕ ROL(Ki, m)).

Once he knows v1, he can calculate v2 if v1 ⊕ ROL(Ki, 2m) ∈ R since

v2 = σ(v1 ⊕ROL(Ki, 2m)).

Assume that he continues in this fashion, reaches the penultimate step and calculates

vr−1. Certainly, vr−1 ⊕ROL(Ki, rm) /∈ R since otherwise we would have

C = vr = σ(vr−1 ⊕ ROL(Ki, rm)) ∈ σ(R)

which contradicts the assumption. However, this is what we expect to finalize the

expansion attack since the attacker has just revealed the value of the map σ at a

new point vr−1⊕ROL(Ki, rm), and he already knows C. As a result, if the attacker

reaches the last step without encountering an unrevealed value, he expands R by

one point and shrinks U by one point. The new point is

σ(vr−1 ⊕ROL(Ki, rm)) = C.

The attacker tries all possible such triples to reveal more and more points.

Note that each revealed point is a sample point, and if the attacker uses this sample

point as in Lemma 3.5.12. He may add a new orbit or two orbits into the revealed

portion R by the way. Hence, at the end of each success of expansion attack, the

attacker uses Lemma 3.5.12 to reveal the remaining points faster. This also increases

the probability of the success in expansion attack since R is expanded.

3.5.4 Skipping Attack

The expansion attack attack described in previous section give successful re-

sults when an applicable portion of the permutation σ is not revealed. Unless there

are enough points in revealed portion R, we may not reach the last round success-

29

fully. We can see from Eq.(3. 8) that when r ≥ 9 we have m = 1. Thus, there

is only one subkey satisfying Eq.(3. 19) when m = 1, so the attacker cannot use

Lemma 3.5.10 in permutation orbit attack. Moreover, there may not be such many

orbits satisfying Lemma 3.5.7, so he may reveal a very small portion of the permu-

tation σ. Also when r is an even number, its smallest divisor is 2 and he can not

use Lemma 3.5.10 again. This adversely affects the size of the revealed set R that

can be used in the expansion attack.

Now let me explain our skipping attack that works with r ≥ 9 and even. The

attack relies on deriving a new permutation by skipping over odd rounds in the

expression of E in Eq.(3. 7).

Assume that a nonzero Ki satisfies

ROL(Ki, 2) = Ki. (3. 24)

which is slightly different from Eq.(3. 19).

Since the skipping attack skips the odd rounds, we now substitute the odd

round outputs into even round expressions. Using Eq.(3. 24) with Eq.(3. 7) with

those substitutions we obtain

v0 = P,

v2 = σ(σ(v0 ⊕ ROL(Ki, 1))⊕Ki),

v4 = σ(σ(v2 ⊕ ROL(Ki, 1))⊕Ki),

...

vr = σ(σ(vr−2 ⊕ROL(Ki, 1))⊕Ki),

C = vr.

Defining a new permutation γ as

γ(x) = σ(σ(x⊕ ROL(Ki, 1))⊕Ki), (3. 25)

we can express the relation between C and P as

C = γr/2(P).

Thew attacker applies the permutation orbit attack with Ki =0xFFFF. Then,

he obtains the permutation πr, and using Lemma 3.5.7 and Lemma 3.5.10, he reveals

a portion of σ. Let R denote the revealed portion of the map σ.

The skipping attack proceeds as follows. The attacker does the same process

he did in permutation orbit attack. He chooses every P ∈ {0, 1, . . . , 216 − 1} and

obtains their corresponding ciphertext block with K1
i = 0x5555 and K2

i = 0xAAAA

30

satisfying Eq.(3. 24). Hence, the attacker finds the permutations γ
r/2
1 and γ

r/2
2 .

For each γ
r/2
j , j = 1, 2, the attacker uses its orbit structure to reveal a portion of γj

using permutation orbit attack.

Assume the attacker has determined a pair (x, y) such that y = γj(x) for some

j. Hence, he knows that

y = σ(σ(x⊕ ROL(Kj
i , 1))⊕Kj

i). (3. 26)

There are two ways the attacker can use Eq.(3. 26) to reveal a new point on σ.

In the first case, if x⊕ROL(Kj
i , 1) ∈ R and y /∈ σ(R), the attacker reveals the

value of the map σ as

σ(x⊕ROL(Kj
i , 1))⊕Kj

i = y.

On the other hand, if y ∈ σ(R) and x ⊕ ROL(Kj
i , 1) /∈ R, the attacker reveals the

value of the map σ as

σ−1(y)⊕Kj
i = x⊕ROL(Kj

i , 1).

Thus, with the skipping attack, the attacker reveals some new points on the

map σ. He subsequently uses Lemma 3.5.12 to check if these new points correspond

to mappings across two different orbits in πr that were not used in the permutation

orbit attack. If so, the revealed portion R is expanded even more.

3.6 Simulation Results

We give simulation results for three examples that illustrate our methods.

Simulations are performed under MATLAB running on Mac OS X 10.5.4 with Intel

Core 2 Duo 2.16 GHz processor and 2 GB RAM.

In the first simulation, we used the cryptosystem with secret parameters given

in the example in [11]. We have r = 8, m = 2, t = 12, C0 = 0x4ED3, Ks = 0x8F4C.

Using the equivalence explained in Section 3.3, this is equivalent to C0 =0x0000,

Ks =0xC19F = 0x4ED3⊕0x8F4C. We used the standard map as TDCM. The secret

TDCM parameter is Kc = 53246.

We first applied the chosen ciphertext attack on Ks given in Section 3.4. We

found only one nonzero candidate for Ks. Hence we do not have false candidates for

the subkey.

Next, we applied the permutation orbit attack with the block keys K1
i =0xFFFF,

K2
i = 0x5555 and K3

i =0xAAAA and obtained the orbit structures of π8
1, π8

2, π8
3 for

π1, π2, π3 defined in Eq.(3. 20).

The orbit structure of π8
1 with K1

i =0xFFFF is given as (8, 6714), (1, 3895),

31

(8, 804), (1, 699), (1, 449), (4, 63), (1, 25), (8, 9). Here a pair (q, n) means that there

are q orbits of length n.

Similarly, the orbit structure of π8
2 with K2

i =0x5555 is given as (1, 32489),

(2, 4729), (4, 4535), (1, 1805), (1, 1455), (1, 935), (1, 153), (8, 106), (1, 57), (2, 33),

(4, 21), (1, 19), (2, 13), (1, 1).

Finally the orbit structure of π8
3 with K3

i = 0xAAAA is given as (1, 39285),

(1, 17431), (1, 3115), (2, 1805), (1, 1307), (1, 513), (4, 23), (8, 21), (1, 11), (4, 1).

We apply Lemma 3.5.7 to lone orbits of length 3895, 699, 449 and 25 in π8
1 to

reveal 5068 entries in σ. Applying the Lemma 3.5.7 to π8
2 and π8

3, we reveal 36914

and 61662 entries, respectively. These correspond to |R1| = 5068, |R1| = 36916,

|R1| = 61662. Some of these overlap. In total, with the orbit attack we reveal 63945

entries of σ. Hence, |R1 ∪ R2 ∪ R3| = 63945. This corresponds to the 97.57% of the

map σ.

From the revealed portion R of σ, we see that 0 ∈ R and that σ(0) = 34114

but 0 /∈ R1. Searching for 0x0000⊕0xFFFF in the orbits of π8
1, we see that it is

mapped across two orbits of length 6714 in π8
1. Using this knowledge with Lemma

3.5.12, we reveal 6714 new points in σ. Continuing in this fashion, we reveal all of σ

in 15 applications of Lemma 3.5.12. In total, the attack takes less than a minute.

In the second example, we illustrate the combination of permutation orbit and

expansion attacks for the case when r = 5 and m = 3. The rest of the parameters

are the same.

We first apply the attack on Ks for the case rm 6≡ 0 mod 16 given in Section

3.4.2. In this case, we have u = 15, so Ki is rotated left by 15 bits after the

encryption of every block of plaintext. We found two nonzero candidates for Ks;

0xC19F and 0xCFE1. Using the elimination method given at the end of Section 3.4.2,

we arrived at the correct subkey Ks =0xC19F.

Since m = 3, we can apply the permutation orbit attack only with K1
i =0xFFFF.

We obtain the orbit structure of π5
1 as (1, 53712), (1, 6432), (5, 779), (1, 699), (1, 449),

(1, 252), (1, 72), (5, 5).

We apply Lemma 3.5.7 to lone orbits of length 53712, 6432, 699, 449, 252 and

72 in π5
1 to reveal 61616 entries in σ. This corresponds to 94.02% of the map σ.

We saw that 1 /∈ σ(R). So, we choose C = 1 in the expansion attack. We try

Ki = 1 and find P = 65082. The expansion attack for these values indeed succeeds

and we find 1 = σ(680).

