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IŞIK UNIVERSITY

2009
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“A person who never made a mistake never tried anything new.”

Albert Einstein



WAVELET BASED IMAGE CODING AND

INTERPOLATION

Abstract

The need of higher resolution on imaging systems and displays increases everyday.

Data rates and bandwidth are still limited to satisfy the demands of enhanced res-

olutions. So, we should develop intelligent enhancement tools which yield higher

resolution images with comparably limited bitrate. In this thesis, we examine the

quality enhancement capabilities of two different approaches, i.e. image coding

and image interpolation. Better image coding algorithms are capable of pro-

ducing enhanced higher detail images at the same bitrate. For that purpose, we

design an efficient and intelligent wavelet based image coding algorithm that codes

the hierarchical description of wavelet coefficients instead of coding themselves.

Namely, we introduce the hierarchical quantization index tree which is composed

of quantization index classes. These index classes are constructed using combi-

nation of similar wavelet coefficients which leads an adaptive structure. Then,

this hierarchical tree is optimized by a simple rate-distortion analysis to achieve

efficient bit allocation among various different regions of natural images. In the

second part of the thesis, we propose a wavelet based interpolation algorithm that

exploits the correlation between high resolution(HR) and low resolution(LR) im-

ages. Basically, we design linear minimum mean square error filters between HR

and LR images to recover lost high frequency information. For modeling the re-

lationship between two resolutions, we use two different approaches, i.e. block

based filter design and context adaptive filter design. In block based filter design

algorithm, we partition the image into blocks to capture local frequency varia-

tions. In context adaptive algorithm, we use a simple context to adapt different

image structures. We also briefly mention how these new approaches can be

integrated into a novel coding + resolution enhancement joint framework. Sim-

ulations show that both our coding and interpolation algorithms perform better

than most existing schemes.
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DALGACIK BAZLI İMGE KODLAMA VE

ARADEĞERLEME

Özet

Görüntüleme sistemleri ve ekranlardaki daha yüksek çözünürlük ihtiyacı gün

geçtikçe artmaktadır. Veri gönderim hızları ve band genişliği çözünürlük iy-

ileştirme ihtiyacına göre yetersiz kalmaktadır. Bu nedenle, neredeyse sabit bit

hızına sahip yüksek çözünürlüklü imge elde etmeye yarayan akıllı iyileştirme

araçları geliştirmeliyiz. Bu tezde, iki farklı yaklaşımın, yani imge kodlama ve imge

aradeğerlemenin kalite iyileştirme yeteneklerini inceliyoruz. Daha iyi imge kod-

lama algoritmaları aynı bit hızı için daha yüksek ayrıntı içeren iyileştirilmiş imge

elde etme olanağına sahiptir. Bu amaçla, dalgacık katsayılarının kendilerini kod-

lamak yerine, onların sıradüzensel tanımını kodlayan verimli ve akıllı bir dalgacık

bazlı imge kodlama algoritması tasarlıyoruz. Yani, nicemleme indeks sınıflarının

birleşmesinden oluşan sıradüzensel nicemleme indeks ağacını tanıtıyoruz. Bu

indeks sınıfları, uyarlanabilir bir yapı sağlayacak biçimde benzer dalgacık kat-

sayılarının birleştirilmesi ile oluşturulmaktadır. Daha sonra, bu sıradüzensel ağaç,

doğal imgelerin farklı bölgeleri arasında verimli bit dağıtımını sağlamak amacıyla

basit bir hız-bozulum analizi ile eniyilenmektedir. Tezin ikinci bölümünde, yüksek

çözünürlüklü(YÇ) imge ile düşük çözünürlüklü(DÇ) imge arasındaki ilintiden

yararlanan dalgacık bazlı bir imge aradeğerleme algoritması öneriyoruz. Temel

olarak, kayıp yüksek frekans bilgisini toparlamak amacıyla, YÇ ve DÇ imge

arasında doğrusal en düşük ortalama karesel hata süzgeçleri tasarlıyoruz. İki

çözünürlük arasındaki ilişkiyi modellemek için iki farklı yaklaşım kullanıyoruz,

bunlar blok bazlı süzgeç tasarımı ve bağlam uyarlamalı süzgeç tasarımıdır. Her

iki algoritma içinde, DÇ imgeyi yeniden boyutlandırmak amacıyla bir başlangıç

aradeğerleme yöntemi kullanıyoruz. Blok bazlı süzgeç tasarımı algoritmasında

yerel frekans değişimlerini yakalamak amacıyla imgeyi bloklara bölüyoruz. Bağlam

uyarlamalı algoritmada farklı imge yapılarına uyarlanabilirlik sağlamak amacıyla

basit bir bağlam kullanıyoruz. Ayrıca, bu yaklaşımların nasıl yeni bir kod-

lama + çözünürlük iyileştirme çatısı altında biraraya getirilebileceğinden kısaca

bahsediyoruz. Benzetimler, kodlama ve aradeğerleme algoritmalarımızın varolan

yaklaşımlardan daha iyi sonuçlar verdiğini göstermektedir.
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Chapter 1

Introduction

1.1 Overview of Wavelet Research

Wavelet theory is a full-grown tree with roots reaching several different fields such

as applied mathematics, physics, computer science and engineering. It is grown

with the efforts of researchers from many different branches from all over the

world. Therefore, finding the real history and development of wavelets can be

tough work to do, because there are many different opinions about it. I choose to

admit the history mentioned in Ingrid Daubechies’ personal point of view about

where wavelets come from [1]. Daubechies is an experienced researcher in wavelet

theory who has significant contributions to the field.

In the late 1970’s, Jean Morlet, a geophysical engineer at the French oil com-

pany Elf Acquitane wanted an alternative for the short time Fourier transform

to analyze signals which have different features in time and frequency. Morlet

could use wide-band short time Fourier transform to gain time resolution for

the high frequency transients and narrow-band short time Fourier transform to

have good frequency resolution for the low frequency components but not both

at the same time. In order to have both features in one transform, he took

a windowed cosine wave and compressed it in time to get a higher frequency

function or spread it out to obtain a lower frequency function and these func-

tions were shifted in time as well to analyze what happened at different times.
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Then, he would take the inner product of the signal to be analyzed with all these

transform functions which he called “wavelets with constant shape”. After that,

Morlet needed help to discover mathematical background of this transform and

found a referred colleague Alex Grossmann who is a theoretical physicist. Gross-

mann constructed an exact inversion formula for Morlet’s transform and they

explored several applications together. In 1985, Yves Meyer, a mathematician,

heard about Morlet and Grossmann’s work and he realized that their work is

the different interpretation of Alberto Calderon’s work in harmonic analysis in

the 1960’s. Then, Meyer worked with this new phenomenon and constructed

orthonormal wavelet basis with excellent time-frequency localization properties.

Meyer’s student, Pierre Gilles Lemarie, a harmonic analyst and Guy Battle, a

mathematical physicist, came up independently and by completely different tech-

niques with constructions of wavelet bases consisting of spline functions, with

better exponential decay than Meyer’s wavelets, at the price of some loss of reg-

ularity. In 1986, Stephane Mallat, a graduate student with field of specialization,

computer vision and image analysis, heard about the new wavelet bases from

Meyer’s graduate student. Mallat was very interested in this subject, because

the philosophy of wavelet decompositions, where you use narrow functions for

fine scale features and much wider functions for coarse scale features was very

suitable for multiscale representations used in image analysis. Then, Mallat ar-

ranged a meeting with Meyer, and they worked together to built ”multiresolution

analysis” framework with all mathematical details which made it very easy to

construct other orthonormal wavelet bases. This multiresolution analysis led to a

simple and recursive filtering algorithm to compute the wavelet decomposition of

a function from its finest scale approximation. In 1987, orthonormal wavelet bases

of compactly supported wavelets was constructed by Daubechies. Nonetheless,

biorthogonal wavelets were constructed by Daubechies, wavelet packet bases were

found by Ronald Coifman and Meyer and best-basis algorithms were developed

by Coifman, Meyer and Victor Wickerhauser.
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1.2 Image Coding

In image coding (or compression), transform-based coders are one step ahead of

other coders with their coding efficiency. A typical transform-based coder trans-

forms the data to another domain to remove redundancy, quantizes the transform

coefficients and codes the quantized coefficients with some type of entropy coder.

So, in this coding scheme, which transform you use is so important. Because,

removing redundancy in data makes it possible to code it in an efficient way.

Various types of transforms are used in image coding, but two of them are lead-

ing, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT).

DCT is the basis of the well-known Joint Photographic Experts Group’s JPEG

algorithm [2] and also DCT is used in many other significant algorithms. How-

ever, with great energy compaction property and correspondence with the human

visual system, coding systems using wavelet transform surpassed the DCT-based

coders by their superior objective and subjective results. Besides, Federal Bu-

reau of Investigations (FBI) uses its own wavelet coding algorithm to code and

store the fingerprint data [3]. And also, Joint Photographic Experts Group’s

subsequent algorithm JPEG2000 [4] uses wavelet transform as a basis.

Image coding algorithms using wavelet transform became prevalent in last ten

years and so many ingenious coding tools were developed. Among these coders,

most successful ones share the same philosophy on how they group the wavelet

coefficients, e.g. significant and insignificant. They use some kind of data struc-

tures to represent the significant and insignificant coefficients to reach efficient

bit allocation. Embedded Zerotree Wavelet (EZW) [5], Set Partitioning in Hier-

archical Trees (SPIHT) [6], Space-Frequency Quantization (SFQ) [7],Embedded

Block Coding with Optimal Truncation (EBCOT) [8], Spherical Coder (SPHE)

[9] and Estimation-Quantization (EQ) [10] are the main and the most successful

coders in the literature.

3



1.3 Image Interpolation

Interpolation is a process of creating new data points in the range of known data

points. When it comes to image interpolation, it is a method of resampling the

image to a different grid and then finding the unknown points from known ones.

There are several mathematical interpolation algorithms in the literature, and

their two-dimensional versions are used in image interpolation, mainly they are

bilinear interpolation, bicubic interpolation and spline interpolation, for further

reading on these topics [11]. However, these algorithms suffer from significant

problems, such as blurred edges, edge halos and aliasing. Algorithms like unsharp

masking were developed to fix blurred edge problem of interpolation algorithms,

but it is not enough to have superior quality images. And also, there are adaptive

methods and edge-directed interpolation algorithms which have results slightly

better than bilinear and bicubic algorithms.

In image coding, wavelets led to a discovery of new coding tools and these tools

have paramount coding results in subjective and objective quality. Likewise,

success of wavelets in image coding motivates new approaches to the image in-

terpolation problem. Using wavelets in image interpolation is a recent subject

compared to image coding and it is a very challenging problem with no advanced

solution. In wavelet image interpolation (or resolution enhancement), generally

we assume that the image we have in low resolution is the low pass subband

of a wavelet transformed high resolution image that we want to obtain. There-

fore, the problem is to estimate the detail coefficients of this wavelet transformed

high resolution image, i.e. vertical, horizontal and diagonal subband coefficients.

Algorithms worth mentioning in wavelet image interpolation are resolution en-

hancement using wavelet extrema extrapolation [12], wavelet interpolation with

hidden Markov trees (HMT) [13], wavelet interpolation via statistical estimation

[14], regularity-preserving image interpolation [15], locally adaptive image inter-

polation [16] and image interpolation using wavelet-based contour estimation [17].
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1.4 Overview of the Thesis

In recent years, evolution of technology gradually gets faster and faster. We

begin to use technology in almost every area of life and it is becoming part of

our lives by the day. This progress urges all fields of technological development

to grow rapidly and in parallel. So many areas are connected to each other and

synchronized progress between these connected areas is a significant problem. For

instance, data rates are growing fast in communication field, but not as much as

the resolution of imaging systems and displays get bigger. Here, advances in

coding technology helps to reduce the discrepancy between the progress speeds of

these fields. Developing an efficient and advanced image coding system makes it

possible to accommodate higher data rates with comparably limited bandwidth.

