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ÖMER KARATAŞ
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ROBUST LOCALIZATION FRAMEWORK FOR WIRELESS SENSOR

NETWORKS

Abstract

In this thesis we try to construct a robust localization framework for wireless

sensor networks and sample algorithms which uses our robust localization

framework. In order to handle noise in distance measurements, our frame-

work tries to utilize convex constraints and confidence intervals of a random

variable. At the end of the localization process nodes will be assigned a set

of feasible regions, with corresponding probabilities.
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KABLOSUZ AĞLAR İÇİN HATAYA DAYANIKLI YERELLEŞTİRME

İSKELETİ

Özet

Bu tezde biz kablosuz algılayıcı ağlar için ölçüm hatalarına dayanıklı bir

yerelleştirme iskeleti ve bu iskeleti kullanan iki algoritmayı örnek olarak

sunuyoruz. Önerdiğimiz iskelet, algılayıcılar arasındaki mesafe ölçümlerinde

ortaya çıkan hataları tolere edebilmek amacıyla dışbükey koşullar ve rassal

değişkenlerin güvenilirlik aralıklarını kullanmaya çalışmaktadır. Yerelleştirme

işleminin sonucunda ulaşılmak istenen, her düğüm için olası alanların ve bu

alanlarla eşleşen olasılıkların bulunmuş olmasıdır.
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Chapter 1

Introduction

Wireless sensor network applications may require location information of

the nodes, in order to operate efficiently, such as geographic routing proto-

cols, event detection applications. Global Positioning System, GPS, is the

most well-known location service in use today [1], but due to its power con-

sumption, cost, size and inability to locate with desired precision for some

applications,( an inexpensive GPS receiver can locate positions within ten

meters for approximately 95% percent of measurements [2] ), makes GPS a

last resort solution. It may be feasible to implement a GPS based solution

for a small scaled ad-hoc network, but one may not consider to implement

it on a large scale network of more than 100 nodes [1]. Finding global coor-

dinates with low cost and low energy consumption, is the main motivation

behind the localization problem.

In this thesis we will present a robust localization framework, which uses

normally distributed distance measurement constraints to model possible

areas for a given set of nodes. Our framework can be implemented to

work with different types of algorithms, and does not rely on anchors to

operate. Anchors are the nodes that have apriori location information,

either by the use of a GPS or being placed at known positions. Without

anchors, algorithm can find local coordinates, this can be useful in some

applications, which relies on relative locations. To fix the localization in a

global coordinate system, at least d+1 anchors are needed in d-dimensional

space.

Our framework makes use of the normal distribution’s confidence in-

tervals, when assigning probabilities to possible location’s of a given node.

Our framework needs nodes to have a ranging device to make distance mea-
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Figure 1.1: Feasible region constructed from the union of feasible regions,

Ft′

surements between its neighbors and itself. The resulting assignment of a

simple network consisting of 15 nodes with 4 anchors is give in figure 1.1.

2



Chapter 2

Previous Work

There is significant amount of previous work on wireless sensor network

localization. One can classify these previous work according to some pa-

rameters to provide a clear insight.

First classification of these works can be based on where the computa-

tion takes place. Centralized algorithms achieve localization by doing most

of the work in a limited number of central computers (more capable nodes).

Three main approaches in centralized localization [3] are multidimensional

scaling [4], linear programming [5] and stochastic optimization approaches

[6]. In distributed algorithms the computation required in localization pro-

cess is distributed to nodes, i.e there is no need to have a global information,

related to the network. A node needs only the information from its neigh-

bors in order to complete its localization process, in distributed approach

[7, 8, 9, 10, 11]. Centralized approach can be useful where a centralized

information architecture already exists. Centralized algorithms does not

scale well, not feasible to be implemented for large scale networks. On the

other hand distributed algorithms may need multiple iterations to converge

a localization, and this may cause longer running times then centralized al-

gorithms [3]. Multihop packet transmissions in centralized algorithms will

reduce the overall energy in the network drastically, so if the number of

hops to the central processor is more than the necessary number of itera-

tions needed in the distributed approach then the distributed approach will

be feasible [12].

