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WEIGHTED BIPARTITE CROSSING MINIMIZATION APPLICATIONS ON
BICLUSTERING AND GRAPH UNIONS

Abstract

Biclustering gene expression data is the problem of extracting submatrices
of genes and conditions exhibiting significant correlation across both the rows
and the columns of a data matrix of expression values. We provide a method,
LEB (Localize-and-Extract Biclusters) which reduces the search space into local
neighborhoods within the matrix by first localizing correlated structures. The
localization procedure takes its roots from effective use of graph-theoretical
methods applied to problems exhibiting a similar structure to that of biclustering.
Once interesting structures are localized the search space reduces to small
neighborhoods and the biclusters are extracted from these localities. We evaluate
the effectiveness of our method with extensive experiments both using artificial
and real datasets. Finally, we also used our crossing minimization heuristics for

graph visualization in a layered fashion.
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AGIRLIKLI IKILI CIZGELERIN
AYRIT KESISIMLERI AZALTILMASININ
IKiLI KUMELEME VE CIZGELERIN GORSELLESTIRMESI
PROBLEMLERINE UYGULANMASI

Ozet

Cift tarafli kiimeleme problemi, biyol ile ilgili verilerin alt matrisler
arasindan belli oranda verinin siitun kisminda ve satir kisminda ilintili olanlar:
elde etme problemidir. Biz adi LEB(Localize-and-Extract Biclusters) olan bir
yontem sunarak cift tarafli kiimeleme problemini tiim veri iizerinde g¢aligmasi
yerine, kendine yakin komsu olan alt matrisler iizerinde ¢caligmasini sagladik. Bu
sayede tarama siireci, genelden yerel alt kiimelere indirgenmis oldu. Yerellegtirme
probleminin temelini, ¢izge tabanl teorik yontem kullanarak cift tarafl
kiimeleme problemi ile ilintili oldugunu deney yaparak belirledik. Yerellestirme
metodundan sonra bu kii¢lik alt yapilarin birlestirilmesi icinde ayri yontem
onerdik. Son olarakta biz one siirdiigiimiiz yontemin performansini bir¢cok deney
yaparak hem gercek hem de sanal veriler {izerinde denedik. Bunun yanisira
cizgeler i¢in One siirdiigmiiz yontemi, cizgelerin gorsellegtirmesi i¢cinde kullandik.

Bunu da ikinci kisimda ayrintili olarak inceledik.
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Chapter 1

Introduction

In the beginning, fear was the dominant motivating force.
Robert Vaughn

In this master thesis, we worked on two different topics that are related
with the Bioinformatics and the Graph Visualization. Previously, we proposed
an specific algorithm for the Graph Theory. In this thesis, we give two
implementations for each main topic. First of all, we proposed a Biclustering
algorithm related with our main algorithm on Graph Theory. We give detailed
theory and experiments starting from Chapter 2. In addition, we also used our
technique in order to draw graphs in layered fashion. In that case, we suggest
a new layout for drawing graphs and it could be used to union the graphs. The

detail of that part starts with Chapter 7.



Chapter 2

Biclustering

2.1 Motivation

Clustering refers to the process of organizing a set of input vectors into
clusters based on similarity defined according to a predefined distance measure.
In many cases it is more desirable to simultaneously cluster the dimensions as
well as the vectors themselves. This special instance of clustering referred to as
biclustering, was introduced by Hartigan [1|. It has many applications in areas

including data mining, pattern recognition, and computational biology.

Biclustering is a new developing paradigm in the literature. Recently, many
people proposed different approaches to this paradigm. Biclustering is different
from the existing clustering approach. By using usual clustering methods, we
can only make one way clustering. This gives us a global perspective of view
to the data in consideration. On the other hand, by using biclustering, we can

predict locally important information, since it works on both way of the data.
Biclusters are identified among four major classes. These are:

1. Biclusters with constant values

2. Biclusters with constant values on rows or columns

3. Biclusters with coherent values

4. Biclusters with coherent evolutions

Constant valued biclusters represent the property of having the same value
inside the biclusters. If it happens in row or column of bicluster, it is called

constant values on rows or columuns.



Coherent valued biclusters represent the pattern that each row or column

is obtained by adding or multiplying a constant to another row or column.

It is easier to find constant valued clusters. Coherent valued clusters are
more complicated than constant ones. Because they have assigned by using a

formulation such as additive bicluster or multiplicative bicluster.

Biclusters with constant rows or columns are assesed with some formulas.
According to additive bicluster model, we can find perfect constant row biclusters
by

a;,; =0+ o (2.1)

where a; ; is each value in input matrix, 0 typical value for the row and «;

is the adjustment value for the row 7. Above formula is changed to
;5 = ) + Vi (22)
when we are considering constant column perfect biclusters, and v; adjustment

ratio for the column 7.

According to the multiplicative model Equation 1.1 changes to
Qi 5 = 0 * Q; (23)

and Equation 1.2 changes to

ai,j = (5 * Y (24)

On the other hand, if we are considering coherent values, they have
adjustment values for both column and row. As a result, bicluster could be

more complicated.

Furthermore, we can divide biclusters in categories according to its

structure. In survey of Madeira and Oliveira |2, you can see detailed structures.

Our motivation is to find both constant valued biclusters and coherent

valued biclusters. We can find constant valued biclusters because our algorithm



of extraction could do that and also we can find coherent valued ones because

we have robust noise removal and thereshold of obtaining sustainable density.

Biclustering mainly deals with bioinformatics’ applications such as
microarray analysis, drug activity analysis, motif detection [3, 4, 5, 6, 7, 8, 9, 10].
Adding that, biclustering can also deal the problem of information retrieval and
textmining, database research and data mining and analysis of electoral data. In

this thesis, we are dealing with microarray analysis.

2.2 Previous Work

2.2.1 Biclustering

One of the early approaches for biclustering expression data is that of Cheng
and Church [11|. They provide a greedy, iterative algorithm with running time
O(mn), where m and n are the dimensions of the data matrix. The mean squared
residue score is defined and the algorithm greedily inserts/removes rows and
columns to arrive at a certain number of biclusters achieving some predefined
score value. When they discover a bicluster, they put random values inside and
iterates over it again. These random values may be interfered as a candidate for
another bicluster, and they could be not good for postcoming bicluster results.
They need also predefined value for number of biclusters. According to this
value, algorithm iterates itself. Finally, they focus on determining coherent values
due to scoring function. Order-Preserving Sub Matrix(OPSM) [3] is another
greedy, iterative algorithm, that finds a statistically significant bicluster at each
iteration. It greedily runs over the data matrix and enlarges the best bicluster
and continues until there is no reported bicluster. They defined a bicluster
as a set of selected rows that preserves the ordering in columns. This means
that algorithm focuses on columns. The time complexity of OPSM is O(nm?l)
where n and m are dimensions of input matrix and [/ is the number of output
biclusters. Because of cubic runtime in second dimension, algorithm does not
scale for high dimensional input sizes. Also, in essence, OPSM does a method

like catch a possible bicluster, and try it if it is good or not. This greedy strategy



called partial models. OPSM technique is to expand these partial models at
each step. OPSM also focuses on coherent valued biclusters because of catch
and try strategy. Conserved gene expression motifs or xMOTIFs [5] is another
greedy algorithm which finds all biclusters at a single run. Basically, they are
looking largest xXMOTIF and XMOTIF is identified according to up-regulated
and down-regulated patterns when there are two state in concept. It is a kind
of discretization and like working on binary data matrix. After that step, they
collect these stated values in order to maximize their predefined fraction for rows
and columns and xMOTIF could do that simultaneously. However the algorithm

does not work for more than 64 conditions.