On the other hand, since the resolution of imaging displays increases very fast,

better coding techniques may not be sufficient alone to get desired objective and

subjective results. Thus, image interpolation is an alternative and complementary

solution to achieve higher resolution without increasing the bitrates.

In this thesis, we look at these two problems of image processing together, namely

wavelet based image coding and image interpolation. We propose an “Encoder

Assisted Resolution Enhancement” framework to combine the efficiency of intel-

ligent coding tools and the resolution enhancement capabilities of interpolation

algorithms together for generating better quality and resolution enhanced images

with no or little extra bitrate. In other words, image coding and image interpola-

tion are treated under the same framework where the ultimate goal is producing

higher quality images at the decoder side.

Thus, we propose a wavelet based image coding algorithm which hierarchically

classifies wavelet coefficients by using their quantization indices. First, we quan-

tize wavelet coefficients using scalar quantizer. After that, we locally group

wavelet coefficients of each subband individually based on their quantization in-

dices to form index classes. At the first level of this hierarchical index tree,

we combine neighboring wavelet coefficients to form index classes that represent
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some statistics of the quantization indices of these coefficients. Upper levels of

tree is constructed using the same method, by pairing neighboring coefficients to

have larger subsets. At each level of the tree, the class assignment of a given

subset describes some local statistics of the quantization levels of correspond-

ing coefficients. This hierarchical quantization index tree provides an inherently

adaptive bit allocation. Coding this index tree means that coding class mem-

bership information of each level of the tree. The bitrate needed to code this

class membership information of a group of coefficients is related with the aver-

age quantization levels of these coefficients. Hence, majority of the bitrate will be

spent to code regions of subbands which have more significant coefficients than

others. This scheme allocates the bitrate by considering the local statistics of re-

gions of subbands which leads accurate and efficient bit allocation. Nonetheless,

we propose to use rate-distortion cost analysis to optimize the coding efficiency

of the hierarchical quantization index tree for better bit allocation.

Also, we propose a wavelet based algorithm for image interpolation problem. We

construct encoder assisted resolution enhancement framework using this inter-

polation algorithm and also using our wavelet based coding algorithm. In this

framework, we assume that we have the high resolution (HR) image available

on the encoder side, however, instead of coding and sending HR image, we can

code and send low resolution (LR) image with some extra side information which

can be used by the decoder for interpolation. Basically, we can extract some

information that is very valuable for interpolation from high resolution image on

the encoder side and we can send this extraction as side information with coded

sequence. Then, we can use this extra information on the decoder side to improve

the interpolation of the coded image. We propose to use two different algorithms

to extract this information, i.e. block based filter design and context adaptive

filter design algorithms. In both algorithms, we design linear minimum mean

square error filters to model the correlation between HR and LR image. In block

based algorithm, we use blocks to catch local high frequency variations. More-

over, in context adaptive algorithm, we try to find a suitable adaptive context to
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model the relationship between HR and LR image.

In Chapter 2, we give brief mathematical information about wavelets, wavelet

transform and its applications to image coding and interpolation. Then, in Chap-

ter 3, we explain detailed information about our wavelet-based image coding algo-

rithm. Chapter 4 introduces our wavelet based image interpolation algorithm and

describes the encoder assisted resolution enhancement framework. In Chapter 5,

we have conclusion of the thesis.
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Chapter 2

Wavelet Theory and Applications to Image Processing

There are two common representations for a one-dimensional signal, i.e. temporal

representation and spectral representation. These are the dual representations

and they appear in two opposite corners of the time-frequency resolution plane.

Therefore, higher accuracy in one domain means complete uncertainty in the

other. Furthermore, different choices of the time-frequency resolution will result

in different signal representations. So, there are other representations which lie

down in the middle of the time-frequency plane and handle time-frequency trade-

off better than the duals, e.g. Short Time Fourier Transform (STFT), Gabor

Transform and Wavelet Transform.

We are going to analyze wavelet transform which has superior time-frequency

localization, outstanding match with human visual system and excellent energy

compaction property.

2.1 Wavelets in Perspective

A wave is defined as an oscillating function of time, such as sinusoid. Fourier

Transform is wave analysis. It expands signals in terms of sinusoids, i.e. complex

exponentials, which has proven to be extremely valuable for analyzing periodic,

time-invariant, or stationary signals. A wavelet is a “small wave” which has its en-

ergy concentrated in time to give a tool for the analysis of transient, nonstationary
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or time-varying signals. Wavelet still has the oscillating wave-like characteristic

but also has the ability to allow simultaneous time and frequency analysis with a

flexible mathematical foundation. This is illustrated in Figure 2.1, the wave (si-

nusoid) oscillating with equal amplitude over −∞ ≤ t ≤ ∞ with infinite energy

and in Figure 2.2, 2.3 wavelets having their finite energy concentrated around a

point. We will take wavelets and use them in a series expansion of signals much

the same way a Fourier transform uses the wave, i.e. sinusoid to represent a

signal.

Figure 2.1: Wave(Sinusoid)

Figure 2.2: Wavelet(Daubechies ψD8)
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Figure 2.3: Wavelet(Daubechies ψD20)

A signal or function f(t) can often be better analyzed, described, or processed if

expressed as a linear decomposition by

f(t) =
∑
`

a` ψ`(t) (2.1)

where ` is an integer index for finite or infinite sum, a` are the real-valued ex-

pansion coefficients, and ψ`(t) are a set of real-valued functions of t called the

expansion set. If the expansion is unique, the set is called a basis for the class of

functions that can be so expressed. If the basis is orthogonal, meaning

〈ψk(t), ψ`(t)〉 =

∫
ψk(t) ψ`(t) dt = 0 k 6= ` (2.2)

then the coefficients can be calculated by the inner product

ak = 〈f(t), ψk(t)〉 =

∫
f(t) ψk(t) dt (2.3)

For a Fourier series, the orthogonal basis functions ψk(t) are sin(kω0t) and cos(kω0t)

with frequencies of kω0. For the wavelet expansion, a two-parameter system is

constructed such that Equation 2.1 becomes
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f(t) =
∑
j

∑
k

aj,k ψj,k(t) (2.4)

where both j and k are integer indices and the ψj,k(t) are the wavelet expansion

functions that usually form an orthogonal basis [18].

2.2 Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) can be considered the most gener-

alized representation of the wavelet transform. So, by being general, CWT is

highly redundant transform. By using sampling theorem in time and frequency

or adding some constraints on basis functions used in transform, we can reduce

redundancy and reach the Discrete Wavelet Transform (DWT) and the subband

transform concepts at the cost of reduced versatility.

The wavelet transform maps a signal or function, f(t), into a two dimensional

domain, i.e. time-scale plane, and is denoted by Wf (s, τ) given by

Wf (s, τ) =
1√
s

∫ +∞

−∞
f(t) ψ∗

(
t− τ
s

)
dt

=

∫ +∞

−∞
f(t) ψ∗sτ (t) dt (2.5)

where ψ(t) is in general called the mother wavelet, and the basis functions of the

transform, called daughter wavelets, are given by

ψsτ (t) =
1√
s
ψ

(
t− τ
s

)
(2.6)

Equation 2.5 is also known as the expansion formula, the forward transform or

analysis; ψsτ (t) is a set of basis functions obtained from the mother wavelet ψ(t)
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by compression or dilation using scaling parameter s and the temporal translation

using shift parameter τ . And, there is a normalization factor 1/
√
s in Equation

2.6 to keep the energy of the daughter wavelets constant. Without this factor, for

different s values, the wavelets dilate or compress and their total energy changes.

It is also to be noted that

ψ(t) = ψ10(t) (2.7)

The scaling parameter s is positive and varies from 0 to ∞. For s < 1, the

transform performs compression of the signal, and for s > 1, the transform per-

forms dilation of the signal. The signal f(t) can be recovered from the wavelet

coefficients Wf (s, τ) by the inverse wavelet transform given by

f(t) =
1

c

∫ +∞

−∞

∫ +∞

0

Wf (s, τ) ψ

(
t− τ
s

)
ds

s2
dτ (2.8)

provided that the constant c is

c =

∫ +∞

−∞

|Ψ(ω)|2
ω

dω < +∞ (2.9)

Equation 2.8 is also referred to as the reconstruction formula, inverse transform,

or synthesis, and Equation 2.9 is generally known as the admissibility condition.

It can be shown that functions ψ(t) satisfying the admissibility condition can be

used to first analyze and then reconstruct a signal without loss of information.

The admissibility condition implies that the Fourier transform of ψ(t) vanishes

at the zero frequency, i.e.

|Ψ(ω)|2
∣∣∣
ω=0

= 0 (2.10)
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This means that wavelets must have a band-pass like spectrum. A zero at the zero

frequency also means that the average value of the wavelet in the time domain

must be zero [19]

∫ +∞

−∞
ψ(t) dt = 0 (2.11)

2.3 Discrete Wavelet Transform

In the continuous wavelet transform, the scaling parameter s and the shift pa-

rameter τ are assumed to be continuous in value (s ∈ R+ and τ ∈ R), so that the

CWT is defined in the (R+)2 plane. Since no new information can be created by

this transform, the same information contained in the signal f(t) with t ∈ R is

available with the CWT. The increase in complexity from t ∈ R to (s, τ) ∈ (R+)2

results only in a redundant representation of the signal. This redundancy can be

reduced by discretizing the transform parameters (s, τ). It should be noted that,

after making parameters discrete, we can still achieve reconstruction without any

loss of information.

The (s, τ) plane is sampled by first taking the scaling coefficient s sampled as

s → sj0 , j ∈ Z , s0 6= 1 (2.12)

For j = 0, we sample the shift parameter τ by taking integer multiples of a

constant τ0 > 0. The step τ0 should be chosen in such a way that ψ(t − kτ0)

covers the whole time axis. Since the basis functions are rescaled for j 6= 0, also

the step size τ should be a function of the scaling parameter. If we define the

width of the wavelet ψ(t) as ∆T
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∆T 2(ψ) =

∫ +∞

−∞
t2 |ψ(t)|2 dt∫ +∞

−∞
|ψ(t)|2 dt

(2.13)

and the width of ψs,j(t), with s = sj0, times the width of ψ(t)

∆T
(
ψsj0,0

(t)
)

= sj0 ∆T (ψ(t)) (2.14)

then it is obvious that to cover the entire axis we need a step on the order of τ0s
j
0.

Hence, the sampling of the wavelet transform is commonly defined as

s = sj0 , τ = k τ0 s
j
0 , j, k ∈ Z

with s0 6= 1 , τ0 6= 0 (2.15)

Large basis functions (sj0 is large) are thus shifted in large steps (τ0s
j
0), whereas

small basis functions are shifted in small steps. This grid is shown in Figure 2.4.

In order for the sampling of the (s, τ) plane to be sufficiently fine resolution, s0

has to be chosen sufficiently close to 1 and τ0 close to 0. These discretized version

of continuous transforms are examples of wavelet frames.

Using the discretization of Equation 2.15, we obtain the following expressions for

the daughter wavelets

ψ(s, τ)
∣∣∣
s=sj0,τ=kτ0s

j
0

= ψ(sj0, kτ0s
j
0)

=
1√
sj0

ψ

(
t− kτ0s

j
0

sj0

)
(2.16)

= s
−j/2
0 ψ

(
s−j0 t − kτ0

)
= ψj,k(t)
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Figure 2.4: Sampling Grid for Discrete Wavelet Transform

From this follows the expression for the Discrete Wavelet Transform

Wf (j, k) =

∫ +∞

−∞
f(t) ψj,k(t) dt

Wf (j, k) = s
−j/2
0

∫ +∞

−∞
f(t) ψ

(
s−j0 t− kτo

)
dt (2.17)

Here, we still need an infinite number of scalings and translations to calculate the

discrete wavelet transform. So, for understanding the realization and practical

aspects of the transform, we are going to define some concepts like orthogonality,

orthonormality of basis functions and use the link between wavelets, multiresolu-

tion analysis and filters.

