
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
M

. SÖ
ZD

İN
LER

 
 

 
 

 
M

.S. Thesis          
    

 
                      2009 



 

 

 

 
 
 
 

WEIGHTED BIPARTITE CROSSING MINIMIZATION 
APPLICATIONS ON 

BICLUSTERING AND GRAPH UNIONS 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

MELİH SÖZDİNLER 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 

IŞIK UNIVERSITY 
2009 

  

 
M

. SÖ
ZD

İN
LER

 
 

 
 

 
M

.S. Thesis          
    

 
                      2009 



 

 

 
 
 
 

WEIGHTED BIPARTITE CROSSING MINIMIZATION 
APPLICATIONS ON 

BICLUSTERING AND GRAPH UNIONS 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

MELİH SÖZDİNLER 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 

IŞIK UNIVERSITY 
2009 

  

 
M

. SÖ
ZD

İN
LER

 
 

 
 

 
M

.S. Thesis          
    

 
                      2009 



 
 
 

 
 
 
 

WEIGHTED BIPARTITE CROSSING MINIMIZATION 
APPLICATIONS ON 

BICLUSTERING AND GRAPH UNIONS 
 
 
  
  

 
 
 
 
 
 

 
MELİH SÖZDİNLER 

B.S, Computer Engineering, Işık University, 2007 

 

 
 
 

 
 
 
  

 
Submitted to the Graduate School of Science and Engineering 

in partial fulfillment of the requirements for the degree of  

Master of Science 

in 

Computer Engineering 

 
 
 

 
 

IŞIK UNIVERSITY   

2009

 

 

 



 

      ii

IŞIK UNIVERSITY 

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 
 

 

 

 

 

WEIGHTED BIPARTITE CROSSING MINIMIZATION 
APPLICATIONS ON 

BICLUSTERING AND GRAPH UNIONS 

 

 

 

 

MELİH SÖZDİNLER 
 

 
 

APPROVED BY: 

 

Assist. Prof. Cesim Erten          (Kadir Has University)  _____________________ 

 (Thesis Supervisor) 

 

Assist. Prof. Tankut Atan        (Işık University)  _____________________ 

 

 

Assist. Prof. Taner Eskil        (Işık University)  _____________________ 

 

 
 
 
       
 

APPROVAL DATE: 03/02/2009 
 

 

 



WEIGHTED BIPARTITE CROSSING MINIMIZATION APPLICATIONS ONBICLUSTERING AND GRAPH UNIONS
AbstractBiclustering gene expression data is the problem of extracting submatricesof genes and conditions exhibiting signi�cant correlation across both the rowsand the columns of a data matrix of expression values. We provide a method,LEB (Localize-and-Extract Biclusters) which reduces the search space into localneighborhoods within the matrix by �rst localizing correlated structures. Thelocalization procedure takes its roots from e�ective use of graph-theoreticalmethods applied to problems exhibiting a similar structure to that of biclustering.Once interesting structures are localized the search space reduces to smallneighborhoods and the biclusters are extracted from these localities. We evaluatethe e�ectiveness of our method with extensive experiments both using arti�cialand real datasets. Finally, we also used our crossing minimization heuristics forgraph visualization in a layered fashion.
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A�IRLIKLI �K�L� Ç�ZGELER�NAYRIT KESI��MLER� AZALTILMASININ�K�L� KÜMELEME VE Ç�ZGELER�N GÖRSELLE�T�RMES�PROBLEMLER�NE UYGULANMASI
ÖzetÇift tara�� kümeleme problemi, biyol ile ilgili verilerin alt matrisleraras�ndan belli oranda verinin sütun k�sm�nda ve sat�r k�sm�nda ilintili olanlar�elde etme problemidir. Biz ad� LEB(Localize-and-Extract Biclusters) olan biryöntem sunarak çift tara�� kümeleme problemini tüm veri üzerinde çal�³mas�yerine, kendine yak�n kom³u olan alt matrisler üzerinde çal�³mas�n� sa§lad�k. Busayede tarama süreci, genelden yerel alt kümelere indirgenmi³ oldu. Yerelle³tirmeprobleminin temelini, çizge tabanl� teorik yöntem kullanarak çift tara��kümeleme problemi ile ilintili oldu�gunu deney yaparak belirledik. Yerelle³tirmemetodundan sonra bu küçük alt yap�lar�n birle³tirilmesi içinde ayr� yöntemönerdik. Son olarakta biz öne sürdü�gümüz yöntem�n performans�n� birçok deneyyaparak hem gerçek hem de sanal veriler üzerinde denedik. Bunun yan�s�raçizgeler için öne sürdü§müz yöntemi, çizgelerin görselle³tirmesi içinde kulland�k.Bunu da ikinci k�s�mda ayr�nt�l� olarak inceledik.
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PrefaceThis master thesis is about the work that I have done during two yearsstudy period. Also, thesis includes study period when I was senior undergraduatestudent. There are two main topics that I have studied. The �rst topic isBiclustering and the second topic is Graph Union. In both �eld we are usinggraph theoretical approaches.For thesis research, I have looked at many related databases and found 100published papers. I have given more than 50 references at bibliography and thatmeans countless hours in front of computers and sacri�cing from daily life inorder to study.The motivating force my research is purely satisfaction after each work,paper and poster. A study in the last day of deadline and struggling to submitnew work is di�erent feeling than others. The relaxation after conference deadlineor maybe academic presentation is perfect comfort. The passed deadline is alsobig frustration, if you are having ideas in mind. These are the feelings that I feelduring my thesis study.Contributing to computer science, feeling of future contributions, and thefeeling of usefulness of your study are another motivation.Indeed, working over these topics gives me pleasure and for phd studies Iam planning to go over these topics.

v



Table of Contents

Abstract ii
Özet iii
Acknowledgements iv
Preface v
Table of Contents vi
List of Figures viii
List of Tables ix
List of Symboles x
List of Abbreviations xi1. Introduction 12. Biclustering 22.1. Motivation 22.2. Previous Work 42.2.1. Biclustering 42.2.2. Bipartite Crossing Minimization 62.3. Summary of Main Results 83. Preliminaries 94. Crossing Minimization and Biclustering 115. Localize-and-Extract Biclusters 135.1. Bicluster Extraction Method 155.1.1. Evaluation Score 165.2. Running Time 176. Experiments 196.1. Setting for Arti�cial Experiment and Evaluations 19vi



6.2. Experiment on Arti�cal Data 206.2.1. 100x100 Experiment 206.2.2. 200x200 Experiment 226.3. Experiments on Real Data 256.3.1. Arabidopsis Thaliana 256.3.2. Yeast 287. Graph Unions 337.1. Motivation 337.2. Related Work 348. Our Method 378.1. Methods in Design 388.1.1. Modi�ed Co�man Graham Algorithm 388.1.2. Demetrescu's Weighted Feedback Arc Set Algorithm 388.1.3. Weighted Crossing Minimization 418.1.4. Method Review 429. Experiments And Results 439.1. Properties of Designed Tool 499.2. Statistics 499.2.1. Crossing Stats 499.2.2. Edge Length Stats 5110. Conclusion 54
References 55

vii



List of FiguresFigure 5.1 Assumed noise is 0.05.(a)Initial arti�cial design with 2biclusters of K10,10;(b)Without noise removal;(c)Our completealgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 6.1 (a) H-values of each algorithm, on arti�cial test data with noiseratios, 0.001, 0.005, 0.01, 0.1, 0.15 . Data is 100x100 matrixwith 10 constant K10,10 biclusters at the beginning; (b)Coveredgene and condition ratio of each algorithm, on arti�cial testdata with noise levels, 0.001, 0.005, 0.01, 0.1, 0.15 . Datais 100x100 matrix with 10 constant K10,10 biclusters at thebeginning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 6.2 Figures for 200x200 Experiments . . . . . . . . . . . . . . . . . 24Figure 6.3 Thaliana Bicluster plots for LEB(γ = 10, α = 2),conditions atX-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 6.4 Yeast Results for OPSM,CC,LEB1(γ = 100, α = 4),LEB2(γ =

50, α = 3),LEB3(γ = 25, α = 3) . . . . . . . . . . . . . . . . . 30Figure 6.5 Proportion of biclusters signi�cantly enriched by any GObiolological category of Yeast(S.cerevisiae) for (LEB γ =

10, α = 2),BIMAX,ISA,OPSM,CC . . . . . . . . . . . . . . . . 30Figure 8.1 Graph Union Showcase . . . . . . . . . . . . . . . . . . . . . . 39Figure 9.1 Spring 2D embeder for Graph 1 r = 151, n = 150 . . . . . . . . 44Figure 9.2 Spring 2D embeder for Graph 2 r = 151, n = 150 . . . . . . . . 45Figure 9.3 Layered Drawing for Graph 1 r = 151, n = 150, w = 3 . . . . . 46Figure 9.4 Layered Drawing for Graph 2, r = 151, n = 150, w = 3 . . . . . 47Figure 9.5 Layered Drawing for Graph 1 with employee names r = 34, n =

