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OPTIMIZATION OF INTEGER-PEL MOTION ESTIMATION FOR H.264 VIDEO 

ENCODING ON TMS 320C6416T DIGITAL SIGNAL PROCESSOR  

 

Abstract 

 

Video processing is used in many applications such as broadcast television and home 

entertainments. Video applications have been revolutionized by the advent of digital 

TV and DVD-video players. The standardization of video compression technology is 

essential for many video applications. Today the state-of-the-art compression 

standard is the H.264 standard. In this thesis, an H.264 encoder implementation is 

optimized on Texas Instruments TMS320C6416T board for real-time processing. 

 

C6416 is a high performance and a low cost digital signal processor (DSP) chip that 

can achieve real time implementation of the algorithm. Thus, we choose C6416 

because of based on our analysis of performance and cost.  

 

In this thesis, hierarchal motion estimation module is implemented for the H.264 

encoder. First of all algorithm code was written in C language. Then performance 

critical parts are written in assembly. The resulting code is an optimized 

implementation on the Texas Instruments TMS320C6416T DSP. 

 

Simulations on TMS320C6416T reveal that the encoder processes 39-65 CIF frames 

per second, which satisfies 25 fps requirement for real-time applications. 
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H.264 KODLAYICISI İÇİN TAM SAYI PİXEL DEĞERLİ DEVİNİM 

KESTİRİMİNİN TMS 320C6416T İŞLEMCİSİ ÜZERİNDE OPTİMİZASYONU  

 

Özet 

 

Video işleme teknolojisi, televizyon yayıncılığı ve ev eğlenceleri gibi birçok 

uygulamada kullanılmaktadır. Video uygulamaları dijital televizyon ve DVD 

videolar sayesinde yaygınlaşmıştır. Standart video sıkıştırma teknolojisi bir çok 

video uygulamalarında zaruri hale gelmiştir. Bugün, teknolojide gelinen son nokta 

sıkıştırma standardı olan H.264’dür. Bu tezde, sıkıştırma algoritması olarak H.264 

kullanılmış ve Texas Instruments’a ait olan TMS320C6416T Platformunda gerçek 

zamanlı olarak uygulanmıştır. 

 

Performans ve maliyet analizlerinden dolayı, bu algoritmayı gerçek zamanlı 

uygulamalarda uygulaya bilmek için C6416 platformu seçildi.  

 

Bu tezin algoritma mimarisinde, hiyerarşik hareket dengeleme algoritması H.264 

kodlayıcısında uygulandı. Algoritmanın kodu ilk önce C dilinde daha sonra makine 

dilinde yazıldı. Kodun son hali optimize edilip TMS320C6416T DSP platformunun 

üzerinde uygulandı.  

 

Sonuç olarak, TMS320C6416T DSP platformu üzerinde ölçümler gösteriyor ki, 

gerçek zamanlı uygulamalarda saniyedeki standart kare işleme hızı en az 25CIF kare 

iken yazılan kodun saniyede 39–65 CIF kare kadar işleyebildiği gözlemlenmiştir. 
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Chapter 1 

Introduction 

 

For several years, broadcast television and home entertainment sectors have 

definitely been the fastest worldwide growing markets which will increase 

considerably during the next years.  

 

 However, an increasing number of services and growing popularity of high 

definition TVs are creating greater needs for higher coding efficiency.  H.264 is the 

most popular video compression and currently the most reliable standard, and was 

developed by a Joint Video Team (JVT) consisting of introduce from ITU-T’s Video 

Coding Experts Group (VCEG) and ISO/IEC’s Moving Picture Experts Group 

(MPEG) [1]. 

 

All the compression-decompression steps of H.264 are shown as a block diagram in 

Figure 1-1.  

 

A video sequence is divided into pictures which are called frames. Following frames 

are usually similar, so contain a lot of redundancy parts. Removing this redundancy 

parts provide the better compression ratios. Motion estimation therefore aims to find 

a ‘match’ to the current block or region that minimizes the energy in the difference 

between the current block and the reference area. In intra mode, a prediction block 

predictive- coded slice is formed which is based on previously encoded and 

reconstructed blocks in the current slice. Mode decision compares the required 

amount of bits to encode a MB and the quality of the decoded MB for both of these 

modes (inter and intra), and chooses the mode with better quality and bit-rate 
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performance. A deblocking filter is applied to reduce the effects of blocking artifacts 

in the reconstructed frame [3]. 

 

 

 

Figure 1.1 H.264 Encoder block diagram [3] 

 

 

In this thesis, H.264 video encoding based on hierarchical motion estimation 

algorithm has been implemented and optimized for real-time implementation of 

H.264 / MPEG4 Part 10 video encoder. Hierarchical motion estimation algorithm 

speeds up the motion estimation process by using fewer number of search locations 

and computing the Sum of Absolute Differences (SAD) at a search location by using 

fewer number of pixels than full-search algorithm. The algorithm decrement the 

number of pixels used at a search location by down-sampling the current Macro 

Block (MB) and reduce the search area by performing the search operation in lower 

resolution. A 3-level hierarchical motion estimation algorithm is shown in Figure 

1.2.  
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Figure 1.2 Hierarchical motion estimation algorithm [2] 
 

 

The high coding efficiency of the H.264 standard increases algorithmic complexity; 

so for the encoders in many real-time applications a high performance core needs to 

be used. Today's processors, however, are very different from their ancestors. Older 

processors took several cycles to execute even simple operations like addition or 

storing data in memory. Performance was measured in thousands of instructions per 

second. Modern processors achieve high performance through enabling technologies 

such as parallel processing, deep pipelines, specialized internal compute engines, and 

integrated peripherals. Performance of these processors is often measured in millions 

or billions of operations per second. 

  

TI TMS320C6416T DSP platform is reliable and has high performance. Therefore, 

real-time application of H.264 software encoder is implemented on TI 

TMS320C6416T DSP. It provides real-time performance, simulation and emulation, 
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several multiply-accumulate operations per cycle, programming flexibility, reliability, 

increased system performance, and reduced system cost. 

 

The proposed H.264 encoder implementation in this thesis, which is verified with the 

JM reference software [4], achieves real-time encoding for CIF resolution format on 

a TMS320C6416T core. Therefore, this implementation can be used in a real world 

implementation, especially in video conferencing and mobile applications. Also, the 

realization and optimization of the encoder on TI’s TMS320C6416 DSP core is 

represented based of the target platform features. Moreover, the flexibility and 

programmability of DSP implementation enables easy adaptation for higher 

performance solutions as a future work. 

 

Organization of the Thesis 

Chapter 2 is an overview of H.264 algorithm and a description of it.  