2.3.1 Multiresolution Analysis

Multiresolution analysis (MRA), formulated in 1986 by Mallat and Meyer, pro-

vided the natural framework for understanding the logic behind the wavelet basis

and subsequently, became the tool for constructing new ones.
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The Multiresolution Theorem states that, given a sequence {Vj} where j is an

element of a closed subspace of L2(R), the sequence defines a multiresolution

approximation of a function f(t) if the following six properties are satisfied.

Property 1

∀j, k ∈ Z, fj ∈ Vj ⇐⇒ fj(t− 2jn) ∈ Vj (2.18)

This means that if fj(t) is an element of Vj, also its translated version fj(t− 2jn)

belongs to Vj. Note that not all possible translations are acceptable, only those

multiples of 2j.

Property 2

∀j ∈ Z, Vj+1 ⊂ Vj (2.19)

This means that the signal approximation at scale j can also be considered a

signal approximation at a scale j + 1. This is a causality property.

Property 3

∀j ∈ Z, f(t) ∈ Vj ⇐⇒ f(t/2) ∈ Vj+1 (2.20)

Dilating the function in Vj by a factor of 2 enlarges the details and again can be

considered an approximation at a scale j + 1

Property 4

lim
j→∞

Vj =
+∞⋂

k=−∞
Vk = 0 (2.21)
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If j tends to infinity, then the resolution 2−j goes to zero and thus the projection

of f(t) on Vj as j tends to infinity is zero since we have lost all the details; in

other words

lim
j→∞
‖PVjf‖ = 0 (2.22)

where PVjf represents the projection of f(t) onto space Vj.

Property 5

lim
2−j→∞

Vj =
+∞⋃

k=−∞
Vk = L2(R) (2.23)

When the resolution 2−j goes to infinity, we can perfectly represent the signal,

hence, the signal approximation is equivalent to f(t).

Property 6

Given a subspace V0, there exists a function φ(t) so that φ(t − k)k∈Z is an or-

thonormal basis for V0. Furthermore, we will impose that the function φ(t) is

such that

φj,k(t) = 2−j/2φ(2−jt− k) (2.24)

is an orthonormal basis of Vj.

2.3.2 Scaling Functions

Multiresolution Analysis ensures that if the properties are satisfied , there exists

an orthonormal basis ϕj,k(t) such that the signal detail on the subspace Vj is given

by
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dj(t) =
+∞∑

k=−∞
〈f, ϕj,k〉ϕj,k (2.25)

and the projection of the signal onto the space Vj is linked to the projection on

the space Vj+1 by

Pjf = Pj+1f + dj+1 (2.26)

The approximation of a signal f at the resolution 2−j is defined as the orthogonal

projection on Vj, and it is represented as PVjf = Pjf . To compute this projection,

we must find an orthonormal basis for Vj. It is interesting to find out that we

can construct an orthogonal basis for each space Vj by dilating and scaling a

single function φ(t) similar to the wavelet function. The function φ(t) is called

the scaling function.

We can define the scaling function φ(t) using its Fourier transform Φ(ω) and the

following relationship

Φ(ω) =
Θ(ω)(

+∞∑
n=−∞

|Θ(ω − 2πn)|2
)1/2

(2.27)

and the family of functions {φj,k}k∈Z calculated as

φj,k(t) =
1√
2j
φ

(
t− k

2j

)
(2.28)

is then an orthonormal basis for Vj for all j ∈ Z.

The orthogonal projection of f over Vj is thus obtained with an expansion in the

scaling orthogonal basis
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PVjf =
+∞∑

k=−∞
〈f, φj,k〉φj,k(t) (2.29)

The inner products aj,k = 〈f, φj,k〉 provide a discrete approximation at the scale

2j. The inner product can also be written as a convolution integral

aj,k =

∫ +∞

−∞
f(t)

1√
2j
φ

(
t− 2jk

2j

)
dt = f ∗ φj,k (2.30)

where

φj(t) =
√

2−j φ
(
2−jt

)
(2.31)

Typically, the energy of the Φ(ω) is limited to |ω| < ω1 hence, the energy of the

function Φj(ω) is concentrated in |ω| < ω1/2
j. The discrete approximation aj,k is

therefore a low-pass filtering of the signal f sampled at intervals 2j.

The multiresolution analysis of the signal f(t) is completely defined by the scaling

function φ(t) that generates the orthogonal basis for the subspaces Vj. If φ(t) is

an orthonormal basis in V0, then 1/
√

2φ(t/2) is an orthonormal basis in V1. But

any function that belongs in V1 can be represented by a linear combination of the

basis of V2, hence

1√
2
φ

(
t

2

)
=

+∞∑
k=−∞

hk φ(t− k) (2.32)

where

hk =

〈
1√
2
φ

(
t

2

)
, φ(t− k)

〉
(2.33)
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The discrete sequence hk represents the projection of the function 1/
√

2φ(t/2)

onto the basis φ(t − k). In signal processing, hk can be seen as the taps or

coefficients of a discrete filter which is called a quadrature mirror filter.

2.3.3 Construction of Wavelet Bases Using Multiresolution Analysis

The projection of the signal f(t) on the space Vj represents the approximation

of this signal at the level j, whereas the wavelet transform represents the detail

information that is added to create an approximation at level (j− 1). Hence, the

wavelet transform of level j can also be considered as the projection of the signal

f(t) on a space Wj which is the orthogonal complement of Vj

Vj−1 = Vj ⊕Wj (2.34)

and the Equation 2.26 can be rewritten as

P V
j (f) = P V

j+1(f) + PW
j+1(f) (2.35)

where P V
j (f) and PW

j (f) are the projection of the signal f onto the Vj and Wj

spaces, respectively

PW
j (f) =

+∞∑
k=−∞

〈f, ψj,k〉 ψj,k(t) (2.36)

As an example, we assume that we have f(t) function illustrated in Figure 2.5,

let us consider that this function can be made discrete by 26 sampled values using

the Nyquist criterion. We can say that f(t) is completely represented in the space

V6. In the next graph of Figure 2.5, we show the same function in subspace V5

or when there are only 25 sampled values. In this space, we are sampling every

2T0, whereas we sampled every T0 in V6. This means that f(t) in V5 is contained

in V6. And this is true for all going to V3.
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V3 ⊂ V4 ⊂ V5 ⊂ V6 (2.37)

t

f(t)

n

n

n

n

V
6

V
5

V
4

V
3

Figure 2.5: Signal f(t) and its representations in V6 to V3

In the subspaces with index j lower than 6, it is obvious that the function is

represented by a coarser approximation, that is, some detail information about

the function is lost. We can define a set of detail subspaces, Wj, which will contain

this lost information. For this particular example, we can write

V6 = (V5 + W5)

V6 = (V4 +W4) + W5

V6 = (V3 + W3) + W4 + W5 (2.38)

The meaning of detail subspace becomes clearer if we consider the spaces in

the frequency domain as shown in the Figure 2.6. The top graph shows the V6

subspace which contains the full bandwidth of the signal. We split the bandwidth

into half, the lower half represents V5 and the higher one represents W5. We split
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V5 again into two halves, V4 and W4, and so on. This also shows that the subband

decomposition which is another manifestation of multiresolution [19].

V6

W5V5

V4 W4 W5

W5W4W3V3

|F (ω)|

ωππ/2π/4π/8

1

Figure 2.6: Representation of the spaces V6 to V3 and W5 to W3 in the frequency
domain

Moreover, Mallat and Meyer proved that if φ(t) is the scaling function constructed

from the filter hk, then the function ψ(t) has a Fourier transform Ψ(ω) given by

Ψ(ω) =
1

2
G(ω)Φ(ω) (2.39)

with

G(ω) = e−jωH∗(ω + π) (2.40)
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The function ψ(t) can be used to construct an orthonormal basis for Wj given

that

ψj,k(t) =
1√
2j
ψ

(
t− 2jk

2j

)
(2.41)

This theorem is extremely important since it links the two functions, wavelet and

scaling, by means of two filters, hk and gk, which are mirror conjugate of each

other as defined in Equation 2.40. Calculating the inverse Fourier transform of

this equation, we have

gk = (−1)1−k h1−k (2.42)

Mallat and Meyer also defined the necessary and sufficient conditions on G(ω)

for designing orthogonal wavelets. The family {ψj,k}k∈Z is an orthonormal basis

of Wk if and only if

|G(ω)|2 + |G(ω + π)|2 = 2 (2.43)

and

G(ω)H∗(ω) + G(ω + π)H∗(ω + π) = 0 (2.44)

As a result, the filter coefficients gk can be expressed as

gk =

〈
1√
2
ψ

(
t

2

)
, φ(t− k)

〉
(2.45)

which means that ψ(t/2) can be expressed as
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1√
2
ψ

(
t

2

)
=

+∞∑
k=−∞

gk φ(t− k) (2.46)

2.4 Subband Decomposition

Let us consider the classic problem of designing two filters, one low-pass and the

other one high-pass, such that we split the signal space exactly in half shown in

Figure 2.7. The low-pass region extends from 0 to π/2 and the high-pass region

extends from π/2 to π.

Low-Pass

|F (ω)|

ω

H0

High-Pass
H1

ππ/2

1

Figure 2.7: Splitting the signal space using ideal low-pass(H0) and high-pass(H1)
filters

Once we design the filters to split a frequency band, we can split it again and

again, forming subbands. Thus, in subband theory, we design a set of two pro-

totype filters, such that repeated application of these filters divides the signal

frequency band into equal parts. This is also referred as a filter bank. There are

different ways to split up the frequency space, some examples are shown in Figure

2.8, 2.9 and Figure 2.10, 2.11.

In a dyadic wavelet transform, we design a mother wavelet from which we gen-

erate a set of daughter wavelets which forms a complete set. In other words,

remembering the connection between wavelet transform and the filter bank, we

see that for this case we have designed one filter, and then using the scaling

property, we have constructed a filter bank. All the filters in the filter bank are

identical in properties except for their scale. In a subband implementation, we
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Figure 2.8: The filter bank for splitting low frequency bands consecutively, as in
DWT

4321

|F (ω)|

ωππ/2π/4π/8

1

Figure 2.9: Frequency domain representation of the non-uniform subband struc-
ture(DWT structure)

initially design two filters which are then scaled to form a filter bank. For most

applications, it is convenient to construct wavelet transforms using two filters.

Their corresponding impulse responses are then used to obtain a scaling function

(low-pass filter) and a wavelet function (high-pass filter). The difference at this

point between subband and wavelet transform becomes very small as, in general,

subbands refer to the discrete-time signal analysis application, whereas wavelet

transforms refer to the continuous-time case.

Let us assume that we have the discrete time signal f [n], n = 0, 1, 2, . . . , and we

want to filter it by a low-pass filter H0 ,of bandwidth π/2 (i.e. 0 ≤ ω ≤ π/2) and

by a high-pass filter H1, of bandwidth π/2 (i.e. π/2 ≤ ω ≤ π). After filtering

the signal f [n], we have the low-pass filtered signal fLP and the high-pass filtered

signal fHP of f [n] with the same size of f [n] and the bandwidth reduced by a

factor of two. So, we can decimate these signals by a factor of two without any

aliasing or distortion. After downsampling process, we get f ′LP and f ′HP having
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Figure 2.10: The filter bank for splitting both low and high frequency bands
consecutively
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Figure 2.11: Frequency domain representation of the uniform subband structure

size by the half of the size of f [n]. These filtering and decimation processes of

input f [n] are called the analysis part. We have also the synthesis part, which is

a mirror operation of the analysis part. We upsample the inputs, filter them by

a synthesis filter pair, G0, G1, and obtain output signal f̃ [n]. This is illustrated

in Figure 2.12.

