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ASYMPTOTIC SOLUTIONS OF SEISMIC  

SURFACE WAVES NEAR CAUSTICS  

 

Abstract 

 

The dispersive behavior of Love waves in an elastic half-space substrate 

covered by an elastic layer under the effect of inhomogeneous initial stresses 

has been investigated. Classical linearized theory of elastic waves in initially 

stressed bodies for small deformations is used and the well-known WKB high-

frequency asymptotic technique is applied for the theoretical derivations. The 

influence of the imperfectness of the contact conditions on Love wave 

propagation velocity has also been studied through the influence of the 

interface imperfectness parameter on this velocity. Numerical results on the 

action of the imperfectness of the contact conditions on the wave dispersion 

curves, as well as on the influence of the initial stresses in the constituents on 

the wave propagation velocity for a geophysical example are presented and 

discussed. Possible asymptotic solutions in the vicinity of caustic points are 

also considered. 
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SĠSMĠK YÜZEY DALGALARIN KOSTĠK NOKTALAR 

 CĠVARINDAKĠ ASĠMPTOTĠK ÇÖZÜMLERĠ  

 

Özet 

 

Bu tezde, Love dalgalarının dispersiyonu lineer elastik bir tabaka ile örtülü 

lineer elastik malzemeden oluĢmuĢ yarı düzlemde homojen olmayan ön 

gerilme etkisi altında incelenmiĢtir. Denklemlerin elde edilmesinde küçük 

yerdeyiĢtirmeler çerçevesinde ön gerilmeli ortanmlarda yayılan elastik 

dalgaların klasik lineerize edilmiĢ teorisi kullanılmıĢtır. Çözüm ise bir 

asimptotik dizi biçiminde tanınmıĢ WKB yüsek frekans asimptotik yöntemini 

uygulayarak bulunmuĢtur. Ġdeal olmayan temas koĢullarının dalga yayılma 

hızına verdiği etki de ayrıca incelenmiĢtir. Dispersiyon eğrileri hemde bir 

geofisik öğrnek için değiĢik temas koĢulları ve ön gerilme deyerleri için 

sunulmuĢ ve tartıĢılmıĢtır. Kostik noktalarının civarındaki asimptotik 

çözümlerin olub olmadığı da göz önüne alınmıĢtır. 
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Chapter 1 

 

Introduction 

 

The scientist does not study nature because it is useful; he studies it 

because he delights in it, and he delights in it because it is beautiful. 

~Henri Poincare 

 

 

1.1   Introduction 

 

Seismic surface waves usually form the longest and the most powerful parts of 

seismic waves and produce harmful and most damaging effects of earthquakes into 

the buildings. Surface waves also play an important role in geological studies for site 

characterization, determination of shear wave velocity profiles, damping ratios, fault 

detection and study of the earthquakes. On the other hand, acoustic surface waves 

also have enormous applications in material sciences, electronic devises, non-

destructive testing and damage detections.  

 

When surface waves propagate in a layered half-space, their velocities depend upon 

the frequency of the vibrations, thickness, density and elastic properties of the 

constituents of the media, that is, they are dispersive and the relationships between 

velocity and frequency are usually plotted in dispersion curves.  

 

An important issue in the study of this type of elastodynamics problems is the study 

of the effect of initial stresses on the wave propagation characteristics.  Initial 

stresses might occur in composite materials or structural elements during their 
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manufacturing or assembling processes and in the Earth’s crust under the action of 

geostatic and geodynamic forces, for example as a result of difference of 

temperature, slow process of creep, differential external forces, gravity variations etc. 

It also important to note that the stress magnitudes in the Earth’s crust are not 

homogeneous throughout the crust and show linear increase with depth. These 

stresses have a profound influence on the propagation of surface waves. 

 

Second crucial issue in this regard is relates to study of the effect of imperfect 

bonding conditions between the covering layer and the half-space on a surface wave 

propagation. In fact, in the depths of the Earth's crust, contacts between layers of 

rocks are not in perfect bonding conditions and discontinuities in the form of 

fractures, faults and joints are common geological features. Such irregularities 

significantly affect the elastic wave propagation characteristics and a main 

consequence of that, is geometric dispersion of propagated waves. Likewise, in 

layered composite materials interface defects such as weak-bonding between the 

constituents which can be caused by interface damages or chemical actions etc. are 

unavoidable. Two classical boundary conditions are perfect bonded interfaces and 

full slipping interfaces. In perfect contact condition also known as welded interfaces 

all the stress and displacement components are continuous across the interface, 

whereas, in the case of full slipping conditions also known as non-welded interfaces 

there is a discontinuity in the shear component of the displacement. As mentioned 

above, this is not the real case and an actual interface conditions between layers is 

much more complicated in mathematical modeling viewpoint and different 

investigators spent significant efforts to describe the real physical conditions by 

different mechanical models. 