ISA [7] introduces a statistical approach to the biclustering problem. It
requires normalized data with mean 0, variance 1 and assigns weights for each
input that represents significant behaviors with similar weights. These significant
weights assigned according to z-scores and each higher score results with larger
weights. Thus the resulting biclusters are expected to be the ones with similarly
assigned weights. It has been applied to determine cis-regulatory modules in

yeast dataset.

Prelic et al. modified the approach of Alexe et al. [12| in a way that
works fast and requires less space. The resulting divide-and-conquer algorithm,
Bimax [10], is simple and fast. The algorithm runs on discretized binary data.
Algorithm mainly focuses on finding constant biclusters. Discretized binary data
makes it harder to find coherent values. Since they rely on discretization strategy,
the results of BIMAX could change according to used strategy. Coupled two way
clustering is proposed by Getz et al. [13]. First stable forms on submatrices that
are used to divide the original dataset are found. Then one-way clustering is
applied recursively on a single dimension of the submatrices until there is no
newly found stable submatrix. They guarantee that each submatrix pairs is
not encountered more than once. Their success depends on the performance of
one dimensional clustering algorithm such as K-means, Hierarchical, SOM. They

used their algorithm in order to determine diseases on clinical data sets.



Several graph-theoretical approaches have been suggested. In SAMBA |[4]
the data matrix is viewed as a bipartite graph where the genes/conditions
constitute the layers of the bipartite graph and edges in the graph correspond
to the expression changes. The goal is to find out heavy bicliques inside
the graph. Running time of SAMBA is exponential on the size of the
conditions set in a maximum bounded biclique because of the employed
exhaustive bicluster enumeration. A similar model is constructed in [8] where
crossing minimization in unit-weight bipartite graphs is used as a means to
extract bicliques corresponding to biclusters in the data matrix. They used
barycenter [14] like method in order to crossing minimization. The proposed
approach in 8| lacks of quantativeness to extract biclusters. Also, they are not
given any clue about median [15|, GRE [16] and PM [17| that could also solve

unit weight crossing minimization.

2.2.2 Bipartite Crossing Minimization

Jiinger and Mutzel survey various heuristics and experimentally compare
their performances of bipartite crossing minimization heuristics [18]. They
conclude that the barycenter method yields slightly better results than the
median heuristic in practice. On the other hand from a theoretical point of view
median heuristic is better. Specifically, they both run in linear time and the
median heuristic is a 3-approximation, whereas the approximation ratio of the
barycenter method is © <m> [15]. Yamaguchi and Sugimoto [16] provide
a greedy algorithm GRE that has the same approximation ratio of 3 in the
worst case and that works well in practice. However the running time of GRE
is quadratic. Recently, Nagamochi devised a 1.47-approximation algorithm for
OLF [19]. Another promising technique for OLF is the penalty graph approach
introduced by Sugiyama et al. [14]. The performance of this method depends
on an effective solution to the minimum feedback arc set (FAS) problem which
is also NP-complete [20]. Demetrescu and Finocchi experimentally compare the
performance of the penalty graph method based on their algorithm for FAS to
that of the barycenter, median, and the GRE heuristics [21]. In addition to the



mentioned heuristics, approaches based on integer programming formulations
that solve the problem exactly have been suggested. Jiinger and Mutzel showed
that OLF can be formulated as a linear ordering problem which is then solved
optimally by employing a branch-and-cut technique [18]. Although directly
applicable to WOLF, this exact approach works well mostly for sparse graphs of

relatively small size.

In [22], we also proposed weighted version of Barycenter as W-BARY, GRE
as W-GRE, PM as W-PM, and Median as W-MEDBARY. W-MEDBARY does
barycenter in its second phase. Since the crossing minimization performance of
each algorithm depends on the distribution of weights, there is no prediction that

the algorithm 'x’ could be better.

In this paper, we are interested in with two problems, Biclustering problem

and Bipartite Crossing Minimization

Biclustering problem is NP-Complete problem, reduced from maximum
edge biclique problem [23|. The problem could be approximated and be given

heuristics.

Bipartite crossing minimization is also NP-Complete problem. The former
is usually referred to as the both layers free bipartite crossing minimization
whereas the latter as the one layer free bipartite crossing minimization. Both

problems have been extensively studied in literature. Unfortunately they are

both NP-hard [15, 24].

One drawback of approaches that is using bipartite graph based approach
is the assumption that the corresponding bipartite graph is unweighted.
For example, Abdullah et.al.’s algorithm does discretization step before the
algortihm. Also, in BIMAX, they need discretization in order to run the
algorithm.  Since, in both BIMAX and Abdullah et.al.’s approach, they
lost original input matrix with discretization, they are actually running their
algorithm over different input rather than original one. In our algorithm,
we are following a direct graph-drawing approach is [8]. A crossing

minimization procedure is applied on the unweighted bipartite graph resulting



from preprocessing the original input data matrix. Our approach is similar in
essence. However we do not have a discretization/normalization step to convert
the weighted bipartite graph into an unweighted one as this would cause some
data loss and produce erroneous output. Instead we apply crossing minimization
directly on the original weighted graph. Various efficient crossing minimization
heuristics have been shown to work well on weighted bipartite graphs as

mentioned before and a 3-approximation algorithm has been suggested [22].

2.3 Summary of Main Results

We make a general outline of our work

1. We proposed a biclustering algorithm using weighted bipartite crossing

minimization.

2. We proposed generic bicluster extraction algorithm in order to finalize

biclustering.

3. We have given various experiments over the biclustering topic and tested on

several data sets and compared the results of several biclustering algorithms.



Chapter 3

Preliminaries

Bicluster:A bicluster N is subset of vertices and edges over the graph. Graph
G is considered as G = (L, L1, F) where G is bipartite graph, Ly and L; are
layers of graph G and Lo U Ly =V, E is set of edges, bicluster IV is a subgraph
G' = (Ly, L, E') of G. Also, a bicluster could be represented as matrix. If the
input is given as adjacency matrix M, bicluster will be submatrix M’ of given
M. For each element at the input matrix could be represented as a; ;. That value

also represents the relation between gene and condition pair in bioinformatics.

Weighted Bipartite Graph:A graph G with set of edges E and set of vertices
V with layers Ly and L;. There is no edge between same layer node. Weighted
means that for every edges e at E, there is a real number representing the
weight value of edge as w(u,v), where u from layer Ly and v from layer L;. In
our problem, we represent the matrix input of microarray data as a weighted

bipartite graph.

Weighted Bipartite Graph Crossing Minimization: Weighted bipartite
graph crossing minimization is an optimization problem that is to be solved

by heuristics. The cost function is

mianross(e) (3.1)

where cross(e) is total crossings between edge e and all other edges in set E.

In order to solve Weighted Bipartite Graph Crossing Minimization,
Weighted One Layer Free(WOLF) and two sided crossing minimization are two
options. WOLF is the new form of OLF. In order to solve OLF problem,
barycenter[14|, median|[15], GRE[16] and PM [17] are proposed. In WOLF



setting, one layer is set as free layer, meaning that positions of the nodes should
be identified. In addition, second layer is fixed while first layer is free. On the
other hand, two sided crossing minimization is done while there is no fixed layer.

In this approach, problem is more difficult to solve.

10



Chapter 4

Crossing Minimization and Biclustering

No writer should minimize the factor that affects everyone, but is

beyond control: luck.
John Jakes

We mention that Bipartite Crossing Minimization and Biclustering are both

NP-Hard problems.

Biclustering problem is related with bipartite crossing minimization
problem; in essence, two problems are related. Biclustering is aiming a structure
which is the largest possible biclique. Bipartite crossing minimization is aiming
to make an arrangement of free layer of graph in order to minimize crossings.
Let, there are two complete biclique, B; and B, in a graph. If we run crossing
minimization heuristic (CMH), CMH will avoid crossings of edges over B; and Bs.
Meanwhile, CMH decides the most possible place for each node on a free layer.
If we run biclustering algorithm, we may find B; and B, as perfect biclusters.