Now, we go back to the result of permutation orbit attack. Searching for

680⊕0xFFFF in the cycles of π5
1, we see that it is mapped across two cycles of length

779. Using this sample point with Lemma 3.5.12, we reveal 779 new points in σ.

Thus, the revealed set R gets bigger by 779 new points. Hence, a new expansion

attack is even more likely to succeed. Repeating the attack with 9 more unrevealed

32

ciphertext blocks with the same Ki = 1, we reveal the whole map σ. The attack

takes less than a minute.

In the last example, we illustrate the skipping attack when m = 1. We choose

r = 10. The rest of the parameters are the same. After we recover the subkey Ks as

in the previous example, we apply the permutation orbit attack with K1
i =0xFFFF

and we obtain the orbit structure of π10
1 as (2, 26856), (2, 3216), (5, 779), (1, 699),

(1, 449), (2, 126), (2, 36), (5, 5).

We apply Lemma 3.5.7 only to lone orbits of length 699, 449 in π10
1 to reveal

1148 entries in σ. This corresponds to 1.75% of the map σ.

Now we apply the skipping attack to reveal the rest of σ. We first extract the

orbit structures of γ5
1 and γ5

2 for K1
i =0x5555 and K2

i =0xAAAA, respectively. They

have the same structure and it is given as (1, 27196), (1, 13976), (1, 13571), (1, 9404),

(1, 307), (1, 226), (1, 207), (5, 118), (1, 28), (1, 27), (2, 2).

We first use the lone cycles in γ5
1 with Lemma 3.5.7, to recover a portion of γ1.

From the partially revealed portion of γ1, we know γ1(3) = 1898 and 1898 /∈ σ(R).

We want to use this to reveal σ−1(1898). Writing Eq.(3. 25) with x = 3, we have

1898 = σ(σ(0x0003 ⊕ 0xAAAA)⊕ 0x5555).

Seeing that 0x0003⊕0xAAAA∈ R and σ(0x0003⊕0xAAAA) = 35007, we obtain 1898 =

σ(35007⊕0x5555) or 1898 = σ(56810). Using this with Lemma 3.5.12 in π10
1 , we

see that σ(56810) = 1898 maps across two orbits of length 3216 in π10
1 . Hence, we

reveal 3215 new points in σ. Continuing in this fashion with points in γ1, we quickly

reveal all of the map σ. The attack takes less than a minute.

3.7 Concluding Remarks

In this chapter, we gave a complete break of a cryptosystem that uses dis-

cretized two-dimensional chaotic maps. We showed a dependence among secret

parameters that yield a smaller key space. We next showed that 16 bits of the key

can be revealed using a chosen ciphertext attack. We gave an equivalent representa-

tion of the cryptosystem that correspond to replacing two of the secret parameters

with an unknown permutation over a small set. We gave permutation orbit, expan-

sion and skipping attacks that, in combination, reveals the unknown permutation.

Using simulation with different parameters, we also demonstrated the feasibility of

our attacks and gave the simulation results.

33

Chapter 4

Cryptanalysis of Chaotic Map Lattice Based Systems

An cryptosystem must obey all the rules to work correctly in all the cases.

For example, an encryption algorithm must be invertible. Otherwise, it becomes

impossible to uniquely recover the concealed messages. Moreover, the algorithm

needs to operate correctly for all defined inputs and in machines working with finite

precision arithmetic.

In this chapter, I demonstrate our published comment [19] on an article [20],

that a recently proposed chaotic encryption system is not invertible under double

precision arithmetic. In Section 4.1, I describe the Logistic Map in detail. Then

I describe the proposed encryption scheme in Section 4.1. In Section 4.2 we show

that the algorithm works incorrectly for some inputs. After stating the wrong cases,

I give a modified propose for the cryptosystem in Section 4.3. In Section 4.4, I give

Our break for the modified scheme. Finally, I illustrate the break by giving some

simulation results and concluding remarks.

4.1 Description of the Cryptosystem

The proposed encryption scheme in [20] uses logistic map as a one-dimensional

chaotic map. Mathematically, the logistic map is written in [21] as

xn+1 = rxn(1− xn). (4. 1)

Here xn is a number between zero and one, and represents the population at year

n, and hence x0 represents the initial population (at year 0). Also r is a positive

number, and represents a combined rate for reproduction and starvation.

The parameters should be chosen in appropriate ranges for the logistic map to

behave as a chaotic map. The article [20] describes the chaotic logistic map as

x(k + 1) = f(x(k)) = ax(k)(1− x(k)). (4. 2)

The algorithm is proposed as a image encryption scheme. Let us denote the set

of gray levels {0, 1, . . . , 255} by T , and let the vector c ∈ Tm represent a vector, which

is produced by converting an image into a column vector. For an N ×M image,

34

m is the total number of pixels, i.e. m = NM . The encryption algorithm takes

the vector c as the plaintext input, and it generates another vector d ∈ Tm as the

ciphertext output. The algorithm needs to follow three steps for this transformation;

a D/A conversion to work with real numbers, chained chaotic iteration for a number

of cycles, and finally an A/D conversion to convert the real numbers into integers.

To apply the D/A conversion, each integer pixel value ci is mapped to one of

256 distinct real values in the chaotic attractor (xmin, xmax) using

xi = xmin + (xmax − xmin)
ci

255
, 1 ≤ i ≤ m, (4. 3)

The maximum value of x is known as xmax = a/4, and iterating the maximum value

of x once yields the minimum value for x. Hence, xmin = (4a2 − a3)/16.

After the D/A conversion process, the real values xi are transformed using

repeated chaotic iteration as follows. The initial values for cycle 0 are yi(0) = xi,

1 ≤ i ≤ m. The transformation for the jth cycle, j ≥ 1, is given as

y1 (j) = A(fn(ym(j − 1)) + y1(j − 1)),

yi(j) = A(fn(yi−1(j)) + yi(j − 1)) i ≥ 2, 1 ≤ j ≤ r, (4. 4)

where the function A : R→ R is defined as

A(u) =







u, u ≤ xmax,

u− (xmax − xmin), u > xmax,
(4. 5)

and r denotes the number of cycles in the encryption. In Eq.(4. 4), the logistic

map f is iterated n times starting with the initial value yi−1(j) for i ≥ 2 and with

ym(j − 1) for i = 1.

In the proposal [20], Eq.(4. 4) is expressed slightly different without the

function A. Here, we introduced the function A to emphasize that Eq.(4. 4)

tries to make sure that the transformed value yi(j) remains within the attractor.

However, as we show in the sequel, this choice is incorrect.

In the final A/D conversion step, yi(r) is mapped back to an integer di in T

using

di = round

[

(yi(r)− xmin)
255

xmax − xmin

]

. (4. 6)

In decryption, the algorithm has the vector d as its input and generates the

original plaintext vector c. The decryption also has three steps; D/A conversion,

chained chaotic iteration in the reverse direction, and A/D conversion.

In the D/A step, we use

35

yi(r) = xmin + (xmax − xmin)
di

255
, 1 ≤ i ≤ m (4. 7)

to map the integer values di to the fixed locations yi(r) in the attractor.

In the chained chaotic iteration step, we work backwards through j cycles to

get the original real values using

yi(j − 1) = B(yi(j)− fn(yi−1(j))), i ≥ 2, 0 ≤ j ≤ r (4. 8)

y1(j − 1) = B(y1(j)− fn(ym(j − 1))),

where the function B : R→ R is defined as

B(u) =







u, u ≥ 0,

u + (xmax − xmin), u < 0.

In the proposal [20], Eq.(4. 8) is expressed slightly different without the function

B. Here, we introduced the function B to emphasize that Eq.(4. 8) tries to make

sure that the transformed value yi(j − 1) remains within the attractor.

In the A/D step, we map the real values xi = yi(0) to corresponding integer

values in T using

ci = round

[

(yi(0)− xmin)
255

xmax − xmin

]

, 1 ≤ i ≤ m. (4. 9)

4.2 Analysis

There are several problems with the proposed cryptosystem based on chaotic

Logistic Map.

First of all, it is possible to have values outside the attractor (xmin, xmax)

in encryption process due to the functions A(·) and B(·). Hence, the succeeding

iterations will not behave chaotically and give the values outside the attractor.

Moreover, A/D conversion step Eq.(4. 6) may yield pixel values not in T . Indeed,

using Eq.(4. 4) with j = 1 and i ≥ 2, we have

yi(1) = A(fn(yi−1(1)) + yi(0)), (4. 10)

yi+1(1) = A(fn(yi(1)) + yi+1(0)). (4. 11)

Note that, in Eq.(4. 11), the initial value for the iteration of f is yi(1). Also, yi(1)

is obtained as the value of the function A in Eq.(4. 10). Thus, in order for the

initial value yi(1) to be inside the attractor, the function A must yield values inside

the attractor. We demonstrate with a simple example that this is not the case in

the scheme proposed in [20].