Second of this classifications can be made according to the information

needed for the localization process to take place. A class of algorithms may

only need connectivity information between nodes [13, 14, 10, 8]. A sec-
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ond class of algorithms can need distance information between neighboring

nodes [7, 15, 11]. Algorithm that need distance information can be further

divided into 4 categories based on how the distance information is gath-

ered, time difference of arrival (TDOA) [16, 17], time of arrival (TOA) [18],

received signal strength indication (RSSI) [11, 19] and by using an optical

receiver [20]. Third class of algorithms can need angle of arrival information

[21, 22]. Algorithms that use a combination of these measurements such as

angle of arrival and distance [9] can be considered as a fourth class.

Algorithms utilizing distance or connectivity information can be further

divided into 2 categories according to the connectivity or distance infor-

mation are exchanged whether between one-hop [7] or multi-hop neighbors

[10].

Using only the connectivity information may maximize the lifetime, and

minimize the circuitry costs of a sensor but the localization result may

be limited in precision compared with the algorithms that use more infor-

mation such as distance or angle. On the other hand in order to use a

distance measurement, sensors need to be equipped with at least one signal

receiver/sender circuitry pair. For example algorithms that utilize TDOA

technique need sensors to be equipped with both RF and ultrasound hard-

ware. While TOA technique will need an RF hardware. A more complex

hardware is needed to determine the AOA with limited error [3]. RSSI data

distinguishes itself from the rest of the measurement techniques, because it

does not require any additional hardware but RSSI also produces results

that are limited in precision. [23] Also RSSI is used in cooperation with the

access points, whose locations are known and can be used as anchors. [24]

Third classification can be based on the results of the algorithm. A

class of algorithms try to find a single point for a given node at every step,

called unique localization,[7], while a second class can assign more than one

positions to a single node, called finite localization, [15]. Some algorithms

including ours will assign possible areas to nodes during the localization
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[9]. The area approach also may be subject to the previous classification,

according to the assignment of the area to nodes. If the assignment of a

single area is made to a single node than as an analogy to point case, we

may also call this as unique localization. If a node can be assigned to more

than one areas then this may also be called as finite localization. Finite

localization keeps all possible location information that can be produced

with the given amount of information at the time of localization, does not

try to estimate a single position, and at the later stages of localization it is

expected to reduce the number of possible locations with newly added in-

formation like [15]. Unlike finite localization, unique localization techniques

try to estimate a single point, even when the information at the given time

is insufficient, error produced in the earlier stages of the localization accu-

mulates and the results can show unpredictable amount of difference from

the ground truth. Finite localization techniques need to limit the number

of possible locations, that may tend to grow exponentially.

Handling noise is an important aspect of the above mentioned algo-

rithms. Noise can present in the system as an environmental noise and

hardware noise. Hardware noise is easy to model, and simply modelled

as Additive Gaussian White Noise. Contrary to this, modeling environ-

mental noise is tricky. Some class of algorithms use Noisy Disk model for

ultra sound and radio signal strength because it is easy to use in theoretical

analysis and simulation. Noisy disk model has two parts, connectivity and

noise. Connectivity component determines the maximum distance where

two nodes are assumed to have a connection between themselves. Noisy

disk with no noise is called as Unit Disk model [25]. We will use a model

like noisy disk for our framework, like the one used in [7]. The parameters

of the model used in [7] is borrowed from Cricket Location Support System

[26]. In fact the noisy disk is not capable of modeling the environmental

noise, but our model can be tailored to work with such a realistic model

for both environmental noise and radio propagation. A novel experimental
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approach proposed in [25], can be used to model noise for simulation pur-

poses. It includes collecting the real-world distance measurements between

sensors, for predetermined distance intervals and using randomly selected

samples from the real-world data to model noise, which they call Sampled

Noise and Sampled Connectivity.