But, assumption is that we are using unit weight graph.

However, we are taking an input as weighted bipartite graph, and running
weighted bipartite crossing minimization. There is no ideal proof that weighted
biclique is also be a bicluster. Since we don’t know the correlation and heuristics
for weighted bipartite crossing minimization are not considering correlation
as biclustering did. On the other hand, we believe that weighted biciliques
should be grouped in the graph. In order to explain this claim, we designed a
pre-experiment. According to this experiment, we implant two weighted biclique
inside the bipartite graph. These cliques are the half of the graph at each
experiment. We made 10,000 times by creating bipartite graph starting with

11



10x10. At each 2,000 experiments, we multiply the size of the graph with 2.
Also, at each experiment, we implant random edges with random sized in to the
graph. Then, we permute the graph and run CMH such as WOLEF. As a result of
that, at 9,919 try out of 10,000 experiments, there is no change in clique positions
and node positions as well. This experiment shows us that CMH results with

weighted bicliques which may be biclusters if they are correlated.

Theorem 4.0.1 (|22|). Fizing the columns of M, Phase-1.1 orders the rows in
such a way that the weighted crossings in the resulting bipartite graph is at most

three times the optimum.

According to these theorem, we are expecting that by applying CMH over

the matrix form of the Graph G, we obtain 3 times optimum result.

12



Chapter 5

Localize-and-Extract Biclusters

An algorithm must be seen to be believed.
Donald Knuth

Figure 5.1 Assumed noise is 0.05.(a)Initial artificial design with 2 biclusters of
K10,10;(b)Without noise removal;(c)Our complete algorithm

Our algorithm, Localize-and-Extract Biclusters(LEB), consists mainly of
three steps. Initial placement phase applies a two-sided crossing minimization
on the weighted graph until there is no change on the node orders. To do this
we employ algorithm 3-WOLF of |22] (one-sided crossing minimization procedure)
repeatedly, each time alternating the fixed layer. The pseudocode is given at

Algorithm 1.

Algorithm 1 Initial Placement: Input is bipartite graph G with layers Lo, L;.

Require: Graph G, Layer Ly, layer Ly

while no change in node positions do
/*¥run Weighted One Layer Free approach */
free layer A and fix layer B
run Weighted CMH
free layer B and fix layer A
run Weighted CMH.

end while

13



We have verified that if the input data is noise-free then this initial
placement is usually enough to identify bicliques and extract the biclusters.
However, in real data, finding biclusters is not easy because of high level of noise.
In order to deal with noise, we proposed Adaptive Noise Hiding phase. Adaptive
Noise Hiding phase removes the weighted edges in the graph that correspond
to noise in the original input data. Sliding a window around the perimeter of
each node pair, where (i +1,7),(i,7£1),(i £1,j £ 1) constitutes the perimeter
of a pair (7,7), we check whether the window satisfies a threshold density in
terms of the number of nonzero weight edges. If it does not, the pairs on the
perimeter are considered suspicious. The pseudocode of ANH procedure is given

at Algorithm 2.

Algorithm 2 Adaptive Noise Hiding: Input is bipartite graph G with layers
LQ, Ll-
Require: k, the maximum threshold density
while n < k do
for all pairs (i,j) where i € Ly, j € L1 do
neighboring pairs = (¢ £1,75), (4,7 £1),(i £ 1,5 £ 1)
count = number of pairs with nonzero weight;
if count < n store those pairs as suspicious;
end for
Find the most suspicious weight
Hide the pairs (i, j) with weight equal to the most suspicious
run Two-sided-crossing-minimization
if no suspicious nodes then n + +;
end while

Once sliding is finished we find the most suspicious weight and remove all
the suspicious pairs with that weight. We adaptively apply our two-sided crossing
minimization on the new graph and continue noise hiding after incrementing
the threshold density. The removal of the suspicious edges and the crossings
couple each other in terms of noise removal. Each time the partitions of the
graph are reordered to reduce crossings, new suspicious pairs are created. The
simple run showcase is in Figure 5.1. Once the noise removal phase is over,
we finally gather the biclusters by applying a procedure similar to the one
described in [8] and weighted version is called as Bicluster Extraction Method.

We note that different from previous approaches we directly apply weighted
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crossing minimization on the original input data, not to lose possibly important
data that can not be considered noise. Secondly our application of the crossing
minimization is two-folds. Besides providing a good initial placement, crossing

minimization is also used to handle noise removal.

5.1 Bicluster Extraction Method

Algorithm 3 Extracting Biclusters: Input: bipartite graph G with layers Ly, L;.

Require: M  matrix representation of graph G
Require: « as size of bag as square submatrix
Divide M into the bags of size axa, store in BagList
for all bags in BagList do
GenericEvaluation()
Remove bag according to evaluation
end for
while no unmarked bag in BagList do
Choose one evaluated bag from BagList
Mark bag as bicluster
for all bags b in x coord of marked bag do
if GenericEvaluation( b, bag ) —— true then
Expand bicluster with the bag
end if
end for
for all bags b in y coord of marked bag do
if GenericEvaluation( b, bag ) —— true then
Expand bicluster with the bag
end if
end for
Define Cluster Boundaries and mark all bags inside the bicluster
end while

Once the localization phase is over the next step in LEB is to extract
biclusters form the reorganized data matrix by considering local neighborhoods.
For this method, we defined two parameters as v and «. In order to get stable
biclusters, We divide the adjacency matrix form of data into bags according to
given bag size as axa. For example, consider the input with 100x100 that has
100 nodes in both layer A and B. If « is 10, we divide 10x10 bags of the input.

Total bag number is 100 in that case.

We do a traversal over the bag set and try to enlarge the bags. All bags are

unmarked initially. At each iteration during the traversal we first mark a bag
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b;. We compute the evaluation score of b; with the next unmarked bag b; in the

x-direction and construct their union if the score satisfies the ~.

We mark b; and continue with the union as the current bag. Once we check
over all bags in the x-direction, we continue with the y-direction and follow the
same procedure. Thus at the end of one such iteration we have the boundaries
of a bicluster determined. We continue the traversal starting from an unmarked
bag and follow the same enlargement procedure. Once all bags are marked we
are left with nonoverlapping, different sized bags corresponding to biclusters all

of which satisfy the v score.

5.1.1 Evaluation Score

For constant biclusters the evaluation score of b;, b; is the ratio of the
number of most frequent weight in the union to the size of the union. A score
satisfies the constraint if it is larger than . We note that we have an additional
initial traversal step for constant biclusters where we remove bag b; that scores

lower than v when evaluated with the empty set.

On the other hand for coherent biclusters we first define the H-value of a
submatrix [11|. Assume the submatrix consists of I rows and J columns. The

residue R of an entry (i, j) is
RS]J(Zj) = aij —a,]j —CI,Z'J—FCI,IJ (51)

1
arj = j;(am’) (5.2)
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where a;; is the mean of row i, az; is the mean of column j and a;; is the

mean of the submatrix. H-value is defined as

Hy(60) = o 3 (RS10G.0)) (5.5)

i=0,5=0

The evaluation score of two bags is the difference between their H-values.

A score satisfies the v constraint if it is less than ~ in this case.

5.2 Running Time

In order to calculate total running time, we have to know the running time
of weighted bipartite crossing minimization heuristics. Given a bipartite graph
G = (Lg, L1, E), first of all algorithm 3-WOLF 3-approximates WOLF in time
O(|E| + |Lo| + |L1|log|L1|) [22]. In addition, the approximation ratio of the
barycenter method applied in OLF settings is © <\/m> [15]. Furthermore,
both W-BARY and W-MEDBARY run in linear time. The running time of W-GRE is
O(|E|* + |L1]?) and that of W-PM is O(|E|*> + |L1]*) [22]. Both W-GRE and W-PM
require the computation of a cross table. All ¢,, values are retrieved from this
table which is computed beforehand. A straightforward implementation of this

computation requires time O(|E|?).