 

Theory of the seismic waves is based on the theory of elasticity. However, 

propagation of seismic waves is a complicated process and analytical solutions of the 

elastodynamics equations in general types of media cannot be solved exactly and 

either numerical methods such as finite-difference method or approximate solutions 

must be used. High-frequency asymptotic theory is one of the possible approaches 

and is a powerful technique introduced to solve these kind of equations 
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approximately. The high-frequency asymptotic methods usually are presented in the 

form of the, so to say, ray series. For this reason, the ray method is also often called 

the ray series method, or the Asymptotic Ray Theory (ART). Indeed, in asymptotic 

ray theory the solution of the elastodynamics equation is approximated in the form of 

a ray series. However, the classical asymptotic ray theory fails near singularities and 

it is valid only for regions where the ray field is regular. The points of the ray, at 

which the ray Jacobian vanishes, are called caustic points. Theoretically, caustics 

correspond to points at which the amplitude of the signal is infinite. This can be 

viewed as limitations to the classical asymptotic ray theory, nevertheless, it provide 

valuable insight into the physical phenomena. 

 

In the present study, dispersive behavior of surface waves in the half-space substrate 

covered by a layer, which are assumed to be linear and elastic, under the effect of 

inhomogeneous initial stresses with imperfect interface conditions is investigated. 

Classical linear elasticity theory with small initial deformations is applied and the 

Wentzel–Kramers–Brillouin (WKB) high-frequency asymptotic technique is adopted 

for the theoretical derivations. We are particularly interested in asymptotic solutions 

in the vicinity of caustic points. 

 

 

1.2   Literature Review 

 

Study of the elastodynamics problems became necessary in the second half of the 

20
th

 century. Since then, elastic waves have been studied elaborately and a large 

amount of literature can be found in the standard books such as Ewing et al (1957); 

Biot (1965); Achenbach (1973); Eringen and Suhubi (1975). After then a large 

amount of investigations have been done and published in many journals. More 

recently, a detail study of elastic wave propagation from seismological point of view 

also have been made by Pujol (2003) and Chapman (2004). 

 

Amount of works related to the study of wave propagation in initially stresses bodies 

are enormous. Here we will present a few of those numerous studies in line with the 

purpose of our study. Dey et al (1986) studied the possibility of propagation of 



4 
 

Rayleigh waves in an initially stressed incompressible half-space under a rigid layer 

and showed that such waves cannot propagate in an isotropic medium without tensile 

initial stress. Ahmed (2000) investigated the effect of initial stress on the propagation 

of Rayleigh waves in a granular medium under incremental thermal stresses. Liu et 

al (2001) studied the propagation behavior of Love waves in a layered piezoelectric 

structure with an initial stress and investigated the effect of the initial stress on the 

phase velocity of the propagation. Qian et al (2004, 2009) studied the effect of 

inhomogeneous initial stresses on dispersion of Love waves in a piezoelectric layered 

structure by solving the coupled electromechanical field equations. Du et al (2008) 

analytically investigated the dispersive and attenuated characteristics of Love waves 

under the effect of initial stress in piezoelectric layered structures loaded with 

viscous liquid. Qian et al (2010) investigated the effect of initial stress on the 

propagation behavior of Love waves in a piezoelectric half-space of polarized 

ceramics carrying a functionally graded material layer for both electrical open case 

and electrical short case, respectively. Chattaraj et al (2011) studied the propagation 

of torsional surface wave in fluid saturated poro-elastic layer lying over 

nonhomogeneous elastic half-space under compressive initial stress. Gupta et al 

(2011, 2012) studied the influence of irregularity, initial stress and porosity on the 

propagation of torsional surface waves in an initially stressed anisotropic poro-elastic 

layer over a semi-infinite heterogeneous half-space with linearly varying rigidity and 

density. Kakar and Kakar (2013) also investigated the effects of the gravity, rotation 

and magnetic field on the propagation of Rayleigh waves in a pre-stressed 

inhomogeneous, orthotropic elastic solid medium. 

 

The influence of interface conditions on elastic wave propagation also have been 

investigated using several theoretical methods in the literature depending on the 

character of the problem to be considered. Martin (1992) provided a brief review of 

different imperfect interface models in the literature and formulated the problem 

mathematically. He applied a simple linear modification to the perfect interface 

continuity conditions to model various intermediate imperfect conditions. In a 

particular case, this model is performed as a shear-spring type imperfect interface 

model, according to which, only shear displacements have discontinuity across this 
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interface and the jump of this discontinuity is connected linearly with the 

corresponding shear stress. An application and review of the related investigations on 

the influence of the shear-spring type imperfectness have been considered in many 

papers. To summarize some, Pecorari (2001) investigated the scattering problem of a 

Rayleigh wave by surface-breaking cracks with partial contact interfaces. 