Localization problem is related with the Graph realization problem. Graph

realization is also critically important in molecular conformation [27]. Given

a graph G = (V,E) consisting of n vertices and m edges, graph realization

problem is to assign vertices to coordinates such that all edge length con-

straints are satisfied [28]. There is also a vast amount of work on the graph

realization problem. The main questions in the area are what are the con-

ditions for unique localization of a network and what is the computational

complexity of the localization. In [29] the above questions are explored

in details. In graph theoretic part of the localization a concept of rigidity

is critical, rigidity related concepts will be explained in this part, unless

otherwise stated we will only talk about the two dimensional version of

the problem. A realization of G is the assignment of all vertices in G to

coordinates in Euclidean space. If we call this assignment as p then the com-

bination of a graph and a realization is called as a framework and denoted

as p(G). The given framework p(G) is said to be flexible if it has continuous

deformations, and if the framework has only limited number deformations

(discrete deformations) it is called as rigid. A condition to test rigidity of

a given graph is described by Laman in [30]. It says that given a graph

G = (V, L) with n vertices and m edges is generically rigid in <2 if and

only if L contains a subset E consisting of 2n− 3 edges with the property

that for any non-empty set E ′ ⊂ E, the number of edges in E ′ can not

exceed 2n′ − 3 where n′ is the number of vertices of G which are endpoints

of edges in E ′ [31]. A test to decide whether the given graph is rigid or not

is proposed in [32] based on Laman’s theorem , it is called as pebble game.

A graph G is redundantly rigid if a removal of any single edge does not
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destroy its rigidity. A graph G = (V,E) with n >= 4 vertices, is said to be

globally rigid if it is redundantly rigid and 3-connected. There are several

graph construction methods to ensure that the resulting graph will be glob-

ally rigid such as Henneberg’s method [33]. Global rigidity is the necessary

condition for a unique graph realization. But the graph realization problem

is shown to be still hard even it is known that the graph is globally rigid

and it has a realization [31]. With no noise at all, localization problem with

both angle(with orientation) and distance information is trivial. However

in the presence of even a small amount of noise, it has been shown that the

localization problem is NP-hard [9].

Finite localization is closely related with the bilateration ordering. Given

G = (V,E) bilateration ordering,π, of V is the ordering of nodes in V such

that for every node u ∈ V , before reaching u in π we must have encountered

by two of u’s neighbors. And by intersecting the two edge constraints that

belong to u one can only find two possible positions for u. A sample for a

bilateration based algorithm can be found in [15].

Two of the algorithms that are closely related to ours are [8] and [9].

Sextant framework [8] is one of the area based localization algorithms, it

uses connectivity information to extract non-convex constraints, also utilizes

the negative information. Negative information can be defined as where the

given node can not be. It does not assume uniform transmission radii(i.e a

unit disk graph) or symmetric connectivity. Sextant uses bezier curves to

represent geographic constraints. Our algorithm uses polygon approxima-

tion to represent geographic constraints, the precision of our algorithm can

be adjusted, like its running-time. To have more precise results after a run

of our algorithm, one need to use more vertices in circle approximation in

the beginning of the algorithm. In [9] both angle and distance information

is used. They approximate circular areas to polygons, extract constraints

from these ”feasible regions” and use linear programming formulations to

solve localization problem.
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Chapter 3

Robust Localization Framework

Let G = (V,E) represent a real-world sensor network with n nodes and m

edges. Nodes with apriori location information are called anchors and are

denoted with A where A ⊂ V . Each pair of nodes u, v ∈ V that are within

a sensing range is represented with edge (u, v) ∈ E.