36

Let us choose n = 1, a = 3.9, j = 1, yi−1(1) = 0.5, and yi(0) = xmax − ǫ, with

i ≥ 2. Using Eq.(4. 10) and Eq.(4. 2), we have yi(1) = A(f(0.5) + xmax − ǫ) =

A(2xmax − ǫ). If ǫ is small enough, we have 2xmax − ǫ > xmax and using Eq.(4. 5)

with u = 2xmax − ǫ, we find yi(1) = xmax + xmin − ǫ. Clearly, for small ǫ, yi(1) is

outside the attractor (xmin, xmax). Therefore, using the functions A(·) and B(·) as

proposed in [20] leads to incorrect operation.

The proposed encryption algorithm needs to be improved against these in-

correct operations, and it should be guaranteed that all the values fall within the

attractor. Since the fault arises due to the functions A(·) and B(·), we suggest the

following modified functions for A(·) and B(·).

A(u) =







u, u ≤ xmax,

u− (xmax − xmin), xmax < u ≤ 2xmax − xmin,

u− 2(xmax − xmin), 2xmax − xmin < u.

B(u) =







u, u ≥ xmin,

u + (xmax − xmin), −xmax + 2xmin ≤ u < xmin,

u + 2(xmax − xmin), u < −xmax + 2xmin.

Even though these improvements correct the first problem, there still is another

problem with the proposal. The problem is that the encryption transformation which

is defined in Eqns.(4. 3, 4. 4, 4. 6) is not invertible because it involves many-to-one

rounding function.

In the D/A step of the decryption, yi(r) values calculated by Eq.(4. 7) is one

of the 256 fixed points on the attractor. However, the real value yi(r) calculated

using Eq.(4. 4) is not necessarily one of those fixed 256 real values. Indeed, Eq.(

4. 6) maps yi(r) to the integer value di corresponding the closest of the fixed points

by way of rounding. Thus, when decrypting, the initial value to the chaotic map

f in Eq.(4. 8) is one of the points on the fixed grid. Therefore, yi(0) calculated

in Eq.(4. 8) is different than the original xi used in Eq.(4. 4). If this difference

is large enough, then the decrypted color value is different than the original color

value ci. Hence, the encryption as described in [20] is not an invertible function. In

the following example, we illustrate the fact with numerical values.

Example 4.2.1 To illustrate the preceding argument, we pick a vectorized image

with only two pixels with

c1 = 0, c2 = 25.

Let the encryption keys be given as a = 3.9, n = 25, r = 1. In this case, using Eq.(

37

4. 3) and Eq.(4. 4), we find

x1 = 0.0950625, x2 = 0.181330882352941

and

y1(1) = 0.663955819836359, y2(1) = 0.875143546668635.

By Eq.(4. 6), these values correspond to the encrypted color values

d1 = 165, d2 = 226.

In decrypting these values, we use Eq.(4. 7) to obtain the fixed points on the grid

as

y1(1) = 0.664433823529412, y2(1) = 0.874928676470588.

Using these values in Eq.(4. 8), we obtain

x1 = y1(0) = 0.244811426834675, x2 = y2(0) = 0.769496460931825.

Finally, we use Eq.(4. 9) to obtain the decrypted color values

c1 = 43, c2 = 195.

Obviously, these are different than the original values fed into the encryption

process. Therefore, the encryption transformation is not invertible.

There is still a remedy for this incorrectness, which might be to omit the A/D

step in the encryption and directly communicate the real values yi(r), 1 ≤ i ≤ m

to the decrypting party. Then due to the fact that encryption and decryption must

be symmetric, we also omit the D/A step in the decryption. This is not a good

remedy since it has the cost of increasing the communication bandwidth. Indeed, if

we use double precision floating point, eight bytes need to be transmitted for each

encrypted pixel. In the non-invertible scheme, only one byte needs to be transmitted

for each pixel.

The most important problem with the proposal is that the multiple round

encryption is not invertible with the usage of finite precision arithmetic. This is the

most serious fault of the three. Although previous two problems can be overcome

by simple modification on how the transformation is performed, we could see no

way to avoid the last one as long as finite precision arithmetic is used. The reason

is that the addition operation is not invertible in finite precision.

38

Example 4.2.2 We illustrate this point by starting off with a two pixel image with

c1 = 9, c2 = 30.

In all the calculations we used GNU C compiler gcc 4.0.1 running on Mac OS X

10.5.2 with Intel Core 2 Duo 2.16 GHz. We used double type for all the real numbers.

Let the encryption keys be given as a = 3.9, n = 75, r = 2. Again, using Eq.(4. 3)

and Eq.(4. 4), we obtain

x1 = 0.12611911764705890926, x2 = 0.19858455882352948896

and

y1(1) = 0.47374838065180635560, y2(1) = 0.60677852279589572504.

Using the y(1) values in a second round, we find

y1(2) = 0.87230863276263015393, y2(2) = 0.96099263265698176006.

Now we start off with y(2) and work backwards to decrypt. We assume that the

receiver has the exact values y1(2) and y2(2). Using these values in Eq.(4. 8), we

obtain

y1(1) = 0.47374838065180641111, y2(1) = 0.60677852279589572504.

Note that y(1) so obtained is slightly different than the one obtained in encryption.

This is due the non-invertible nature of finite precision addition. When y(1) is

subsequently used in the chaotic iteration Eq.(4. 8) once more, the difference is

amplified. Thus we obtain,

x1 = y1(0) = 0.36869120468326127549, x2 = y2(0) = 0.50596375159066242500.

These real values correspond to the color values

c1 = 79, c2 = 119.

Clearly, the encryption algorithm is not invertible.

39

4.3 Suggested Improvements and the Modified Cryptosystem

In these analysis we pointed out three flaws in a previous proposal for chaotic

encryption. We showed that the encryption function is not well-defined for some

values. We also showed that the rounding operation and the finite precision arith-

metic renders the algorithm non-invertible. We suggested remedies for two of the

problems we identified.

A useful way to improve the proposed chaotic scheme is that working with

integer values rather than real numbers as suggested in [22]. If we impose this

suggestion to the cryptosystem, the encryption and decryption algorithm changes

slightly.

Let us denote with say DA the function of D/A conversion shown in Eq.(4.

3), and by AD the function of A/D conversion shown in Eq.(4. 6) as well. Then

the encryption algorithm can be slightly modified as

c1(j) = AD(fn(DA(cm(j − 1)))) + c1(j − 1) mod L,

ci(j) = AD(fn(DA(ci−1(j)))) + ci(j − 1) mod L, (4. 12)

where i ≥ 2, 1 ≤ j ≤ r and L is the number of gray levels, which is 256 for RGB

images.

After finalizing the process in Eq.(4. 12), we can denote the ciphertext as

di = ci(r). Decryption is also becomes

ci(j − 1) = ci(j)− AD(fn(DA(ci−1(j)))) mod L, (4. 13)

c1(j − 1) = c1(j)−AD(fn(DA(cm(j − 1)))) mod L,

where i ≥ 2, r ≥ j ≥ 1 and L is the number of gray levels, which is 256 for

RGB images. The final values ci(1) are the decrypted plaintexts.

From now on, the algorithm is invertible due to the usage of integer values in

every step except the chaotic map. Applying the modulus operation to the integer

values rather than real numbers, that is replacing A and B with a modulus operation,

makes the algorithm invertible.

The algorithm may become faster by the usage of a substitution map for the

iterated chaotic function. That is, we can calculate AD(fn(DA(t))) for all gray

levels t ∈ T just before either encryption or decryption processes, and use the values

during the processes. Let’s denote the map with S, so that S(t) = AD(fn(DA(t))).

Now encryption process, expressed in Eq.(4. 12), becomes

c1(j) = S(cm(j − 1)) + c1(j − 1) mod L,

ci(j) = (S(ci−1(j)) + ci(j − 1)) mod L, (4. 14)

40

and similarly decryption process, expressed in Eq.(4. 13), becomes

ci(j − 1) = (ci(j)− S(ci−1(j))) mod L, (4. 15)

c1(j − 1) = (c1(j)− S(cm(j − 1))) mod L.

The last modification makes the encryption algorithm faster. Performing the

encryption process via a look up table, instead of iterating the chaotic map n times

for each pixel, reduces the number of operations. Moreover, we can increase the

number of rounds due to this speed up.

4.4 Chosen Plaintext Attack on Modified Algorithm

The algorithm still has some weaknesses in spite of the suggested modifications.

The only thing for an attacker to do is to reveal the S map. The attacker can reveal

the map via a chosen plaintext attack. The attack is explained below step by step.

The first step is to obtain ciphertexts for all possible two pixel images. That

is the attacker makes the user encrypt 65536 two pixel images.

Let the plain image c = (c1, c2). Let d denote the cipherext. After one round

encryption we have

d = (d1, d2) = ((S(c2) + c1) mod L, (S(d1) + c2) mod L) (4. 16)

We can express one round encryption as

d = (d1, d2) = π(c1, c2), (4. 17)

where π : T × T → T × T is a one-to one mapping over T × T .