Leungvichcharoen and Wijeyewickrema (2003) discussed the effect of an imperfect 

interface on harmonic extensional wave propagation in a pre-stressed, symmetric 

layered composite by employing shear spring type resistance model to simulate the 

imperfect interface. Melkumyan and Mai (2008) studied the effects of imperfect 

bonding in piezoelectric/piezomagnetic composites and showed that imperfection of 

the interface bonding has significant impact on the existence of interface waves and 

on their velocities of propagation. Kumara and Singh (2009) considered the 

propagation of plane waves at an imperfectly bonded interface of two orthotropic 

generalized thermoelastic rotating half-spaces with different elastic and thermal 

properties. Liu et al (2010) analyzed SH surface waves in a piezoelectric elastic layer 

and an elastic half-space structure with imperfect bonding. Zhou et al (2012) also 

tried to simulate the imperfect interface conditions by using linear spring model to 

study bulk wave propagation in laminated piezomagnetic and piezoelectric plates 

with initial stresses. Vishwakarma et al (2014) considered different types of 

imperfect interface to study the propagation of a torsional surface wave in a 

homogeneous crustal layer over an initially stressed mantle with varying rigidities, 

density and initial stresses. This completes our consideration of the investigations 

related to wave propagation in initially stresses bodies with perfect and/or imperfect 

interface conditions.  

 

We now consider a brief review of the investigations related to the asymptotic 

solution of high-frequency wave propagation problems in layered half-spaces as 

these investigations are also relevant to our study. Seismic ray theory presents an 

approximate high-frequency solution to the elastodynamics equation. Seismic ray 

theory has been described elaborately in several text books, for example, Babich and 

Buldyrev (1991), Cerveny (2001), Chapman (2004). Again, number of studies which 

applied the high-frequency asymptotic approximation to wave propagation problems 
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are enormous and here we will present a few of recent studies in the direction of our 

study purpose. Li et al (2004) studied the propagation behaviors of Love waves in 

inhomogeneous medium using WKB method and obtained the dispersion relations of 

Love waves for different gradient variation of material constants. Jin et al (2005) 

also applied the WKB method to solve the Rayleigh surface wave propagation in a 

homogeneous isotropic elastic structures with curved surfaces of arbitrary form. Liu 

et al (2007) on the basis of WKB method derived the dispersion equations for Love 

wave propagation in layered graded composites structures using the shear spring 

model for the rigid, imperfect, and slip interface cases. Cao et al (2008) employed 

the WKB technique for the asymptotic solutions of propagation of Rayleigh surface 

waves in a transversely isotropic graded piezoelectric half-space when material 

properties varying continuously along depth direction. Liu et al (2009) obtained the 

asymptotic solutions of Love waves by applying the WKB method and solved the 

fourth order differential equation with variable coefficients to investigate the effects 

of gradient variations of the piezoelectric and dielectric constants. Qian et al (2009, 

2010) investigated the existence and propagation behavior of transverse surface 

waves in a layered structure concerning a gradient metal layer by WKB method and 

obtained the dispersion equation for such structures. Balogun and Achenbach (2013) 

studied the surface waves generated by a time-harmonic line load on an isotropic 

linearly elastic half-space whose elastic moduli and mass density vary with the depth 

direction. 

 

 

1.3   Scope and Objectives 

 

The scope of this thesis is a contribution to understanding of the dispersive behavior 

of surface waves in a half-space substrate covered by a layer under the effect of 

linearly varying initial stresses. Classical linear elasticity theory with small initial 

deformations will be applied and the WKB high-frequency asymptotic technique is 

applied for the theoretical derivations. We are particularly interested in asymptotic 

solutions in the vicinity of caustic points. 
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First, the dispersion of surface waves in the half-space which is assumed to be linear 

and elastic and covered also by linear elastic layer with perfect contact interfaces will 

be investigated considering pre-stressing in the layer and in the half-space. Then, the 

same analysis is repeated this time considering the effect of imperfect interface 

conditions. 