We assume that nodes have means for measuring distances to the neigh-

boring nodes. Each such measurement is modelled as a gaussian random

variable d where the measured distance dm is the mean of d with the vari-

ance σ2. We assume that σ2 is a preset parameter of the network. We use

confidence interval concept as a basis to represent a normally distributed

measurement in our framework. Confidence interval is an interval in which

a measurement or trial falls corresponding to a given probability [34]. It is

possible to use a distribution other than gaussian as well. The only mod-

ification would be to use confidence intervals associated with the assumed

distribution. Simulations in [7] assumes the distance measurements be-

tween sensors are gaussian and the variance of this measurements are based

on the Cricket location support system [26]. The experimental approach

proposed in [25] may also be used if the real-world data of sensors is pro-

vided. Sampled noise and sampled connectivity approaches in [25] makes

use of real-world measurement noise and connectivity information to model

noise in simulations.

Within our framework the goal of robust localization is to assign each

node u ∈ V with a set of feasible regions, Fu = {Fu1, Fu2, . . . , Fuk}. Each

feasible region Fui ∈ Fu consists of a set of simple polygons (possibly with

holes) and is associated with a confidence cui that represents an approximate

probability of u being within Fui where
∑k

i=1 cui ≤ 1. Since we assign
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confidences to feasible regions, the confidence values of polygons within a

feasible region are equal and cui 6= cuj unless i = j. We note that anchors

may constitute a special case where the feasible region consists of a single

polygon which is a point.

3.1 Constructing a Feasible Region

Let node s be the source of a measurement to a node t, where Fs is previously

constructed. We construct Ft from Fs by using the measured distance |st| =

N(dm, σ
2), where (s, t) ∈ E and N indicates the normal distribution with

mean dm and variance σ2. First case occurs if s is an anchor, the second is

the non-anchor case.

In anchor case Fti is simply a ring between the circles with dm − 2σ

and dm − σ radii, with center ps, where ps is the location of s (see Figure

3.1). Fti′ is the middle ring, between circles with dm − σ and dm + σ radii,

with center ps, and finally the Fti′′ is the outermost ring between circles

dm + σ and dm + 2σ radii, with the same center as the other two rings. We

approximate these circles with k-gons, where k is a parameter which plays

an important role in the complexity of the framework.

In non-anchor case, since each Fsi is a set of polygons, before defining the

construction operation we provide an expansion operation on polygons. Let

P = (p1, p2, . . . , pr) ∈ Fsi be a polygon with a centroid of pc. The expansion

transformation on P is defined as E(P, t) = (p1 + ~t1, p2 + ~t2, . . . , pr + ~tr)

where each vector ti has a magnitude of t and is in the direction of the

vector (−−−→pc, pq). Each Fsi gives rise to three feasible regions Fti, Fti′ , Fti′′ . We

have 2 cases in feasible region construction.
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Fti =
⋃

∀P∈Fsi

(E(P, dm − σ)− E(P, dm − 2σ))

Fti′ =
⋃

∀P∈Fsi

(E(P, dm + σ)− E(P, dm − σ))

Fti′′ =
⋃

∀P∈Fsi

(E(P, dm + 2σ)− E(P, dm + σ))

For the non-anchor case above equations describes the construction. The

first terms are the outer bounds and second terms are the holes. An exam-

ple for this construction can be seen in Figure 3.2. The confidence values

associated with each feasible region are c(Fti) = c(Fti′′) = c(Fsi) × 13.6%

and c(Fti) = c(Fsi)× 68.4%. In anchor case c(Fsi)s assumed to be one.

(a) (b)

Figure 3.1: Circles and their k-gon approximations

A more complex feasible region construction is shown in Figure 3.2.

Fs has three elements Fs = (Fs1, Fs2, Fs3). Fs1 and Fs2 has eight simple

polygons in them, while Fs3 has two. Each Fsi has a unique confidence.

Polygons within one Fsi have same confidence values.