Chapter 3 explains motion estimation and mainly hierarchical motion estimation 

algorithm 

Chapter 4 explains the C6416 digital signal processor core. 

Chapter 5 explains the code development flow to increase performance. 

Chapter 6 is the discussion part of the simulations results. 

 Finally, Chapter 7 presents the conclusions and the future work.  

 



 5 

Chapter 2 

H.264 Overview 

 

 

H.264 was designed by the International Telecommunication Union (ITU-T) 

Video Coding Experts Group (VCEG) together with the International Organisation 

for Standardisation / International Electrotechnical Commission (ISO/IEC); Moving 

Picture Experts Group (MPEG) formed a Joint Video Team (JVT). JVT’s goal was 

to achieve a factor-of-2 reduction in bit rate compared to any competing standard.  

H.264 is the next-generation video compression technology in the MPEG-4 standard 

that is noted for achieving very high data compression. H.264 design’s contains a 

Video Coding Layer (VCL), which manipulate the original frame and remove 

redundancy of the video picture content. Also, a Network Adaptation Layer (NAL) 

transmit or storage the representation of the video [2-4]. 

 
There are four profiles defined for H.264: Baseline, main, extended and high 

profiles. The baseline profile is perfectly designed for applications of video 

conferencing and allows to low delayed coding and decoding, which make video 

conferences be more natural. 

 
 The main and extended profiles are better suited for television applications and for 

applications of video streaming where latency is less critical. 

 The high profile is designed for disc storage applications, high definition television 

and digital broadcast.  

 
APPLICATION 
 
H.264 standard is designed for technical solutions that are used in the following 

application areas 

• Broadcast cable, digital television on satellite, cable modem, video conferencing 
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and streaming video over the Internet. 

• Interactive or serial storage on optical and magnetic devices and high-definition 

television on DVD. 

•Conversational services over Integrated Services Digital Network (ISDN), Ethernet, 

Local Area Network (LAN), Digital Subscriber Line (DSL), modems, wireless and 

mobile networks. 

• Video-on-demand or multimedia streaming services over ISDN and MP3. 

• Multimedia Messaging Services (MMS) over ISDN, DSL, Ethernet, LAN, wireless 

and mobile networks. 

It seems as a fact that new important video applications will be developed by H.264 
technology. 
 
The common coding parts of H.264 profiles are listed as follows: 

• Intra coded slice (I slice): Coded slice in which all macro blocks of the slice 

are coded using intra prediction. 

• Predictive- coded slice (P slice): Macro blocks of the P slice can also be 

coded using inter prediction. 

•  Context-adaptive variable-length coding (CAVLC): Used for entropy coding. 

• Deblocking filtering: Block-based video coding produces artifacts known as 

blocking artifacts which are deblocked by filtering. 

 

 Baseline decoders support the following features: 

 
• Common parts : I slice, P slice, CAVLC 

•  Flexible macro block ordering (FMO) : A new ability to split the frame 

called the slice groups. A slice consists of one or more MBs and it is 

independently decodable.  

• Arbitrary slice ordering (ASO): Each slice of a coded picture can be decoded 

independently without the other slices of the picture. 

• Redundant slices (RS): An error/loss robustness feature allowing an encoder 

to send an extra representation of a picture region (typically at lower fidelity) 

that can be used if the primary representation is corrupted or lost (not 

supported in all profiles). 
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Coding parts for Main Profile 

 
• Common parts : I slice, P slice, CAVLC 

• Bi-directionally predictive-coded slice (B slice)  is coded slice by using inter 

prediction from previously-decoded reference pictures, using at most two 

motion vectors and reference indices to predict the sample values of each 

blocks  

• Weighted prediction is scaling operation by applying a weighting factor to the 

samples of motion-compensated prediction data in P or B slice  

• Context-based Adaptive Binary Arithmetic Coding (CABAC) is used for 

entropy coding  

 

Coding parts for Extended Profile 

 
• Common parts : I slice, P slice, CAVLC 

• SP slice is the specially coded slice for efficient switching between video 

streams. SP is similar to coding of a P slice  

• SI slice is the switched slice that is similar to coding of an I slice  

• Data partition is the coded data that is placed in separate data partitions. Each 

partition can be placed in different layer units.  

• FMO 

• ASO 

• RS 

• B slice  

 
2.1 Video Coding Layer 

 

Video stream is divided into pictures/ frames/ MBs for encoding. There are 

two modes as intra and inter. When the video stream is splinted, modes discard the 

redundancy part and subtract the original frame. Then the transform, quantization 

and entropy applied consecutively to the difference frame which is subtracted from 

the original frame sent to the NAL. 
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Figure 2.1 H.264 Encoder [5] 

 

 

Figure 2.1 shows a block diagram of the video coding layer for a MB. The input 

video signal is split into MBs and then each MB has a process as shown. 

 
2.2 Intra Mode 

 

In intra mode, a prediction block P is formed which is based on previously 

encoded and reconstructed blocks in the current slice. There are three basic types of 

intra spatial predictions. First one is Full-MB prediction for 16x16 luma or the 

corresponding chroma block size, second one is 8x8 luma prediction and third one is 

4x4 luma prediction. 

 
Full-MB prediction can be performed in one way for intra spatial prediction and 

there are four ways that can be selected by the encoder for the prediction of each 

particular MB: vertical, horizontal, DC and planar. 8x8 luma blocks are similar to the 

16x16 luma block prediction modes, but only the numbering of the modes is 

different. DC, horizontal, vertical and planar ways are applied consecutively. There 

are nine optional prediction modes for 4x4 luma block in this method. (Figure2.2) In 

the 4x4 spatial prediction mode, the values of each 4x4 block of luma samples are 

predicted from the neighboring pixels. The encoder typically selects the prediction 
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mode for each block that minimizes the difference between P and the block to be 

encoded. 

4x4 Luma block intra prediction   

modes 

  Mode 0: Vertical 
Mode 1: Horizontal 
Mode 2: DC 
Mode 3: Diagonal Down-Left 
Mode 4: Diagonal Down-Right 
Mode 5: Vertical-Right 
Mode 6: Horizontal-Down 
Mode 7: Vertical-Left 
Mode 8: Horizontal-Up 

 
Figure 2.2 Spatial prediction of a 4x4 block [5] 

 
2.3 Inter Mode 
 

Inter prediction creates a prediction model from the reference pictures using 

block-based motion compensation and motion estimation. A H.264 standard provides 

flexibility in the motion compensation blocks size selection. The current picture can 

be partitioned into 16x16 MBs or the smaller blocks.  The luminance component of 

each MB can be split in four ways as shown in Figure 2.3: 16x16, 16x8, 8x16 or 8x8. 