30, w = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Figure 9.6 Layered Drawing for Graph 2 with employee names r = 35, n =

30, w = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
viii



List of TablesTable 6.1 Arti�cial Dataset 200x200 . . . . . . . . . . . . . . . . . . . . 23Table 6.2 Arabidopsis thaliana dataset experiment 1 . . . . . . . . . . . 25Table 6.3 Yeast Dataset Experiment 1 . . . . . . . . . . . . . . . . . . . 29Table 6.4 Yeast dataset experiment 2: FuncAssociate results for LEB . 32Table 9.1 Layered Drawing Crossing Experiment . . . . . . . . . . . . . 52Table 9.2 Layered Drawing Edge Length Experiment . . . . . . . . . . . 53

ix



List of Symbols

G : Graph
E : The Set of All Edges in the Graph
V : The Set of All Vertices in the Graph
cross(e) : Total Number of Crossings Between Two Layers of Bipartite Graph
w(u, v) : Weigth value of the Edge Between two vertices u and v

L0 : First Layer of Bipartite Graph
L1 : Second Layer of Bipartite Graph
B1, B2 : Bicliques
RS : Residue Score
H : H Value
|L0| : Number of Vertices in L0

|L1| : Number of Vertices in L1

|E| : Number of Edges for a Given Graph G

|e| : The Length of Edge e

|V | : Number of Vertices for a Given Graph G

density : The Reqired Minimum Density for Each Bag to Extract Constant Biclusters
α : The Length of the Bags for LEB Algorithm at x Direction
β : The Length of the Bags for LEB Algorithm at y Direction
F : Feedback Arcset Edges
C : The edges in Cycle

x



List of AbbreviationsANH : Adaptive Noise HidingBICAT : Biclustering Analysis ToolboxBIMAX : Fast Divide-and-Conquer Algorithm of Prelic er alCC : Cheng and Church AlgorithmCMH : Crossing Minimization HeuristicsFAS : Feedback Arcset ProblemGRE : Greedy AlgorithmISA : Iterative Signature AlgoritmLEB : Localize-and-Extract BiclustersLEDA : Library of E�cient Data types and AlgorithmsOLF : One Layer Free ProblemOPSM : Order Preserving Sub Matrix AlgorithmPM : Penalty MinimizationSAMBA : Statistical Algorithmic Method for Bicluster AnalysisW-BARY : Weighted Barycenter HeuristicsW-MED : Weighted Median HeuristicsWOLF : Weighted One Layer Free AlgorithmxMOTIF : Conserved Gene Expression MotifsVLSI : Very-large-scale integration

xi



Chapter 1

IntroductionIn the beginning, fear was the dominant motivating force.Robert VaughnIn this master thesis, we worked on two di�erent topics that are relatedwith the Bioinformatics and the Graph Visualization. Previously, we proposedan speci�c algorithm for the Graph Theory. In this thesis, we give twoimplementations for each main topic. First of all, we proposed a Biclusteringalgorithm related with our main algorithm on Graph Theory. We give detailedtheory and experiments starting from Chapter 2. In addition, we also used ourtechnique in order to draw graphs in layered fashion. In that case, we suggesta new layout for drawing graphs and it could be used to union the graphs. Thedetail of that part starts with Chapter 7.
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Chapter 2

Biclustering

2.1 MotivationClustering refers to the process of organizing a set of input vectors intoclusters based on similarity de�ned according to a prede�ned distance measure.In many cases it is more desirable to simultaneously cluster the dimensions aswell as the vectors themselves. This special instance of clustering referred to asbiclustering, was introduced by Hartigan [1]. It has many applications in areasincluding data mining, pattern recognition, and computational biology.Biclustering is a new developing paradigm in the literature. Recently, manypeople proposed di�erent approaches to this paradigm. Biclustering is di�erentfrom the existing clustering approach. By using usual clustering methods, wecan only make one way clustering. This gives us a global perspective of viewto the data in consideration. On the other hand, by using biclustering, we canpredict locally important information, since it works on both way of the data.Biclusters are identi�ed among four major classes. These are:1. Biclusters with constant values2. Biclusters with constant values on rows or columns3. Biclusters with coherent values4. Biclusters with coherent evolutionsConstant valued biclusters represent the property of having the same valueinside the biclusters. If it happens in row or column of bicluster, it is calledconstant values on rows or columns. 2



Coherent valued biclusters represent the pattern that each row or columnis obtained by adding or multiplying a constant to another row or column.It is easier to �nd constant valued clusters. Coherent valued clusters aremore complicated than constant ones. Because they have assigned by using aformulation such as additive bicluster or multiplicative bicluster.Biclusters with constant rows or columns are assesed with some formulas.According to additive bicluster model, we can �nd perfect constant row biclustersby
ai,j = δ + αj (2.1)where ai,j is each value in input matrix, δ typical value for the row and αiis the adjustment value for the row i. Above formula is changed to
ai,j = δ + γj (2.2)when we are considering constant column perfect biclusters, and γi adjustmentratio for the column i.According to the multiplicative model Equation 1.1 changes to
ai,j = δ ∗ αi (2.3)and Equation 1.2 changes to
ai,j = δ ∗ γi (2.4)On the other hand, if we are considering coherent values, they haveadjustment values for both column and row. As a result, bicluster could bemore complicated.Furthermore, we can divide biclusters in categories according to itsstructure. In survey of Madeira and Oliveira [2], you can see detailed structures.Our motivation is to �nd both constant valued biclusters and coherentvalued biclusters. We can �nd constant valued biclusters because our algorithm3



of extraction could do that and also we can �nd coherent valued ones becausewe have robust noise removal and thereshold of obtaining sustainable density.Biclustering mainly deals with bioinformatics' applications such asmicroarray analysis, drug activity analysis, motif detection [3, 4, 5, 6, 7, 8, 9, 10].Adding that, biclustering can also deal the problem of information retrieval andtextmining, database research and data mining and analysis of electoral data. Inthis thesis, we are dealing with microarray analysis.
2.2 Previous Work

2.2.1 BiclusteringOne of the early approaches for biclustering expression data is that of Chengand Church [11]. They provide a greedy, iterative algorithm with running time
O(mn), where m and n are the dimensions of the data matrix. The mean squaredresidue score is de�ned and the algorithm greedily inserts/removes rows andcolumns to arrive at a certain number of biclusters achieving some prede�nedscore value. When they discover a bicluster, they put random values inside anditerates over it again. These random values may be interfered as a candidate foranother bicluster, and they could be not good for postcoming bicluster results.They need also prede�ned value for number of biclusters. According to thisvalue, algorithm iterates itself. Finally, they focus on determining coherent valuesdue to scoring function. Order-Preserving Sub Matrix(OPSM) [3] is anothergreedy, iterative algorithm, that �nds a statistically signi�cant bicluster at eachiteration. It greedily runs over the data matrix and enlarges the best biclusterand continues until there is no reported bicluster. They de�ned a biclusteras a set of selected rows that preserves the ordering in columns. This meansthat algorithm focuses on columns. The time complexity of OPSM is O(nm3l)where n and m are dimensions of input matrix and l is the number of outputbiclusters. Because of cubic runtime in second dimension, algorithm does notscale for high dimensional input sizes. Also, in essence, OPSM does a methodlike catch a possible bicluster, and try it if it is good or not. This greedy strategy4



called partial models. OPSM technique is to expand these partial models ateach step. OPSM also focuses on coherent valued biclusters because of catchand try strategy. Conserved gene expression motifs or xMOTIFs [5] is anothergreedy algorithm which �nds all biclusters at a single run. Basically, they arelooking largest xMOTIF and XMOTIF is identi�ed according to up-regulatedand down-regulated patterns when there are two state in concept. It is a kindof discretization and like working on binary data matrix. After that step, theycollect these stated values in order to maximize their prede�ned fraction for rowsand columns and xMOTIF could do that simultaneously. However the algorithmdoes not work for more than 64 conditions.ISA [7] introduces a statistical approach to the biclustering problem. Itrequires normalized data with mean 0, variance 1 and assigns weights for eachinput that represents signi�cant behaviors with similar weights. These signi�cantweights assigned according to z-scores and each higher score results with largerweights. Thus the resulting biclusters are expected to be the ones with similarlyassigned weights. It has been applied to determine cis-regulatory modules inyeast dataset.Prelic et al. modi�ed the approach of Alexe et al. [12] in a way thatworks fast and requires less space. The resulting divide-and-conquer algorithm,Bimax [10], is simple and fast. The algorithm runs on discretized binary data.Algorithm mainly focuses on �nding constant biclusters. Discretized binary datamakes it harder to �nd coherent values. Since they rely on discretization strategy,the results of BIMAX could change according to used strategy. Coupled two wayclustering is proposed by Getz et al. [13]. First stable forms on submatrices thatare used to divide the original dataset are found. Then one-way clustering isapplied recursively on a single dimension of the submatrices until there is nonewly found stable submatrix. They guarantee that each submatrix pairs isnot encountered more than once. Their success depends on the performance ofone dimensional clustering algorithm such as K-means, Hierarchical, SOM. Theyused their algorithm in order to determine diseases on clinical data sets.
5