The problem is how to reconstruct the signal f [n] back again without any alias-

ing or distortion meaning that f̃ [n] = f [n]. As we mentioned before, using the

26



2 2

2 2

H0

H1

G0

G1

Analysis Part Synthesis Part

f [n] f̃ [n]

fLP

fHP f ′
HP

f ′
LP f ′

LP f ′′
LP

f ′′
HPf ′

HP

1

Figure 2.12: Analysis part and synthesis part of the subband filtering

relationship between low-pass filter and high-pass filter(scaling and wavelet fil-

ters,respectively) in Equation 2.42, 2.44, we can choose proper filters for Perfect

Reconstruction (PR). If we consider using finite impulse response (FIR) filters

extending to N, then the PR condition is satisfied provided that

h1[n] = (−1)1+n h0[N − 1− n]

g0[n] = h0[N − 1− n] (2.47)

g1[n] = (−1)n h0[n]

Note that the above equations fully describe all the filters h1, g0 and g1 once the

low-pass filter h0 defined.

2.5 Discrete Wavelet Transform in Image Processing

We mentioned about DWT and subbands in 1-D signals. But, what if we are

dealing with 2-D signals such as images, we should look at how these processes

are going to change. We assume that, we have f [m,n], 2-D signal, since 2-D

filtering process is separable, first we can apply filters and decimation along rows

and then along columns. More specifically, assume that f [m,n] has M rows and
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N columns, we first apply low-pass and high-pass filters along the rows. Then,

we decimate the rows and get low-pass filtered and high-pass filtered images with

M/2 rows and N columns. We again apply low-pass and high-pass filters to these

two images along the columns. After filtering, we decimate these 4 images along

the columns and obtain 4 subbands with M/2 rows and N/2 columns. This is

illustrated in Figure 2.13.
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LL

LH

f [m,n]

H0
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HL

HH

H1

2

2

2

2

2

2

filter and decimate along rows filter and decimate along columns

1

Figure 2.13: 2-D separable analysis filter bank

If f [m,n] is an image with size 512 × 512, then four subbands LL,LH,HL and

HH have the size 256×256. LL subband is generally called the approximation or

the low-pass subband, and the other three subbands, LH,HL and HH are called

as the detail subbands and more specifically horizontal, vertical and diagonal

subband, respectively. There is a famous Lena image in Figure 2.14, and its 1-

level DWT and 2-level DWT images in Figure 2.15 and 2.16, as an example. In

Figure 2.15, top-left image is the LL (approximation) subband, top-right is the

LH (horizontal) subband and bottom-left and bottom-right are the HL (vertical)

and HH (diagonal) subbands respectively.

There is one major issue when taking DWT of image, and it is well-known bound-

ary problem. In the filtering stage, since the image has fixed size of rows and

columns, we encounter problems when filtering boundary pixels. We should ex-

tend the image to be able to filter boundary pixels properly. However, we should

be careful when extending image, because we don’t want to corrupt or distort
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Figure 2.14: Lena image

Figure 2.15: 1-level DWT of Lena image

image structures. There are two common solutions to this problem, i.e. periodic

extension and symmetric extension [20]. In periodic extension, we copy entire

image row or column to the end of that row or column. So, we get periodically

repeated image rows or columns. In symmetric extension, we mirror the image

row or column by the end of that row or column. So, we have a symmetrical

structure relative to the end of rows or columns. These solutions are illustrated
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Figure 2.16: 2-level DWT of Lena image

in Figure 2.17.
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Figure 2.17: Periodic and symmetric extension of image data

2.6 Image Coding Algorithms using Wavelet Transform

Image coding algorithms using wavelet transform have very successful coding re-

sults in terms of subjective and objective quality. Wavelet transform compresses

signal energy into a few coefficients and makes it possible to have sparse represen-

tation of signals. It is a very valuable property for coding purposes. Moreover, the

multiresolution nature of the wavelet transform lets us to design flexible coding

algorithms like embedded coding. Also, taking the discrete wavelet transform of

the image does not have to be done by partitioning the image into blocks which
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avoids annoying blocking artifacts at the reconstructed image. Despite these

great features of wavelet transform, superior results can not be obtained without

designing efficient and intelligent algorithms which exploit this effectiveness.

One of the most significant coding algorithms using wavelet transform is Shapiro’s

EZW coder [5]. It is basically an algorithm that codes the significance maps of

subbands hierarchically instead of coding wavelet coefficients themselves. As

we mentioned before, wavelet transform makes the signal representation sparse.

So, there are few large magnitude coefficients and numerous small magnitude

coefficients that can be quantized to zero. EZW coder exploits this distribution

of wavelet coefficients by using zerotrees. This data structure clusters the wavelet

coefficients into two groups, i.e. significant and insignificant.

Moreover, EZW coder uses the inter-subband relationships of wavelet coefficients.

It is called parent-children dependency of subbands, see Figure 2.18. A coeffi-

cient from coarser scale subband is called the parent and the coefficients having

same spatial location at the finer scale are called children. All parent coefficients

have four children except low pass subband coefficients which has three children.

And needless to say that, finest scale coefficients have no children. Number of

all descendants of a parent coefficient is growing exponentially depending on the

number of stages of wavelet transform which makes zerotrees very efficient repre-

sentation.

Furthermore, Shapiro proposed that, it is statistically reasonable to expect that

the magnitude of a children should be smaller than its parent. So, this informa-

tion is very useful in classification of coefficients. EZW coder uses zerotrees to

represent sparse structure of wavelet coefficients. It basically relies on the cor-

relation of parent and children’s magnitude. If any parent’s magnitude is lower

than chosen threshold, and also its all descendants, i.e. its children and its chil-

dren’s children, and so on, have magnitude lower than threshold, we can use only

one symbol to represent them all. This can go hierarchically to cover all coeffi-

cients. This data structure is actually very appropriate and efficient for coefficient
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Figure 2.18: Parent-children dependency of subbands

distribution and the subband structure of wavelet transform.

In more detail, EZW coder classifies coefficients into two groups, significants

and insignificants for some threshold T . If coefficient is significant according to

the threshold, then it outputs POS for positive signed coefficient and NEG for

negative signed. If coefficient is insignificant, there are 3 options: if it is a finest

scale coefficient with no children, it outputs Z for a zero, if it has all descendants

with insignificant value, it outputs ZTR for zerotree root, and at last if it has a

descendant with significant value, it outputs IZ for isolated zero. This keeps going

with hierarchical manner to process all coefficients. This is called dominant pass.

There is an also subordinate pass which refines the output magnitude’s precision.

And this dominant and subordinate passes continue with threshold half of the

former one, i.e. T/2, T/4 and T/8 ..., until coder achieves to a given bitrate

or distortion value. Thus, this successive passes yield an embedded bitstream,

meaning that whenever bitstream is ceased, decoder can reconstruct image with

desired bitrate or distortion value without any artifacts. Embedded bitstream
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has coarse approximation of image and also successive refinement bits.

EZW coder has profound effect on wavelet based coding algorithms. Using data

structures like zerotrees on representing wavelet coefficients leads to various dif-

ferent algorithms. One of the most successful algorithms that share similar phi-

losophy with EZW is Said and Pearlman’s set partitioning in hierarchical trees

(SPIHT) algorithm [6]. It uses a similar zerotree structure to represent distribu-

tion of wavelet coefficients. SPIHT handles keeping track of significance states

of sets by maintaining lists. There are three lists, list of insignificant sets (LIS),

list of insignificant pixels (LIP) and list of significant pixels (LSP). And an im-

portant difference between EZW and SPIHT is SPIHT has 3 different sets of

coefficients, i.e. children, all descendants and descendants which are not children.

Also, it uses 2 different passes like EZW, sorting pass and refinement pass. SPIHT

provides embedded coding and precise rate control and offers 2 different output

options, binary uncoded bitstream and arithmetic coded bitstream. At the time

when SPIHT was proposed, it has the best PSNR results among all image coding

algorithms and majority of these algorithms has very high complexity.

Another important coding algorithm that uses zerotree structure is Xiong et al.’s

space-frequency quantization (SFQ) algorithm [7]. It provides a solution to the

joint optimization problem of using spatial quantization modes and basic scalar

quantization. We mean zeroing out wavelet coefficients in the tree structure

(zerotree quantization) by spatial quantization modes. And, scalar quantization

stands for using a simple uniform scalar quantization for all significant coefficients.

It jointly optimizes the decision of zeroing the tree and the selection of quantizer

step size for significant coefficients in a rate-distortion sense. As a result, SFQ

has better PSNR values than both EZW and SPIHT for several test images.

Moreover, there are algorithms that differs from zerotree coders, e.g. LoPresto

et al.’s coder that uses Estimation-Quantization (EQ) framework [10]. It models

the wavelet coefficients of each subband by using generalized Gaussian distribu-

tion with zero mean and slowly spatially-varying variances. Using this model,
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they proposed a framework with two steps, Estimation step and Quantization

step. First, they estimate the optimal pixel variances using a Maximum Likeli-

hood estimation. These variance estimates are obtained from causal quantized

spatial neighbors using the slowly spatially-varying variances assumption. Then,

they optimally quantize and entropy code estimated coefficients using a quantiz-

er/entropy coder-variance lookup-table which is generated using rate-distortion

optimization. EQ coder has brilliant PSNR results and it outperforms vast ma-

jority of the image coders.

Furthermore, another successful algorithm that differs from zerotree coders is

Ates and Orchard’s coding algorithm that uses spherical representation [9]. They

share a similar philosophy with EQ by using local energy or local variance as a

direct measure of information content. Ates and Orchard claim that local energy

can be used to represent local image structure and also coding decisions such

as how to spend bitrate can be done by using it. Spherical coder constructs

a hierarchical tree by combining local energies for each subband starting from

the coefficient level going to one total energy variable. Information of how to

split one upper energy variable to two sub energy variables is conveyed by phase

variables. So, phase variables represent the difference in local image structure

between two regions. They proposed that coding the total energy variable and

the phase variables of each subband by using the hierarchical energy tree are

much more efficient than coding the wavelet coefficients themselves. Also, they

use rate-distortion optimization to make decision of coding or zeroing out the

branches of the hierarchical tree. The PSNR performance of spherical coder is

better than EZW, very close to SPIHT and slightly worse than SFQ and EQ

coders.

2.7 Image Interpolation Algorithms using Wavelet Transform

Wavelet based image interpolation algorithms mainly share the same philosophy,

that is taking existing image as low-pass subband and estimating high-frequency
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subbands to reconstruct higher resolution image. They differ from each other by

how they estimate these subbands. Various different algorithms are introduced to

accomplish this objective, but merely a few of them has promising results. One

of the promising wavelet based interpolation algorithms is Chang et al.’s inter-

polation algorithm that uses wavelet extrema extrapolation [12]. They basically

extrapolate the high frequency subbands from existing image by modeling the

propagation of wavelet transform extrema across scales. Chang et al. introduced

3 constraints that all estimated subbands should obey. From these constraints,

they find how to upsample the existing image and how to extrapolate extremas

across scales. Furthermore, they have 2 parameter equation to model the the

propagation of extrema values, and these 2 parameters are estimated using the

least square error(LSE) criterion. Wavelet based extrema extrapolation algorithm

has better PSNR results than conventional algorithms bilinear and bicubic inter-

polation. Also, this algorithm can be further improved by using more realistic

constraints and more complex equation to model the propagation of extremas to

compete with the state of the art interpolation algorithms.

Another promising algorithm that uses wavelet transform for interpolation is

Carey et al.’s regularity preserving interpolation scheme [15]. They introduce that

making assumptions about continuity of natural images leads to oversmoothed

edges and textures. Their algorithm has no continuity constraint on image and

also they use Hölder regularity criteria to preserve edge regularity. In detail, they

use undecimated wavelet transform to obtain high frequency subbands and they

model the decay of edge structures along rows and columns separately across

scales using Hölder regularity. Algorithm first locates the edge structure along

rows or columns, then extrapolates its position and its magnitude decay to higher

scale subband. Performance of this algorithm in PSNR metric is higher than

bilinear and bicubic interpolation and also has better results than extrema ex-

trapolation algorithm [21].