3.2 Intersection of Feasible Regions

Let Ft and F ′
t be two feasible regions for t, created by its neighbors u and

v respectively. Let Ft = (Ft1, Ft2, . . . , Ftw) , and F ′
t = (F ′

t1, F
′
t2, . . . , F

′
ty)

10



(a) (b)

(c) (d)

Figure 3.2: (a)Fs (b,c,d) Feasible regions constructed from Fs1, Fs2, Fs3

After formally defining the input data, the intersection is given by :

Ft ∩ F ′
t =

w⋃
i=1

Fti ∩
y⋃

j=1

F ′
tj

=
w⋃

i=1

y⋃
j=1

Fti ∩ F ′
tj

A sample intersection of 3 rings Ft = (Ft1, Ft2, Ft3) with 3 rings F ′
t =

(F ′
t1, F

′
t2, F

′
t3) can be seen in Figure 3.3. As described formally, Ft1 will be

intersected with all elements of F ′
t , then this procedure will continue for all

elements of Ft. Union of these partial intersections will give us the resulting

polygons, with corresponding confidence values.

Since the result of the intersection is a feasible region, if t has more

than two neighbors, we will carry out the same operation between the next

neighbor and the result of intersection.

After the intersection operation we need to assign new probabilities to

11



Figure 3.3: Shows the intersection of Ft and F ′
t

feasible regions created as a result of an intersection. If we continue with

the above intersection operation, and simplify it a little bit. Let us consider

only a single element of Ft and F ′
t . Let P ∈ Ft and P ′ ∈ F ′

t be two feasible

regions, and the problem is to assign a probability to their intersection. Let

c(P ) = d and c(P ′) = f . Let pt be a point in space, that corresponds to the

real location of node t.

Pr(pt in P ∩ P ′) = Pr(pt in P |pt in P
′)× Pr(pt in P

′)

If we have the apriori information that u is in P ′, the probability of

u being in P does not change, since two measurements are independent

but the probability of u being in P − (P ∩ P ′) will be zero, i.e area of

P changes, but the probability of pt being in P does not. Then we have

c(P ∩ P ′) = d× f .

3.3 Post Processing

As a result of the construction operation, there may have more than one

feasible regions intersecting over a subregion. We propose methods to deal

with these intersections. The aim in applying these procedures to inter-
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Algorithm 1 Intersection of 2 feasible regions

1: procedure Intersection( Ftu, Ftv )
2: list of feasible regions LP

3: for all Fti ∈ Ft do
4: for all F ′

tj ∈ F ′
t do

5: c(Ft) = c(Fti)× c(F ′
tj)

6: if c(Ft) exists in LP then
7: LP [c(p)] = LP [c(p)] ∪ Ft

8: else
9: LP [c(p)] = Ft

section of feasible regions is it will be meaningless that there will be two

probabilities for the same region at the resulting assignment. Another prob-

lem is to limit the increase in the number of feasible regions. When Fs has

k feasible regions, Ft will have 3k feasible regions, to limit the increase in

number of regions in Ft we apply three more methods: approximate re-

duction, discarding the regions with low probability and limiting the number

of feasible regions. A selection of these methods can be applied to result-

ing feasible regions, both after construction and intersection operations. A

sample algorithm based on these methods are given in algorithm 2.

Algorithm 2 Sample post-processing algorithm

1: procedure Post-Processing of Feasible Regions(Ft, A, α)
2: Preserve uniqueness(Ft)
3: Discard Regions with low probability(Ft, ε)
4: for |Ft| > A do
5: Approximate Reduction(Ft, α)
6: α← α− ε

Precise regions, can be checking all feasible regions Fti and if any two

regions Fti and Ftj intersect between r1% and r2% of the smaller region,

Ftj, then we create a new feasible region Fti ∩ Ftj and this area is excluded

from its parents, c(Fti∩Ftj) becomes the simple average of c(Fti) and c(Ftj).

Obviously this method increases the number of subregions while preserving

the accuracy, but the increase in the number of feasible regions will grow

13



exponentially. This method can be applied both after construction and

intersection.

Approximate reduction is the first method to reduce the number of

subregions. Approximate reduction start with, Fsi ∈ Ft, and checks all

subregion pairs, (Fsi, Fsj), and finds r3, the ratio of the intersection area to

the area of the smaller subregion Fsj. Then we find r4 = 1−|c(Fsi)−c(Fsj)|,

r4 is used as a measure to represent the closeness of the confidences for two

feasible regions. Then if r3 + r4 > α, where α is a given parameter, then

we unite Fsi and Fsj, c(Fsi ∪Fsj) will be the weighted average of c(Fsi) and

c(Fsj), weighted with their areas. This method can be applied both after

construction and intersection.