As a result, running time will change according to selected heuristics. If
chosen heuristic is WOLF, running time of Initial Placement is the same of
running time above.

Running time of Extracting Bicluster Procedure is O(|N|) , where N is the

[m*[n]

number of bags and equals to . Since each bag is marked in order not to

pass again, each bag is passed once so running time depends on number of bags.

Theorem 5.2.1. The running time of the algorithm LEB is O(|N| x |r|+ |m| +
1] log [n] + i),

Proof. Running time of WOLF is O(|n| 4+ |m| + |n|log|n|) [22] where |r] is
total number of entries in data matrix, m and n are the sizes of dimensions.

Running time of noise hiding procedure is O(|x| * |N|) where |7| is total number
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of entries and N is number of iteration. The experimental upper bound of N
is no more than 25. So the total running time is O(|r|). Running time of
extraction procedure is O(W) where « is bag size, and |m| and |n| are the
size of dimensions of the data matrix. Since each bag is marked once, the running

time is total number of bags.
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Chapter 6

Experiments

To consult the statistician after an experiment is finished is often
merely to ask him to conduct a post mortem examination. He can
perhaps say what the experiment died of.

Ronald Fisher

During the experiment part we have used, Pentium 4 with 3.2 GHZ
computer with 1 GB of RAM. Before go into the topic, we can divide experiments
into two part, Fxperiments on Artificial Data and FExperiments on Real Data.
Furthermore, we are using LEDA C++ Library in order to implement the details
of our algorithm [25]. LEDA is suitable for implementation with structures and
implementation support in C and C++. In order to run other algorithms, we

have use Bicustering Analysis Toolbox (BicAT) [9].

6.1 Setting for Artificial Experiment and Evaluations

Settings:In order to maintain experimental results in artificial data testing
part, we defined the noise ratio o. The noise ratio « is the parameter of input

that determines the noise number inside the data. For example, for m xn input,

if the (3 is 0.01, then the total number of noise should be, 555. Additionally, we
create input matrix with constant n biclusters with constant values and size of
m *m matrices. Since our difference is weighted input, we give weight values for
each implanted biclusters. Then, we add the noise according to given [ value.

Finally, we permute the input matrix. As a result, we get almost random input

with weighted values and we can run algorithms over that input. We have chosen
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5 different algorithms for comparison. These are BIMAX [10], CC [11], ISA |7],
OPSM |[3].

Evaluation Scores:Cover ratio is the ratio that for each weighted value in
input matrix, we are looking that is there any biclusters that covers the values
inside the matrix. It is the ratio of covered ones over all logical entries in input
matrix. Also, one of the vital part of biclustering is the quality of found biclusters.
To do evaluation we used the formula named H-score is given at Equation 5.5. In
this equation, H; ; is H-value, I and J are bicluster dimensions, RSt ; is residual

score. Lower H-scores means that there is a correlation inside the bicluster.

6.2 Experiment on Artifical Data

In this section we artificially implant 10 constant valued biclusters into the
input matrix. In this experiment, we have 100x100 input data matrices with 10

implanted biclusters with the size of K 0.

In addition, noise ratio represents the number of different
independent valued gene-condition pairs. We tested with noise
ratios,3,0.001,0.005,0.01,0.1,0.15. For this section, each setting parameters of
the used algorithms are for LEB density = 0.6, = 2, for BIMAX Dscrzt =
02,a=203=2, for CC p = 13,0 = 0.5,a = 1.2, output Biclusters = 10, for
ISA p=13,t, = 2.0,t. = 2.0,n = 100, for OPSM ~ = 10.

6.2.1 100x100 Experiment

We have done the experiment for the artificial data with 100x100 input
data and Our algorithm LEB did well at 100x100 data matrix with artificially
implanted 10 Kj,19 constant biclusters. With this experiment we are questioning
the performance of the algorithms over constant bicluster extraction. Since
perfect constant bicluster should have H-value with 0, during the experiment, we
are expecting the low H-value results from the biclusterings of each algorithm.
In Figure 6.1-a, we see that CC and OPSM are not performing well. That is

the reason of their evaluation to the biclusters. They are performing well in
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Figure 6.1 (a) H-values of each algorithm, on artificial test data with noise
ratios, 0.001, 0.005, 0.01, 0.1, 0.15 . Data is 100x100 matrix with 10 constant
K10 biclusters at the beginning; (b)Covered gene and condition ratio of each
algorithm, on artificial test data with noise levels, 0.001, 0.005, 0.01, 0.1, 0.15

. Data is 100x100 matrix with 10 constant Ko 10 biclusters at the beginning.
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coherent type of biclusters. LEB has also fair performance with low H-values.
This implies that we can run on constant valued biclusters. ISA and BIMAX
have similar performance and when noise level increases, they perform better.
This may imply, that they are noise robust. However, their problem is that they
are finding many biclusters and since we don’t restrict the bicluster sizes, small

sized ones may change the H-value positively.

In Figure 6.1-b, we notify that, our algorithm covers almost all
gene-condition pairs. Also, cover ratio for ISA and CC decreases with increasing
noise ratio because they could not find all biclusters. Since we have significant
implanted biclusters because of their sizes, the gene-condition covering should be
high in lower noise levels. High cover ratio for LEB at low noise levels implies

that LEB successfully determines the constant biclusters.

Indeed, our algorithm has the property of increasing H-values from sparse
input to dense. Since we apply noise hiding procedure, we believe that in low
noise ratios, we are working well. Also, at high noise ratios we could compete
with ISA and CC. Finally, LEB almost covers all gene-condition pairs and does

it with stationary cover ratio.

6.2.2 200x200 Experiment

For this experiment we try to run LEB on bigger size such as 200 in
both dimension 1 and 2 and there are 20 Koo implanted biclusters. Again,
we have noise ratios and they are 0.01, 0.05, 0.10, 0.50 . We experimented
two different run of LEB in Table 6.1. We tested and compared with BIMAX,
CC, ISA and OPSM. We could not use XMOTIF since chip size is larger than
64. In Table 6.1, there are two main rows representing two different o values.
According to these results, H-values of each algorithm are similar. For the «
values of 2 we see that LEB gives fine low H-values than others in low noise
ratios. Nevertheless, LEB has a problem with high noise ratios. The reason
of that is LEB density parameter. Since it is too low (0.5) for the bag size
alpha = 2, bags should differ at high noise ratios. In addition, at the second
main row of Table 6.1, o is 3 and for this value LEB gives better H-values. The
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Table 6.1 Artificial Dataset 200x200