Then the r round encryption becomes

d = (d1, d2) = πr(c1, c2). (4. 18)

The decryption of a single round can be expressed as

c = (c1, c2) = π−1(d1, d2). (4. 19)

then the r round decryption becomes

c = (c1, c2) = π−r(d1, d2). (4. 20)

If one has a point in permutation of a single round encryption π, he ca reveal

two points in S map using Eq.(4. 19) and Eq.(4. 16) as

41

S(c2) = (d1 − c1) mod L

S(d1) = (d2 − c2) mod L) (4. 21)

Now, I will show that how an attacker can reveal partial information of π using

the result of r-round encryption πr. First, the attacker applies the chosen-plaintext

attack mentioned above and obtains the permutation πr.

As we can see in [20], the round number r should be very small for a fast

encryption. Therefore, it is very easy for an attacker to crack it via a brute force

attack. Let’s assume that the attacker knows the number of rounds and applies the

permutation orbit attack, introduced in Chapter 3, to the map πr. The attacker can

reveal partial information using the orbit structure of πr and the permutation orbit

attack. You can see the necessary definitions, lemmas and proofs for the permutation

orbit attack in Chapter 3.

Let (x, y) ∈ R, where R denotes the revealed portion of π. That is the attacker

knows the value of π at the points (x, y). Using Eq.(4. 21) the attacker can

reveal two points in the map S. The attacker can reveal a huge amount of S map

even if the revealed portion of π is very small. In general the attacker reveals

the whole map. For example, assume that an attacker reveals %0.1953125 of the

permutation π using the permutation orbit attack. This means that the attacker has

65536×%0.1953125 = 128 points in π. Using these points the attacker can reveal

at most 256 points in the map S without an overlap. Since there will be overlaps

and the revealed points will be less than or equal to 256.

Even if the attacker is unable to reveal all the map using the permutation

orbit attack, he can still continue to reveal more points using another attack via

consistency checks.

Let (xi, yi) be a point in one of the unrevealed orbit

α = {(x1, y1), (x2, y2), . . . , (xn, yn)}

of πr, where n is the length of the orbit. The attacker checks to see that whether

the orbit is a lone orbit by using Lemma 3.7.7 and Eq.(4. 21). The test can be

done as

π(xi, yi) = (xi+R∗ (mod n), xi+R∗ (mod n)), 0 ≤ j < n,

where R∗ is the multiplicative inverse of R in mod n, i.e. RR∗ ≡ 1 (mod n). The

attacker uses Eq.(4. 21) to see if the equation holds. If Eq.(4. 21) yields revealed

points in S and if the results hold with the revealed values, the attacker reveals

42

more points in S by adding this orbit. If the check yields the unrevealed points of

S, the attacker continues with the next value and continues in this fashion until a

consistent or an inconsistent point is found. If the attacker fins inconsistent results,

the attacker stops this process on this orbit and continues with another unrevealed

orbit.

Unless the attacker reveals the whole S map, he continues to make another

consistency check. Let (x1
i , y

1
i) and (x2

j , y
2
j) be two points in the orbits α1 and α2

respectively. Let the orbits α1 and α2 be two unrevealed orbits in πr with same

length of n. The attacker uses Lemma 3.7.12 and Eq.(4. 21) to see whether these

points maps each other in π. If Eq.(4. 21) yields the revealed points in S and if

the values hold with the revealed values, the attacker adds new points in S. If the

attacker finds such an arbitrary point in two different orbits α1 and α2, he starts

to add these two orbits into the revealed portion of π and reveal more points in S

using Eq.(4. 21) and Lemma 3.7.12. Similarly if the check yields the unrevealed

points of S, the attacker continues with the next value and continues in this fashion

until a consistent or an inconsistent point is found.

Adding a large orbit may cause to find all the unrevealed portion of the S

map. Hence, the attacker starts to apply the consistency check from the large sized

orbits.

The attacker uses all these attacks in a combination and reveals the map S

successfully.

4.5 Simulation Results

We give simulation result for an example that illustrates our method of crypt-

analysis. Simulations are performed under MATLAB running on Mac OS X 10.5.4

with Intel Core 2 Duo 2.16 GHz processor and 2 GB RAM.

In our example, we select the parameters as; a = 3.81, iteration number n = 75

and round number j = 20. After applying the chosen-plaintext attack as explained

above, we obtained the two dimensional map and calculated its orbits as in Chapter

3.

After applying the permutation orbit attack, we revealed 2.9% of the two

dimensional map, which helps us to reveal 52.73% of the S map using Eq.(4. 21).

Then we apply the consistency check and revealed the remaining portion of S

map.

The attack takes less than a minute.

43

4.6 Concluding Remarks

We showed that the proposed cryptosystem in [20] is not invertible for some

cases due to finite precision arithmetic and rounding operation. Then we gave

another proposal to improve the proposed encryption scheme. The new proposition

slightly alters the algorithm. Also, we give a complete break for the new proposed

algorithm. In our break we use chosen plaintext attack to reveal the necessary

parameters.

44

Chapter 5

Cryptanalysis of a Chaos-Based Image Encryption

Algorithm

A chaos-based image encryption algorithm [23] was proposed on Physics Let-

ters A. The encryption algorithm first shuffles the image pixels using Arnold’s Cat

Map [15]. After shuffling process the proposed algorithm changes the gray levels

of the image pixels using Chen’s Chaotic System [24]. In this chapter, I give our

complete break [25] for the proposed cryptosystem using either a chosen plaintext

attack or a known plaintext attack.

First, Arnold’s Cat Map and Chen’s Chaotic System are described in Sections

5.1 and 5.2 respectively. Then the proposed encryption algorithm is described in

detail, in Section 5.3. In Section 5.4, I demonstrate our chosen plaintext attack that

reveals all the secret parameters. In Section 5.5, I give our known-plaintext attack

which does the same as in previous section. In Section 5.6, I illustrate the success

of our break with some simulation examples. Finally, in Section 5.7, I give some

concluding remarks.

5.1 Arnold’s Cat Map

I described Arnold’s Cat Map in Chapter 3 in detail. Here, I give the descrip-

tion of the two-dimensional chaotic map given in [23].

Arnold’s Cat Map is applied to N ×N images. Assume that we have a N ×N

image P with the pixel coordinates I = {(x, y)|x, y = 0, 1, 2, ..., N − 1}. In [23],

Arnold’s Cat Map is given as,

[

x′

y′

]

= A

[

x

y

]

=

[

1 p

q pq + 1

][

x

y

]

mod N, (5. 1)

where p, q are positive integers and x′, y′ are the coordinate values of the shuffled

pixel. Using this map with iterations, images are shuffled chaotically.

5.2 Chen’s Chaotic System

Chen’s chaotic system is a set of differential equations, and is given in [23] as,

45

ẋ = a(y − x),

ẏ = (c− a)x− xz + cy,

ż = xy − bz.

(5. 2)

where a, b and c are the parameters of the system. Chen’s system is chaotic when the

parameters have the values; a = 35, b = 3 and c ∈ [20, 28.4]. There is an illustration

of the chaotic system for some parameter values in Figure 5. 1.

Figure 5. 1 Chaotic behavior of Chen’s system

To discretize the chaotic system, [23] chooses a value for Runge-Kutta step

size. In the proposed encryption scheme the step of Runge-Kutta is chosen as 0.001.

The Eq.(5. 2) is solved using the chosen step size.

5.3 Description of the Cryptosystem

In this section, we describe the encryption algorithm in detail. The encryption

process involves two parts. In the first part, the algorithm takes an image P as the

plaintext input and shuffles its pixels using Arnold Cat map. The second part of the

algorithm involves the process of changing the gray levels of the pixels using Chen’s

chaotic system.

By the n times iterations of Arnold’s Cat Map, we obtain

[

x′

y′

]

= An

[

x

y

]

mod N = M

[

x

y

]

mod N, (5. 3)

where

M =

[

m1 m2

m3 m4

]

= An mod N.

The resulting shuffled image S has a relation with the original image P such that

S(x′, y′) = P (x, y), 0 ≤ x, y ≤ N − 1.

46

5.3.1 Encryption Algorithm

The parameters of Arnold’s Cat Map p, q, n and the initial values of Chen’s

Chaotic System are used as secret parameters of the cryptosystem. Then the en-

cryption algorithm is given as follows:

1. Shuffle the image P using Arnold Cat Map and obtain the shuffled image S.

2. Rearrange the image pixels as the sequence S = {s1, s2, ..., sN×N} by scanning

the image S using the usual row-scan method.

3. Chose Runge-Kutta step size as 0.001. Iterate Chen’s chaotic system N0 =

(N ×N)/3 times and obtain the real values xi, yi, zi , 1 ≤ i ≤ N0.