Discarding regions with low probability, is removing Fti’s where

c(Fti) < ε, ε is a predefined threshold near zero, so when a probability

of a feasible region goes to zero we can discard it. This method can be

applied both after construction and intersection.

Limiting the number of feasible regions, is to use appoximate reduc-

tion technique with lower r values until the number of feasible regions falls

below a predetermined constant, m. An alternative to this can be to use a

predefined parameter A to represent maximum number of feasible regions

for any given node and if A is not reached after applying approximate re-

duction method, then we can divide the confidence interval values [0,100] to

A partitions and unite the feasible regions that is found to be in the same

partition.

Preserving the uniquness of confidences: If c(Fti) = c(Ftj) then Fti =

Fti ∪ Ftj and Ftj will be removed, this will continue since all elements in

Ft will have unique reliabilities. This method can be applied both after

construction and intersection.
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Figure 3.4: Feasible region constructed from the union of feasible regions,

Ft′

Aggregate and its parts: Let Fs = (Fs1, Fs2, Fs3) and Fs defines a closed

region, with no holes , for example in Figure 3.2 Fs1, Fs2, and Fs3 will form

a closed region for s when they are united. This method can be applied

only after construction operation.

Fs′ =
3⋃

i=1

Fsi

Let Ft′ be a feasible region of t constructed from Fs′ , see Figure 3.4.

Fti = Fti ∩ Ft′

Fti′ = Fti′ ∩ Ft′

Fti′′ = Fti′′ ∩ Ft′

This can be interpreted as a feasible region Fti constructed from a sub-

region of Fs can not be outside the Ft′ , the feasible region constructed with

the union of Fsis. In Figure 3.2, the areas are not cropped yet.

3.4 Complexity Analysis

All geometric objects used in the framework are represented as polygons,

including the circles. Polygons can contain holes. Most of the algorithms on

polygons depend on the number of vertices, by changing a single parameter
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we can adjust the accuracy of the localization algorithm, as well as the

running time. For example, a circle C is represented with a polygon P with

k vertices on C, for more accuracy one can increase k, for less computing

power and less accuracy k can be decreased.

In our analysis we assume the maximum number of polygons in a feasible

region,Fsi, be m and the maximum number of vertices in a single polygon

be k.

Construction phase uses parameters Fs = (Fs1, Fs2, . . . , Fsn) and dm to

construct Ft. Since we only apply a simple expansion on all polygons, the

running time of the construction phase is O(mkn). We limit n to a con-

stant in our framework and k is a predefined constant, then we can omit

n and k and now it becomes O(m). Number of constructions needed is

directly related to the number of edges in E. Each edge corresponds to a

measurement that leads to a construction operation, that makes the total

cost of construction O(m|E|) where |E| indicates the number of elements

in E. If not bounded by the post-processing operations and intersection,

m can grow exponentially. Since each construction creates 3m feasible re-

gions where its ancestor has m feasible regions, m can be 3|E| where the

given graph is a linear order of nodes, i.e. only a single edge connects the

neighboring nodes and each node has only one ancestor.

Intersection operation is applied when t has more than one neighbors.

When applied, intersection decreases the total area covered by Ft, but the

number of subregions,polygons with different confidence values, can increase.

In order to reduce the growth we use the approaches proposed in sections

3.1. An intersection operation on 2 polygons having k vertices each, has

the worst case running time of O(k2) [35]. We need to look for m2 intersec-

tions and if each intersection takes O(k2) time then the worst case running

time of intersection operation is O((mk)2) since k is a predefined constant

it becomes O(m2). Intersection operation is also directly proportional to

the number of edges, if u ∈ V has s neighbors where s ≤ 2 then s − 1
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intersections will be applied, this makes the total number of intersections

taken place a multiple of |E|. Then total running time due to intersections

is O(m2|E|). Union operation needed afer the intersection results again

needs point by point comparison, worst case running time of the union op-

eration is the same as intersection. Total running time of the algorithm is

O(m2|E|+m|E|) that is O(|E|m2).