Moreover, there is an algorithm that uses hidden Markov trees to model the cor-

relation of wavelet coefficients across scales for interpolation purposes proposed
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by Kinebuchi et al. [13]. They use pre-trained hidden Markov tree with mixture

Gaussian distribution for state transitions for estimating 3 high frequency sub-

bands from lower scale high frequency subbands. Algorithm first takes relatively

similar images to train hidden Markov tree. Then, it tries to extract sign change

probabilities from each subband independently. And, it iterates Expectation-

Maximization (EM) algorithm for the pre-trained Markov tree and finds the states

of all coefficients. Using Gaussian distribution with obtained parameters, it ran-

domly generates a magnitude value for each coefficient. Then, using sign change

probabilities, it changes the signs of coefficients when it is needed. Also, algo-

rithm has post-processing step which is a filtering with Gaussian low pass filter

and performing unsharp masking. The algorithm has PSNR values better than

conventional algorithms and also extrema extrapolation algorithm. Furthermore,

performance of this algorithm and regularity preserving image interpolation has

nearly the same PSNR results [21].
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Chapter 3

Wavelet Based Image Coding

Wavelet based image coders have better results in PSNR metric and also in visual

comparison than other transform based counterparts, e.g. DCT based coders.

Wavelet coders have various advantages over DCT coders, notably in their coding

efficiency. As we mentioned before, wavelet transform compresses signal energy

into a few coefficients and makes the signal representation sparse. So, we can

design coding tools which classify the coefficients into significant and insignificant

sets to exploit this skewed distribution of wavelet coefficients. These coding tools

should code insignificant coefficients with little bitrate and the majority of bitrate

should be spent on significant coefficients. Thus, efficient bitrate allocation is an

essential step for successful image coding. But, before that, proper handling of

classification of wavelet coefficients is crucial for efficient bit allocation. Hence, we

should develop some kind of data structures to represent significant/insignificant

coefficient sets which are suitable to wavelet coefficient distribution. In EZW

coder, Shapiro developed zerotrees structure to represent these sets efficiently and

also SPIHT coder uses hierarchical trees for handling these sets. After the success

of EZW and SPIHT coders in image coding, it is obvious that the hierarchical

description of wavelet coefficients is an efficient and appropriate way to represent

wavelet coefficient structure.

In this thesis, we propose a wavelet based image coding algorithm which hierar-

chically classifies wavelet coefficients by using their quantization indices. First,
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we quantize wavelet coefficients using scalar quantizer. After that, we locally

group wavelet coefficients of each subband individually based on their quantiza-

tion indices to form index classes which hierarchically classify quantized data. At

the first level of this hierarchical index tree, we combine neighboring wavelet co-

efficients to form index classes that represent some statistics of the quantization

indices of these coefficients. Upper levels of tree is constructed using the same

method, by pairing neighboring coefficients to have larger subsets. At each level

of the tree, the class assignment of a given subset describes some local statistics

of the quantization levels of corresponding coefficients.

This hierarchical quantization index tree provides an inherently adaptive bit al-

location. Coding this index tree means coding class membership information of

each level of the tree. The bitrate needed to code this class membership infor-

mation of a group of coefficients is related with the average quantization levels

of these coefficients. Hence, majority of bitrate will be spent to code regions

of subbands which have more significant coefficients than others. This scheme

allocates the bitrate by considering the local statistics of regions of subbands

which leads accurate and efficient bit allocation. Nonetheless, we propose to use

rate-distortion cost analysis to optimize the coding efficiency of the hierarchical

quantization index tree for better bit allocation.

3.1 Hierarchical Quantization Index Classes

In this section, we analyze concepts like how to construct hierarchical index tree,

how to obtain index classes and how to group coefficients in detail. Let us define

c(m,n) as wavelet coefficients of the subband W of size 2j×2j (0 ≤ m,n < 2j) in

k-level wavelet transform of an image. Then, the absolute value of each coefficient,

|c(m,n)| is scalar quantized and assigned to a non-negative quantization index,

i(m,n)

i(m,n) = Q [|c(m,n)|] (3.1)
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also sign of each coefficient is kept in sign function s(m,n)

s(m,n) = sign (c(m,n)) (3.2)

reconstructed coefficients c̃(m,n) can be found by inverse quantization

c̃(m,n) = s(m,n)Q−1 [i(m,n)] (3.3)

The quantization function Q[.] could be selected as any scalar quantizer. Here,

we choose to use dead-zone uniform quantizer. Because, we can easily adjust the

set of coefficients to be quantized to zero by adjusting dead-zone interval.

Q[c] =

 0 if 0 ≤ c < T⌊
c−T
q

+ 1
⌋

if T ≤ c
(3.4)

here T represents the dead-zone interval size and q is the quantization step size.

The inverse quantization is defined as

Q−1[i] =

 0 if i = 0

iq + T − q
2

else
(3.5)

After defining i(m,n), i.e. quantization indices, we combine them to form quan-

tization index classes, Cr

Cr =
{

(i1, i2) |f (i1, i2) = r, ∀ i1, i2, r ε Z+
}

(3.6)

where i1,i2 and r are non-negative integers and f(., .) represents class assignment

function. The number of integer pairs in each class is defined as Nr = |Cr|.
The purpose of the class assignment function is to combine similar index pairs

into the same class. We have two different class assignment functions to classify
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coefficients, and also there can be various choices of assignment functions which

defines the similarity in such a different way. Two different class assignment

functions will be analyzed in next section.

Index classes, Cr, are used to construct a hierarchical description of the quantiza-

tion indices of wavelet coefficients. Now, let us define how the hierarchical index

tree are constructed, the first level of tree is formed by combining neighboring

wavelet coefficients by using class assignment function

Γ0,0(s, t) = i(s, t)

Γ1,0(s, t) = f (Γ0,0(2s, t),Γ0,0(2s+ 1, t)) (3.7)

Upper levels of hierarchy are defined analogously,

Γu,u(s, t) = f (Γu,u−1(s, 2t),Γu,u−1(s, 2t+ 1))

Γu+1,u(s, t) = f (Γu,u(2s, t),Γu,u(2s+ 1, t)) (3.8)

here, we pair horizontal and vertical neighbors in an alternating fashion from

bottom to top of the index tree. In Figure 3.1, we can see an example of how

upper levels of tree are combined in an alternating fashion. In (J − 2, J − 2)

level, we have 16 indices and they are combined in horizontal direction to form

(J − 1, J − 2) level’s 8 indices. Then (J − 1, J − 2) level indices are paired in

vertical direction to form (J − 1, J − 1) level’s 4 indices and so on.

In our algorithm, we propose to code this hierarchical index tree, instead of coding

wavelet coefficients themselves. In other words, we code the class assignment

values Γu,v(s, t)(0 ≤ u ≤ J, v ε {u, u − 1}, 0 ≤ s, t < 2J−u, 2J−v) starting from

top going to bottom of the tree.
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Figure 3.1: Top levels of the hierarchical index tree

3.2 Class Assignment Functions

We should design effective and efficient class assignment functions which group

similar coefficients together. How to define this similarity results in different class

assignment functions. But, all of the class assignment functions share the same

philosophy, combine coefficients or groups of coefficients together based on their

statistical characteristics. That is to say, coefficients or groups of coefficients

having similar information content should be assigned to the same class. Fur-

thermore, we designed two different class assignment functions, i.e. “circular”

and “max” assignment functions which provide good coding results.

In circular assignment function, it assigns index pairs (i1, i2) to the closest circle

with integer radius, see Figure 3.2
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Figure 3.2: Circular assignment classes

f(i1, i2) =

⌊√
i21 + i22 + 0.5

⌋
(3.9)

In Figure 3.2, light gray area shows the class C1 and black dots in this area show

the corresponding index pairs, i.e. (0, 1), (1, 0), (1, 1) and N1 = 3 for circular

assignment function. And, the gray area represents the class C2, black dots in

this region is the integer index pairs, i.e. (0, 2), (2, 0), (1, 2), (2, 1) and N2 = 4.

Analogously, dark gray region shows the class C3 and dots in this area correspond

to index pairs, (0, 3), (3, 0), (1, 3), (3, 1), (2, 2) and N3 = 5.

Another reasonable choice for class assignment function is the maximum of two

indices (i1, i2)

f(i1, i2) = max(i1, i2) (3.10)
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Figure 3.3: Max assignment classes

In Figure 3.3, 3 classes, C1, C2 and C3 can be seen, and the corresponding index

pairs are the black dots. For C1, index pairs are the same as circular (0, 1), (1, 0),

(1, 1) and N1 = 3. But, for C2 max and circular functions have different index

pairs, max has (0, 2), (2, 0), (1, 2), (2, 1), (2, 2) and N2 = 5. Also, C3 has index

pairs (0, 3), (3, 0), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3) and N3 = 7 for max assignment

function. Number of index pairs for max assignment function can be calculated as

Nr = 2r+ 1. It should be noted that f(0, 0) = 0 and N0 = 1 for both assignment

functions.

3.3 Subband Coding by Quantization Index Hierarchy

Our coding algorithm is applied to each wavelet subband W of size 2j × 2j in-

dependently. The coded data are the class assignment variables, Γu,v(s, t) and

sign bits of each significant wavelet coefficient. Encoding and also decoding are
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performed hierarchically, starting from the top of the tree, ΓJ,J(0, 0), going to the

bottom, i.e. coefficient level, Γ0,0(m,n).

During encoding of level (u, u) of the hierarchical index tree, given Γu,u(s, t) should

be one of the NΓu,u(s,t) index pairs in class CΓu,u(s,t). Assuming all index pairs in

class CΓu,u(s,t) are equiprobable, entropy coding this class assignment requires

log2(NΓu,u(s,t)) bits on average. This estimation of bitrate required to code class

assignment variables is essential for rate-distortion cost analysis and will be used

in Lagrangian cost calculations.

Moreover, it is necessary to handle coefficients that will be assigned to zero-class

C0 carefully to improve coding efficiency of our algorithm. Because, most of the

bitrate gain comes from subtrees which are assigned to zero-class. Whenever a

subtree of index hierarchy is assigned to C0, then all subsequent class assignments,

and so all wavelet coefficients belonging to this subtree are zeroed out and no

additional bitrate is spent to code the remaining class indices of this subtree.

Here, there is one major problem, constructing the hierarchical index tree using

original index values and coding this tree may not achieve optimal coding re-

sults. Because, one coefficient can be individually considered as significant and

quantized to a non-zero level. But, when considering part of a subtree, assigning

zero-class to this subtree can be better according to the rate-distortion optimiza-

tion, so it may be more efficient to zero-quantize this coefficient although it is

individually significant. Therefore, rate-distortion optimization is an essential

step in our coding algorithm to decide either to code the original subtree or

zero-quantize it for optimal performance.

We propose a simple rate-distortion cost analysis that is similar to the one de-

scribed in [24] for optimization of index tree. Going from coefficient level to the

top of tree, we compare the Lagrangian cost of coding a given subtree to zero-

quantizing all coefficients belonging to this subtree. Former one is equal to the

cost of coding the class assignment of the current subtree plus the minimum costs
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of the two children subtrees. We are going to explain this in detail in algorithm

flow.

Algorithm is given as,

1. Quantize wavelet coefficients using a dead-zone uniform quantizer

Γ0,0(m,n) = Q [|c(m,n)|]

s(m,n) = sign (c(m,n))

c̃(m,n) = s(m,n)Q−1 [Γ0,0(m,n)]

2. Optimizing the index tree: Compare the Lagrangian cost of coding

and sending class variables of the wavelet coefficients to the cost of zero-

quantizing them all. If the latter cost is smaller, assign that subtree to C0.