Several graph-theoretical approaches have been suggested. In SAMBA [4]the data matrix is viewed as a bipartite graph where the genes/conditionsconstitute the layers of the bipartite graph and edges in the graph correspondto the expression changes. The goal is to �nd out heavy bicliques insidethe graph. Running time of SAMBA is exponential on the size of theconditions set in a maximum bounded biclique because of the employedexhaustive bicluster enumeration. A similar model is constructed in [8] wherecrossing minimization in unit-weight bipartite graphs is used as a means toextract bicliques corresponding to biclusters in the data matrix. They usedbarycenter [14] like method in order to crossing minimization. The proposedapproach in [8] lacks of quantativeness to extract biclusters. Also, they are notgiven any clue about median [15], GRE [16] and PM [17] that could also solveunit weight crossing minimization.
2.2.2 Bipartite Crossing MinimizationJünger and Mutzel survey various heuristics and experimentally comparetheir performances of bipartite crossing minimization heuristics [18]. Theyconclude that the barycenter method yields slightly better results than themedian heuristic in practice. On the other hand from a theoretical point of viewmedian heuristic is better. Speci�cally, they both run in linear time and themedian heuristic is a 3-approximation, whereas the approximation ratio of thebarycenter method is Θ

(

√

|L0|
) [15]. Yamaguchi and Sugimoto [16] providea greedy algorithm GRE that has the same approximation ratio of 3 in theworst case and that works well in practice. However the running time of GREis quadratic. Recently, Nagamochi devised a 1.47-approximation algorithm forOLF [19]. Another promising technique for OLF is the penalty graph approachintroduced by Sugiyama et al. [14]. The performance of this method dependson an e�ective solution to the minimum feedback arc set (FAS) problem whichis also NP-complete [20]. Demetrescu and Finocchi experimentally compare theperformance of the penalty graph method based on their algorithm for FAS tothat of the barycenter, median, and the GRE heuristics [21]. In addition to the6



mentioned heuristics, approaches based on integer programming formulationsthat solve the problem exactly have been suggested. Jünger and Mutzel showedthat OLF can be formulated as a linear ordering problem which is then solvedoptimally by employing a branch-and-cut technique [18]. Although directlyapplicable to WOLF, this exact approach works well mostly for sparse graphs ofrelatively small size.In [22], we also proposed weighted version of Barycenter as W-BARY, GREas W-GRE, PM as W-PM, and Median as W-MEDBARY. W-MEDBARY doesbarycenter in its second phase. Since the crossing minimization performance ofeach algorithm depends on the distribution of weights, there is no prediction thatthe algorithm 'x' could be better.In this paper, we are interested in with two problems, Biclustering problemand Bipartite Crossing MinimizationBiclustering problem is NP-Complete problem, reduced from maximumedge biclique problem [23]. The problem could be approximated and be givenheuristics.Bipartite crossing minimization is also NP-Complete problem. The formeris usually referred to as the both layers free bipartite crossing minimizationwhereas the latter as the one layer free bipartite crossing minimization. Bothproblems have been extensively studied in literature. Unfortunately they areboth NP-hard [15, 24].One drawback of approaches that is using bipartite graph based approachis the assumption that the corresponding bipartite graph is unweighted.For example, Abdullah et.al.'s algorithm does discretization step before thealgortihm. Also, in BIMAX, they need discretization in order to run thealgorithm. Since, in both BIMAX and Abdullah et.al.'s approach, theylost original input matrix with discretization, they are actually running theiralgorithm over di�erent input rather than original one. In our algorithm,we are following a direct graph-drawing approach is [8]. A crossingminimization procedure is applied on the unweighted bipartite graph resulting7



from preprocessing the original input data matrix. Our approach is similar inessence. However we do not have a discretization/normalization step to convertthe weighted bipartite graph into an unweighted one as this would cause somedata loss and produce erroneous output. Instead we apply crossing minimizationdirectly on the original weighted graph. Various e�cient crossing minimizationheuristics have been shown to work well on weighted bipartite graphs asmentioned before and a 3-approximation algorithm has been suggested [22].
2.3 Summary of Main ResultsWe make a general outline of our work1. We proposed a biclustering algorithm using weighted bipartite crossingminimization.2. We proposed generic bicluster extraction algorithm in order to �nalizebiclustering.3. We have given various experiments over the biclustering topic and tested onseveral data sets and compared the results of several biclustering algorithms.
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Chapter 3

PreliminariesBicluster:A bicluster N is subset of vertices and edges over the graph. Graph
G is considered as G = (L0, L1, E) where G is bipartite graph, L0 and L1 arelayers of graph G and L0 ∪ L1 = V , E is set of edges, bicluster N is a subgraph
G′ = (L′

0
, L′

1
, E ′) of G. Also, a bicluster could be represented as matrix. If theinput is given as adjacency matrix M , bicluster will be submatrix M ′ of given

M . For each element at the input matrix could be represented as ai,j. That valuealso represents the relation between gene and condition pair in bioinformatics.Weighted Bipartite Graph:A graph G with set of edges E and set of vertices
V with layers L0 and L1. There is no edge between same layer node. Weightedmeans that for every edges e at E, there is a real number representing theweight value of edge as w(u, v), where u from layer L0 and v from layer L1. Inour problem, we represent the matrix input of microarray data as a weightedbipartite graph.Weighted Bipartite Graph Crossing Minimization: Weighted bipartitegraph crossing minimization is an optimization problem that is to be solvedby heuristics. The cost function is

min

E
∑

e

cross(e) (3.1)where cross(e) is total crossings between edge e and all other edges in set E.In order to solve Weighted Bipartite Graph Crossing Minimization,Weighted One Layer Free(WOLF) and two sided crossing minimization are twooptions. WOLF is the new form of OLF. In order to solve OLF problem,barycenter[14], median[15], GRE[16] and PM [17] are proposed. In WOLF9



setting, one layer is set as free layer, meaning that positions of the nodes shouldbe identi�ed. In addition, second layer is �xed while �rst layer is free. On theother hand, two sided crossing minimization is done while there is no �xed layer.In this approach, problem is more di�cult to solve.

10



Chapter 4

Crossing Minimization and BiclusteringNo writer should minimize the factor that a�ects everyone, but isbeyond control: luck.John JakesWemention that Bipartite Crossing Minimization and Biclustering are bothNP-Hard problems.Biclustering problem is related with bipartite crossing minimizationproblem; in essence, two problems are related. Biclustering is aiming a structurewhich is the largest possible biclique. Bipartite crossing minimization is aimingto make an arrangement of free layer of graph in order to minimize crossings.Let, there are two complete biclique, B1 and B2 in a graph. If we run crossingminimization heuristic (CMH), CMH will avoid crossings of edges over B1 and B2 .Meanwhile, CMH decides the most possible place for each node on a free layer.If we run biclustering algorithm, we may �nd B1 and B2 as perfect biclusters.But, assumption is that we are using unit weight graph.However, we are taking an input as weighted bipartite graph, and runningweighted bipartite crossing minimization. There is no ideal proof that weightedbiclique is also be a bicluster. Since we don't know the correlation and heuristicsfor weighted bipartite crossing minimization are not considering correlationas biclustering did. On the other hand, we believe that weighted biciliquesshould be grouped in the graph. In order to explain this claim, we designed apre-experiment. According to this experiment, we implant two weighted bicliqueinside the bipartite graph. These cliques are the half of the graph at eachexperiment. We made 10,000 times by creating bipartite graph starting with11



10x10. At each 2,000 experiments, we multiply the size of the graph with 2.Also, at each experiment, we implant random edges with random sized in to thegraph. Then, we permute the graph and run CMH such as WOLF. As a result ofthat, at 9,919 try out of 10,000 experiments, there is no change in clique positionsand node positions as well. This experiment shows us that CMH results withweighted bicliques which may be biclusters if they are correlated.Theorem 4.0.1 ([22]). Fixing the columns of M , Phase-1.1 orders the rows insuch a way that the weighted crossings in the resulting bipartite graph is at mostthree times the optimum.According to these theorem, we are expecting that by applying CMH overthe matrix form of the Graph G, we obtain 3 times optimum result.