If the 8 x 8 mode is selected, each of the four MB partitions within the MB may be 

divided in a further four ways as shown in Figure 2.4: 8x8, 8x4, 4x8 or 4x4. This 

method of partitioning MBs into motion compensated sub-blocks of varying size is 

known as tree structured motion compensation [5]. 

 

Figure 2.3 MB partitions: 16 x 16, 8 x 16, 16 x 8, and 8 x 8 [3] 
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Figure 2.4 Sub-MB partitions: 8 x 8, 4 x 8, 8 x 4, and 4 x 4 [3] 

 
2.4 Transform and Quantization 

 

  A critical parameter is the step size QP between successive re-scaled values. 

If the step size becomes larger, the range of quantized values that we get becomes 

smaller. Therefore, encoding can be efficiently represented during transmission. 

However, if the step size is smaller and quantized values range is larger, decoding 

could be done with a lost of efficiency. 

 
There are three definitions for transforms: 

 
1. Hadamard transform for the 4×4 array of luma DC coefficients in intra MBs 

predicted in 16×16 mode 

2.  Hadamard transform for the 2 × 2 array of chroma DC coefficients. 

3. DCT-based transform for all other 4 × 4 blocks in the residual data. 

  
2.5 Motion Vector Prediction 

 

Encoding a motion vector for each partition can cost a significant number of 

bits, especially if small partition sizes are chosen. Motion vectors are usually 

correlated of neighboring blocks so each motion vector is predicted from previously 

coded. When a predicted motion vector is found, the difference between the current 

vector and the predicted vector is encoded and transmitted. At the decoder, the 

predictive vector consist the same method and added transmitted motion vector 

difference in order to find the current vector.  
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2.6 Entropy Coding 

 

In H.264/AVC, two methods of entropy coding are supported: CAVLC which 

one is context adaptive variable length coding and CABAC that is context adaptive 

binary arithmetic coding. Syntax elements at and below the slice layer can be 

adaptively coded. As in previous standards, the MB is the fundamental unit of the 

syntax and decoding process.  All syntax elements other than residual transform 

coefficients are encoded by the Exp-Golomb codes (UVLC) that scan order to read 

the residual data: zig-zag and alternate 

 
2.7 H.264 PROFILES 
 
H.264 standard includes the following four sets of capabilities and profiles. 
 

Table 2.1 H.264 Baseline, Extended, Main and High profiles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Baseline Extended Main High 

I and P 
Slices Yes Yes Yes Yes 

B Slices No Yes Yes Yes 

SI and SP 
Slices 

No Yes No No 

In-Loop 
Deblocking 
Filter Yes Yes Yes Yes 

CAVLC 
Entropy 
Coding Yes Yes Yes Yes 

CABAC 
Entropy 
Coding No No Yes Yes 

Flexible MB 
Ordering 
(FMO) 

Yes Yes No No 

Arbitrary 
Slice 
Ordering 
(ASO) Yes Yes No No 
Redundant 
Slices (RS) Yes Yes No No 



 12 

                                            Chapter 3 

Motion Estimation 

 

In video compression, video sequence is divided into pictures which are 

called frames. Motion estimation guesses the next frame by observing the previous 

one.  Following frames are usually similar, so containing a lot of redundancy part. 

Removing this redundancy part provide better compression ratios. Motion estimation 

therefore aims to find a ‘match’ to the current block or region that minimizes the 

energy in the difference between the current block and the reference area. The 

location of a block in a frame is given by using the (x,y) coordinates of top-left 

corner of the block in the current frame. The search window in the reference frame is 

the [-p,p] size region around the location of the current block in the current frame.  

 
 The SAD value for a current block in the current frame and a candidate block in the 

reference frame are calculated by accumulating the absolute differences of 

corresponding pixels in the two blocks as shown in the following formula:  

 

∑
==

++−=

nm

yx

yxB dydxryxcdSAD
mxn

,

1,1

|),(),(|)(
 

 
 
 

Where B
mxn 

is a block of size mxn, d= (dx, dy) is the motion vector (MV), c and r are 

current and reference frames respectively. Since a motion vector expresses the 

relative motion of the current block in the reference frame, motion vectors are 

specified in relative coordinates. If the location of the best matching block in the 

reference frame is (x+u, y+v), then the motion vector is expressed as (u,v). 



 13 

 

 

 

 

 
Figure 3.1 Motion estimation process [2] 

 
 
3.1 Hierarchical Three Step Search 

 

There are a lot of motion search algorithms that are used for video coding. 

Although the best one is full search algorithm which guarantees to find the motion 

vector with minimum SAD, it is not used in implementations. In implementations 

hierarchical three step search algorithm is a popular algorithm, which is showed in 

Figure 3.2. 

 



 14 

 

Figure 3.2 Three step search [3] 

 

SAD is calculated at position (0,0) (the centre of the Figure 3.2) and eight points are 

located ±2N−1(S) unit far away from the center. In the figure, S is 7 and the first nine 

search locations are numbered as ‘1’. The search location that gives the smallest 

SAD is chosen as the new search centre and a further eight locations are searched. 

The distance between the center and the point becomes half of the previous distance 

from the search origin (numbered ‘2’ in the Figure 3.2). After the best location had 

been chosen as the new search centre, the algorithm was repeated until the search 

distance cannot be subdivided further. The TSS is considerably simpler than Full 

Search. However the TSS does not usually perform as well as Full Search.  

 
3.1.1 Hierarchical Motion Estimation Algorithm 

 

Using fewer number of search locations and computing the SAD at a search 

location in which fewer number of pixels is used than it is used in full search 

algorithm, the hierarchical motion estimation algorithm accelerates the motion 

estimation process. As a result of down-sampling the current MB and using lower 

resolution in the search area, the algorithm reduces the number of pixels used for 

SAD calculation at a search location. A 3-level hierarchical motion estimation 

algorithm is shown in Figure 3.3. 
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Figure 3.3 Hierarchical motion estimation algorithm [3] 

 

The MB in level 0, which has N x N pixels, becomes N/2 x N/2 in level 1 by down-

sampling the search area. Again by down sampling, the MB reaches to the level
2
 

with N/4 x N/4 pixels. This process is performed for all MBs of both the reference 

frame and the current frame. 

 
While observing the location of MB, a proportional increase from level

2
 to level

0
 can 

be easily seen. For instance, when N is equal to 16 and if the location of the current 

4x4 MB in level
2
 is (x,y), the locations of the 8x8 current block in level

1 
and the 

16x16 current block in level
0 

are (2x,2y) and (4x,4y) respectively.  