4. Obtain the key sequence K = {k1, k2, ..., kN×N} as,

k3(i−1)+1 = |xi − ⌊xi⌋ | × 1014 mod 256,

k3(i−1)+2 = |yi − ⌊yi⌋ | × 1014 mod 256,

k3(i−1)+3 = |zi − ⌊zi⌋ | × 1014 mod 256,

(5. 4)

where ⌊x⌋ denotes the largest integer not larger than x. Here, we assume that

the encryption setup represents the real numbers with 14 decimal digits after

the point.

5. Obtain the encrypted sequence C = {c1, c2, ..., cNxN} as,

ci = si ⊕ ki, 1 ≤ i ≤ N ×N, (5. 5)

where ⊕ represents bitwise exclusive OR operation.

6. Reshape the sequence C into an N × N image, and obtain the ciphertext

image.

5.4 Chosen-Plaintext Attack

The secret parameters of the proposed encryption algorithm can be extracted

using a chosen-plaintext attack, and here we explain how this can be achieved.

Once the attacker extracts the parameters M and K, he can encrypt and

decrypt a ciphertext image. Indeed, the secret parameters are only M and K. Once

the attacker has the key K, he can obtain the shuffled image S by using Eq.(5. 5).

If he also knows the parameter M , he obtains the original image P using Eq.(5. 3).

The attack consists of two steps. First, the parameter K is recovered. Then, the

attacker uses K in calculating the parameter M of Arnold’s Cat map.

47

5.4.1 Extracting K

First, the attacker chooses a zero image P1, which consists of N×N zero-valued

pixels. Then he obtains the corresponding ciphertext image, C1.

The shuffling process does not change the image because P1 is identically 0.

Hence, the shuffled image S1 is equal to the image P1. The attacker uses this fact

with Eq.(5. 5), and obtains that the cipher-image C1 is exactly equal to the key K

as

C1 = S1 ⊕K = P1 ⊕K = 0⊕K = K.

The attack does not require further analysis on the obtained ciphertext image

since the desired parameter is exactly the obtained ciphertext image.

5.4.2 Extracting M

After finding the parameter K, the attacker chooses another image P2 and

obtains the corresponding ciphertext image C2. The attacker chooses image P2 such

that it contains only two non-zero and distinct pixels P2(1, 1) = v1, P2(1, 2) = v2

so that v1 6= v2 and v1,2 6= 0. By using Eq.(5. 5) with the knowledge of K, the

attacker obtains the corresponding shuffled image S2 from C2 as

S2 = C2 ⊕K.

Now, the attacker has the image P2 and the corresponding shuffled image S2.

The attacker easily recovers the shuffled image by only applying an XOR process to

the chosen ciphertexts.

He then starts to search the pixel values v1, v2 in S2, and the attacker deter-

mines the shuffled coordinates (x′

1, y
′

1) and (x′

2, y
′

2).

Using Eq.(5. 3), the attacker obtains the following sets of equations.
[

x′

1

y′

1

]

=

[

m1 m2

m3 m4

][

1

1

]

mod N , (5. 6)

[

x′

2

y′

2

]

=

[

m1 m2

m3 m4

][

1

2

]

mod N.

After solving these equations, the attacker obtains that m2 = x′

2−x′

1 mod N ,

m1 = x′

1−m2 mod N , m4 = y′

2−y′

1 mod N , m3 = y′

1−m4 mod N . By evaluating

these results the attacker easily obtains the parameters m1, m2, m3 and m4. Hence,

the key M is extracted. Now, the attacker has all the secret parameters of the

encryption algorithm.

48

5.5 Known-Plaintext Attack

The secret parameters of the proposed encryption algorithm can be extracted

also by using a known-plaintext attack, and here we explain how this can be achieved.

In this case, the attacker does not choose plaintexts. Instead, we assume that

he has obtained some plaintext-ciphertext pairs as the requirement of the known

plaintext attack.

The attack consists of two steps. First the attacker tries to calculate the key

of Arnold Cat map, M , and then he tries to extract the key K of Chen’s chaotic

system.

5.5.1 Extracting M

Let’s assume the attacker knows two plaintext-ciphertext image pairs (P1, C1)

and (P2, C2). Let us define the difference images as ∆P = P1⊕P2 and ∆C = C1⊕C2.

Using Eq.(5. 5), the attacker calculates

∆C = S1 ⊕K ⊕ S2 ⊕K = S1 ⊕ S2 = ∆S

Here, we see that the attacker is able to calculate ∆S as shown in above

equation. Going from ∆P to ∆S, there is only shuffling by the Arnold Cat map.

Now, we give a method to reveal the parameters of this map.

Let ∆P (x1, y1) = v1, ∆P (x2, y2) = v2 be two pixels of ∆P with different

values, i.e. v1 6= v2, and let (x′

1, y
′

1) and (x′

2, y
′

2) denote their respective coordinates

in ∆S. Using these facts and Eq.(5. 3), the attacker obtains

[

x′

1 x′

2

y′

1 y′

2

]

= MU =

[

m1 m2

m3 m4

]

U mod N, (5. 7)

where U =

[

x1 x2

y1 y2

]

.

Let V1 denote the set of coordinates at which ∆S has value v1. Namely,

V1 = {(i, j)|∆S(i, j) = v1}. (5. 8)

Similarly, define the set V2 as

V2 = {(k, l)|∆S(k, l) = v2}. (5. 9)

Assuming that U is invertible, let us define the set V of matrices as

49

V = {

[

i k

j l

]

U−1 | (i, j) ∈ V1, (k, l) ∈ V2}. (5. 10)

By the definitions of the sets V1 and V2, we have (x′

1, y
′

1) ∈ V1 and (x′

2, y
′

2) ∈ V2.

So, using Eq.(5. 7), we conclude that M ∈ V .

Thus, once the attacker constructs the set V, he has |V | = |V1| |V2| candi-

dates for M . Repeating the procedure with another pair of pixels ∆P (x̄1, ȳ1) = v̄1,

∆P (x̄2, ȳ2) = v̄2, v̄1 6= v̄2, he finds another set V̄ that contains M . Obviously,

M ∈ V ∩ V̄ . (5. 11)

Continuing in this fashion, he intersect more and more sets until the intersec-

tion contains only one element. This element is necessarily M .

In order to make the set V of candidates smaller, the attacker chooses rare

pixel pairs in ∆P .

5.5.2 Extracting K

The attacker knows the image P1 and the corresponding cipher image C1.

Using Eq.(5. 3) and the Arnold cat map parameter M , which is revealed in the

previous step, the attacker calculates S1.

Using S1 in Eq.(5. 5), the attacker obtains Chen’s chaotic system parameter

K as

K = C1 ⊕ S1.

Thus, the attacker knows all the secret parameters of the encryption algorithm.

5.6 Simulation Results

In order to illustrate each type of attacks, we give simulation results for two

cases. Simulations are performed under MATLAB running on Mac OS X 10.5.4

with Intel Core 2 Duo 2.16 GHz processor and 2 GB RAM. The secret parameters

are chosen from the example in [23] . Arnold cat map parameters are; p = 1, q =

1, n = 5, Chen’s chaotic system parameters are; a = 35, b = 3, c = 28, The initial

conditions for the Chen system are; x0 = −10.058, y0 = 0.368, z0 = 37.368.

In the first simulation, we illustrate the chosen-plaintext attack. The attacker

chooses the following two 9× 9 images as plaintexts.

50

P1 =





















0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0





















, P2 =





















0 0 0 0 0 0 0 0 0

0 1 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0





















.

Note that the first image consists of zero valued pixels and the second image

has only two nonzero pixels. By (5. 6), the first secret parameter

M =

[

7 1

1 8

]

mod9.

The ciphertext C1, which is also the Chen key K, is given as

C1 = K =





















255 0 0 210 15 170 32 187 27

225 138 115 22 29 95 140 62 213

152 97 255 222 66 34 164 1 148

225 142 38 133 203 253 201 115 133

70 223 18 151 239 179 137 251 101

64 67 157 22 225 39 70 171 25

83 19 3 209 152 89 121 220 249

87 170 185 30 240 74 47 173 43

155 23 132 113 30 94 4 23 31





















.

Using C2, the attacker calculates S2 as S2 = C2 ⊕K. S2 is given as

S2 =





















0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0





















51

Inspecting S2, the attacker finds that x′

1 = 8, y′

1 = 0, x′

2 = 0, y′

2 = 8. Substi-

tuting these into (5. 6), the attacker finds M .