12



Chapter 5

Localize-and-Extract BiclustersAn algorithm must be seen to be believed.Donald Knuth

Figure 5.1 Assumed noise is 0.05.(a)Initial arti�cial design with 2 biclusters of
K10,10;(b)Without noise removal;(c)Our complete algorithmOur algorithm, Localize-and-Extract Biclusters(LEB), consists mainly ofthree steps. Initial placement phase applies a two-sided crossing minimizationon the weighted graph until there is no change on the node orders. To do thiswe employ algorithm 3-WOLF of [22] (one-sided crossing minimization procedure)repeatedly, each time alternating the �xed layer. The pseudocode is given atAlgorithm 1.Algorithm 1 Initial Placement: Input is bipartite graph G with layers L0, L1.Require: Graph G, Layer L0, layer L1while no change in node positions do/*run Weighted One Layer Free approach */free layer A and �x layer Brun Weighted CMHfree layer B and �x layer Arun Weighted CMH.end while 13



We have veri�ed that if the input data is noise-free then this initialplacement is usually enough to identify bicliques and extract the biclusters.However, in real data, �nding biclusters is not easy because of high level of noise.In order to deal with noise, we proposed Adaptive Noise Hiding phase. AdaptiveNoise Hiding phase removes the weighted edges in the graph that correspondto noise in the original input data. Sliding a window around the perimeter ofeach node pair, where (i± 1, j), (i, j ± 1), (i± 1, j ± 1) constitutes the perimeterof a pair (i, j), we check whether the window satis�es a threshold density interms of the number of nonzero weight edges. If it does not, the pairs on theperimeter are considered suspicious. The pseudocode of ANH procedure is givenat Algorithm 2.Algorithm 2 Adaptive Noise Hiding: Input is bipartite graph G with layers
L0, L1.Require: k, the maximum threshold densitywhile n ≤ k dofor all pairs (i, j) where i ∈ L0, j ∈ L1 doneighboring pairs = (i ± 1, j), (i, j ± 1), (i ± 1, j ± 1)

count = number of pairs with nonzero weight;if count ≤ n store those pairs as suspicious;end forFind the most suspicious weightHide the pairs (i, j) with weight equal to the most suspiciousrun Two-sided-crossing-minimizationif no suspicious nodes then n + +;end whileOnce sliding is �nished we �nd the most suspicious weight and remove allthe suspicious pairs with that weight. We adaptively apply our two-sided crossingminimization on the new graph and continue noise hiding after incrementingthe threshold density. The removal of the suspicious edges and the crossingscouple each other in terms of noise removal. Each time the partitions of thegraph are reordered to reduce crossings, new suspicious pairs are created. Thesimple run showcase is in Figure 5.1. Once the noise removal phase is over,we �nally gather the biclusters by applying a procedure similar to the onedescribed in [8] and weighted version is called as Bicluster Extraction Method.We note that di�erent from previous approaches we directly apply weighted14



crossing minimization on the original input data, not to lose possibly importantdata that can not be considered noise. Secondly our application of the crossingminimization is two-folds. Besides providing a good initial placement, crossingminimization is also used to handle noise removal.
5.1 Bicluster Extraction MethodAlgorithm 3 Extracting Biclusters: Input: bipartite graph G with layers L0, L1.Require: M ,matrix representation of graph GRequire: α as size of bag as square submatrixDivide M into the bags of size αxα, store in BagListfor all bags in BagList doGenericEvaluation()Remove bag according to evaluationend forwhile no unmarked bag in BagList doChoose one evaluated bag from BagListMark bag as biclusterfor all bags b in x coord of marked bag doif GenericEvaluation( b, bag ) == true thenExpand bicluster with the bagend ifend forfor all bags b in y coord of marked bag doif GenericEvaluation( b, bag ) == true thenExpand bicluster with the bagend ifend forDe�ne Cluster Boundaries and mark all bags inside the biclusterend whileOnce the localization phase is over the next step in LEB is to extractbiclusters form the reorganized data matrix by considering local neighborhoods.For this method, we de�ned two parameters as γ and α. In order to get stablebiclusters, We divide the adjacency matrix form of data into bags according togiven bag size as αxα. For example, consider the input with 100x100 that has100 nodes in both layer A and B. If α is 10, we divide 10x10 bags of the input.Total bag number is 100 in that case.We do a traversal over the bag set and try to enlarge the bags. All bags areunmarked initially. At each iteration during the traversal we �rst mark a bag15



bi. We compute the evaluation score of bi with the next unmarked bag bj in the
x-direction and construct their union if the score satis�es the γ.We mark bj and continue with the union as the current bag. Once we checkover all bags in the x-direction, we continue with the y-direction and follow thesame procedure. Thus at the end of one such iteration we have the boundariesof a bicluster determined. We continue the traversal starting from an unmarkedbag and follow the same enlargement procedure. Once all bags are marked weare left with nonoverlapping, di�erent sized bags corresponding to biclusters allof which satisfy the γ score.
5.1.1 Evaluation ScoreFor constant biclusters the evaluation score of bi, bj is the ratio of thenumber of most frequent weight in the union to the size of the union. A scoresatis�es the constraint if it is larger than γ. We note that we have an additionalinitial traversal step for constant biclusters where we remove bag bi that scoreslower than γ when evaluated with the empty set.On the other hand for coherent biclusters we �rst de�ne the H-value of asubmatrix [11]. Assume the submatrix consists of I rows and J columns. Theresidue R of an entry (i, j) is

RSI,J(ij) = aij − aIj − aiJ + aIJ (5.1)
aIj =

1

J

∑

j=0

(ai,j) (5.2)
aiJ =

1

I

∑

i=0

(ai,j) (5.3)
aIJ =

1

|I||J |

∑

i=0,j=0

(ai,j) (5.4)
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where aiJ is the mean of row i, aIj is the mean of column j and aIJ is themean of the submatrix. H-value is de�ned as
HI,J(i, j) =

1

|I||J |

∑

i=0,j=0

(RSI,J(i, j)2) (5.5)The evaluation score of two bags is the di�erence between their H-values.A score satis�es the γ constraint if it is less than γ in this case.
5.2 Running TimeIn order to calculate total running time, we have to know the running timeof weighted bipartite crossing minimization heuristics. Given a bipartite graph
G = (L0, L1, E), �rst of all algorithm 3-WOLF 3-approximates WOLF in time
O(|E| + |L0| + |L1| log |L1|) [22]. In addition, the approximation ratio of thebarycenter method applied in OLF settings is Θ

(

√

|L0|
) [15]. Furthermore,both W-BARY and W-MEDBARY run in linear time. The running time of W-GRE is

O(|E|2 + |L1|
2) and that of W-PM is O(|E|2 + |L1|

4) [22]. Both W-GRE and W-PMrequire the computation of a cross table. All cuv values are retrieved from thistable which is computed beforehand. A straightforward implementation of thiscomputation requires time O(|E|2).As a result, running time will change according to selected heuristics. Ifchosen heuristic is WOLF, running time of Initial Placement is the same ofrunning time above.Running time of Extracting Bicluster Procedure is O(|N |) , where N is thenumber of bags and equals to |m|∗|n|
α

. Since each bag is marked in order not topass again, each bag is passed once so running time depends on number of bags.Theorem 5.2.1. The running time of the algorithm LEB is O(|N | ∗ |π|+ |m|+

|n| log |n| + |m|∗|n|
α

).Proof. Running time of WOLF is O(|π| + |m| + |n| log |n|) [22] where |π| istotal number of entries in data matrix, m and n are the sizes of dimensions.Running time of noise hiding procedure is O(|π| ∗ |N |) where |π| is total number17



of entries and N is number of iteration. The experimental upper bound of Nis no more than 25. So the total running time is O(|π|). Running time ofextraction procedure is O( |m|∗|n|
α

) where α is bag size, and |m| and |n| are thesize of dimensions of the data matrix. Since each bag is marked once, the runningtime is total number of bags.
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Chapter 6

ExperimentsTo consult the statistician after an experiment is �nished is oftenmerely to ask him to conduct a post mortem examination. He canperhaps say what the experiment died of.Ronald FisherDuring the experiment part we have used, Pentium 4 with 3.2 GHZcomputer with 1 GB of RAM. Before go into the topic, we can divide experimentsinto two part, Experiments on Arti�cial Data and Experiments on Real Data.Furthermore, we are using LEDA C++ Library in order to implement the detailsof our algorithm [25]. LEDA is suitable for implementation with structures andimplementation support in C and C++. In order to run other algorithms, wehave use Bicustering Analysis Toolbox (BicAT) [9].
6.1 Setting for Artificial Experiment and EvaluationsSettings:In order to maintain experimental results in arti�cial data testingpart, we de�ned the noise ratio α. The noise ratio α is the parameter of inputthat determines the noise number inside the data. For example, for m ∗ n input,if the β is 0.01, then the total number of noise should be, m∗n

100
. Additionally, wecreate input matrix with constant n biclusters with constant values and size of

m ∗m matrices. Since our di�erence is weighted input, we give weight values foreach implanted biclusters. Then, we add the noise according to given β value.Finally, we permute the input matrix. As a result, we get almost random inputwith weighted values and we can run algorithms over that input. We have chosen
19