Assume that Lu,v(s, t) represents the Lagrangian cost,

L0,0(m,n) = (c(m,n)− c̃(m,n))2 + λI(m,n)

here L0,0(m,n) shows the Lagrangian costs of the coefficient level of the

index tree, I(m,n) represents the sign bit cost for coefficient c(m,n), and

(c(m,n)− c̃(m,n))2 represents the distortion for coefficient level. I(m,n)

can be found as

I(m,n) =

 0 if Γ0,0(m,n) = 0

1 else

Set u = 1 and while u < J do

• For 0 ≤ s < 2(J−u), 0 ≤ t < 2(J−u+1), split Γu,u−1(s, t) to Γu−1,u−1(2s, t)

and Γu−1,u−1(2s+1, t) by using Equation 3.8, and define corresponding

Lagrangian costs as

Lu,u−1(s, t) = Lu−1,u−1(2s, t) +Lu−1,u−1(2s+ 1, t) +λ log2(NΓu,u−1(s,t))
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here total cost of class assignments for the current subtree is found by

adding total cost of the two children subtrees to Lagrangian cost for

coding class information, λ log2(NΓu,u−1(s,t)). Then, we compare this

cost to the total distortion caused by zero-quantization

Lu,u−1(s, t) >

2u(s+1)−1∑
m=2us

2u−1(t+1)−1∑
n=2u−1t

c(m,n)2 ⇒ Γu,u−1(s, t) = 0

• Repeat the same procedure for Γu,u(s, t) and Lu,u(s, t) for 0 ≤ s, t <

2J−u

• Set u = u+ 1 and repeat step 2

3. Encoding/Decoding: Start encoding/decoding from top of tree and going

down to the coefficient level hierarchically. Code ΓJ,J(0, 0). Set u = J and

while u > 0 do,

• Encode/Decode subtree assignments, Γu,u−1(s, 2t) and Γu,u−1(s, 2t+1)

for 0 ≤ s, t < 2J−u

• Encode/Decode subtree assignments, Γu−1,u−1(2s, t) and Γu−1,u−1(2s+

1, t) for 0 ≤ s < 2J−u, 0 ≤ t < 2J−u+1

• Set u = u− 1 and repeat step 3

4. Code the sign information if Γ0,0(m,n) > 0. At the end of encoding/decod-

ing, we reconstruct the decoded wavelet coefficients

c̃(m,n) = s(m,n)Q−1 [Γ0,0(m,n)]

In the coding algorithm, optimal q and T , i.e. optimal quantization step size and

dead-zone interval size are chosen for best rate-distortion performance for a given

Lagrangian multiplier λ. For a given bitrate, optimal λ is found using the convex

bisection algorithm mentioned in [25].
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The class assignment variables, Γu,v(s, t), are coded using arithmetic coder. The

coding model of each class CΓu,v(s,t) is adapted based on number of index pairs,

NΓu,v(s,t) and the level of tree, (u, v). Furthermore, the output bitrate of the arith-

metic coder is slightly better than our equiprobable index pair bitrate estimate.

So, accuracy of our bitrate estimate used in cost analysis is proved to be right.

While decoding the final index tree, when algorithm reaches to a subtree that is

assigned to zero-class, all the coefficients belong to this subtree are set to zero

and no bitrate is spent for coding the remaining class indices.

3.4 Simulation Results

In simulations, we use biorthogonal quadrature mirror filter pairs [26] in a 6-level

dyadic decomposition to implement hierarchical index coder(HIC). Optimal step

size q and dead-zone interval size T are chosen among the set {t : t = 0.1k, k =

50, 51, 52 . . . 400}. Same quantization step size q and dead-zone interval size T

are used for all subbands. Low pass subband is first DCT transformed(8×8) and

quantized using optimal scalar quantizer for a given λ, then arithmetic coded.

Standard test images Lena and Barbara of size 512×512 are used in simulations.

Furthermore, simulations results are obtained for bitrates 1.00, 0.50 and 0.25 bits

per pixel (bpp).

First, we compare the results of HIC coder using circular and max assignment

functions for Lena and Barbara, see Table 3.1. PSNR results are nearly the same

for max and circular functions for Lena and max function is slightly better for

Barbara image.

We compare the PSNR results of HIC coder using circular assignment function

to the state of the art coders in literature, i.e. SPIHT [6], SFQ [7], EBCOT [8],

EZBC [27], SPHE [9] and EQ [10] in Table 3.2 and 3.3. EQ is implemented using

10/18 biorthogonal filters, so for fair comparison, EQ and HIC coder which is

implemented using 10/18 biorthogonal filters are kept separately. HIC coder has
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Table 3.1: PSNR results of HIC coder for circular and max assignment functions

HIC
PSNR(dB)

Lena Barbara
Rate(bpp) Max Circular Max Circular

1.00 40.69 40.70 37.08 37.05
0.50 37.45 37.45 32.17 32.14
0.25 34.37 34.37 28.35 28.34

the best results for Lena in 1.00 bpp and 0.25 bpp. And, in 0.50 bpp, it has

slightly worse results than EZBC coder and better results than all of the rest.

Furthermore, EQ has 0.1 dB better results over HIC coder for Lena. For Barbara,

EBCOT has the best results. Note that, EBCOT uses complex models which can

adapt local frequency variation of textured images, like Barbara. However, espe-

cially in lower bitrates, HIC coder has very successful results which can compete

with complex algorithms.

Table 3.2: PSNR results of HIC coder and state of the art wavelet coders for
Lena

Lena PSNR(dB)
Coder Filter 0.25bpp 0.50bpp 1.00bpp

HIC 9/7 34.37 37.45 40.70
SPIHT[6] 9/7 34.11 37.21 40.46
SFQ[7] 9/7 34.33 37.36 40.52

EBCOT[8] 9/7 34.32 37.43 40.55
EZBC[27] 9/7 34.35 37.47 40.62
SPHE[9] 9/7 34.28 37.40 40.67

HIC 10/18 34.44 37.54 40.73
EQ[10] 10/18 34.57 37.69 40.88

For subjective evaluation, Figure 3.4 and 3.5 show the original Lena image and

1.00bpp coded version using circular assignment. Also, Figure 3.6 and 3.7 repre-

sent the visual difference between 0.50bpp coded images using HIC and EBCOT

coders. Analogously, Figure 3.8 and 3.9 show the visual difference between two

coders at 0.25bpp.
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Table 3.3: PSNR results of HIC coder and state of the art wavelet coders for
Barbara

Barbara PSNR(dB)
Coder Filter 0.25bpp 0.50bpp 1.00bpp

HIC 9/7 28.34 32.14 37.05
SPIHT[6] 9/7 27.58 31.40 36.41
SFQ[7] 9/7 28.29 32.15 37.03

EBCOT[8] 9/7 28.53 32.50 37.38
EZBC[27] 9/7 28.25 32.15 37.28
SPHE[9] 9/7 28.22 32.06 37.00

HIC 10/18 28.62 32.50 37.49
EQ[10] 10/18 28.48 32.87 37.65

Figure 3.4: Original Lena image
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Figure 3.5: 1.00bpp coded Lena image using HIC coder PSNR:40.70

Figure 3.6: 0.50bpp coded Lena image using HIC coder PSNR:37.45
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Figure 3.7: 0.50bpp coded Lena image using EBCOT coder PSNR:37.43

Figure 3.8: 0.25bpp coded Lena image using HIC coder PSNR:34.37
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Figure 3.9: 0.25bpp coded Lena image using EBCOT coder PSNR:34.32

Furthermore, Figure 3.10 and 3.11 represent the original and 1.00bpp coded Bar-

bara image, respectively. Figure 3.12 and 3.13 show the visual difference between

0.50bpp coded Barbara images using HIC and EBCOT coders, respectively. Sim-

ilarly, Figure 3.14 and 3.15 represent the visual difference between two coders at

0.25bpp.
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Figure 3.10: Original Barbara image

Figure 3.11: 1.00bpp coded Barbara image using HIC coder PSNR:37.05
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Figure 3.12: 0.50bpp coded Barbara image using HIC coder PSNR:32.14

Figure 3.13: 0.50bpp coded Barbara image using EBCOT coder PSNR:32.50
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Figure 3.14: 0.25bpp coded Barbara image using HIC coder PSNR:28.34

Figure 3.15: 0.25bpp coded Barbara image using EBCOT coder PSNR:28.53
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Chapter 4

Wavelet Based Image Interpolation

Interpolation is a classical and grueling problem of several fields such as, applied

mathematics, statistics, economics and signal processing. So many researchers

have been studying this problem for a long time. However, there is no clear-

cut solution for this phenomenon. As a matter of fact, the ultimate goal of the

interpolation is the extraction of the underlying continuous data from existing

undersampled discrete data. When stated that way, it seems like a problem

that has no prospective solution, but that should also be pursued. Besides the

ultimate goal, interpolation can be interpreted as the estimation of new data

points in the range of known ones. So, we can consider it as a process that changes

the sampling rate of the discrete data. This process especially has overriding

importance in image processing since resolution enhancement (zooming), error

concealment (image inpainting) and geometric transform of images are performed

using it.

Image interpolation, here after used for a synonym for resolution enhancement

of image, is a very challenging issue, because natural images have various regions

with different statistics e.g. smooth regions,edges and textures which should be

carefully handled when estimating new data points. Therefore, the performance

of the image interpolation algorithm is related to how accurate it handles these

different regions. Conventional algorithms, i.e. bilinear and bicubic interpola-

tion, are spatial domain interpolators and they suffer from blurring and ringing
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artifacts. Because, they mostly smooth out edges and textured regions due to

the continuity constraint they have on entire image. There are complementary

algorithms to bilinear and bicubic like unsharp masking to boost high frequencies,

but they slightly increase the performance of these algorithms. Moreover, there

are wavelet based interpolation algorithms which are transform domain interpo-

lators, handling edges and texture regions better than conventional algorithms,

because they inherently have the high frequency information at low scales which

can be used to preserve edges and textures at higher scales.

4.1 Wavelet Based Image Interpolation Algorithms

Most of the wavelet interpolation algorithms make the assumption that the im-

age we have on hand is the low-pass subband of the higher resolution image, and

interpolation algorithm is trying to do the estimation of the detail coefficients of

this higher resolution image. This assumption is reasonable when we consider

the acquisition of natural images, because image acquisition system makes image

lose its high frequency contents by low-pass filtering and downsampling. There-

fore, what we try to do by interpolation is to recover the lost high frequency

information to have sharp, high quality image with higher resolution without any

artifacts. Furthermore, wavelet interpolation algorithms differ from each other

by how they estimate these detail coefficients. Most basic method is to fill all the

detail subbands with zeros and use existing image as the low-pass subband, then

take the inverse wavelet transform to reconstruct higher resolution image. This

reconstructed image is a blurred version of existing image due to the fact that, we

didn’t estimate any high frequency information. This method is called “Zerofill”,

and used as a basis in performance comparisons.

For having successful interpolation results in a subjective and objective manner,

we should have very good estimation of detail subbands. Because, substantial

visual information is conveyed by edges and textured regions, i.e. high frequency
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contents, so we should handle these regions very carefully while performing inter-

polation. Fortunately, we know that, coefficients representing edges decays across

scales in wavelet transform, therefore we can use lower scale subbands to estimate

higher scale coefficients. There are algorithms using neural networks and hidden

Markov trees [13] to model the relationship between higher scale and lower scale

detail coefficients with extensive training. These algorithms suffer from the varia-

tion of regions in natural images that can’t be modeled with general distribution

and also the need of heavy training makes these algorithms impracticable. There

is another algorithm which models the extremas between lower scale and higher

scale [12]. It uses the evolution of the wavelet transforms extrema across scales to

extrapolate extremas for estimating detail coefficients. It is useful for finding and

extrapolating isolated extremas, so it has relatively good results on non-textured

images. But, in textured images, it has mediocre results. Because, assumptions

that they made on parameters are not true for images with complex edge struc-

ture, also location and magnitude information of extremas in textured images can

not be found without complex modeling.