Whole run of the algorithms on 200x200 dataset
LEB density = 0.5
Treatment 1 0.01 0.05 0.10 0.50
LEB | 1,55 9,30 12,68 15,46
OPSM | 5,01 7,82 11,36 22,15
LEB a =2 CcC 5,72 2,96 3,77 11,04
ISA 0,07 2,84 6,59 18,64
BIMAX | 0,00 0,00 3,64 3,78
LEB density = 0.8 | LEB density = 0.9
Treatment 2 0.01 0.05 0.10 0.50
LEB | 5,22 7,34 1,61 2,01
OPSM | 4,74 6,52 10,77 21,07
LEB a=3 CcC 3,44 3,36 3,32 9,79
ISA 0,66 2,26 6,44 17,54
BIMAX | 5,87 4,46 3,18 3,80

reason of that is because of density parameter. We tried two different densities.
For noise ratios, 0.01 and 0.05, density is 0.8 and for 0.10 and 0.50 is 0.9. Since
we are extracting constant ones, 0.8 and 0.9 densities support LEB results to
be constant. The problem of high density parameter is under extraction. For
instance, at the noise ratio (.50, algorithm could not extract biclusters because of
high density parameter. But we are not expecting to deal with such noise in real
environment. Furthermore in Figure 6.2, you could see the resulting run of LEB.
In these figures, you can see the input, input permutation and output. Note
that, the resulting figures don’t include the extraction part. The settings for this
figure are "Assumed noise is 0.01(a)Initial artificial design with 20 biclusters of
Kj0,10;(b)Without noise removal;(c)Our complete algorithm", "Assumed noise
is 0.05(c)Initial artificial design with 20 biclusters of K7 19;(d)Without noise
removal;(e)Our complete algorithm", "Assumed noise is 0.10(f)Initial artificial
design with 20 biclusters of Kjg10;(g)Without noise removal;(h)Our complete
algorithm", "Assumed noise is 0.50(i)Initial artificial design with 20 biclusters of

K10,10;(j) Without noise removal;(k)Our complete algorithm".
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6.3 Experiments on Real Data

We have tested our algorithm on two dataset, Arabidopsis thaliana|26| and
Saccharomyces cerevisiae(Yeast Cell Cycle)|[11]. For thaliana dataset, we tested
the cover ratio, bicluster sizes, h-values and for yeast dataset, we tested the

enrichment ratio of each selected algorithms.

6.3.1 Arabidopsis Thaliana

We have data set of Arabidopsis thaliana from [26|. Arabidopsis thaliana is
a widely used plant for bioinformatics applications. It was the first plant that
is sequenced with its whole genome. The database we maintained is with 734

genes and 69 conditions. Over this database we have done several tests.

Table 6.2 Arabidopsis thaliana dataset experiment 1

‘ Whole run of the algorithms on Arabidopsis thaliana dataset

Alg. Max Bic. | Min Bic. | Diml Dim?2 Bic. H-values
Avrg. Avrg. Number

LEB | 630x66 2x4 237,25000 17,5000 | 15 402,6922

BIMAX 10x4 4x4 4.428301 | 4.065273 | 50189 | 963,385

CC 690x69 242x69 531.4200 | 69.00000 | 100 3660,31

ISA 234x5 198x2 220.3250 | 2.537500 | 80 2349,431

OPSM | 2x57 10x5 10.33333 | 15.41667 | 12 909,4981

Experiment 1: We have taken the default parameters from BicAT tool at
the previous experiment. We checked all the the parameters in a way that they
have been used in their original paper. Settings are for LEB v = 10,a = 2,
for BIMAX Dscrzt = 0.6,a = 4,8 = 4, for CC p = 13,0 = 100, =
1.2, output Biclusters = 100, for ISA p = 13,t, = 2.0,t. = 1.0,n = 500, for
OPSM ~ = 100. As a consequence of Arabidopsis thaliana experiment, CC and
ISA performed well in that setting in terms of number of output biclusters.
But, one problem is that the size of biclusters.

For example, for CC, max

bicluster is almost the size of data, and for all biclusters, algorithm gives us
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the whole dimension 2 that is 69. In addition, ISA has a problem in dimension 2.
Dimension 2 of ISAs biclusters is not sized as others. Finally, for this experiment
we change BIMAX parameters. We increase discreatization value to 0.6, and
also we increase aand( values. In that setting, BIMAX finds many biclusters,
but there is no biclusters more than size of 10z4. On the other hand, LEB, ISA

and CC are finalized with fine dimension sizes.

In addition, H-values are important criteria to determine biclusters. LEB
has the lowest H-value scores. This means that we have the biclusters with best
correlation. You can also see the resulting figures of two significant biclusters at
Figure 6.3. According to looking at that figures, LEB catches highly correlated
biclusters. There are some peaks inside the plots. These may be noised values.
We applied noise hiding procedure, but data is so dense. Because of that, noise
hiding may not be effective. Also, in some part of the plot, they are symmetric
and could not be a noise. Because there are similar patterns around. These

values should be correlated with itselves.

Bicluster Plot 1 For Thaliana

Figure 6.3 Thaliana Bicluster plots for LEB(y = 10, @ = 2),conditions at X-axis

Discussion on Parameters of Arabidopsis thaliana experiments: First of all,
during experiments, we have experienced that BIMAX has a problem when the

discretization parameter when it is low. For instance, with 0.2 value of that
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parameter, it finds millions of biclusters. It is not easy to analyze millions of
biclusters. It is obvious that biclusters are permuted. It has also running time
problem. It takes more than several days, so we have to interrupt the experiment.
Moreover, OPSM does not give fine results when we change its parameters. It is

the worst one in Arabidopsis thaliana experiment.

In addition, our parameters, o and gamma could be used to determine
correlation level. Choosing o smaller such as 3 should be better in order to catch
small biclusters. For large datasets with shorter range of weights, a parameter
can be larger than 3. Also, by changing « values you could catch different
bicluster results. One who runs LEB by changing « values, could catch different
biclusters. Furthermore, v value is necessary in order to identify coherence.

Smaller gamma values should give better correlated biclusters.
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6.3.2 Yeast

As a second real data, we selected Yeast Cell Cycle (S.cerevisiae)
dataset [11] that is widely wused in biclustering applications
(http://arep.med.harvard.edu/ biclustering/yeast.matrix). It has 2884 genes
and 17 conditions. In most of previous papers, they used that dataset to test
their algorithms. Since Yeast dataset was categorized in terms of functionality of
each genes at MIPS(http://mips.gsf.de/ genre/proj/mpact/yeast), we are able
to test enrichment ratio of each bicluster by looking at genes. We designed a
experiment as Bryan et.al. [27| did. We identified categories of genes. There are
13 pre-identified categories. During the experiment, we find enrichment ratio as
a number of genes at the most specific category in bicusters over total number
of genes in bicluster. This is a ratio between 0 and 1. In Table 6.4, you can see
the functional enrichment values. During this experiment we extracted small
biclusters such as smaller than 40 genes. Indeed, according to that table, OPSM
fails to enrich biclusters. LEB has 7 wins. CC has 3 wins. OSPM has 1 win.
Wins are determined according to best functional enrichment values in each
category. Finally, CC and LEB has a one draw among them and all of them
has one draw at category B. Settings of CC and OPSM are default parameters
given at their papers and for LEB, setting is v = 100, & = 4. In this test, OPSM
failed because it has high dimension sizes. Adding that, CC competes with our
algorithm as it has 100 biclusters and we have also 42 biclusters. In Figure 6.4,
you can also see the graph of enrichment values for each category. In that figure,
we append 3 different run of LEB with different parameters. Indeed, we have

still have advantage over CC and OPSM for different settings.

Secondly, we do not run BIMAX and ISA for that experiment. The reason
is that, ISA does not give any biclusters although we tried different parameters.
In addition, BIMAX has a problem of number of biclusters and duplicate results.
There are so many biclusters but many of them are duplicate of another. That
is surely overlapping problem. Furthermore, parameter selection is a issue.