5 di�erent algorithms for comparison. These are BIMAX [10], CC [11], ISA [7],OPSM [3].Evaluation Scores:Cover ratio is the ratio that for each weighted value ininput matrix, we are looking that is there any biclusters that covers the valuesinside the matrix. It is the ratio of covered ones over all logical entries in inputmatrix. Also, one of the vital part of biclustering is the quality of found biclusters.To do evaluation we used the formula named H-score is given at Equation 5.5. Inthis equation, HI,J is H-value, I and J are bicluster dimensions, RSI,J is residualscore. Lower H-scores means that there is a correlation inside the bicluster.
6.2 Experiment on Artifical DataIn this section we arti�cially implant 10 constant valued biclusters into theinput matrix. In this experiment, we have 100x100 input data matrices with 10implanted biclusters with the size of K10,10.In addition, noise ratio represents the number of di�erentindependent valued gene-condition pairs. We tested with noiseratios,β,0.001,0.005,0.01,0.1,0.15. For this section, each setting parameters ofthe used algorithms are for LEB density = 0.6, α = 2, for BIMAX Dscrzt =

0.2, α = 2, β = 2, for CC ρ = 13, δ = 0.5, α = 1.2, outputBiclusters = 10, forISA ρ = 13, tg = 2.0, tc = 2.0, n = 100, for OPSM γ = 10.
6.2.1 100x100 ExperimentWe have done the experiment for the arti�cial data with 100x100 inputdata and Our algorithm LEB did well at 100x100 data matrix with arti�ciallyimplanted 10 K10,10 constant biclusters. With this experiment we are questioningthe performance of the algorithms over constant bicluster extraction. Sinceperfect constant bicluster should have H-value with 0, during the experiment, weare expecting the low H-value results from the biclusterings of each algorithm.In Figure 6.1-a, we see that CC and OPSM are not performing well. That isthe reason of their evaluation to the biclusters. They are performing well in20



Figure 6.1 (a) H-values of each algorithm, on arti�cial test data with noiseratios, 0.001, 0.005, 0.01, 0.1, 0.15 . Data is 100x100 matrix with 10 constant
K10,10 biclusters at the beginning; (b)Covered gene and condition ratio of eachalgorithm, on arti�cial test data with noise levels, 0.001, 0.005, 0.01, 0.1, 0.15. Data is 100x100 matrix with 10 constant K10,10 biclusters at the beginning.
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coherent type of biclusters. LEB has also fair performance with low H-values.This implies that we can run on constant valued biclusters. ISA and BIMAXhave similar performance and when noise level increases, they perform better.This may imply, that they are noise robust. However, their problem is that theyare �nding many biclusters and since we don't restrict the bicluster sizes, smallsized ones may change the H-value positively.In Figure 6.1-b, we notify that, our algorithm covers almost allgene-condition pairs. Also, cover ratio for ISA and CC decreases with increasingnoise ratio because they could not �nd all biclusters. Since we have signi�cantimplanted biclusters because of their sizes, the gene-condition covering should behigh in lower noise levels. High cover ratio for LEB at low noise levels impliesthat LEB successfully determines the constant biclusters.Indeed, our algorithm has the property of increasing H-values from sparseinput to dense. Since we apply noise hiding procedure, we believe that in lownoise ratios, we are working well. Also, at high noise ratios we could competewith ISA and CC. Finally, LEB almost covers all gene-condition pairs and doesit with stationary cover ratio.
6.2.2 200x200 ExperimentFor this experiment we try to run LEB on bigger size such as 200 inboth dimension 1 and 2 and there are 20 K10,10 implanted biclusters. Again,we have noise ratios and they are 0.01, 0.05, 0.10, 0.50 . We experimentedtwo di�erent run of LEB in Table 6.1. We tested and compared with BIMAX,CC, ISA and OPSM. We could not use XMOTIF since chip size is larger than64. In Table 6.1, there are two main rows representing two di�erent α values.According to these results, H-values of each algorithm are similar. For the αvalues of 2 we see that LEB gives �ne low H-values than others in low noiseratios. Nevertheless, LEB has a problem with high noise ratios. The reasonof that is LEB density parameter. Since it is too low (0.5) for the bag size
alpha = 2, bags should di�er at high noise ratios. In addition, at the secondmain row of Table 6.1, α is 3 and for this value LEB gives better H-values. The22



Table 6.1 Arti�cial Dataset 200x200Whole run of the algorithms on 200x200 datasetLEB density = 0.5Treatment 1 0.01 0.05 0.10 0.50LEB α = 2

LEB 1,55 9,30 12,68 15,46OPSM 5,01 7,82 11,36 22,15CC 5,72 2,96 3,77 11,04ISA 0,07 2,84 6,59 18,64BIMAX 0,00 0,00 3,64 3,78LEB density = 0.8 LEB density = 0.9Treatment 2 0.01 0.05 0.10 0.50LEB α = 3

LEB 5,22 7,34 1,61 2,01OPSM 4,74 6,52 10,77 21,07CC 3,44 3,36 3,32 9,79ISA 0,66 2,26 6,44 17,54BIMAX 5,87 4,46 3,18 3,80reason of that is because of density parameter. We tried two di�erent densities.For noise ratios, 0.01 and 0.05, density is 0.8 and for 0.10 and 0.50 is 0.9. Sincewe are extracting constant ones, 0.8 and 0.9 densities support LEB results tobe constant. The problem of high density parameter is under extraction. Forinstance, at the noise ratio 0.50, algorithm could not extract biclusters because ofhigh density parameter. But we are not expecting to deal with such noise in realenvironment. Furthermore in Figure 6.2, you could see the resulting run of LEB.In these �gures, you can see the input, input permutation and output. Notethat, the resulting �gures don't include the extraction part. The settings for this�gure are "Assumed noise is 0.01(a)Initial arti�cial design with 20 biclusters of
K10,10;(b)Without noise removal;(c)Our complete algorithm", "Assumed noiseis 0.05(c)Initial arti�cial design with 20 biclusters of K10,10;(d)Without noiseremoval;(e)Our complete algorithm", "Assumed noise is 0.10(f)Initial arti�cialdesign with 20 biclusters of K10,10;(g)Without noise removal;(h)Our completealgorithm", "Assumed noise is 0.50(i)Initial arti�cial design with 20 biclusters of
K10,10;(j)Without noise removal;(k)Our complete algorithm".
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6.3 Experiments on Real DataWe have tested our algorithm on two dataset,Arabidopsis thaliana[26] andSaccharomyces cerevisiae(Yeast Cell Cycle)[11]. For thaliana dataset, we testedthe cover ratio, bicluster sizes, h-values and for yeast dataset, we tested theenrichment ratio of each selected algorithms.
6.3.1 Arabidopsis ThalianaWe have data set of Arabidopsis thaliana from [26]. Arabidopsis thaliana isa widely used plant for bioinformatics applications. It was the �rst plant thatis sequenced with its whole genome. The database we maintained is with 734genes and 69 conditions. Over this database we have done several tests.Table 6.2 Arabidopsis thaliana dataset experiment 1Whole run of the algorithms on Arabidopsis thaliana datasetAlg. Max Bic. Min Bic. Dim1Avrg. Dim2Avrg. Bic.Number H-valuesLEB 630x66 2x4 237,25000 17,5000 15 402,6922BIMAX 10x4 4x4 4.428301 4.065273 50189 963,3856CC 690x69 242x69 531.4200 69.00000 100 3660,31ISA 234x5 198x2 220.3250 2.537500 80 2349,431OPSM 2x57 10x5 10.33333 15.41667 12 909,4981Experiment 1: We have taken the default parameters from BicAT tool atthe previous experiment. We checked all the the parameters in a way that theyhave been used in their original paper. Settings are for LEB γ = 10, α = 2,for BIMAX Dscrzt = 0.6, α = 4, β = 4, for CC ρ = 13, δ = 100, α =

1.2, outputBiclusters = 100, for ISA ρ = 13, tg = 2.0, tc = 1.0, n = 500, forOPSM γ = 100. As a consequence of Arabidopsis thaliana experiment, CC andISA performed well in that setting in terms of number of output biclusters.But, one problem is that the size of biclusters. For example, for CC, maxbicluster is almost the size of data, and for all biclusters, algorithm gives us25



the whole dimension 2 that is 69. In addition, ISA has a problem in dimension 2.Dimension 2 of ISAs biclusters is not sized as others. Finally, for this experimentwe change BIMAX parameters. We increase discreatization value to 0.6, andalso we increase αandβ values. In that setting, BIMAX �nds many biclusters,but there is no biclusters more than size of 10x4. On the other hand, LEB, ISAand CC are �nalized with �ne dimension sizes.In addition, H-values are important criteria to determine biclusters. LEBhas the lowest H-value scores. This means that we have the biclusters with bestcorrelation. You can also see the resulting �gures of two signi�cant biclusters atFigure 6.3. According to looking at that �gures, LEB catches highly correlatedbiclusters. There are some peaks inside the plots. These may be noised values.We applied noise hiding procedure, but data is so dense. Because of that, noisehiding may not be e�ective. Also, in some part of the plot, they are symmetricand could not be a noise. Because there are similar patterns around. Thesevalues should be correlated with itselves.