Post-processing algorithms work on resulting polygons means they de-

pend on m, and the maximum running time required by them is for com-

paring all pairs that takes O(m2) time.

Our framework uses three confidence intervals of normal random vari-

able. One can increase the number of intervals used in algorithm to provide

more accuracy, but after three confidence intervals adding more intervals

becomes infeasible, since added intervals increase the complexity of the al-

gorithm but do not add much to the accuracy, for example using 5 con-

fidence intervals instead of 3, increases the accuracy only by 4.2% for a

normal distribution.
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Chapter 4

Sample Localization Algorithms

In this chapter we will define two sample localization algorithms based on

the robust localization framework. First algorithm described throughout the

section is based on an ordering such as trilateration or bilateration and the

second algorithm is a distributed implementation of the framework. Since

our framework does not impose any limitations beyond the measurement

model and its representation, any other localization technique can work

with our framework, such as distributed algorithms.

4.1 Centralized Algorithm

Each node u ∈ V is assigned an integer label denoted with l(u). This label

will be used for storing an order on V . In order to limit the complexity of

the resultant polygons, our algorithm assumes an ordering, π = u1, u2, . . . un

such that for all u ∈ V , when iterating on π one will encounter at least two

neighbors of u for bilateration ordering and at least three for trilateration,

where the neighbors of u is denoted as N(u). Ancestors of u is denoted

as anc(u) ⊂ N(u) and includes the neighbors of u which are used in the

localization process of u, i.e. neighbors of u that appear before u in π. Label

of nodes in V are re-assigned according to the order of appearance in π.

A node can possibly have more than one ancestors, then we construct

feasible regions with respect to all ancestors, anc(u), of u. For all v ∈ anc(u)

we create Fuv’s. Then we need to find Fu from Fuv’s, by intersecting them

as described in the framework. We continue to apply the same procedure

in algorithm 3, starting with order π then π′ where π′ is the inverse of π,

until the improvement in feasible regions stops.

In the post-processing phase centralized algorithm uses the sample al-
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gorithm 2 without its loop, which means we apply approximate reduction

once with a predefined constant that will limit the number of feasible re-

gions in an acceptable interval with no guarantee. Algorithm given as a

sample limits the number of feasible regions tightly but has more running

time.

Algorithm 3 Localization procedure for a centralized algorithm

1: procedure Localization(G = (V,E))
2: A ← anchors
3: order ← an order on V
4: for all u ∈ order and u 6∈ A do
5: anc(u)← 1 hop ancestors of u
6: if size of anc(u) > 1 then
7: for all w ∈ anc(u) do
8: e← the edge between w and u
9: Fuw ← feasible region constructed with e and Fw

10: Append Fuw to list of feasible regions Lf

11: loc(u)← Intersection of feasible regions in Lf

4.2 Distributed Algorithm

In the distributed implementation of the framework, all nodes will start by

measuring distances to neighboring nodes. If none of u’s neighbors have a

location information yet, then u will wait until a positional update occurs in

one of its neighbors. When an update occurs in v ∈ N(u), v will notify all

its neighbors, including u. u will update its position according to the newly

updated feasible region of v and the distance measured between u and v.

Notification is a messege containing the feasible region of the sender.
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Algorithm 4 Distributed algorithm

1: procedure Initialization of a simple node
2: Measure the distances to neighboring nodes
3: Wait for a notification
4: procedure Initialization of an anchor
5: Send notification to all neighbors

6: procedure Notification handler for node t (Fs)
7: Construct Ft′ according to Fs and (s, t)
8: If there exists Ft intersect it with Ft′

9: Notify neighbors
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Chapter 5

Experiments

Our implementation is coded in C++, using LEDA [36] (Library of Efficient

Data Types and Algorithms). We implemented the centralized algorithm

based on the robust localization framework.