In the second simulation, we illustrate the known-plaintext attack. Assume

that the attacker knows the two 256× 256 plaintext images in Figure 5. 2(a) and

5. 2(b). The difference images ∆P = P1 ⊕ P2 and ∆C = C1 ⊕C2 are also shown in

Figure 5. 2(c) and Figure 5. 2(d). For this case, we have

M =

[

34 55

55 89

]

mod256.

a) b)

c) d)

Figure 5. 2 a) Plaintext P1 b) Plaintext P2 c) ∆P d) ∆C

The two rarest pixel values in ∆P are v1 = 131 and v2 = 140. Following

are procedure in Section (5.4.1), we find 25718 candidates for M . Next rarest pair

of pixel values are v̄1 = 140 and v̄2 = 120. This time, there are 29058 candidates.

Intersecting the two sets of candidates, we find only one candidate. The attack takes

less than one minute.

Finally, after calculating S1 using (5. 3), the attacker reveals K as K =

C1 ⊕ S1. K is given in Figure 5. 3.

52

Figure 5. 3 Chen key K

5.7 Concluding Remarks

In this chapter, first I described a proposed chaotic encryption scheme [23].

Then we gave a complete break of the chaos-based image encryption algorithm. We

demonstrated that the secret keys can be revealed using chosen and known plaintext

attacks.

53

Chapter 6

Cryptanalysis of a Chaotic Cryptosystem Based on Two

Dimensional Chaotic Maps

There was a chaotic cryptosystem based on two-dimensional chaotic maps

proposed by Jiri Fridrich in 1998 [16]. The cryptosystem involves a two dimensional

chaotic map Baker’s Map. The cryptosystem is expanded to three dimensions using

some other mapping methods. The cryptosystem is based on a mode of operation

stated in the description of the encryption scheme. In this chapter, I give a complete

break [26] for the proposed cryptosystem.

In Section 6.1, I give some details for Baker’s two-dimensional chaotic map.

Then, in Section 6.2, I give the proposed cryptosystem with our point of view, that

is we described the cryptosystem with very simple modifications. In Section 6.3 I

give our chosen ciphertext attack to the two-dimensional chaotic map. Finally, I

give some simulation results to illustrate our attacks.

6.1 Baker’s Map

We already described Baker’s Map in Chapter 3, so we give the description of

the proposed cryptosystem. The map has its own formula. Furthermore, the article

gives the generalized version and discretized versions for the chaotic map.

6.1.1 Two-Dimensional Baker’s Map

The Baker map, B, is described in [16] with the following formulas

B(x, y) = (2x, y/2) , when 0 ≤ x < 1/2

B(x, y) = (2x− 1, y/2 + 1/2) , when 1/2 ≤ x ≤ 1.

The map acts on the unit square as depicted in Figure 6. 1. The left vertical

column [0; 1 = 2) × [0; 1) is stretched horizontally and contracted vertically into

the rectangle [0; 1) × [0; 1 = 2), and the right vertical column [1 = 2; 1) × [0; 1) is

similarly mapped onto [0; 1) × [1 = 2; 1). The Baker map is a chaotic bijection of

the unit square I × I onto itself.

54

Figure 6. 1 Baker’s Map

6.1.2 Discretized Baker’s Map

The discretized version of Baker’s Map is given in [11] as

B(n1,...,nk)(r, s) =

(
N

nj

(r −Nj) + s mod N/nj,
nj

N
(s− s mod N/nj) + Nj

)

.

where n0+n1+. . .+nt = N , n0+n1+. . .+nj = Nj , 0 ≤ s ≤ N , Nj ≤ r ≤ Nj +nj+1,

0 ≤ j ≤ t− 1, n0 = 0.

6.2 Description of the Algorithm

Encryption algorithm takes M × N grayscale images as input. Each pixel of

grayscale image is represented using a byte. Preliminarily, the image is vectorized

before the encryption starts using the usual row-scan method shown in Chapter 4.

Let p ∈ Sn represent this vectorized image, where S = {0, 1, . . . 255} and n = NM .

Hence, the plaintext is the vector p = [p1 p2 · · · pn].

The encryption algorithm involves another preliminary process, which is the

preparation of a key dependent permutation. The permutation is used, as usual, to

shuffle the image pixels in encryption.

55

After these preliminaries, the round operations start to be applied. Each round

of the encryption algorithm consists of two steps. In the first step, p is shuffled using

the key dependent secret permutation. The shuffling is done using the discretized

version of Baker’s Map. Let b denote this key dependent permutation defined on the

set {1, 2, . . . , n}. Let us denote the shuffled vector by f . Then the relation between

the shuffled vector f and the vectorized plaintext p becomes

fi = pb(i), 1 ≤ i ≤ n. (6. 1)

In the second step, f is passed through a nonlinear function. The nonlinear

function is given as

ci = fi + g(ci−1) + hi mod255, (6. 2)

where g : S → S is a fixed nonlinear function and h ∈ Sn is a fixed vector. The

nonlinear function g is used as an S-box since each input ci ∈ S is only substituted

with another value g(ci−1) ∈ S. Here, we need an initial value c0, which may also

be treated as a secret key.

The number of rounds is denoted by R, so these two steps are repeated R

times. In [16], R = 10 is suggested for good diffusion and confusion properties.

The encryption process is the combination of the processes described above.

Combining Eq.(6. 1) and Eq.(6. 2), we obtain the single round encryption as

ci = pb(i) + g(ci−1) + hi mod 256. (6. 3)

Symmetrically, the decryption for a single round is defined as follows. Let u

be the inverse of b, so that

j = b(i) ⇔ i = u(j). (6. 4)

Using Eq.(6. 4) in Eq.(6. 3), we obtain

pj = cu(j) − g(cu(j)−1)− hu(j) mod 256. (6. 5)

In Eq.(6. 3), c0 is taken to be a system parameter. Hence, for i = 1, we have

c1 = pb(1) + g(c0) + h1 mod 256.

There is only one secret parameter of the proposed algorithm since none of the

other operations involves a secret parameter. The secret parameter is only the key

dependent permutation b. The size of the secret key of the permutation b differs

according to the chosen chaotic map. For example, in the scheme proposed in [16],

56

the original image P is partitioned using the set of keys, which are the parameters of

the discretized version of Baker map. In this case, the set of keys are the partition

boundaries. The image is partitioned from those boundaries and shuffled. The

discretized Baker’s Map is described in Section 6.1 in detail. We may prefer to use

another two-dimensional chaotic maps or any other schemes, such as Cat Map or

Standard Map, to generate the permutation b. Our attack is general and applicable

to all of these cases.

6.3 Chosen Ciphertext Attack

One approach may be extracting the secret parameters of the chaos-based

permutation b. This approach is very hard to apply since the number of secret

parameters and so the key size is changing when the permutation scheme changes.

Even in some cases, such as Baker’s Map, the key size is already variable. However,

instead of extracting the secret parameters, one can break the system if he reveals

the permutation b or the reverse permutation u, since the underlying key is the secret

permutation. In our cryptanalysis, we developed some methods to reveal the inverse

permutation u. Using such an approach is more general due to the independence of

the chosen chaotic map. The attack is applicable to any case where different chaotic

maps are used to generate the permutation.

We used the relations between ciphertext and plaintext blocks to reveal the

permutation. The function g in Eq.(6. 3) forms a chain that relates consecutive

ciphertext pixels. Therefore, in a single round encryption, a change in a plaintext

pixel affects many ciphertext pixels. Indeed, if we change pb(i), by Eq.(6. 3), ci

changes. Since we have

ci+1 = pb(i+1) + g(ci) + hi+1 mod 256,

a change in ci, in turn, changes ci+1. Therefore, for a single round encryption, a

change in pb(i) affects ci, ci+1, . . . , cn. In other words, the consecutive ciphertext

pixels pass into a chain reaction due to this change. As a result, a ciphertext pixel

depends on many plaintext pixels. This is a desirable property of an encryption and

is also known as the diffusion property [5].

Even though the encryption process has the desirable properties, the situation

is quite different in decryption. For a single round encryption, using Eq.(6. 5) we

obtain that only two ciphertext pixels, cu(j) and cu(j)−1, affect the plaintext pixel

pj. For two round encryption, we see that pj is affected by at most four ciphertext

pixels. In order to see this more clearly, let us denote the output of the second round

as d1d2 · · · dn. Using Eq.(6. 5) with ck as the plaintext pixel that is input to second

57

round, we obtain

ck = du(k) − g(du(k)−1)− hu(k) mod256. (6. 6)

Substituting k = u(j) in Eq.(6. 6), we find

cu(j) = du2(j) − g(du2(j)−1)− hu2(j). (6. 7)

Here, we denote the i times composition of u with itself by ui, . Similarly, for

k = u(j)− 1, we have

cu(j)−1 = du(u(j)−1) − g(du(u(j)−1)−1)− hu(u(j)−1). (6. 8)

Thus, we see from Eq.(6. 5), Eq.(6. 7) and Eq.(6. 8) that, for two rounds of

decryption, pj is affected only by the ciphertext pixels

du2(j), du2(j)−1, du(u(j)−1), du(u(j)−1)−1.

Due to the mappings in the reverse permutation u, there may be some overlaps in

these four pixels.