Figure 6.3 Thaliana Bicluster plots for LEB(γ = 10, α = 2),conditions at X-axisDiscussion on Parameters of Arabidopsis thaliana experiments: First of all,during experiments, we have experienced that BIMAX has a problem when thediscretization parameter when it is low. For instance, with 0.2 value of that26



parameter, it �nds millions of biclusters. It is not easy to analyze millions ofbiclusters. It is obvious that biclusters are permuted. It has also running timeproblem. It takes more than several days, so we have to interrupt the experiment.Moreover, OPSM does not give �ne results when we change its parameters. It isthe worst one in Arabidopsis thaliana experiment.In addition, our parameters, α and gamma could be used to determinecorrelation level. Choosing α smaller such as 3 should be better in order to catchsmall biclusters. For large datasets with shorter range of weights, α parametercan be larger than 3. Also, by changing α values you could catch di�erentbicluster results. One who runs LEB by changing α values, could catch di�erentbiclusters. Furthermore, γ value is necessary in order to identify coherence.Smaller gamma values should give better correlated biclusters.
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6.3.2 YeastAs a second real data, we selected Yeast Cell Cycle (S.cerevisiae)dataset [11] that is widely used in biclustering applications(http://arep.med.harvard.edu/ biclustering/yeast.matrix). It has 2884 genesand 17 conditions. In most of previous papers, they used that dataset to testtheir algorithms. Since Yeast dataset was categorized in terms of functionality ofeach genes at MIPS(http://mips.gsf.de/ genre/proj/mpact/yeast), we are ableto test enrichment ratio of each bicluster by looking at genes. We designed aexperiment as Bryan et.al. [27] did. We identi�ed categories of genes. There are13 pre-identi�ed categories. During the experiment, we �nd enrichment ratio asa number of genes at the most speci�c category in bicusters over total numberof genes in bicluster. This is a ratio between 0 and 1. In Table 6.4, you can seethe functional enrichment values. During this experiment we extracted smallbiclusters such as smaller than 40 genes. Indeed, according to that table, OPSMfails to enrich biclusters. LEB has 7 wins. CC has 3 wins. OSPM has 1 win.Wins are determined according to best functional enrichment values in eachcategory. Finally, CC and LEB has a one draw among them and all of themhas one draw at category B. Settings of CC and OPSM are default parametersgiven at their papers and for LEB, setting is γ = 100, α = 4. In this test, OPSMfailed because it has high dimension sizes. Adding that, CC competes with ouralgorithm as it has 100 biclusters and we have also 42 biclusters. In Figure 6.4,you can also see the graph of enrichment values for each category. In that �gure,we append 3 di�erent run of LEB with di�erent parameters. Indeed, we havestill have advantage over CC and OPSM for di�erent settings.Secondly, we do not run BIMAX and ISA for that experiment. The reasonis that, ISA does not give any biclusters although we tried di�erent parameters.In addition, BIMAX has a problem of number of biclusters and duplicate results.There are so many biclusters but many of them are duplicate of another. Thatis surely overlapping problem. Furthermore, parameter selection is a issue.De�ning dimension sizes and giving discretezation parameters give advantage28



Table 6.3 Yeast Dataset Experiment 1War�eld for OPSM, CC, LEB on Yeast 2884x17 dataset for each categoryOPSM CC LEBFunctional Catogory ORF inBicluster Func.Enrich. ORF inBicluster Func.Enrich. ORF inBicluster Func.Enrich.E - Energy Production 543 0,03 55 0,04 100 0,04G - Amino Acid Metabolism 1282 0,03 51 0,04 186 0,05M - Other Metabolism 62 0,11 59 0,14 79 0,22P - Translation 2342 0,03 57 0,19 79 0,09T - Transcription 1282 0,06 55 0,19 143 0,08B - Transcriptional control 124 0,08 42 0,08 152 0,08F - Protein Fate 2342 0,06 51 0,14 83 0,08O - Cellular Org. 2342 0,04 51 0,10 46 0,11A - Transport and Sensing 124 0,13 59 0,07 143 0,10R - Stress and Defense 62 0,06 42 0,05 105 0,06D - Genome Maintenance 62 0,11 51 0,10 293 0,14C - Cellular Fate / Org. 196 0,47 51 0,47 111 0,48U - Uncharacterized 124 0,06 51 0,08 79 0,13
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Figure 6.4 Yeast Results forOPSM,CC,LEB1(γ = 100, α = 4),LEB2(γ = 50, α = 3),LEB3(γ = 25, α = 3)

Figure 6.5 Proportion of biclusters signi�cantly enriched by any GO biolologicalcategory of Yeast(S.cerevisiae) for (LEB γ = 10, α = 2),BIMAX,ISA,OPSM,CC
30



to BIMAX itselves to permute biclusters. Indeed, we decided not to run BIMAXand ISA for the Yeast Cell Cycle data set but we are giving the results ofthese from [27, 10, 28] for better comparison on hand. Furthermore, we usedFuncAssociate tool [29] (http://llama.med.harvard.edu/ cgi/func/funcassociate)in order to measure with GO accepted categories. FuncAssociate computes thehypergeometric functional score by using "Fisher's Exact Test". According toresults, we are good at covering genes with large amounts with high hit ratioinside the bicluster. In addition we have given the Figure 6.5. According to this�gure, comparing with [27, 10, 28], on yeast (Saccharomyces cerevisiae dataset,we are performing similar and better bar graphs as seen on these paper andtheir algorithms. For each signi�cance level, we give a enrichment ratio of ourbiclusters. The value in consideration as α is adjusted p-values gathered fromFuncAssociate tool [29]. According to adjusted p-values, we have increasingenrichment ratio when signi�cance level increases as expected. Also, we havethe best results among three algorithms. Our week point is lower ratio at the�rst enrichment category. The problem of CC is that it can not have p-valuessmaller. As a result it can not �nd enriched categories. Also, OPSM has theproblem of number of output biclusters. One not enriched bicluster may decreasethe enrichment ratio. Finally, LEB does fair results with 50 biclusters and all ofthem is enriched with ratio lower than 0.5.Indeed, at Yeast data set, our results are fairly good. We are better thanOPSM and CC at two experiment environment.
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Table 6.4 Yeast dataset experiment 2: FuncAssociate results for LEBFunAssociate Result for LEBRank N X LOD P P-adj GO Attribute1 704 3585 0.413 4.1e-37 < 0.001 0005737: cytoplasm2 423 1876 0.349 3.2e-28 < 0.001 0003824: catalytic activity/enzyme activity3 92 239 0.592 2.7e-20 < 0.001 0016491: oxidoreductase activity/redox activity4 122 372 0.491 9.1e-20 < 0.001 0005783: endoplasmic reticulum/ER5 880 5389 0.429 1.2e-18 < 0.001 0005623: cell6 33 46 1.172 3.2e-18 < 0.001 0000502: proteasome complex (sensu Eukaryota)/26S proteasome7 95 294 0.472 4.7e-15 < 0.001 0019752: carboxylic acid metabolism8 95 294 0.472 4.7e-15 < 0.001 0006082: organic acid metabolism9 57 157 0.539 9.8e-12 < 0.001 0006066: alcohol metabolism10 106 393 0.359 5.2e-11 < 0.001 0009056: catabolism11 61 180 0.493 5.2e-11 < 0.001 0006520: amino acid metabolism12 31 64 0.748 1.4e-10 < 0.001 0004175: endopeptidase activity/endoprotease/proteinase13 63 195 0.462 2.4e-10 < 0.001 0006519: amino acid and derivative metabolism14 40 99 0.609 3.2e-10 < 0.001 0008652: amino acid biosynthesis15 42 108 0.582 4.8e-10 < 0.001 0044271: nitrogen compound biosynthesis16 42 108 0.582 4.8e-10 < 0.001 0009309: amine biosynthesis17 13 15 1.501 1.1e-09 < 0.001 0005839: proteasome core complex (sensu Eukaryota)/20S core complex/macropain18 98 373 0.341 1.4e-09 < 0.001 0044248: cellular catabolism19 85 310 0.364 2.1e-09 < 0.001 0009057: macromolecule catabolism20 65 216 0.417 3.4e-09 < 0.001 0009308: amine metabolism