Defining dimension sizes and giving discretezation parameters give advantage
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Table 6.3 Yeast Dataset Experiment 1

Warfield for OPSM, CC, LEB on Yeast 2884117 dataset for each category

OPSM CcC LEB
Functional Catogory ORF in | Func. ORF in | Func. ORF in | Func.
Bicluster | Enrich. Bicluster | Enrich. Bicluster | Enrich.
E - Energy Production 543 0,03 55 0,04 100 0,04
G - Amino Acid Metabolism | 1282 0,03 51 0,04 186 0,05
M - Other Metabolism 62 0,11 59 0,14 79 0,22
P - Translation 2342 0,03 57 0,19 79 0,09
T - Transcription 1282 0,06 25 0,19 143 0,08
B - Transcriptional control | 124 0,08 42 0,08 152 0,08
F - Protein Fate 2342 0,06 51 0,14 83 0,08
O - Cellular Org. 2342 0,04 51 0,10 46 0,11
A - Transport and Sensing | 124 0,13 59 0,07 143 0,10
R - Stress and Defense 62 0,06 42 0,05 105 0,06
D - Genome Maintenance 62 0,11 o1 0,10 293 0,14
C - Cellular Fate / Org. 196 0,47 51 0,47 111 0,48
U - Uncharacterized 124 0,06 o1 0,08 79 0,13




Figure 6.4 Yeast Results for
OPSM,CC,LEB1(y = 100, o« = 4),LEB2(y = 50, « = 3),LEB3(y = 25, = 3)
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to BIMAX itselves to permute biclusters. Indeed, we decided not to run BIMAX
and ISA for the Yeast Cell Cycle data set but we are giving the results of
these from |27, 10, 28] for better comparison on hand. Furthermore, we used
FuncAssociate tool [29] (http://llama.med.harvard.edu/ cgi/func/funcassociate)
in order to measure with GO accepted categories. FuncAssociate computes the
hypergeometric functional score by using "Fisher’s Exact Test". According to
results, we are good at covering genes with large amounts with high hit ratio
inside the bicluster. In addition we have given the Figure 6.5. According to this
figure, comparing with |27, 10, 28|, on yeast (Saccharomyces cerevisiae dataset,
we are performing similar and better bar graphs as seen on these paper and
their algorithms. For each significance level, we give a enrichment ratio of our
biclusters. The value in consideration as « is adjusted p-values gathered from
FuncAssociate tool [29]. According to adjusted p-values, we have increasing
enrichment ratio when significance level increases as expected. Also, we have
the best results among three algorithms. Our week point is lower ratio at the
first enrichment category. The problem of CC is that it can not have p-values
smaller. As a result it can not find enriched categories. Also, OPSM has the
problem of number of output biclusters. One not enriched bicluster may decrease
the enrichment ratio. Finally, LEB does fair results with 50 biclusters and all of

them is enriched with ratio lower than 0.5.

Indeed, at Yeast data set, our results are fairly good. We are better than

OPSM and CC at two experiment environment.
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Table 6.4 Yeast dataset experiment 2: FuncAssociate results for LEB

FunAssociate Result for LEB

Rank | N X | LOD P P-adj GO Attribute
1 704 | 3585 | 0.413 | 4.1e-37 | < 0.001 0005737: cytoplasm
2 423 | 1876 | 0.349 | 3.2e-28 | < 0.001 0003824: catalytic activity/enzyme activity
3 92 | 239 | 0.592 | 2.7e-20 | < 0.001 0016491: oxidoreductase activity/redox activity
4 122 | 372 | 0.491 | 9.1e-20 | < 0.001 0005783: endoplasmic reticulum/ER
5 880 | 5389 | 0.429 | 1.2e-18 | < 0.001 0005623: cell
6 33 | 46 | 1.172 | 3.2e-18 | < 0.001 0000502: proteasome complex (sensu Eukaryota)/26S proteasome
7 95 | 294 | 0.472 | 4.7e-15 | < 0.001 0019752: carboxylic acid metabolism
8 95 | 294 | 0.472 | 4.7e-15 | < 0.001 0006082: organic acid metabolism
9 o7 | 157 | 0.539 | 9.8e-12 | < 0.001 0006066: alcohol metabolism
10 | 106 | 393 | 0.359 | 5.2e-11 | < 0.001 0009056: catabolism
11 61 | 180 | 0.493 | 5.2e-11 | < 0.001 0006520: amino acid metabolism
12 31 | 64 |0.748 | 1.4e-10 | < 0.001 0004175: endopeptidase activity /endoprotease/proteinase
13 63 | 195 | 0.462 | 2.4e-10 | < 0.001 0006519: amino acid and derivative metabolism
14 40 99 1 0.609 | 3.2e-10 | < 0.001 0008652: amino acid biosynthesis
15 42 | 108 | 0.582 | 4.8e-10 | < 0.001 0044271: nitrogen compound biosynthesis
16 42 | 108 | 0.582 | 4.8¢-10 | < 0.001 0009309: amine biosynthesis
17 | 13 | 15 | 1.501 | 1.1e-09 | < 0.001 | 0005839: proteasome core complex (sensu Eukaryota)/20S core complex/macropain
18 98 | 373 | 0.341 | 1.4e-09 | < 0.001 0044248: cellular catabolism
19 85 | 310 | 0.364 | 2.1e-09 | < 0.001 0009057: macromolecule catabolism
20 65 | 216 | 0.417 | 3.4e-09 | < 0.001 0009308: amine metabolism




Chapter 7
Graph Unions

Union gives strength.
Aesop

7.1 Motivation

There have been numerous applications, heuristics and tools over graph
visualization. Several techniques depend on these graph based knowledge. Each
technique is resulting with layout. Sugiyama layout is one of them. Sugiyama
layout is a popular one used in layered graph drawing. Layered graph drawing

is designed in steps. These are

Removing Cycles Layer Assignment Adding Dummy Vertices Crossing

Minimization Horizontal Coordinate Assignment

Among these steps, many of the problems such as Feedback-arc
Set [30], Precedence Constrained Multiprocessor Scheduling [31], 2-layer Crossing
Minimization 32|, Optimal Linear Arrangement [33| are NP-hard. So we need

to use heuristics in order to complete layout.

After choosing the layout, we identify the application areas. Applications
such as process scheduling, social network visualization, protein precedence
graph and related graphs [34]|, VLSI (circuit schematics), data flow diagrams,
subroutinecall graphs suit to the layered graph drawing approach. Up to now,
the previous applications of layered graph drawing using Sugiyama layout runs
over unweighted directed graphs. This means that problems at each step are

related with the unweighted directed graphs.
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Weighted strategy is new area for this topic. If we consider weights of the
graph, we need to modify each step considering weights. For some steps, weighted
versions of algorithms are in literature. Weighted feedback arcset problem and
its heuristics, and weighted 2-layer crossing minimization and its heuristics are

usable.

In our case study we are considering the company social network graph in
such a way that we have pre-identified relations among workers in a company.
Since weighted relations are possible, we can represent the importance of relation
by weight. Also, assuming that each worker belongs to a department or project,

a natural clustering occurs.

7.2 Related Work

Graph visualization is important topic in computer science. Since there are
many related work with the whole topic, we are giving related work with social

network visualization.

Recent years, there have been several approaches over social network
visualization. Approach are analyzing email communication [35], online social
networks [36|, and co-authorship networks for scientific publications [37|. There
are also several tools for generating social network visualizations and performing
analysis and research. These are UCINet [38], GUESS [39], JUNG [40],
Vizster [41], Visone [42].

Social network visualization is divided into parts in itself. One approach
is aiming to online social networks such as email networks, Facebook,other
networking utilities networks. Another approach is to represent terrorist groups
and their networks. Approaches are application dependent. They rely on specific

properties. For terrorist group network, they rely on real connections

There are also approaches in order to mine communities from signed social
network with algorithm FEC [43, 44] uses one of the simplest maximum flow
algorithms to cover community. Also Flake et.al [45] tried to extract the data

from online network. According to their method, despite the Web’s decentralized,
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unorganized, and heterogeneous nature, Web self-organizes and its link structure
allows them to determine communities efficiently. In [46], they retrieved data
from search engine. In [47], they performed on a special dataset and they

extracted the information based on web application.

Finally, IBM is proposed a tool on  Lotus called
ATLAS(http://ibm.com/software /lotus/services) in order to visualize the
organization. Their tool is related with our approach. But they are not using
layered graph drawing approach. We believe that best suited approach for

drawing social network hierarchy could be done with layered graph drawing.