 
The algorithm applies full search in level 2 for the 4x4 block with a search range as 

[-p2,+p2], and finds the motion vector as mv
2
(u

2
,v

2
). Then for 8x8 block the 

algorithm calculates the motion vector as mv
1
(u

1
,v

1
) by performing a limited  search 
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in level1 around the location pointed by 2mv
2
. The algorithm, finally, finds the 

motion vector mv
0
(u

0
,v

0
) by performing limited search in level

0 
around the location 

pointed by 2mv
1 

for the 16x16 current MB with a search range p
0
. The 3-level 

hierarchical motion estimation algorithm produces the optimal motion vector as mv
0
. 

  
In this thesis, with the help of SAD values, the vector of a 4x4MB at Level 2 is found 

by full search method.  Also, the vector of a 8x8 MB at Level 1 is found by [-p2,+p2] 

search around 2 times the vector that is found at Level 2. 

 
At Level 0, motion vectors for 8x8, 8x16, 8x16, and 16x16 subblocks of the  MB are  

found by  [-p1,+p1] refinement  around 2 times the vector found in Level 1 for the 

full MB .  

 
The further improve the motion vector estimation accuracy, another [-p1,+p1] 

refinement is carried out around [0,0] motion vector for each of the above subblocks. 

The minimum SAD results of these two different cases are compared and the motion 

vector which has the smallest SAD value is selected for the current subblock. 
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                                      Chapter 4 

Texas Instruments TMS 320C6416 DSP 
 

 
The TMS320C6416T DSP platform is generally used in video performance audio 

and imaging applications. The C6416 DSK is a low-cost stand-alone development 

platform that enables users to evaluate and develop applications for the TI C6416 

DSP family. The DSK also serves as a hardware reference design for the 

TMS320C6416T DSP. There are several features defined for C6416T DSK. 

 
1. TMS320C6416T DSP operating at 1 Gigahertz. 

2. An AIC23 stereo codec 

3. 16 Mbytes of synchronous DRAM 

4. 512 Kbytes of non-volatile Flash memory 

5. 4 user accessible LEDs and DIP switches 

6. Software board configuration through registers implemented in CPLD 

7. Configured boot options and clock input selection  

8. Standard expansion connectors for daughter card use 

9. JTAG emulation through on-board JTAG emulator with USB host interface 

or external emulator 

10. Single voltage power supply (+5V) 

 

TMS320C6416 DSPs are industry’s highest performance DSPs offer clock speeds up 

to 1 GHz and reduced system cost through peripheral integration. AIC23 codec 

allows the DSP to transmit and receive analog signals. The codec samples line inputs 

or analog signals on the microphone and converts them into digital data so it can be 

processed by the DSP. There are two busses 64-bit wide EMIFA and the 8-bit wide 

EMIFB. The SDRAM, Flash and CPLD are each connected to one of the busses. 

EMIFA is also connected to the daughter card expansion connectors which are used 

for third party add-in boards.
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Figure 4.1 A block diagram of the profiles DSP board [9] 
 

 

4.1 C6416 CPU 

 

The C6000 DSP family with the VelociTI architecture addresses the needs of 

video and imaging applications. The C6000 family uses advanced very long 

instruction word (VLIW) architecture. The architecture contains multiple execution 

units running in parallel, which allow them to execute multiple instructions in a 

single clock cycle. Parallelism is the key word for high performance. The C6416 

adds another significant performance boost to the C6000 DSP family. In addition to 

clock rate, C6416 introduced VelociTI.2 extensions to the VelociTI architecture. 

These extensions allow more work to be done in each cycle by including new 

instructions to accelerate performance in key application areas including video and 

imaging. 

 
The C6416 CPU components consist of: 
 

1. Two general-purpose register files (A and B) 

2. Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2) 

3. Two load-from-memory data paths (LD1 and LD2) 

4. Two store-to-memory data paths (ST1 and ST2) 

5. Two data address paths (DA1 and DA2) 

6. Two register file data cross paths (1X and 2X) 
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Figure 4.2 C6416 CPU Block diagram MPEG-4 real time encoding system [5] 
 
4.2 Register Files 

 

There are two general-purpose register files (A and B) in the C6000 data 

paths. For the C6416, each of these files contains 32 32-bit registers (A0–A31 for file 

A and B0–B31 for file B). The general-purpose registers can be used for data; data 

address pointers, or condition registers. On the C6416, registers A0, A1, A2, B0, B1, 

and B2 can be used as condition registers. In all C6000 devices, registers A4–A7 and 

B4–B7 can be used for circular addressing. 

 
The C6416 register file supports data ranging in size from packed 8-bit data, packed 

16-bit data, through 40-bit fixed-point, 64-bit fixed point, and 64-bit floating-point 

data. Values larger than 32 bits, such as 40-bit long and 64-bit float quantities are 

stored in register pairs, with the 32 LSBs of data placed in an even-numbered register 

and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-
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numbered register). Packed data types store either four 8-bit values or two 16-bit 

values in a single 32-bit register or four 16-bit values in a 64-bit register pair. 

 
4.3 Functional Units 

 

The eight functional units in the C6000 data paths can be divided into two 

groups of four; each functional unit in one data path is almost identical to the 

corresponding unit in the other data path. The C6416 contains many 8-bit and 16-bit 

instructions to support video and imaging applications. 

  
 

4.4 Register File Paths 
 

 

Each functional unit reads directly from and writes directly to the register file 

within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register file 

A, and the .L2, .S2, .D2, and .M2 units write to register file B. 

Most data lines in the CPU support 32-bit operands, and some support long (40-bit) 

and double word (64-bit) operands. Each functional unit has its own 32-bit write port 

into a general-purpose register file. Each functional unit has two 32-bit read ports for 

source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-

wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. 

Because each unit has its own 32-bit write port, all eight units can be used in parallel 

with every cycle when performing 32 bit operations. Since each C6416 multiplier 

can return up to a 64-bit result, an extra write port has been added from the 

multipliers to the register file. The register files are also connected to the opposite-

side register file’s functional units via the 1X and 2X cross paths have shown in 

Figure 4.3. These cross paths allow functional units from one data path to access a 

32-bit operand from the opposite side’s register file. The 1X cross path allows 

functional units from data path A to read its source from register file B. Similarly, the 

2X cross path allows functional units from data path B to read its source from 

register file A. 
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Figure 4.3 C6416 Data cross paths [7] 

 

On the C6416, all eight of the functional units have access to the register file 

on the opposite side via a cross path. The .M1, .M2, .S1, .S2, .D1 and .D2 units’ src2 

inputs are selectable between the cross path and the register file found on the same 

side. In the case of the .L1 and .L2, both src1 and src2 inputs are also selectable 

between the cross path and the same-side register file. Only two cross paths, 1X and 

2X, exist in the C6000 architecture. Therefore, the limit is one source read from each 

data path’s opposite register file per cycle, or a total of two cross-path source reads 

per cycle. The C64” pipelines data cross path accesses allow multiple units per side 

to read the same cross-path source simultaneously. The cross path operand for one 

side may be used by up to two functional units on that side in an execute packet. 