Since c0 is a fixed system parameter, the plaintext pixel pu−1(1) is affected by

only c1. Therefore, in a two round encryption, pu−1(1) is affected by

du(1), du(1)−1.

Let’s illustrate the causal relations in two round decryption by giving an ex-

ample.

Example 6.3.1 Let n = 6, and the inverse permutation u be given as

u =

(

1 2 3 4 5 6

2 4 1 5 6 3

)

. (6. 9)

By using this inverse permutation we obtain the causality paths, which are given in

Figure 6.3.1. The directed arrows of the figure indicate the nodes, which affect the

computation of the destination node. For example, the arrows going from c5 and c4

to p4 means that p4 is affected by c5 and c4.

Then we obtain the causality chain from the ciphertext d to the plaintext p as

follows

58

p1 p2 p3 p4 p5 p6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Figure 6. 2 The causality paths for the permutation given in Eq.(6. 9)

p1 ← c1, c2 ← d1, d2, d3, d4

p2 ← c3, c4 ← d1, d4, d5

p3 ← c1 ← d1, d2

p4 ← c4, c5 ← d4, d5, d6

p5 ← c6, c5 ← d5, d6, d2, d3

p6 ← c3, c2 ← d1, d3, d4.

Note that p3 is affected by only two ciphertext pixels d1 and d2 because u(3) = 1.

That is p3 is affected also by the system parameter c0. Also note that p4 is affected

by three ciphertext pixels rather than four because u(u(4)−1) = u2(4)−1 = 5. There

is an overlap in the paths of p4. This also means that there are two distinct causality

paths going from d5 to p4.

In an R round decryption, a particular plaintext pixel pj is generally affected by

at most 2R ciphertext pixels. We can see this fact in Example 6.3.1. For a 256×256

image, n = 65536 and 2R = 1024. Therefore, about 1024
65536

≈ 2% of ciphertext pixels

affect any given plaintext pixel.

Let z denote the output, ciphertext image, of an R rounds of encryption. The

attacker desires to know if there is a causality path from the ciphertext pixel zi

to the plaintext pixel pj. Assume that the attacker knows a plaintext-ciphertext

pair (p, z). He changes the value of zi and requests the plaintext for the changed

ciphertext. If pj changed in the new plaintext, then there is a causality path from zi

to pj so that zi affects pj . Repeating this for all i, 1 ≤ i ≤ n, the attacker constructs

a binary matrix T showing the causality relations between ciphertext and plaintext

59

pixels in decryption. If Tij = 1, then zi affects pj . Since pj is affected by at most

2R pixels of z, each column of T contains at most 2R 1’s. All the other entries are

zeros.

The exception is the u−1(1). For pu−1(1), we have

pu−1(1) = c1 − g(c0)− h1 mod 256.

Hence, for one round, pu−1(1) is affected by only c1, the first pixel of the output of the

first round. The rest of the rounds generate at most 2R−1 distinct causality paths.

Therefore the column u−1(1) of T contains at most 2R−1 1’s.

Example 6.3.2 The matrix T for the permutation u used in Example 6.3.1 is given

as

T =














1 1 1 0 0 1

1 0 1 0 1 0

1 0 0 0 1 1

1 1 0 1 0 1

0 1 0 1 1 0

0 0 0 1 1 0














.

Here we can extract the same causality paths extracted in Example 6.3.1. For

example, from the first column we can say that p1isaffectedbyd1, d2, d3, d4 since the

1st, 2nd, 3rd and 4th elements of the first column are 1.

Note that the column of the matrix T with the least number of 1s gives the

attacker a starting point for the attack. Once an attacker constructs the matrix T ,

he can reveal u−1(1) by choosing the column k with the least column sum. Then he

knows u(k) = 1.

In order to generalize the attack to the rest of u, we define an operation to

denote the causality relations between the sets.

Define the operation L on a set A as follows.

B = L(A) = {y | ∃x ∈ A such that y = u(x) or y = u(x)− 1}.

For an integer k ∈ {1, 2, . . . , n}, L({k}) is the set of indices of ciphertext pixels that

affect the plaintext pixel pk in a one round of decryption. So, in general we have

L({k}) =

{

{u(k)} if u(k) = 1,

{u(k), u(k)− 1} otherwise

We can naturally compose L with itself to define its higher powers. Li({k})

is the set of the indices of ciphertext pixels that affect the plaintext pk in i round

60

decryption. This set is also the set of row indices where the kth column of T has

nonzero entries.

Example 6.3.3 For the permutation given in Example 6.3.1, we have

L({1}) = {1, 2},

L2({1}) = {1, 2, 3, 4},

L2({1, 6}) = {1, 2, 3, 4}.

Using the definition of L, we have

|LR({k})| ≤ 2R.

The operation L naturally defines a graph on the set {1, 2, . . . , n}.

Using the chosen-plaintext attack given in the beginning of this section, the

attacker constructs the matrix T . This is the same as attacker knowing the sets

LR({k}), ∀k ∈ {1, 2, . . . , n}. The attacker uses this knowledge to reveal the secret

permutation u.

Assume that the attacker knows LR({x}) and LR({y}) where u(x)+ 1 = u(y).

By the construction of L, we have

L(x) ∩ L(y) = u(x).

We use this to pin down a z such that u(z) = u(y) + 1.

For this z, we have

LR({y})\LR({x}) ⊂ LR({z}).

The sets are illustrated in Figure 6.3.

For a random graph, we expect LR−1({w}) to contain about 2R−1 elements

when u(w) 6= 1, 1 ≤ w ≤ n. Allowing for overlaps, LR({y})\LR({x}) ⊂ LR({z})

may contain less than 2R−1 elements. Searching through the matrix T, the at-

tacker determines the columns z1, z2, . . . , zv whose sets of nonzero indices contain

LR({y})\LR({x}) ⊂ LR({z}). So, the attacker knows that

u−1(u(y) + 1) ∈ {z1, z2, . . . , zv}. (6. 10)

For random graphs, the set on the right hand side of Eq.(6. 10) is likely to contain

a single element. If this is the case, we know z such that u−1(u(y) + 1) = z. Hence,

the attacker reveals a new point on the permutation u.

The attack continues with the new pair y and z as we now have u(z) = u(y)+1.

61

x

u(x)

u2(x)− 1
...

u2(x)
...

y

u(y) = u(x) + 1

u2(y)− 1
...

u2(y)
...

z

u(z) = u(y) + 1

u2(z)− 1
...

u2(z)
...︸ ︷︷ ︸

Lr−1({u(z)})

︸ ︷︷ ︸

Lr−1({u(z)−1})
︸ ︷︷ ︸

Lr({z})

Figure 6. 3 The sets obtained after operation L

In cases when the RHS of Eq.(6. 10) contains more than one candidates, the

attacker applies the procedure for each zm, 1 ≤ m ≤ v, each time assuming that

u(zm) = u(y) + 1.

For false candidates, we expect the iteration to yield an empty set at some

point. Namely, if the set LR({zm})\L
R({y}) is not contained in any LR(w), then

u(zi) 6= u(y) + 1 and we eliminate the candidate zm.

6.4 Implementation Details

The attack is expressed as an algorithm in Eq.(1)

62

Data: LR(k), ∀k ∈ {1, 2, . . . , n}

Result: u

Global Variable: k

Initialize k = 21

FindNext()2

begin3

Z ←
{
j|LR(u−1(k)) \ LR(u−1(k − 1)) ⊂ LR(j)

}
\ u−1({1, 2, . . . , k})4

k ← k + 15

if Z 6= ∅ then6

foreach z ∈ Z do7

u−1(k)← z8

if k = n then9

exit10

end11

FindNext()12

end13

k ← k − 114

end15

else16

return17

end18

end19

Algorithm 1: Attack

Instead of the usage of a double array for the matrix T , I implemented a sparce

matrix data structure to represent the coordinates of 1s. There are only 0s and 1s

in T and the 1s are %2 of the total matrix, so the usage of a double array which

holds all 0s and 1s would be inefficient in memory. The data structure of our sparce

matrix is given as

struct SparceMatrice{

int row;

int col;

struct SparceMatrice *left;

struct SparceMatrice *down;

};

Here row and col denote the row number and column number of 1s, left and

down pointers point the nest 1 of the specified direction.

63

For example, representing each 0 or 1 by an integer matrix of a 256×256 image

requires 655362×4 = 234 bytes = 4 GB which is a huge requirement. By the usage of

a sparce matrix, on the other hand, the implementation requires 1024×65536×16 =

230 bytes = 1 GB, which is more useful. Here the last 16 is the size of the data

structure.

6.5 Simulation Results

We give simulation results for two examples that illustrate our method of

cryptanalysis. Simulations are performed under GNU gcc compiler running on Mac

OS X 10.5.4 with Intel Core 2 Duo 2.16 GHz processor and 2 GB RAM.