Moreover, in many graph related visualizations, they disregard the edge
weights. With our approach we are trying to handle, layered drawing in weighted
directed graphs.

Layered graph drawing is one of the main approaches of graph drawing. Its
each step there are NP-hard problems. Removing cycles is one of these problems.
Feedback arcset problem is approximated with heuristics [48, 49]. In [50, 51|,
they have performance ratio O(lognlog(logn)). Also, [52| proposed weighted
feedback arcset problem with worst case O(mn) where m is number of arcs and
n is number of vertices. Result after feedback arcset problem complements the
problem of Maximum Acyclic Subgraph. There are also older approaches, Fast
Heuristic and an Enhanced Greedy Heuristics. However, these are not applicable

to weighted graphs.

The second step is assigning layers for each node inside the graph. There are
two main approaches: Coffman Graham Layering and Longest Path Layering.
Coffman’s algorithm is aiming to minimize width of layering. Longest Path
Layering is aiming to minimize height of layering. In literature, there is no

corresponding version for weighted graphs.

Two-layer Crossing minimization is also another issue after obtained acyclic
layered graph. However, there is no applicable algorithm over k-layer crossing
minimization, we have to add dummy vertices before crossing minimization.

Crossing minimization can be run over bipartite graph. There are techniques
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in order to minimize crossings of whole graph. One of these techniques is layer
by layer sweep method. With this method one layer is free and neighbor layer is
constant at one time, and next, constant layer is freed and its neighbor is constant
by sweeping. The process continues until there is no layer remained. Another
method is to have two layer free sweeping. Since the problem is NP-hard, it is

harder to design heuristics for two layer free problem.

There are numerous algorithms designed for one layer free problem. In
[22|, we also proposed weighted version of one layer free algorithms, Barycenter
as W-BARY, GRE as W-GRE, PM as W-PM, Median as W-MEDBARY and
our algorithm WOLF.

Finally, horizontal coordinate assignment is not necessarily vital for layered

drawing, it is helpful for neat design and to arrange edge bends.
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Chapter 8
Our Method

To accomplish great things we must first dream, then visualize, then
plan... believe... act!
Jack Youngblood

Our method is based weighted layered drawing. We are considering the
company social graph such that each worker belongs to specific department or
departments. That means that natural clustering occurs before we implement our
algorithms. If another application area is chosen, we may apply clustering before
execution of our method. Since it is possible that there are many departments
inside the company, we designed upper level visualizations based on departments

and their relations. These relations are represented as in circular layout.

Circular layout is also high level graph. Users could gain information about
department relations. There is an edge between two departments, if they have

worker(s) shared.

At the low level graphs, to represent the hierarchy of the specific
department. Layered layout best suits. For readability aim layered layout help
users to understand key points. The problem occurs when there is a relation
between two departments. This could be solved by adding a duplicate edge for
both of two departments. Furthermore, these edges could be represented in high

level graph, representing that there is a relation between two departments.

Each relation in low level graphs is represented with weighted edge that
represents the weight information. Since unweighted method of layered drawing
do not consider weight, unweighted algorithms work in a way that loosing the

weight information. By using weighted versions of these algorithms we take
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advantage over to represent weight information. In low level graphs, weight
information gives us the importance of the relation. Higher weights mean that

there is a important relation between employees.

8.1 Methods in Design

We use Demetrescu et al’s algorithm to remove cycles, Coffman Graham
Algorithm for layering, WOLF for crossing minimization. Since Coffman’s
algorithm considers the graph as weighted, we need to change the algorithm
in a way that consider weights. Since weights have special meaning, we need to
represent weight with high values better. So, each algorithm should execute and
give result with better understanding for high weighted values. In Figure 8.1 you

can see our tool sample visualization.

8.1.1 Modified Coffman Graham Algorithm

Over the original algorithm of Coffman, we have added some weight
modifications. In original algorithm, there are two main phases. In the first
phase, we are making an initial ordering. At first, this initial ordering merges
duplicate edges by adding their edges. In unweighted case we need to delete
duplicate ones. Then for each leaf node, that means no outgoing edges, it gives
a numbering that represents a type of lexicographical ordering. After these,
second phase begins. At the second phase, actual layering does, according to
given constraints that no such layer has a size of nodes larger than predefined W
value, and no such node that there is an outgoing edge to the upper layer with
k values larger than its layer number. For the second phase, we can also add
greedy strategy to collect and assign layer to the most weighted node that means

having maximized edge weights. You will also see pseudocode at Algorithm 4.

8.1.2 Demetrescu’s Weighted Feedback Arc Set Algorithm

In [52], they proposed an algorithm FAS, in order to deal with cycle
removal in weighted directed graphs. It is simple two phase and can be seen

at Algorithm 5. At its first phase it catches cycle C until there is no remaining
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Algorithm 4 Coffman Graham Algorithm with weight modification

Require: Acyclic Directed Weighted Graph G and Width W
/*¥Phase 1: Initial Ordering*/
for all pairs of nodes u,v of G with edge e do
if 4 a different path p then
merge e with p by adding each weight values
end if
end for
U set of all unlabeled nodes of G
for all ve U do
L(v) = o0
end ford =1
for i=1ton do
if outdegree(v;)=0 then
L(v;)=d
d=d+1
end if
end for
/*Phase 2: Assigning layers buttom-up*/
Ll = @
while U #( do
Choose unlabeled vertex u, such that every vertex in v : (u,v) € E'isin U,
and L(u) is maximized and sum of all edge weights is maximized too.
if |Li| < W and for every edge (u,w),w € Ly U LyU...Ly_; then

add u to Ly,
else
k=k+1,Lp=u
end if
end while
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one. Among that cycle C, they hide suspicious edge with minimum weight and
then they subtract its weight from all weights of the cycle C. They repeat until
there is no newer cycle. Moreover, at the second phase, we sort suspicious edges
according to their values. From the edge list /', we check that each suspicious
edge creates a new cycle in graph if it is unhidden. If it does, it remains hided else
it is unhidden. Indeed, all edges in list F' reversed in terms of their directions,

in order to continue with the next step.

Algorithm 5 Weighted Feedback Arcset Heuristic

Require: Directed Weighted Graph G=(V,E)
/*Phase 1: Suspicionx/
F = 0 F is feedback arcset
while d no remaining cycle C do
Let C is a simple cylce in G
€ is minimum wighted arc (x,y) in C
for all (u,v) € C do
w(u,v) =w(u,v) —¢€
if w(u,v) =0 then

F = FU u,v)
end if
end for
end while
/*Phase 2: Appealx/
Sort F'

/*Make sure weight values are descending in listx/
for all (u,v)in F' do
if V— (F — (u,v)) is acyclic then
F=F —(u,v)
end if
end for

8.1.3 Weighted Crossing Minimization

There are alternatives for Weighted Crossing Minimization. In [22| we
proposed WOLF, and weighted versions of PM,GRE,Barycenter and Median.
Since all of these algorithms don’t need weighted modifications, we directly apply

them to our method.
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8.1.4 Method Review

Indeed for our design we used, Demetrescu et al’s algorithm FAS for Cycle
Removal, Coffman Graham Algorithm for layering, WOLF for Weighted Crossing
Minimization. There are some other steps such as Adding Dummy Nodes and
Horizontal Coordinate Assignment. We add dummy nodes if there is an edge
between layers L, and L, such that « — j > 0. Also, Horizontal Coordinate
Assignment is sub-method that we don’t need to use it since it doesn’t effect the

visualization of weight information.
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Chapter 9

Experiments And Results

Don’t be too timid and squeamish about your actions. All life is an

experiment. The more experiments you make the better.
Ralph Waldo Emerson

For the testing issue of our design, we randomly create a company working

artificially.