Chapter 7

Graph UnionsUnion gives strength.Aesop
7.1 MotivationThere have been numerous applications, heuristics and tools over graphvisualization. Several techniques depend on these graph based knowledge. Eachtechnique is resulting with layout. Sugiyama layout is one of them. Sugiyamalayout is a popular one used in layered graph drawing. Layered graph drawingis designed in steps. These areRemoving Cycles Layer Assignment Adding Dummy Vertices CrossingMinimization Horizontal Coordinate AssignmentAmong these steps, many of the problems such as Feedback-arcSet [30], Precedence Constrained Multiprocessor Scheduling [31], 2-layer CrossingMinimization [32], Optimal Linear Arrangement [33] are NP-hard. So we needto use heuristics in order to complete layout.After choosing the layout, we identify the application areas. Applicationssuch as process scheduling, social network visualization, protein precedencegraph and related graphs [34], VLSI (circuit schematics), data �ow diagrams,subroutinecall graphs suit to the layered graph drawing approach. Up to now,the previous applications of layered graph drawing using Sugiyama layout runsover unweighted directed graphs. This means that problems at each step arerelated with the unweighted directed graphs.33



Weighted strategy is new area for this topic. If we consider weights of thegraph, we need to modify each step considering weights. For some steps, weightedversions of algorithms are in literature. Weighted feedback arcset problem andits heuristics, and weighted 2-layer crossing minimization and its heuristics areusable.In our case study we are considering the company social network graph insuch a way that we have pre-identi�ed relations among workers in a company.Since weighted relations are possible, we can represent the importance of relationby weight. Also, assuming that each worker belongs to a department or project,a natural clustering occurs.
7.2 Related WorkGraph visualization is important topic in computer science. Since there aremany related work with the whole topic, we are giving related work with socialnetwork visualization.Recent years, there have been several approaches over social networkvisualization. Approach are analyzing email communication [35], online socialnetworks [36], and co-authorship networks for scienti�c publications [37]. Thereare also several tools for generating social network visualizations and performinganalysis and research. These are UCINet [38], GUESS [39], JUNG [40],Vizster [41], Visone [42].Social network visualization is divided into parts in itself. One approachis aiming to online social networks such as email networks, Facebook,othernetworking utilities networks. Another approach is to represent terrorist groupsand their networks. Approaches are application dependent. They rely on speci�cproperties. For terrorist group network, they rely on real connectionsThere are also approaches in order to mine communities from signed socialnetwork with algorithm FEC [43, 44] uses one of the simplest maximum �owalgorithms to cover community. Also Flake et.al [45] tried to extract the datafrom online network. According to their method, despite the Web's decentralized,34



unorganized, and heterogeneous nature, Web self-organizes and its link structureallows them to determine communities e�ciently. In [46], they retrieved datafrom search engine. In [47], they performed on a special dataset and theyextracted the information based on web application.Finally, IBM is proposed a tool on Lotus calledATLAS(http://ibm.com/software /lotus/services) in order to visualize theorganization. Their tool is related with our approach. But they are not usinglayered graph drawing approach. We believe that best suited approach fordrawing social network hierarchy could be done with layered graph drawing.Moreover, in many graph related visualizations, they disregard the edgeweights. With our approach we are trying to handle, layered drawing in weighteddirected graphs.Layered graph drawing is one of the main approaches of graph drawing. Itseach step there are NP-hard problems. Removing cycles is one of these problems.Feedback arcset problem is approximated with heuristics [48, 49]. In [50, 51],they have performance ratio O(lognlog(logn)). Also, [52] proposed weightedfeedback arcset problem with worst case O(mn) where m is number of arcs and
n is number of vertices. Result after feedback arcset problem complements theproblem of Maximum Acyclic Subgraph. There are also older approaches, FastHeuristic and an Enhanced Greedy Heuristics. However, these are not applicableto weighted graphs.The second step is assigning layers for each node inside the graph. There aretwo main approaches: Co�man Graham Layering and Longest Path Layering.Co�man's algorithm is aiming to minimize width of layering. Longest PathLayering is aiming to minimize height of layering. In literature, there is nocorresponding version for weighted graphs.Two-layer Crossing minimization is also another issue after obtained acycliclayered graph. However, there is no applicable algorithm over k-layer crossingminimization, we have to add dummy vertices before crossing minimization.Crossing minimization can be run over bipartite graph. There are techniques35



in order to minimize crossings of whole graph. One of these techniques is layerby layer sweep method. With this method one layer is free and neighbor layer isconstant at one time, and next, constant layer is freed and its neighbor is constantby sweeping. The process continues until there is no layer remained. Anothermethod is to have two layer free sweeping. Since the problem is NP-hard, it isharder to design heuristics for two layer free problem.There are numerous algorithms designed for one layer free problem. In[22], we also proposed weighted version of one layer free algorithms, Barycenteras W-BARY, GRE as W-GRE, PM as W-PM, Median as W-MEDBARY andour algorithm WOLF.Finally, horizontal coordinate assignment is not necessarily vital for layereddrawing, it is helpful for neat design and to arrange edge bends.
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Chapter 8

Our MethodTo accomplish great things we must �rst dream, then visualize, thenplan... believe... act!Jack YoungbloodOur method is based weighted layered drawing. We are considering thecompany social graph such that each worker belongs to speci�c department ordepartments. That means that natural clustering occurs before we implement ouralgorithms. If another application area is chosen, we may apply clustering beforeexecution of our method. Since it is possible that there are many departmentsinside the company, we designed upper level visualizations based on departmentsand their relations. These relations are represented as in circular layout.Circular layout is also high level graph. Users could gain information aboutdepartment relations. There is an edge between two departments, if they haveworker(s) shared.At the low level graphs, to represent the hierarchy of the speci�cdepartment. Layered layout best suits. For readability aim layered layout helpusers to understand key points. The problem occurs when there is a relationbetween two departments. This could be solved by adding a duplicate edge forboth of two departments. Furthermore, these edges could be represented in highlevel graph, representing that there is a relation between two departments.Each relation in low level graphs is represented with weighted edge thatrepresents the weight information. Since unweighted method of layered drawingdo not consider weight, unweighted algorithms work in a way that loosing theweight information. By using weighted versions of these algorithms we take37



advantage over to represent weight information. In low level graphs, weightinformation gives us the importance of the relation. Higher weights mean thatthere is a important relation between employees.
8.1 Methods in DesignWe use Demetrescu et al's algorithm to remove cycles, Co�man GrahamAlgorithm for layering, WOLF for crossing minimization. Since Co�man'salgorithm considers the graph as weighted, we need to change the algorithmin a way that consider weights. Since weights have special meaning, we need torepresent weight with high values better. So, each algorithm should execute andgive result with better understanding for high weighted values. In Figure 8.1 youcan see our tool sample visualization.
8.1.1 Modified Coffman Graham AlgorithmOver the original algorithm of Co�man, we have added some weightmodi�cations. In original algorithm, there are two main phases. In the �rstphase, we are making an initial ordering. At �rst, this initial ordering mergesduplicate edges by adding their edges. In unweighted case we need to deleteduplicate ones. Then for each leaf node, that means no outgoing edges, it givesa numbering that represents a type of lexicographical ordering. After these,second phase begins. At the second phase, actual layering does, according togiven constraints that no such layer has a size of nodes larger than prede�ned Wvalue, and no such node that there is an outgoing edge to the upper layer with
k values larger than its layer number. For the second phase, we can also addgreedy strategy to collect and assign layer to the most weighted node that meanshaving maximized edge weights. You will also see pseudocode at Algorithm 4.
8.1.2 Demetrescu’s Weighted Feedback Arc Set AlgorithmIn [52], they proposed an algorithm FAS, in order to deal with cycleremoval in weighted directed graphs. It is simple two phase and can be seenat Algorithm 5. At its �rst phase it catches cycle C until there is no remaining38



Figure 8.1 Graph Union Showcase
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Algorithm 4 Co�man Graham Algorithm with weight modi�cationRequire: Acyclic Directed Weighted Graph G and Width W/*Phase 1: Initial Ordering*/for all pairs of nodes u,v of G with edge e doif ∃ a di�erent path p thenmerge e with p by adding each weight valuesend ifend forU set of all unlabeled nodes of Gfor all v ∈ U do
L(v) = ∞end ford = 1for i = 1 to n doif outdegree(vi)=0 thenL(vi)=d

d = d + 1end ifend for/*Phase 2: Assigning layers buttom-up*/
L1 = ∅while U 6= ∅ doChoose unlabeled vertex u, such that every vertex in v : (u, v) ∈ E is in U ,and L(u) is maximized and sum of all edge weights is maximized too.if |Lk| < W and for every edge (u, w), w ∈ L1 ∪ L2 ∪ ...Lk−1 thenadd u to Lkelse

k = k + 1, Lk = uend ifend while
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one. Among that cycle C, they hide suspicious edge with minimum weight andthen they subtract its weight from all weights of the cycle C. They repeat untilthere is no newer cycle. Moreover, at the second phase, we sort suspicious edgesaccording to their values. From the edge list F , we check that each suspiciousedge creates a new cycle in graph if it is unhidden. If it does, it remains hided elseit is unhidden. Indeed, all edges in list F reversed in terms of their directions,in order to continue with the next step.Algorithm 5 Weighted Feedback Arcset HeuristicRequire: Directed Weighted Graph G=(V,E)/*Phase 1: Suspicion*/
F ⇒ ∅ F is feedback arcsetwhile ∃ no remaining cycle C doLet C is a simple cylce in G