5.1 Experiment Parameters

One of the parameters that we need to inspect is k, the number of vertices

on the k− gon that we used to approximate a circle. Certainly k will effect

the feasible regions produced at the later stages of the localization.

Second parameter is the variance and mean of d = N(dm, σ), the normal

random variable modelling distance measurements between sensor nodes.

As σ increases the area of the feasible regions can grow accordingly.

We will test our algorithm that uses robust localization framework in

randomly generated graphs with varying average degrees. This will help us

to find at which average connectivity level our framework works effectively.

This makes average degree a parameter to be inspected. In addition to this,

number of anchor nodes in a given network, a, directly affects the outcome

of the localization process.

We will use a number of performance measures. The first one is the

number of nodes that are localized, i.e. a feasible region assigned to that

node. The second one is the number of nodes whose real locations are

found to be in its feasible region. Third one is the average area of the

feasible regions.
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5.2 Experimental Results and Discussion

All random graphs in our experiments are generated in a 450x450 unit

square area, with 30 nodes. A point in Figure indicates an average of the

results after applying the algorithm to 10 different random graphs. All

results plotted are obtained after a single run of the centralized algorithm,

in fact a loop until no more improvement can be seen in the area of feasible

regions can be preferred to obtain better results with more running time.

In the first of our experiments plotted in Figure 5.1, we generated ran-

dom graphs with varying average degrees. The parameters other than av-

erage degree are fixed k = 20, σ = 20, a = 4.

Figure 5.1: Average area assigned when average degree changes from 8 to

16

In almost all instances the real location of the nodes are found to be

in their respective feasible regions assigned by the algorithm. Figure 5.1

shows the area of feasible regions decrease with the increase in average

degree. There are only 12 instances in 50 runs used to create the Figure 5.1

that the algorithm failed to localize a node or two.
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In second experiment plotted in Figure 5.2 we will fix the average de-

gree to 14 depending on the results obtained from the first experiment and

change a to see how it effects the outcomes.

Figure 5.2: Average area assigned when a changes from 4 to 8

There are again 12 instances in all 50 runs plotted in Figure 5.2 that has

a node or two that are not localized by the algorithm. Since the number

of nodes in network is fixed to 30, then an increase in a will decrease the

average area of feasible regions.

In third experiment plotted in Figure 5.3 we will fix a to 4 and average

degree to 7, depending on the results of first two experiments and change k

to see how it effects the results of the localization.

An increase in the number of vertices in the initial approximation of a

circle will help us to cover the circle with more accuracy and increase the

area covered in a circle. This explains the increase in the area of feasible

regions when k increases (Figure 5.3).

The next experiment plotted in Figure 5.4 is to test how σ effects the

outcome of the experiments, while the other parameters are fixed, a = 4, k =

20, averagedegree = 7.
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Figure 5.3: Average area assigned when k changes from 5 to 30

Figure 5.4: Average area assigned when variance changes from 5 to 30
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As σ increases the area of the feasible regions increases, since an increase

in σ means more inaccuracy for distance measurements.

Figure 5.5: Average running times when k changes from 5 to 30

The running time plot in Figure 5.5 for varying k values given for a

network of 20 nodes, a = 4, average degree = 7, and σ = 15. A single point

in this plot is the average time(seconds) needed to process a random graph

by the algorithm. The increase in k has a significant effect on the running

time of the algorithm. It may be prefarable to use smaller k values with

simple sensor configurations.
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Chapter 6

Conclusion and Future Work

We proposed a framework to be used in localization of wireless sensor net-

works, and simulated it with a centralized algorithm that utilizes the frame-

work. Our framework can be used with variety of algorithms and measure-

ment models, which means it can be used as a basis for many localization

approaches. A more comprehensive simulation can be carried out to find

out that the framework is realistic enough to be used in real world appli-

cations. In order to do this frameworks that try to find possible areas as

a result of localization process need to be run under more realistic noise

models.
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