 
4.5 Memory, Load and Store Paths 

 

The data address paths named DA1 and DA2 are each connected to the .D 

units in both data paths. Load/store instructions can use an address register from one 

register file while loading to or storing from the other register file. Figure 4.6 

illustrates the C6416 memory load and store paths. 
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Figure 4.6 C6416 Memory load and store paths [9] 

 

The C6416 device supports double-word loads and stores. There are four 32-bit paths 

for loading data for memory to the register file. For side A, LD1a is the load path for 

the 32 LSBs; LD1b is the load path for the 32 MSBs. For side B, LD2a is the load 

path for the 32 LSBs; LD2b is the load path for the 32 MSBs. There are also four 32-

bit paths for storing register values to memory from each register file. ST1a is the 

write path for the 32 LSBs on side A; ST1b is the write path for the 32 MSBs for side 

A. For side B, ST2a is the write path for the 32 LSBs and ST2b is the write path for 

the 32 MSBs. Wide loads are essential in sustaining processing throughput. The 

C6416 device can also access words and double words at any byte boundary using 

non-aligned loads and stores. As a result, word and double-word data does not 

always need alignment to 32-bit or 64-bit boundaries. This feature is particularly 

useful in motion estimation and video filtering operations, where one may need 

access to data from any arbitrary byte boundary in memory. Non-aligned loads and 

stores combined with the pack and unpack instructions described earlier, mean that 

the compiler does not have to format the data to take advantage of the 8-bit and 16-

bit hardware extensions. Without these operations, significant effort would be needed 

to leverage the parallelism. C6416 provides a complete set of data flow operations to 

sustain the maximum performance improvement made possible by the 8-bit and 16-

bit extensions added to the C6000 architecture. 

 

 

 



 23 

4.6 Additional Functional Unit Hardware 

 

Additional hardware has been built into the eight functional units of the 

C6416. We have already discussed two important extensions. Each .M unit can 

perform two 16x16 bit multiplies or four 8x8 bit multiplies every clock cycle. Also, 

the .D units can access words and double words on any byte boundary by using non-

aligned load and store instructions. 

 
In addition, the .L units can perform byte shifts and the .M units can perform bi-

directional variable shifts in addition to the .S unit’s ability to do shifts. The .L units 

can perform quad 8-bit subtracts with absolute value. This absolute difference 

instruction greatly aids motion estimation algorithms. 
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Chapter 5 

Hardware and Software Implementation 

 

Code development is quite critical in this application; therefore code 

development flow is applied when writing and debugging the code. There are 3-steps 

to software development flows: 

Develop C code, Refine C code, Write linear assembly. 

 

 
 

Figure 5.1 Develop C code flow chart [10] 

 

Figure 5.1 shows the development of the C code for phase 1. It is written in 

the C code by using the C6416 profiling tools that are described in the Code 

Composer Studio User’s Guide. First of all, validation of the original C/C++ code is 

done and profiling is performed to determine which loops are most important in 

terms of millions of instructions per second requirements. Then the code is compiled 

and the performance is tested. Since it is not possible to improve the performance of  

this code any further, we should proceed to phase 2.
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Figure 5.2 Refine C code flow chart [10] 

 
Figure 5.2 shows development of rewritten C code for phase 2. First of all memory 

bank pragmas needs to be used to pass memory bank and alignment information to 

the compiler [10]. For the application of this process, the C6000 profiling tools are 

used to check its performance. If the code is still not as efficient as we would like to 

be, then it should proceed to phase 3.  

 
 

       

 
 

Figure 5.3 Linear assembly flow chart [10] 
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Figure 5.3 shows that C code is rewritten in linear assembly for phase 3. The linear 

assembly code allows us to determine exact C6416 instructions for best performance 

and it provides flexibility of hand-coded assembly without worry of pipelining, 

parallelism, or register allocation.  

 
5.1 Compiling C/C++ Code 

 

The C6416 compiler setting is very critical for performance in this video 

coding application.  

 
5.2 Compiler Options 

 

Options control the operations of the compiler which are for increasing the 

performance, optimizing the code, and decreasing code size.  

In this thesis, optimization and speed are the most important issues. To get a start, the 

compiler optimization is set to Speed Most Critical (no -ms) for optimize for the 

code size and performance. Secondly the compiler is instructed by –o3, to perform 

file-level optimization. There are other ways to perform specific optimizations, 

although for general file-level this optimization level can be used alone. In addition 

to these, this compiler option can parallelize instructions, fill delay slots and 

maximize functional unit. Also, in compiler option the software pipelining can be 

turned on. 

  
-pm option and –o3 option can be used together in the program level optimization as 

a part of Code Composer Studio. In addition to these there could be some necessaries 

to make some improvements in software pipelined loops. The compiler has the entire 

program; so it performs some additional optimizations which are usually applied 

during file-level optimization such as: 

 
_ The compiler deletes the return code which is never used in the function. 

_ The compiler removes the function which is not called directly or indirectly. 

 
The –mt option eliminates memory dependencies, which allows the compiler to use 

assumptions that can eliminate memory dependency paths [10]. 
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Table 5.1 C6416 Compiler options for performance 

 

 

 
 

 

 

Options Description 

 

No  debug 

 
Exclude the debug info from the output file, so 

provides much more parallelized code 

 

 

Speed Most Critical 

(no –ms)   

 

The first strategy to determine the optimization type 

(code size vs. speed) 

 

 

File(-o3) 

 

Software pipelining, loop unrolling, SIMD. Different 

file level characteristics are increasing the 

performance. 

 

Program Mode 

Compilation (-pm) 

 

Program-level optimization option, which gives the 

combines source files to perform. 

 

 

No Bad Alias Code  

(-mt) 

 

This option, which allows the compiler to use 

assumptions that can eliminate memory dependency 

paths. 
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5.3 Software Pipelining 

 

Software pipelining is a technique that is used to schedule instructions from a 

loop so that multiple iterations of the loop execute in parallel. When a compiler 

setting is chosen as the –o2 and –o3, the compilers apply to software pipeline code 

with information that it gathers from program. 

 
5.4 Linear Assembly 

 

An assembly language is a low-level language for programming computers. It 

implements a symbolic representation of the numeric machine codes and other 

constants needed to program a particular CPU architecture. The compiler sometimes 

does not fully exploit the potential of the C6000 architecture. Therefore, writing the 

loop/function in linear assembly obtains better performance.  