ε is minimum wighted arc (x, y) in Cfor all (u, v) ∈ C do
w(u, v) = w(u, v) − εif w(u, v) = 0 then

F ⇒ F ∪ (u, v)end ifend forend while/*Phase 2: Appeal*/Sort F/*Make sure weight values are descending in list*/for all (u, v) in F doif V − (F − (u, v)) is acyclic then
F ⇒ F − (u, v)end ifend for

8.1.3 Weighted Crossing MinimizationThere are alternatives for Weighted Crossing Minimization. In [22] weproposed WOLF, and weighted versions of PM,GRE,Barycenter and Median.Since all of these algorithms don't need weighted modi�cations, we directly applythem to our method.
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8.1.4 Method ReviewIndeed for our design we used, Demetrescu et al's algorithm FAS for CycleRemoval, Co�man Graham Algorithm for layering, WOLF forWeighted CrossingMinimization. There are some other steps such as Adding Dummy Nodes andHorizontal Coordinate Assignment. We add dummy nodes if there is an edgebetween layers Li and Lj such that i − j > 0. Also, Horizontal CoordinateAssignment is sub-method that we don't need to use it since it doesn't e�ect thevisualization of weight information.
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Chapter 9

Experiments And ResultsDon't be too timid and squeamish about your actions. All life is anexperiment. The more experiments you make the better.Ralph Waldo EmersonFor the testing issue of our design, we randomly create a company workingarti�cially.As a prede�ned parameter, we have number of departments as d, numberof relations for each department as r, number of workers for each department as
n and for the co�man's algorithm we need width parameter as w.We also randomly choose names among name database. In Figures 9.1 and9.2 there are one sample input graph for layered drawing that is also representingdepartments. There are also resulting graphs that are the output our drawingmethod. These are at Figures 9.3 and 9.4. For better understanding of hierarchyand weight information it is apparent that layered drawing best suits for thecompany social network drawing. In Figures 9.5 and 9.6 you can also see thedepartment related graph with real employee names.
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Figure 9.1 Spring 2D embeder for Graph 1 r = 151, n = 150
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Figure 9.2 Spring 2D embeder for Graph 2 r = 151, n = 150
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Figure 9.3 Layered Drawing for Graph 1 r = 151, n = 150, w = 3
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Figure 9.4 Layered Drawing for Graph 2, r = 151, n = 150, w = 3
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Figure 9.5 Layered Drawing for Graph 1 with employee names
r = 34, n = 30, w = 5

Figure 9.6 Layered Drawing for Graph 2 with employee names
r = 35, n = 30, w = 548



9.1 Properties of Designed Tool1. The tool is simple, and there are available click and drop operations.2. Tool has high level graph for general perspective and low level graphs fordetailed relations. High level graph shows company pro�le and low levelgraphs show relations and person interactions.3. Low level graph is drawn in layered drawing layout that enables user to seethe real hierarchy in the departments.4. Relations are weighted, weight could mean everything. It could representimportance, numbering or counting or even pointer to another �le.5. Shows weight information better.6. Better Readablity comparing with other layouts.7. High level graph also represents the information about general relationsbetween department.
9.2 Statistics

9.2.1 Crossing StatsWe also give statistical values for our layout. You can see whole averageand averages for each node numbe values in Table 9.1. There are 100 consecutivetests for each Node entries. All other values in the table are averages. Thatmakes 2000 trials for the experiment. It takes only a hour to run all of thesetrials. In Table 9.1, Node is node number in tests. Edge is the average numberof edges at this experiment. W is average width, H is average height found byCo�man's algorithm,Max W is maximum weight averages in the graphs, EdgesDand NodesD are average number of edges and nodes after adding dummy nodes.Cross is averages of initial crossings, WOLF is average crossings after WOLFalgorithm and Median is average crossings after Median algorithm.49



At the �nal row, you see the averages of all. It is apparent that crossingminimization is vital part of the layered drawing. Co�man's algorithm givesresults with many crossings. After WOLF and Median crossing number isdecreased. Also, average width of layered drawing is approximately 10 and forthis reason, when there is a increase in both node number and edge number,Average height is increased as well.
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9.2.2 Edge Length StatsEdge Length is also important parameter of Layered Drawing. Since wehave prede�ned parameters for width accoding to Co�man's algortihm, we donot have restriction on height parameter. Actually, the width parameter e�ectsheight parameter. The relation is given at Equation 9.1. In Table 9.2, we giveresults for the "Average Height" and the "Averege Edge Length" for given "NodeNumber". For each "Node Number", we repeat the experiment 100 times fordi�erent graphs. "Averege Edge Length" is the average of the averages for eachgraph's edge length. Edge length is calculated with the below formula,
|e| = |Layeri| − |Layerj| (9.1)where |e| is the length of edge, i is the Layer Number of the source nodeof e and j is the Layer Number of the target node of e. The Layer Number iscalculated by Co�man's Algorithm.During this experiment, we neglect the edge weights. Furthermore, fromthe table, we interfere that the Average Edge Length and Average Height havea direct relationship. Interestingly, the approximate ratio for AverageHeight

AverageEdgeLengthis 5.91 according to our experiment. Since we have tested 1100 graphs for thisexperiment, the ratio may be relaible. But, it could be a future work for us todetermine theoric relation.
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Table 9.1 Layered Drawing Crossing ExperimentRun of Layered Drawing with Stats for Each Node ValuesNode Edge W H Max W EdgesD NodesD Cross WOLF Median55 62,76 11,81 15,74 18,87 193,94 186,18 158644 11927 1169360 67,43 10,75 16,78 22,29 211,62 204,19 227772 16644 1601065 72,66 9,84 18,03 21,38 246,32 238,66 265316 18818 1866670 77,56 11,72 17,47 20,61 257,21 249,65 277128 20390 1980075 82,29 10,05 20,91 21,33 306,37 299,08 351824 24745 2460480 87,47 10,66 18,71 19,4 292,2 284,73 348314 20839 2088385 92,53 10,15 22,98 20,87 355,21 347,68 417160 26967 2674990 97,67 9,76 24,26 20,05 419,74 412,07 466792 28019 2799095 102,56 10,86 22,88 18,98 405,16 397,6 488073 30143 29848100 107,37 10,71 24,29 20,35 429,18 421,81 661416 34753 34297105 103,07 11,81 24,06 18,87 398,52 400,45 410411 24056 23721110 107,87 10,75 25,08 22,29 414,91 417,04 582947 33932 33498115 112,94 9,84 27,29 21,38 479,8 481,86 726673 36648 36227120 118,05 11,72 23,87 20,61 443,3 445,25 632961 37002 36450125 122,88 10,05 29,93 21,33 560,16 562,28 807475 42309 42021130 128,06 10,66 25,73 19,4 518,85 520,79 891206 40244 40183135 133,06 10,15 31,47 20,87 637,33 639,27 966688 50878 50129140 137,87 9,76 33,02 20,05 694,31 696,44 951456 44943 43930145 143,24 10,86 31,77 18,98 689,87 691,63 1065368 46966 45910150 148,16 10,71 32,59 20,35 737,33 739,17 1496093 57409 56315102,5 105,28 10,631 24,343 20,413 434,57 431,79 609686 32382 31946
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Table 9.2 Layered Drawing Edge Length ExperimentRun of Layered Drawing with Avrg Edge Lengths for Each Node Number ValuesNode Number Average Height Average Edge Length100 21.73 3.513295895 22.63 3.749775290 22.62 3.690681385 20.07 3.336129780 18.36 3.056935975 19.43 3.286768270 16.26 2.837176165 14.86 2.537078060 16.74 2.846314255 13.08 2.467898650 14.48 2.564781875 18.20 3.0806213



Chapter 10

ConclusionThis is not the end. It is not even the beginning of the end. But itis, perhaps, the end of the beginning.Winston ChurchillIn a conclusion, we provide two methods.The �rst method that we proposed is an algorithm for biclustering. Mainlywe trust on the power of LEB heuristics and ANH procedure. They worked �newith impressive amount of noise in arti�cial data set. Even, sometimes crossingminimization is su�cient to get �ne biclusters. Our algorithm seems to be betterthan counter algorithms. It is also simple to implement and adopt. There is noneed to struggle with setting parameters. Additionally, in both real data setsand arti�cial data sets, our results are �ne. We extracted correlated biclustersand we get covered almost each gene-condition pair. We perform better thanOPSM and CC in many categories of Yeast data and our FuncAssociate resultsare better than all the algorithms used in experiments.The second method that we provide is a algorithm for layered graphdrawing. It is a new method since there is no previous work that considersedge weights in layered drawing. For an application area, we provide a tool thatconsiders a social network of a company as the union of graphs. These uniongraphs are in layered drawing and the whole graph is represented with the highlevel graph in a circular layout. We showed the demonstration of our samplegraphs, and we have given statistics with our experiments
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