4.2 Our Resolution Enhancement Approach

As opposed to the mentioned wavelet interpolation algorithms, we propose here

a different framework or scenario for interpolating images. First, we setup a

basic encoder/decoder structure with a communication channel between these

two nodes. This basic structure is illustrated in Figure 4.1. In this framework,

we assume that we have the high resolution (HR) image available on the encoder

side, however, instead of coding and sending HR image, we can code and send

low resolution (LR) image with some extra side information which can be used

by the decoder for interpolation, see Figure 4.2. This problem definition provides

us a different perspective for solution of interpolation problem. Basically, we

can extract some information that is very valuable for interpolation from high

resolution image on the encoder side and we can send this extraction as side
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information with coded sequence. Then, we can use this extra information on the

decoder side to improve the interpolation of the coded image. In this thesis, we

work on how to extract these information from HR image for better interpolation

results and we leave the coding of this extra information as future work.

Encoder Decoder
ChannelCoded Sequence Coded Sequencef f ′

1

Figure 4.1: Basic encoder/decoder framework

Encoder Decoder
ChannelCoded Sequence Coded Sequence

LR to HR
Image

Analysis

Interpolation
Algorithm

fHR

High Resolution
Image

fLR
Low Resolution

Image

Side
Information

Side
Information

f ′
HR

High Resolution
Image

Decoded

f ′
LR

Low Resolution
Image

Decoded

1

Figure 4.2: Our Encoder Assisted Resolution Enhancement Approach

Finally, we design linear filters between subbands of high resolution and low res-

olution image (in encoding/decoding scheme, of course we use encoded/decoded

HR and LR images) for modeling the correlation between these two. Then, we

send coefficients of these filters to the decoder part as side information. This

whole process is our “Encoder Assisted Resolution Enhancement Approach”. In
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this approach, how to design linear filters is the main and the most significant

issue. As we mentioned before, successful image interpolation requires proper

handling of edges and textured regions which have major effect on visual content.

So, we try to design our filters to handle high frequency context appropriately by

two different algorithms, i.e. “Block Based Filter Design” and “Context Adaptive

Filter Design”.

4.3 Block Based Filter Design Algorithm

In image interpolation, most significant and fundamental task to do is to recover

the lost high frequency components to have sharp and high quality image. In

our approach, we had our high resolution image in the encoder side which con-

tains high frequency content. So, we should design linear filters to extract this

information from high resolution image and use these filters to recover the high

frequency content of low resolution image. Here, we propose to use block based

filter design algorithm, which tends to catch local variations and try to model the

neighbor pixel relations. It is useful for both preserving the edge structure and

also smoothness of the image.

In more detail, we design “Linear Minimum Mean Square Error (LMMSE)” filters

for blocks of subbands of low resolution and high resolution image. First, we use

a standard interpolation algorithm to make an initial estimate of the HR image.

This initial estimate does not have to provide an accurate description of the

high frequency details, because after resizing low resolution image, we design

high frequency compensation filters to recover the lost high frequency content.

So, we should use any of the conventional algorithms, i.e. bilinear or bicubic

interpolation. We will see that, type of initial interpolation has a minor effect

on results in the simulations section. In our algorithm, we prefer to use bicubic

interpolation as initial interpolation algorithm. After initial interpolation, we

take wavelet transform of original high resolution image and initially interpolated

high resolution image, to have detail subbands, i.e. horizontal (LH), vertical
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(HL) and diagonal (HH) subbands. Estimating the accurate diagonal subband

coefficients has less effect on the result than the other two subbands and gain/cost

tradeoff makes us to skip the filter design process for diagonal subband. So, we

fill whole diagonal subband with zeros in reconstruction. Block scheme of the

algorithm can be seen in Figure 4.3.

Wavelet
T ransform

Low Resolution Image
(LR)

High Resolution Image
(HR)

fLR

fHR

Bicubic
Interpolation

High Resolution Image

fHR,IE

Initially Estimated

Wavelet
T ransform

Low − pass
Subband

V ertical and Horizontal Subbands V ertical and Horizontal Subbands

High Frequency
Compensation
Filter Design

1

Figure 4.3: Block scheme of our filter design algorithm with initial interpolation

Now, we study how we design high frequency compensation filters in depth. Af-

ter obtaining initially interpolated image and original high resolution image sub-

bands, we have only horizontal and vertical subbands to process them. We take

blocks from two corresponding subband and find a linear minimum mean square

filter for that block. The problem here in matrix notation is to find the filter fx

LHx
HR = LHx

HR,IE f
x (4.1)
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here, x is the block number which is related with block size, LHx
HR is the xth block

of LH subband of original high resolution image and LHx
HR,IE is the xth block

of LH subband of initially interpolated high resolution image. We can obtain

LMMSE filter fx from Equation 4.1:

fx = [(LHx
HR,IE)T LHx

HR,IE]−1 (LHx
HR,IE)T LHx

HR (4.2)

We find filters fx for all blocks of two corresponding subbands. Here, we derive

equations for only LH subband, but these equations are all valid for HL subband.

fxHL = [(HLxHR,IE)T HLxHR,IE]−1 (HLxHR,IE)T HLxHR (4.3)

There is only one difference between LH and HL subbands, that is the application

direction of filters. In both subbands, we extract and apply the filters by the high

pass direction of this subband, meaning that, we apply the filters by the column

direction in LH subband, and by the row direction in HL subband.

In Equation 4.2 and 4.3, number of blocks, namely block size and filter size are

chosen adaptively to catch local frequency variations better. Thus, block and

neighborhood structure of original high resolution image are mainly protected

in the filtering process, so we have very similar structures in the interpolated

image. Using a localized block based prediction scheme has the advantage of

adapting to the local signal structure, whether it consists of sharp changes or

smooth transitions. Therefore, our interpolation algorithm preserves edges and

textured regions and also keep the continuity of smooth areas as much as possible

when estimating detail coefficients. This prevents the occurrence of undesirable

artifacts on the reconstructed image.

In reconstruction, we assume that, we have only low resolution image and filter

coefficients. First, we use initial interpolation on low resolution image and obtain

initially interpolated image fHR,IE, then take wavelet transform of fHR,IE to
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have LHHR,IE and HLHR,IE. Using Equation 4.1, we get LHHR′ and HLHR′ .

After filling zeros to HHHR′ subband, we take inverse wavelet transform using

low resolution image,LHHR′ ,HLHR′ and HHHR′ subbands to obtain interpolated

high resolution image fHR′ .

In our block based algorithm, we use initial interpolation algorithm as a basis

to design filters on it. Furthermore, we used one of the conventional algorithms,

bicubic interpolation to resize our low resolution image. When bicubic interpola-

tion doubles the size of LR image, it smoothes out the high frequency components,

but it does not change the block and neighborhood structure. So, we design our

filters to compensate the lost high frequency information. One question should

be asked here, is there any better way to estimate initial subbands? There are

alternative methods to generate these initial estimates. For instance, as in Figure

4.4, we can use undecimated wavelet transform which uses a specially designed

set of analysis and synthesis filters that satisfy perfect reconstruction conditions

[28] without the downsampling and upsampling steps of the critically sampled

wavelet transform. Also, as in Figure 4.5, we can use wavelet transform without

decimation which is implemented by using original wavelet transform filters and

skipping the downsampling and upsampling steps.

But, simulation results show us that using bicubic interpolation as a basis is the

best choice to estimate initial subbands. Because, undecimated wavelet transform

or wavelet transform without decimation cause phase shift and they can change

the block structure of subbands, so it does not match with the block structure

of the subbands of original high resolution image. Thus, when using block based

algorithm, basic initial interpolation algorithms have better performance in sub-

jective and objective quality.

4.4 Context Adaptive Filter Design Algorithm

Besides block based algorithm, we can catch the local high frequency content

in subbands by context adaptive structures. For example, magnitudes of the
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Figure 4.4: Block scheme of our filter design algorithm with undecimated wavelet
transform

wavelet coefficients give an important information about the content of regions.

So, we can group coefficients with similar magnitudes in subbands. This grouped

coefficients and their relationships with their neighbors give us a good context to

design adaptive filters. These context adaptive filters can model the correlation

between LR and HR images.

In more detail, as in block based algorithm, we use the same scheme, Figure 4.3,

up to filter design. We use initial interpolation algorithm to have fHR,IE. Then,

take wavelet transform of it to have LHHR,IE and HLHR,IE. After that, we take

wavelet transform of original high resolution image to have LHHR and HLHR.

For grouping the coefficients with similar magnitudes in subbands, we should sort

the coefficients of subbands by their magnitudes. So we sort the initial subbands,
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Figure 4.5: Block scheme of our filter design algorithm with wavelet transform
without decimation

LHs
HR,IE = sort(LHHR,IE)

ΥLH
HR,IE(j, k) = (m) (4.4)

and

HLsHR,IE = sort(HLHR,IE)

ΥHL
HR,IE(j, k) = (m) (4.5)

here, LHs
HR,IE(m) and HLsHR,IE(m) stand for sorted versions of LHHR,IE(j, k)

and HLHR,IE(j, k) respectively. m is the new location variable for sorted versions
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of subbands where m = 1 represents the highest magnitude coefficient. ΥLH
HR,IE

represents the index mapping between LHHR,IE and its sorted version LHs
HR,IE;

that is, LHs
HR,IE(m) = LHHR,IE(j, k). Also ΥHL

HR,IE is the index mapping

between HLHR,IE and its sorted version HLsHR,IE.

We want to construct LHx
HR,IE matrix taking xth block of elements by size

windowsize from LHs
HR,IE. So, we get elements having m value from (((x −

1).windowsize) + 1) to (x.windowsize). Then, we find the corresponding (j, k)

pairs for these elements by using ΥLH
HR,IE. Assume that, m = ((x−1).windowsize)+

1 corresponds to (j1, k1) pair and m = ((x − 1).windowsize) + 2 corresponds to

(j2, k2) pair and so on. LHx
HR,IE matrix is constructed by

LHx
HR,IE =


· · · LHHR,IE(j1 − 1, k1) LHHR,IE(j1, k1) LHHR,IE(j1 + 1, k1) · · ·
· · · LHHR,IE(j2 − 1, k2) LHHR,IE(j2, k2) LHHR,IE(j2 + 1, k2) · · ·
· · · LHHR,IE(j3 − 1, k3) LHHR,IE(j3, k3) LHHR,IE(j3 + 1, k3) · · ·

...
...

...


(4.6)

and analogously, we have the corresponding (j, k) pairs for HLHR,IE by using

ΥHL
HR,IE, and construct HLxHR,IE by,

HLx
HR,IE =


· · · HLHR,IE(j1, k1 − 1) HLHR,IE(j1, k1) HLHR,IE(j1, k1 + 1) · · ·
· · · HLHR,IE(j2, k2 − 1) HLHR,IE(j2, k2) HLHR,IE(j2, k2 + 1) · · ·
· · · HLHR,IE(j3, k3 − 1) HLHR,IE(j3, k3) HLHR,IE(j3, k3 + 1) · · ·

...
...

...


(4.7)

here, LHx
HR,IE and HLxHR,IE matrices have the size (windowsize × filtersize).

Therefore, we take filtersize− 1 vertical and horizontal neighbors for LHx
HR,IE

and HLxHR,IE, respectively.
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For constructing LHx
HR, again we use ΥLH

HR,IE to find corresponding (j, k) pairs

(j1, k1),(j2, k2) and so on. Then, we construct LHx
HR by

LHx
HR =


LHHR(j1, k1)

LHHR(j2, k2)

LHHR(j3, k3)
...

 (4.8)

and HLxHR by

HLxHR =


HLHR(j1, k1)

HLHR(j2, k2)

HLHR(j3, k3)
...