 
As a result, linear assembly code will be the input for the assembly optimizer, to 

improve the performance of a video/image process on such DSP architecture. SIMD 

instructions can be calculated in linear assembly easily. The linear assembly is the 

key coding feature for using the pipeline parallelism with powerful Single 

Instruction, Multiple Data (SIMD) instructions as the inexpressible C program level 

operations.  

 
Linear assembly is similar to regular C6416 assembly code in that we use C6416 

instructions to write our code. With linear assembly we do not need to specify all of 

the information that we need to specify in regular C6416 assembly code. There is the 

option of specifying the information or letting the assembly optimizer specify it in 

linear assembly. 

 
Here is the information that is not needed to specify in linear assembly code: 

- Parallel instructions 

- Pipeline latency 

- Register usage 

- Which functional unit is being used 
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If they are not specified, the assembly optimizer determines the information that is 

not included, based on the information that it has about the code. As with other code 

generation tools, linear assembly code might be needed to be modified up for a 

satisfactory performance. During linear assembly coding, much more details to 

assembly can be added, such as specifying which functional unit should be used. The 

important regulars of linear assembly code writing are: 

 
A linear assembly file must be specified with a ‘.sa’ extension. 

 
‘.cproc’ and ‘.endproc’ directives should be included by the code of linear assembly. 

A section of code that is optimized by assembly optimizer is bounded by the the 

.cproc and .endproc directives. .cproc directive has to be used at the beginning of the 

section and .endproc must be used at the end of the section. 

 
A ‘.reg’ directive which allows using descriptive names for values that will be stored 

in registers, may be included by the linear assembly code. The register agrees with 

the functional units chosen for the instructions. These instructions operate on the 

value. The register is chosen by the assembly optimizer when .reg directive is used. 

 
A ‘.trip’ directive may be included by linear assembly. The values which indicate 

how many times a loop will iterate, are specified by the .trip directive [9-10]. 

 
In the proposed encoder, for performance optimization, critical code segments and 

functions are written in linear assembly. Furthermore, with balanced side effect the 

SIMD instructions of the C6416 DSP are used for pipelining.  

 
5.5 Linear Assembly of Critical Functions 

 

Writing the linear assembly can provide the pipeline utilization and parallel 

video/image processing with SIMD instructions. 

In H.264 encoder, the time consuming operations are written as linear assembly code, 

and specialized SIMD instructions are used for best performance. 

 
The structure of the current and reference frames are used for motion estimation. In 

this thesis, CIF size frames are used. A CIF frame has 352x288 pixels. The motion  
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estimation process is performed for each 16x16 MB in the current frame. For each 

16x16 MB in the current frame, a 64x64 search window from the reference frame is 

used for motion estimation which means the MVs will be in the range [-24,24]. The 

current 16x16MB and the 64x64 search window are stored in block RAMs in the 

Field-Programmable Gate Array (FPGA).  

 
In Table 5.2 there are the performance results of the SAD 4x4 function and 

Rec_192x160 is given. There are three different results for Phase1, Phase2 and 

Phase3. 

 
In phase1, we write the C code by using the C6416 profiling tools that are described 

in the Code Composer Studio User’s Guide. The compliers settings are chosen as 

speed critical (-ms1) and optimize the level register (-o0). 

  
In phase2, The C code which was prepared with “for loops” was rewritten by using 

the pointers and compilers settings are chosen as speed most critical (no-ms) and file 

level optimization (-o3). These options perform software pipelening, reduce potential 

pointer aliasing problems, allow loops with indeterminate iteration counts to execute 

epilogs; we also use memory bank and data alignment pragmas to pass memory bank 

and alignment information to the compiler. 

 
 In phase 3, the linear assembly code is used while rewriting the SAD 4x4, 

Rec_192x160, Rec_96x80, current MB 8x8 and 4x4. Also we used available linear 

assembly routines for SAD8x8 calculation.  

 
For reference frame of size 352x288 (384x320 with padding for out-of-boundary 

motion vectors), the low-resolution frames of Level 1 and Level 2 are of size 

192x160 and 96x80, respectively.  

 
The REC_192x160 function is written in linear assembly and this function can be 

expressed as in Figure 5.4 

 

 

 

 

 



 31 

 

Figure 5.4 Linear assembly of REC192x160 function 
 

 

For a video encoder in which the original MB is searched over a reference picture 

area, the motion estimation has the highest computational complexity. SAD based 

motion estimation scheme can be effectively implemented by a rich set of extensive 

video/image instructions. These instructions are provided by TMS320C6416 in the 

proposed encoder. The SAD 4x4 functions are written in linear assembly. These 

functions can be expressed as in Figure 5.5 

 

LDNW  *win_ptr++[SRCH_WIN], win4                          

LDNDW  *win_ptr++[SRCH_WIN], win8:win4 

LDNW  *win_ptr++[SRCH_WIN], win4_2             

LDNW         *win_ptr++[SRCH_WIN], win8_2 

SUBABS4   org4, win4, absdif4 

SUBABS4   org8, win8, absdif8 

DOTPU4   absdif4, dot_sad, SAD_tmp4 

DOTPU4   absdif8, dot_sad, SAD_tmp8 

ADD   SAD_tmp4, SAD1, SAD1 

ADD   SAD_tmp8, SAD2, SAD2 

       

 

Figure 5.5 Linear assembly of SAD4x4 function 

 

The C6416 can access up to 64 bits per cycle at any byte boundary with non-aligned 

load instructions (LDNW, LDNDW).LDNW instruction loads four bits to memory. 

However, LDNDW loads eight bits.  

 

 

 

 

LDNW  *org_ptrA++[ORG_WINA], win1 

LDNW  *org_ptrB++[ORG_WINB], win2 

AND  win1,org8,say1 

AND  win1,org8_2,say2 

SHR  say2,8,say2 

ADD         say1,say2,say2 

AND  win2,org8,say3 

AND  win2,org8_2,say4 

SHR  say4,8,say4 

ADD         say3,say4,say4 

ADD  say2,say4,say4 

ADD  say4,2,say4 

SHR         say4,2,say4 

SUB  org_ptrA, 14, org_ptrC 

SUB  org_ptrB, 14, org_ptrD 
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Table 5.2 SAD 4x4 and REC 192x160 linear assembly results 
 

Function  Phase1 Phase2 Phase3 
Speed 
Ratio 

SAD 4x4 194,5ms  124,3 ms  98,83  2x 

REC 192x160 49,7 ms 25,6 ms 11,2 ms 4,45x 

 

 

In this thesis, LDDW instruction (loads 4 bytes of memory) is used for loading and 

processing 8 pixels in parallel. Thus, our code automatically accelerates the data 

fetching from the MB especially in searching window in reference frame. On the 

other hand absolute value of pixels needs to be calculated. Also, eight bits needs to 

be loaded as pixel value. A SUBABS4 assembly instruction calculates the absolute 

value of the differences for each pair of packed 8–bit values. DOTPU4, an important 

video/image instruction, returns the dot product between four pairs of packed 8-bit 

values. For each pair of 8–bit values in number1 and number2, the 8–bit value from 

number1 is multiplied with the 8–bit value from number2. The four products are 

summed together. Since two DOPTPU4 can run in parallel in a single cycle, this 

instruction accelerates the sum of absolute difference (SAD) process significantly 

that is the core for motion estimation.  