As a predefined parameter, we have number of departments as d, number
of relations for each department as r, number of workers for each department as

n and for the coffman’s algorithm we need width parameter as w.

We also randomly choose names among name database. In Figures 9.1 and
9.2 there are one sample input graph for layered drawing that is also representing
departments. There are also resulting graphs that are the output our drawing
method. These are at Figures 9.3 and 9.4. For better understanding of hierarchy
and weight information it is apparent that layered drawing best suits for the
company social network drawing. In Figures 9.5 and 9.6 you can also see the

department related graph with real employee names.
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Figure 9.1 Spring 2D embeder for Graph 1 » = 151, n = 150
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Figure 9.2 Spring 2D embeder for Graph 2 » = 151, n = 150
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Figure 9.3 Layered Drawing for Graph 1 » = 151,n = 150, w = 3
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GraphWin 1.8 LB

File Edit Graph Layout \indow Options Help ! gane‘

powered by LEDA

nodes: 30 edues: 34 undo: 1/0 550,19 568.55

Figure 9.5 Layered Drawing for Graph 1 with employee names
r=34,n=30,w=>5

GraphWin 1.8 AEH
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powered by LEDA

nodes: 30 edges: 35 undo: 170 510,62 739.90

Figure 9.6 Layered Drawing for Graph 2 with employee names
r=35n=30,bw=>5
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9.1 Properties of Designed Tool

1. The tool is simple, and there are available click and drop operations.

2. Tool has high level graph for general perspective and low level graphs for
detailed relations. High level graph shows company profile and low level

graphs show relations and person interactions.

3. Low level graph is drawn in layered drawing layout that enables user to see

the real hierarchy in the departments.

4. Relations are weighted, weight could mean everything. It could represent

importance, numbering or counting or even pointer to another file.
5. Shows weight information better.
6. Better Readablity comparing with other layouts.

7. High level graph also represents the information about general relations

between department.

9.2 Statistics

9.2.1 Crossing Stats

We also give statistical values for our layout. You can see whole average
and averages for each node numbe values in Table 9.1. There are 100 consecutive
tests for each Node entries. All other values in the table are averages. That
makes 2000 trials for the experiment. It takes only a hour to run all of these
trials. In Table 9.1, Node is node number in tests. Edge is the average number
of edges at this experiment. W is average width, H is average height found by
Coffman’s algorithm, Max W is maximum weight averages in the graphs, EdgesD
and NodesD are average number of edges and nodes after adding dummy nodes.
Cross is averages of initial crossings, WOLF is average crossings after WOLF

algorithm and Median is average crossings after Median algorithm.
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At the final row, you see the averages of all. It is apparent that crossing
minimization is vital part of the layered drawing. Coffman’s algorithm gives
results with many crossings. After WOLF and Median crossing number is
decreased. Also, average width of layered drawing is approximately 10 and for
this reason, when there is a increase in both node number and edge number,

Average height is increased as well.
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9.2.2 Edge Length Stats

Edge Length is also important parameter of Layered Drawing. Since we
have predefined parameters for width accoding to Coffman’s algortihm, we do
not have restriction on height parameter. Actually, the width parameter effects
height parameter. The relation is given at Equation 9.1. In Table 9.2, we give
results for the "Average Height" and the "Averege Edge Length" for given "Node
Number". For each "Node Number", we repeat the experiment 100 times for
different graphs. "Averege Edge Length" is the average of the averages for each
graph’s edge length. Edge length is calculated with the below formula,

le| = |Layer;| — |Layer;| (9.1)

where |e| is the length of edge, i is the Layer Number of the source node
of e and j is the Layer Number of the target node of e. The Layer Number is
calculated by Coffman’s Algorithm.

During this experiment, we neglect the edge weights. Furthermore, from

the table, we interfere that the Average Edge Length and Average Height have

AverageH eight
AverageEdgeLength

a direct relationship. Interestingly, the approximate ratio for
is 5.91 according to our experiment. Since we have tested 1100 graphs for this
experiment, the ratio may be relaible. But, it could be a future work for us to

determine theoric relation.
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Table 9.1 Layered Drawing Crossing Experiment

Run of Layered Drawing with Stats for Each Node Values

Node Edge W H Max W EdgesD NodesD Cross WOLF Median
55 62,76 11,81 15,74 18,87 193,94 186,18 158644 11927 11693
60 67,43 10,75 16,78 22,29 211,62 204,19 227772 16644 16010
65 72,66 9,84 18,03 21,38 246,32 238,66 265316 18818 18666
70 77,56 11,72 1747 20,61 257,21 249,65 277128 20390 19800
75 82,29 10,05 20,91 21,33 306,37 299,08 351824 24745 24604
80 87,47 10,66 18,71 19,4 292,2 284,73 348314 20839 20883
85 92,53 10,15 2298 20,87 355,21 347,68 417160 26967 = 26749
90 97,67 9,76 24,26 20,060 419,74 412,07 466792 28019 27990
95 102,56 10,86 22,88 18,98 405,16 397,6 488073 30143 29848
100 107,37 10,71 24,29 20,35 429,18 421,81 661416 34753 34297
105 103,07 11,81 24,06 18,87 398,52 400,45 410411 24056 23721
110 107,87 10,75 25,08 22,29 41491 417,04 582947 33932 33498
115 11294 9,84 27,29 21,38 479.,8 481,86 726673 36648 36227
120 118,05 11,72 23,87 20,61 4433 44525 632961 37002 36450
125 122,88 10,05 29,93 21,33 560,16 562,28 807475 42309 42021
130 128,06 10,66 25,73 19,4 518,85 520,79 891206 40244 40183
135 133,06 10,15 31,47 20,87 637,33 639,27 966688 50878 50129
140 137,87 9,76 33,02 20,056 694,31 696,44 951456 44943 = 43930
145 143,24 10,86 31,77 18,98 689,87 691,63 1065368 46966 45910
150 148,16 10,71 32,59 20,35 737,33 739,17 1496093 57409 56315
102,5 105,28 10,631 24,343 20,413 434,57 431,79 609686 32382 31946




Table 9.2 Layered Drawing Edge Length Experiment

‘ Run of Layered Drawing with Avrg Edge Lengths for Each Node Number Values ‘

Node Number Average Height Average Edge Length
100 21.73 3.5132958
95 22.63 3.7497752
90 22.62 3.6906813
85 20.07 3.3361297
80 18.36 3.0569359
75 19.43 3.2867682
70 16.26 2.8371761
65 14.86 2.5370780
60 16.74 2.8463142
55 13.08 2.4678986
o0 14.48 2.0647818
75 18.20 3.0806213




Chapter 10

Conclusion

This is not the end. It is not even the beginning of the end. But it
18, perhaps, the end of the beginning.
Winston Churchill

In a conclusion, we provide two methods.

The first method that we proposed is an algorithm for biclustering. Mainly
we trust on the power of LEB heuristics and ANH procedure. They worked fine
with impressive amount of noise in artificial data set. Even, sometimes crossing
minimization is sufficient to get fine biclusters. Our algorithm seems to be better
than counter algorithms. It is also simple to implement and adopt. There is no
need to struggle with setting parameters. Additionally, in both real data sets
and artificial data sets, our results are fine. We extracted correlated biclusters
and we get covered almost each gene-condition pair. We perform better than
OPSM and CC in many categories of Yeast data and our FuncAssociate results

are better than all the algorithms used in experiments.

The second method that we provide is a algorithm for layered graph
drawing. It is a new method since there is no previous work that considers
edge weights in layered drawing. For an application area, we provide a tool that
considers a social network of a company as the union of graphs. These union
graphs are in layered drawing and the whole graph is represented with the high
level graph in a circular layout. We showed the demonstration of our sample

graphs, and we have given statistics with our experiments
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