We first illustrate the attack with an artificially small image size. We chose

R = 2, a 4× 4 random vector image of

P = [88 216 41 40 130 154 41 162 215 199 67 80 47 114 83 71],

the initial parameter C0 = 25, and a random permutation

b = [16 7 6 13 1 5 14 12 4 15 8 11 10 3 2 9],

so the inverse permutation

u = [5 15 14 9 6 3 2 11 16 13 12 8 4 7 10 1].

The other fixed functions g and h are chosen randomly. Here, The matrix T is

64

calculated for two rounds as

T =







































1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0

1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0







































.

Here, you see the least total sum column is 5th which has only two 1s. Hence,

we see that

u(1) = 5⇒ L2({5}) = {15, 16}.

Then, by construction, we see that the other column comprising 5th column is 15th.

Hence,

u(2) = 15⇒ L2({15})\L2({5}) = {6, 7}.

The column comprising L2({15})\L2({5}) is the 14th column. Hence,

u(3) = 14⇒ L2({14})\L2({15}) = {5}.

The columns comprising the L2({14})\L2({15}) are the 2nd, 3rd and 9th columns.

Here the recursion starts branching, where each branch continues in this fashion. For

example, the branch, where 2nd column is chosen as true cannot continue. Because

we obtain

u(4) = 2⇒ L2({2})\L2({14}) = {4, 13, 14}

and there is no such a column comprising L2({2})\L2({14}). Same situation occurs

when we try the 3rd column as the true one.

By continuing with 9th column and continuing in this fashion we will end the

attack successfully and reveal the inverse permutation u.

65

In the second example, we used a random vector of a 256 × 256 image. The

image is chosen to be random since our attack does not depend on the input image.

We used R = 10, the key of the chaotic Baker’s Map as K = [2 4 2 8 4 8 4] and

the initial parameter C0 = 25. The other fixed functions g and h are also chosen

randomly. In this simulation the whole map is recovered successfully in total of 1171

seconds, which is less than 20 minutes. Moreover, the total memory requirement

for the whole implementation was 1065171408 bytes which is approximately 1 GB.

Note that we used sparse matrix data structure in our implementations.

6.6 Concluding Remarks

In this chapter, we give a complete break of an image encryption algorithm

based on two-dimensional chaotic maps. We use the algebraic properties of the

permutations and reveal some data about some points in the permutation. After

gathering the necessary data we reveal all the permutation recursively.

66

Chapter 7

Conclusion

In this thesis, we cryptanalyze and show the weaknesses four different chaotic

cryptosystems. Moreover, we gave breaks of each cryptosystem in detail by using

simulations.

The first cryptosystem was based on two-dimensional chaotic maps. We break

the whole system using the weaknesses of the key schedule. We first show that we

can reveal a portion of the secret key using a chosen-ciphertext attack. In the secon

part of the attack we used the revealed portion and some algebraic properties of the

permutations. We used three different attacks, which we developed, in combination.

The attacks yields the secret permutation successfully.

The second cryptosystem uses chaotic behavior of the Logistic Map to encrypt

images. We first showed that the cryptosystem is not invertible for some cases. We

give remedies to correct some of them, however due to the use of finite precision

arithmetic we had no suggestions. We then improved the algorithm with some

proposed suggestions and modified the cryptosystem. Finally, we showed a break

for the modified algorithm. We used chosen plaintext attack which yiields the secret

parameters successfully.

The third cryptosystem was based on a two-dimensional and a three-dimensional

chaotic maps. The two-dimensional map used for shuffling the image pixels. The

three-dimensional map is used to change the gray levels of the shuffled pixels. We

broke the algorithm using two different attack. We first showed that the secret

parameters can be revealed using a chosen-plaintext attack. Then we showed a

known-plaintext attack, which yield the whole key.

The last cryptosystem was based on two-dimensional chaotic maps. The algo-

rithm is used the encrypt images. We gave a chosen-plaintext attack to reveal the

secret chaotic map. The attack yields the secret permutation successfully.

67

References

[1] Ruselli, J., “Cryptology Home Page”, http://home.cogeco.ca/ cipher/ (2008).

[2] “Cryptology”, http://www.resonancepub.com/homecrypto.htm, Resonance Pub-

lications, Inc. (2008).

[3] Stamp, M., Low, R. M., Applied Cryptanalysis, John Wiley & Sons, Inc. (2007).

[4] Katz, J., Lindell, Y., Introduction to Modern Cryptography, CRC Press (2007).

[5] Menezes, A., van Oorschot, P., Vanstone, S., Handbook of Applied Cryptography,

CRC Press (1997).

[6] Stinson, D. R., Cryptography Theory and Practise, 3rd ed., CRC Press (2006).

[7] Shannon, C. E., “Communication Theory of Secrecy Systems”, Bell System Tech-

nical Journal, vol.28-4, pp. 656-715 (1949).

[8] “Cryptography”, http://www.giac.org/resources/whitepaper/ cryptogra-

phy/57.php, Global Information Assurance Certification (2009).

[9] Kocarev, L., “Chaos-Based Cryptography: A Brief Overview”, IEEE CAS

Newsletter, pp. 18-19 (2001).

[10] Baptista, M. S., “Cryptography with Chaos”, Physics Letters, pp. 1-3 (1998).

[11] Xiang, T., Wong, K.-W., Liao, X., “A Novel Symmetrical Cryptosystem Based

on Discretized Two-Dimensional Chaotic Map”, Physics Letters A, 364 252

(2007).

[12] Solak, E., Çokal, C., “Cryptanalysis of a Cryptosystem Based on Discretized

Two-Dimensional Chaotic Maps”, Physics Letters A, vol. 372 issue. 46, pp. 6922-

6924 (2008).

[13] Solak, E., Çokal, C., “Algebraic Break of a Cryptosystem Based on Discretized

Two-Dimensional Chaotic Maps”, Physics Letters A (2009).

68

[14] Weisstein, E. W., “Standard Map”, MathWorld,

http://mathworld.wolfram.com/StandardMap.html (2009).

[15] Peterson, G., “Arnold’s Cat Map”, http://online.redwoods.cc.ca.us/instruct

/darnold/laproj/Fall97/Gabe/ catmap.pdf (1997).

[16] Fridrich, J., “Symmetric Ciphers Based on Two-Dimensional Chaotic Map”,

Int. J. of Bifurcation and Chaos, vol. 8(6), pp. 12591284 (1998).

[17] Kocarev, L., Jakimoski, G., “Logistic Map as a Block Encryption Algorithm”,

Physics Letters A, 289 199 (2001).

[18] Fraleigh, J. B., A First Course in Abstract Algebra, 5th ed., Addison-Wesley

(1993).

[19] Solak, E., Çokal, C., “Comment on Encryption and Decryption of Images

with Chaotic Map Lattices.”, Chaos, vol.18, pp. 038101, DOI:10.1063/1.2966114

(2008).

[20] Pisarchik, A. N., Flores-Carmona, N. J., Carpio-Valadez, M., “Encryption and

Decryption of Images with Chaotic Map Lattices”, Chaos, vol. 16, pp. 033118

(2006).

[21] Weisstein, E. W., “Logistic Equation”, MathWorld,

http://mathworld.wolfram.com/LogisticEquation.html (2009).

[22] Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V., ”On the Security

of a New Image Encryption Scheme Based on Chaotic Map Lattices”, Chaos,

vol. 18, Issue 3, pp. 033112-033112-7 (2008).

[23] Guan, Z.-H., Huang, F., Guan, W., ”Chaos-Based Image Encryption Algo-

rithm”, Physics Letters A, vol. 346, pp. 153 (2005).

[24] Chen, G., Ueta, T., “Yet Another Chaotic Attractor”, Int. J. Bifurcation and

Chaos vol. 9(7), pp. 1465-1466 (1999).

[25] Çokal, C., Solak, E., “Cryptanalysis of a Chaos-Based Image Encryption Algo-

rithm”, Physics Letters A (2009).

[26] Solak, E., Çokal, C., “Cryptanalysis of a Symmetric Cipher Based on Two-

Dimensional Chaotic Map”, (in progress).

69

Curriculum Vitae

Publications

[1] Solak, E., Çokal, C., Cryptanalysis of a Cryptosystem Based on Discretized

Two-Dimensional Chaotic Maps, Physics Letters A, vol. 372 issue. 46, pp. 6922-

6924 (2008).

[2] Solak, E., Çokal, C., Algebraic Break of a Cryptosystem Based on Discretized

Two-Dimensional Chaotic Maps, Physics Letters A (2009).

[3] Solak, E., Çokal, C., Comment on Encryption and Decryption of Images with

Chaotic Map Lattices., Chaos, vol.18, pp. 038101, DOI:10.1063/1.2966114 (2008).

[4] Çokal, C., Solak, E., Cryptanalysis of a Chaos-Based Image Encryption Al-

gorithm, Physics Letters A (2009).

70