 
The main idea of SAD can be abstracted in the following steps: 

 
1. LDDW and LDNDW fetch 8 pixels from current and reference frames 

2. Two SUBABS4 calculate 8 absolute differences 

3. Two DOTPU4 accumulate 8 result additions 
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           LDNW    .D1T1   *win_ptr++[SRCH_WIN],win4 ; |755|  win[7-4]:win[3-0] 
|| [ loop_cnt] ADD .L2     0xffffffff,loop_cnt,loop_cnt ; |780|  
 
           LDNW    .D1T1   *win_ptr++[SRCH_WIN],win8 ; |756|  win[7-4]:win[3-0]  
           LDNW    .D1T1   *win_ptr++[SRCH_WIN],win4_2 ; |757|  win[7-4]:win[3-0] 
 
           LDDW    .D1T1   *org_ptrA++[ORG_WINA],org8:org4 ; |747|  org[7-4]:org[3-0] 
||         LDDW    .D2T2   *org_ptrB++[ORG_WINB],org8_2:org4_2 ; |748|  org[7-4]:org[3-0]   
 
           LDNW    .D1T1   *win_ptr++[SRCH_WIN],win8_2 ; |758|  win[7-4]:win[3-0] 
           NOP             3 
           SUBABS4 .L1     org4,win4,absdif4 ; |762|  
 
           SUBABS4 .L1     org8,win8,absdif8 ; |763|  
||         SUBABS4 .L2X    org8_2,win8_2,absdif8_2 ; |772|  
 
           DOTPU4  .M1X    absdif8,dot_sad,SAD_tmp8 ; |766|  
||         DOTPU4  .M2     absdif8_2,dot_sad,SAD_tmp8_2 ; |775|  
||         SUBABS4 .L2X    org4_2,win4_2,absdif4_2 ; |771|  
 
   [ loop_cnt] B   .S1     L6                ; |781|  
||         DOTPU4  .M2X    absdif4,dot_sad,SAD_tmp4 ; |765|  
 
           DOTPU4  .M2     absdif4_2,dot_sad,SAD_tmp4_2 ; |774|  
   [!loop_cnt] RET .S2     B3                ; |786|  
           ADD     .L1     SAD_tmp8,SAD2,SAD2' ; |769|  
 
           ADD     .L1X    SAD_tmp8_2,SAD2',SAD2 ; |778|  
||         ADD     .L2     SAD_tmp4,SAD1,SAD1' ; |768|  
 
           ADD     .L2     SAD_tmp4_2,SAD1',SAD1 ; |777|  
           ; BRANCHCC OCCURS {L6}            ; |781| 

 
 

Figure 5.6 Disassembly of SAD linear assembly’s core loop 
 
In this thesis we have use the basic 264 encoder that is being Vestek electronics [8]. 

This software has some functions in terms of the real-time implementation of the 

H.264/AVC encoder on DM642 DSP core. The standard H.264/AVC baseline profile 

coding tools is used except error resiliency tools and quarter-pel motion estimation in 

Vestek Electronics code. Integer and half pixel position motion estimation and 

compensation for all luminance and chrominance components are implemented 

instead of quarter-pel motion compensation. 

 

The modifications described above are incorporated into the baseline H.264 encoder 

of VESTEK Electronics. To summarize, we have implemented the following steps 

during encoder optimization: 
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1- For a better comparison with our work, the code that was taken 

from Vestek Electronics was run on the board TMS320C6416T. 

The results are given in table 6.1 to compare with the new 

algorithm results.  

 
2- Vestek Electronics used bihexagonal search algorithm in the 

step of motion estimation. According to the SAD reuse in 

hierarchical motion estimation in Hasan Fehmi Ateş’s article [7], 

the motion estimation module of H.264 encoder was re-written. 

Hierarchical method speeds up motion estimation so it was the 

preferred method for our implementation. 

 
3- After a stand-alone analysis of the code, Hierarchical motion 

estimation algorithm was incorporated into the available H.624 

encoder software. 

 
4- First of all, the reference frame was saved as a whole in external 

memory. The whole frame was reduced to low resolution. The 

low-resolution frames are stored in internal memory using the 

pragma directive. The current 16x16 MB that was located in 

internal memory was reduced first into 8x8 then 4x4 blocks. 

This is a pre-processing step to Hierarchal motion estimation 

module.  

 
5- The motion vectors that are found in the Hierarchal step and the 

SAD values were calculated. After these we accepted the motion 

vectors as zero and again the SAD values were calculated. The 

results of these two different cases compared and the case which 

had the smallest SAD value showed us the motion vector. 

 
6- Simulations have shown that the initial unoptimized version of 

the algorithm was slower than the VESTEK implementation. So, 

we decided to use the three phased system described above. 

Architectural details of the board were investigated. Useful 

settings of the optimizing compiler were chosen. Some 
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reductions in execution times were seen based on these new 

settings.  

 
7- According to Phase 2, the C written for “code loops” was 

restructured by using array pointers for more regular memory 

access. This change reduced data cache misses and therefore 

reduced the total execution times.   

 
8- To get better results, the code was written in assembly language 

which is shown in Phase 3. First of all, the functions that 

produce low-resolution reference frames for Level 1 and Level 2 

were written in assembly language. In addition to these, the 

function that reduces the current MB into low resolution and the 

functions that were used for calculating SADs during motion 

estimation were transformed into linear assembly. 

 
9- At the end of these steps, the program code was placed in 

internal memory, to avoid any possible memory stalls due to 

program cache misses and long delays of accessing external 

memory. 

 
10-  After these applications, the code was run again and the results 

are shown in the next section. 
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Chapter 6 

Simulation Results  
 
 

In this thesis, C6416 with higher performance and lower cost hardware 

architecture is chosen in order to achieve H.264 encoder in real time implementation. 

There are three basic properties of TMS320C6416 board in terms of the processor 

rate is 1 GHz, the flash memory is 512 Kb and the ability of making 32-Bit 

Instructions/Cycle. The C6416T uses a two-level cache-based architecture and has a 

powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-

Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-

associative cache. The Level 2 memory/cache (L2) consists of a 1-Mbit memory 

space that is shared between program and data space. L2 memory can be configured 

as mapped memory or combinations of cache (up to 256K bytes) and mapped 

memory [11]. 