 (4.9)

here, LHx
HR and HLxHR matrices have the size (windowsize×1). After obtaining

these matrices, we find LMMSE filters fx for LH subband by using an equation

below as in Equation 4.2

fx = [(LHx
HR,IE)T LHx

HR,IE]−1 (LHx
HR,IE)T LHx

HR (4.10)

here x is the window number which is related with window size, fx is our LMMSE

filter for xth window. We get LMMSE filters for HL subband by

fxHL = [(HLxHR,IE)T HLxHR,IE]−1 (HLxHR,IE)T HLxHR (4.11)

In reconstruction, we assume that, we have only low resolution image and filter

coefficients. First, we use initial interpolation on low resolution image and obtain
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initially interpolated image fHR,IE, then take wavelet transform of fHR,IE to

have LHHR,IE and HLHR,IE. We sort both subbands to have LHs
HR,IE and

HLsHR,IE and get ΥLH
HR,IE and ΥHL

HR,IE. Then, using Equation 4.6 and 4.7, we

obtain LHx
HR,IE and HLxHR,IE. From here, LHx

HR and HLxHR can be found by

LHx
HR = LHx

HR,IE f
x (4.12)

and

HLxHR = HLxHR,IE f
x
HL (4.13)

here, we can write LHx
HR and HLxHR values to their original locations, i.e. (j, k) by

using mapping functions ΥLH
HR,IE and ΥHL

HR,IE. So, we obtain LHHR′ and HLHR′

subbands. After that, we fill zeros to HHHR′ and take inverse wavelet trans-

form using low resolution image, LHHR′ ,HLHR′ and HHHR′ to reconstruct high

resolution image fHR′ .

In our context adaptive filter design algorithm, we use initial interpolation algo-

rithm for doubling the size of low resolution image. As we mentioned, instead

of initial interpolation, we can use undecimated wavelet transform and wavelet

transform without decimation to obtain initial subbands. In context adaptive

case, these two initial transforms do not have the same disadvantages in contrast

to block based structure. Because, in this algorithm, we do not use block based

structure to model the relationships of coefficients, we exploit the correlation be-

tween coefficients with similar magnitude using a context adaptive framework.

So, using these two transforms provide a parallel context structure with original

high resolution image which yields better interpolation performance.
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4.5 Simulation Results

In simulations, we use 9/7 biorthogonal quadrature mirror filter pairs [26] for

wavelet transform and wavelet transform without decimation. For undecimated

wavelet transform, we used H, G, K and L filters that correspond to the quadratic

spline wavelet by the size of 4,2,6 and 7, respectively, mentioned in [28]. Standard

test images Lena and Barbara of size 512 × 512 are used for simulations. And,

all results of these images are for magnifying by 2×, i.e. 256× 256 to 512× 512.

Furthermore, block sizes are adaptively chosen from the set, {8× 8, 16× 16, 32×
32}. Analogously, window sizes are chosen among the set, {64, 256, 1024}. Filters

are designed by the size of 3 tap, 5 tap and 7 tap.

PSNR results of our block based filter design algorithm are tabulated in Table

4.1 for Lena and Table 4.2 for Barbara. In Table 4.1 and 4.2, Bicubic means

that, we use bicubic interpolation as initial interpolation algorithm. Similarly,

w/o Decimation and Undecimated mean that, we use wavelet transform without

decimation and undecimated wavelet transform to obtain initial subbands. And

also, Table 4.3 shows the results of Zerofill algorithm for Lena and Barbara.

Table 4.1: PSNR results of block based filter design algorithm for Lena
Lena

Block Size Filter Size Bicubic w/o Decimation Undecimated

8× 8
3 36.08 35.92 35.81
5 36.27 36.16 36.10
7 36.43 36.38 36.32

16× 16
3 35.76 35.63 35.54
5 35.83 35.75 35.71
7 35.87 35.82 35.81

32× 32
3 35.65 35.54 35.47
5 35.68 35.61 35.59
7 35.69 35.66 35.66

From these results, we can say that our block based filter design approach works

better in textured images like Barbara. It has 2.3dB-4dB better PSNR results

than Zerofill algorithm. It justifies that, our algorithm works great on capturing
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Table 4.2: PSNR results of block based filter design algorithm for Barbara
Barbara

Block Size Filter Size Bicubic w/o Decimation Undecimated

8× 8
3 29.06 28.48 28.47
5 29.57 28.93 29.43
7 29.90 29.18 29.83

16× 16
3 28.41 27.90 27.67
5 28.68 28.15 28.51
7 28.84 28.27 28.73

32× 32
3 27.90 27.38 27.16
5 28.07 27.61 27.87
7 28.17 27.71 28.04

Table 4.3: PSNR results of Zerofill algorithm for Lena and Barbara
Zerofill

Lena Barbara
35.26 25.85

local high frequency variations. Especially, our algorithm avoids aliasing in Bar-

bara’s scarf and trousers unlike Zerofill, see Figure 4.9, 4.10. So, we can say that,

block based structure preserves edges and textured regions well. In a relatively

smoother image, Lena, our algorithm has 0.4dB-1.2dB better PSNR values than

Zerofill. In our algorithm, by increasing filter size and/or decreasing block size,

performance of the algorithm is getting better as expected.

Furthermore, we should compare our initial interpolation algorithms. Using bicu-

bic interpolation as initial interpolation is better than the other two methods.

As we mentioned, using wavelet transform without decimation and undecimated

wavelet transform cause a phase shift, and they change the neighborhood and

block structure. But, it should be noted that, with increasing filter size, these

two transforms, especially undecimated wavelet transform, have better results

than bicubic algorithm in terms of improvement in performance. It is because, a

longer neighborhood could capture better the underlying high frequency structure

and therefore eliminate the effects of phase mismatch.
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Figure 4.6: Original Lena image(Left), Zerofill reconstruction of Lena im-
age(Right) PSNR:35.26

Figure 4.6 shows subregions from original Lena image and Zerofill reconstruction

result. Figure 4.7 presents the difference between the best case(block size 8 × 8

and filter size 7) and the worst case(block size 32 × 32 and filter size 3) of our

algorithm using bicubic algorithm as initial interpolation for subregions from

Lena image. Next figure, Figure 4.8 shows the performances of wavelet transform

without decimation and undecimated wavelet transform as initial interpolation

with block size 8× 8 and filter size 7 for subregions from Lena image. Figure 4.9,

4.10 and 4.11 presents exact same algorithm results for Barbara image.

As for context adaptive filter design algorithm, PSNR results are tabulated in

Table 4.4 for Lena image and in Table 4.5 for Barbara image.

PSNR results of context adaptive filter design algorithm show us that, our con-

text is appropriate for smooth images and it is not sufficiently complex to adapt

sharp variations in textured images. Thus, algorithm can be improved by using

more advanced context structures which models the coefficient correlation better

than ours. However, our context adaptive approach has slightly better PSNR
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Figure 4.7: Block based algorithm using bicubic interpolation for Lena with block
size 8× 8(Left) PSNR:36.43 and 32× 32(Right) PSNR:35.65

Table 4.4: PSNR results of context adaptive filter design algorithm for Lena
Lena

Window Size Filter Size Bicubic w/o Decimation Undecimated

64
3 35.91 35.89 35.94
5 36.14 36.24 36.26
7 36.34 36.45 36.50

256
3 35.66 35.61 35.69
5 35.74 35.80 35.85
7 35.80 35.87 35.96

1024
3 35.59 35.53 35.60
5 35.64 35.67 35.71
7 35.65 35.71 35.80

performance than block based structure in relatively smoother Lena image. Fur-

thermore, context adaptive algorithm using undecimated wavelet transform as

initial interpolation has better performance as we expected, because unlike block

based case, undecimated wavelet transform shows very similar context structure

with original high resolution image.

Figure 4.12 shows the difference between the best case(window size 64 and filter

size 7) and the worst case(window size 1024 and filter size 3) of context adaptive

72



Figure 4.8: Block based algorithm with wavelet transform without decima-
tion(Left) PSNR:36.38 and undecimated wavelet transform(Right) PSNR:36.32
for Lena

Table 4.5: PSNR results of context adaptive filter design algorithm for Barbara
Barbara

Window Size Filter Size Bicubic w/o Decimation Undecimated

64
3 26.66 26.37 26.63
5 26.98 26.75 27.24
7 27.19 27.01 27.64

256
3 26.44 26.16 26.29
5 26.62 26.39 26.70
7 26.71 26.52 26.95

1024
3 26.37 26.10 26.16
5 26.52 26.29 26.46
7 26.57 26.39 26.66

algorithm using undecimated wavelet transform for initial interpolation of sub-

bands for subregions from Lena image. Figure 4.13 shows the performances of

bicubic interpolation and wavelet transform without decimation as initial inter-

polation with window size 64 and filter size 7 for subregions from Lena image.

Figure 4.14 and 4.15 presents exact same algorithm results for Barbara image.

Table 4.6 shows the PSNR results of state of the art algorithms in image inter-

polation for Lena and Barbara. All results are for 2x magnification, i.e. size of
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Figure 4.9: Original Barbara image(Left), Zerofill reconstruction of Barbara im-
age(Right) PSNR:25.85

256 × 256 to 512 × 512. Also, wavelet filters are used in filtering and downsam-

pling process to obtain low resolution image from high resolution image for all

results. Bilinear and bicubic interpolation are the conventional algorithms and

aforementioned zerofill algorithm is useful for comparison. NEDI is the algo-

rithm proposed in “New Edge-Directed Interpolation” [29]. LAWBII is presented

in “Locally Adaptive Wavelet-Based Image Interpolation” [16].

Table 4.6: PSNR results of state of the art algorithms in image interpolation for
Lena and Barbara

Algorithm Lena Barbara
Bilinear 33.62 25.63
Bicubic 34.74 25.72
Zerofill 35.26 25.85

NEDI[29] 34.02 23.58
LAWBII[16] 32.46 26.94

Proposed(Block based) 36.43 29.90
Proposed(Context Adaptive) 36.50 27.64
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Figure 4.10: Block based algorithm using bicubic interpolation for Barbara with
block size 8× 8(Left) PSNR:29.90 and 32× 32(Right) PSNR:27.90

Figure 4.11: Block based algorithm with wavelet transform without decima-
tion(Left) PSNR:29.18 and undecimated wavelet transform(Right) PSNR:29.83
for Barbara
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Figure 4.12: Context adaptive algorithm using undecimated wavelet transform
for Lena with window size 64(Left) PSNR:36.50 and 1024(Right) PSNR:35.79

Figure 4.13: Context adaptive algorithm with bicubic interpolation(Left)
PSNR:36.34 and wavelet transform without decimation(Right) PSNR:36.45 for
Lena
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Figure 4.14: Context adaptive algorithm using undecimated wavelet transform
for Barbara with window size 64(Left) PSNR:27.64 and 1024(Right) PSNR:26.16

Figure 4.15: Context adaptive algorithm with bicubic interpolation(Left)
PSNR:27.19 and wavelet transform without decimation(Right) PSNR:27.01 for
Barbara

77



Chapter 5

Conclusion

In this thesis, we tried to utilize the resolution enhancement capabilities of both

coding and interpolation algorithms. Generally, coding algorithms are considered

independent from resolution enhancement. However, coding is another way of

obtaining higher resolution images. Therefore, we aimed to construct a frame-

work that consists of efficient coding algorithm and interpolation algorithm with

superior results.

We designed an efficient wavelet based image coding algorithm that codes hi-

erarchical description of wavelet coefficients instead of coding themselves. This

hierarchical representation was the quantization index tree which was constructed

using quantization indices of similar wavelet coefficients. This similarity was de-

fined by using two different concepts. Also, this hierarchical index tree was op-

timized using a simple rate-distortion analysis. Despite its simplicity, our coding

algorithm has paramount coding efficiency and objective results and surpassed

majority of the state of the art coding algorithms.

Furthermore, we proposed a wavelet based image interpolation algorithm that

models the correlation between high resolution and low resolution image. This

correlation was captured using linear filters. And, we developed two different

approaches on how to design these linear filters, i.e. block based and context

adaptive approaches. Both approaches were successful on adapting different re-

gions of natural images, e.g. sharp variations, textured regions. Especially, block
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based approach has very promising results which surpassed all of the algorithms

in the literature.

In future work, we can develop different class assignment functions for our image

coder which should have better match to the wavelet coefficient distribution of

natural images. Also, wavelet packets can be used in coding algorithm which

yields better results especially in textured images. For interpolation algorithm,

we can improve our adaptive filter design approach by using more complex and

sophisticated context that suits the characteristics of wavelet coefficients well.
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