 
Overall, encode MB process of the H.264 baseline encoder that was obtained from 

Vestek electronics. It has been modified for real time implementation and 

optimization. 

 
The data in the following tables are obtained by using CIF Foreman sequence. 

 
Vestek electronics code which is without any modification run on TMS320C6416T 

board. The result is shown in table 6.1. Modified code is also run under the same 

circumstances and the corresponding values are given in table 6.2. 
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Table 6.1 Vestek’s code optimization results for CIF [352x288] ‘Foreman’ sequence 
 

Functional Block 

Total 
Count 
@ 30 
frames 

Total 
Elapsed 
Time 
(ms) 

Average 
Time 
(ms/frame) 

Percentage  
(%) 

Before & after encode 
(EDMA usage) All MBs 143,2 4,77 14,68 

Encode MB All MBs 598,56 19,95 61,38 

Motion 
Estimation 

 
29 
frames 373,65 12,88 62,42 

Residual 
Coding All MBs 189,2 6,31 31,61 

E
nc

od
e 

M
B

 

Intra Predict 
& Others All MBs 35,71 1,19 5,97 

Deblocking Filter 
30 
frames 116,87 3,90 11,98 

VLC (write NALU) All MBs 50,47 1,68 5,18 

Half-pel Interpolation 
 29 
frames 66,09 2,28 6,78 

Total 
30 
frames 975,19 32,51 100,00 

 

 

Comparing Table 6.1 and Table 6.2, we see a speed-up in various parts of the 

encoding process. The reason of the speed increase in the after and before encode is 

the transform of 128 Mbyte cache memory into 256 Mbyte. According to tables, in 

the step of encode MB motion estimation, the execution time of 374 ms  is decreased 

to 270 ms which is equal to %28 speed increase. This improvement is due to the 

software modifications that are explained in Chapter 5.  However, if we run the 

Vestek code with 256 Mbyte cache memory, the motion estimation part becomes 355 

ms. These brings the speed up of  the motion estimation part as 24%.     

 
The speed improvement for the overall encoding time of Foreman sequence is also 

21%. Due to the algorithmic, memory and code optimizations performed in the 

encoder software, the resulting encoder can code Foreman at 40 frames per second  

(fps), compared to 30 fps of Vestek code. 
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Table 6.2 Optimization results for CIF [352x288] ‘Foreman’ sequence 
 

Functional Block 

Total 
Count 
@ 30 

frames 

Total 
Elapsed 

Time 
(ms) 

Average 
Time 

(ms/frame) 
Percentage 

(%) 

Before & after encode 
(EDMA usage) All MBs 89,35 2,98 11,57 

Low Resulation Referance 
Frame All MBs 11,37 0,38 1,47 

Encode MB All MBs 452,87 15,10 58,64 
Motion 

Estimation 
 

29 frames 270,75 9,03 59,79 
Residual 
Coding All MBs 154,56 5,15 34,13 

E
nc

od
e 

M
B

 

Intra Predict 
& Others All MBs 27,56 0,92 6,09 

Deblocking Filter 30 frames 114,37 3,81 14,81 
VLC (write NALU) All MBs 42,2 1,41 5,46 

Half-pel Interpolation 29 frames 62,09 2,07 8,04 
Total 30 frames 772,25 25,74 100,00 

 

Table 6.3 Vestek’s code compression efficiency of the implemented H.264 
encoder 

 
 
Sequence 
CIF [352x288] 

Encoder 
Speed 
(fps) 

Y-PSNR 
(dB) 

U-PSNR 
(dB) 

V-PSNR 
(dB) 

Compression 
Ratio 

Akiyo 49,72 39,5 42,49 44,03 258 

Paris 32,08 33,49 34,93 34,58 48 

Foreman 30,07 36,03 40,68 43,24 67 
Container 37,11 35,95 42,8 41,91 105 
Mother and 
Daughter 47,9 38,87 43,66 44,5 281 
News 48,3 37,68 40,03 41,629 128 

 
 

Accelerated data processing speed would normally have a negative effect on PSNR 

and compression ratio; however the hierarchical algorithm we used has resulted 

positively. PSNR values on tables 6.3 and 6.4 indicate the acceleration without a loss 
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of visual quality, while there is a slight increase in bit-rate Simulation results for 

different sequences are available at table 6.4.  

 
In the Table 6.4, it can be seen that the same encoder used for different sequences 

result in different frame rates because some sequences include more action and 

details. Foreman and Container sequence which are used in video conferences and 

mobile applications, have significant roles in all this application. After observing 

values of these sequences, we can say that the system processes 40 frames in 1 sec. 

For a real-time application frame rate can be 25 to 30 fps. Therefore, The H.264 

encoder is optimized enough for real-time purposes and the achieved encoding rate is 

over 25 fps. 

 

Table 6.4 Compression efficiency of the implemented H.264 encoder 

Sequence 
CIF [352x288] 

Encoder 
Speed 
(fps) 

Y-
PSNR 
(dB) 

U-PSNR 
(dB) 

V-PSNR 
(dB) 

Compression 
Ratio 

Akiyo 63,38 39,5 42,49 44,03 258 

Foreman 38,85 36,03 40,68 43,24 65 

Container 46,8 35,95 42,8 41,91 106 
Mother and 
Daughter 61,3 38,87 43,66 44,5 284 

News 53,59 37,68 40,03 41,629 129 
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Chapter 7 
 

Conclusion And Future Work  
 

 

In this thesis, high performance and low cost hardware architecture is 

designed for real-time implementation of an SAD reuse based hierarchical motion 

estimation algorithm for H.264 / MPEG4 Part 10 video coding. The reference 

decoder verifies and implements a real-time H.264 baseline encoder on TI 

TMS320C6416 digital signal processor (DSP) at Common Intermediate Format 

(CIF) (352x288) resolution. The performance measurements over video sequences 

show that 40 to 65 fps encoding performance is possible and the PSNR 

measurements are sufficient for embedded applications such as video conferencing 

and mobile applications. 

 
For future work, other parts of the encoder can be written in linear assembly for 

better optimization. Especially getting rid of all dynamic memory allocations and 

defining all variables as static can speed up the encoder. Placing most of the 

variables, such as the reference and current frames as a whole in the internal memory 

will avoid memory stalls of the CPU due to slow external memory access. However, 

this is not possible unless there is enough empty space in internal memorys the 

proposed encoder achieves real-time performance at CIF resolution, improvement of 

the encoder performance for higher resolution especially at D1 (720x576) (Standard 

TV resolution) is a challenging future study. 
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