 

 

1.4   Organization of thesis 

 

The thesis is divided into five chapters. The present chapter provides general 

introduction to the subject. Chapter 2 presents a brief review of the wave propagation 

theory in elastic media. Derivation of the elastodynamics equation of motion is 

described concisely and different types of surface waves in an elastic half-space 

covered by a layer is presented. Chapter 3 describes the method of WKB for high-

frequency approximation of the elastic waves. Basic concepts and brief derivation of 

the asymptotic ray series for a simple second order differential equation is presented 

and the implementation of the method to obtain approximate solution for surface 

wave propagation is discussed. Chapter 4 is dedicated to the formulation of the 

problem and some numerical analysis are performed. And finally some conclusion 

and discussions about the results and some suggestions for the future works is 

presented in chapter 5. 
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Chapter 2 

 

Elastic Waves 

 

2.1   Wave Equation  

 

In the linear theory of elasticity it is assumed that the deformations are very small 

and the relation between stress and strain is linear. Although this may not give an 

exact description of the physical problem, it provides a very useful solution which is 

reasonable as long as those assumptions are valid (Rose J.L. 1999). Consider 

Cauchy’s equations of motion: 

, ,ij j i if u                                                    (2.1) 

To derive the wave equation, we assume that a continuum is isotropic and 

homogeneous. Thus, the corresponding stress-strain relations can be written as 

follows (Hooke’s law): 

2 ,ij kk ij ij                                                   (2.2) 

where   and   are Lame’s constants and the strain-displacement relations are: 

, ,

1
( ),

2
ij i j j iu u                                                  (2.3) 

where   is the Cauchy’s stress tensor,   is the strain tensor,   is the material 

density, 
ij  is the Kronecker delta function, u  represent the displacement in the 
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spatial coordinate of the system and f  represent the external forces on the material 

particles which are assumed to be zero in our formulations. Note that the second 

order derivative of u  with respect to time is represented by u . Combining the 

equations (2.1), (2.2) and (2.3) in terms of the displacement u  yields the equation of 

motion in elastodynamics for isotropic homogeneous materials: 

, ,( ) .j ji i jj iu u u                                              (2.4) 

Note that we use the standard Einstein’s index notation in all the above equations. 

We can also state equations (2.4) concisely using vector calculus notation. The first 

summation term in the left-hand side of these equations is the divergence of u , 

namely, u , while the second summation term is Laplace’s operator, namely, 2 . 

Therefore, we can rewrite equations (2.4) as: 

2
2

2
( ) ( ) .

u
u u

t
   


     


                                   (2.5) 

This is the equations of motion, i.e. equation (2.4), in vector representation. It can be 

shown using Helmholtz decomposition that the displacement field u  decomposes 

into two independent vector fields for plane-wave assumptions (Slawinski 2007). 

These two fields represent two different kinds of waves and are solutions to the 

equations:   

2
2

2 2

1
,

t







 


                                                   (2.6) 

2
2

2 2

1
,

t







 


                                                  (2.7) 

for the longitudinal and the shear waves, respectively. Here   and   are scalar and 

vector potentials of the field, and 

2
,

 





                                                    (2.8) 

,





                                                            (2.9) 
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are propagation velocities of the longitudinal and the shear waves, respectively. 

Indeed, it follows from these equations that two types of elastic waves can propagate 

in a homogeneous isotropic medium, namely longitudinal and shear or transverse 

waves. 

 

 

2.2   Body Waves 

 

In general, there are two principle types of elastic body waves: Longitudinal waves 

and Transverse waves. Longitudinal waves are called in seismology P or primary 

waves, because they represent the first arriving waves on seismograms. Transverse 

or shear waves,  however,  are called S or secondary waves,  because they appear in 

seismograms after the primary waves. In longitudinal waves, the particle motion is in 

the direction of wave propagation, while in shear waves, the particle motion is 

normal to the direction of propagation (Figure 2.1). The velocities of longitudinal 

waves,  , and of transverse waves,  , in a homogeneous, isotropic medium are 

given by the equations (2.8) and (2.9) which is derived in the previous section, 

respectively. 

 

 
(a) 

 
(b) 

Figure 2.1   Body Waves: (a) P wave; (b) S wave. 
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2.3   Surface Waves 

 

In addition to the body waves that propagate in all directions into the medium, there 

exists another type of waves which for the most part restricted to the free boundary 

or surface of the medium and for that reason are called surface waves. These waves 

propagate along the surface of the body and their amplitudes rapidly decrease as the 

distance from the boundary goes to infinity. There are two the most important types 

of surface waves, Rayleigh waves and Love waves, which take their names after the 

scientists who studied them for the first time. Rayleigh waves essentially occur by 

the interactions of compressional waves (P waves) and vertically polarized shear 

waves (S waves) with the free boundaries of the medium, however, Love waves take 

place in a system consisting of a layer over a half-space or in general in layered 

structures when the velocity of S wave increase with depth. An important 

characteristic of surface waves is that they are dispersive, i.e. their propagation 

velocity is frequency dependent. In the following sections of this chapter we will 

consider this feature of surface waves more precisely. 

 

 

2.3.1   Rayleigh Waves 

 

As mentioned above, Rayleigh waves travel only along the free surface of an elastic 

bodies. The particle motion is elliptic and retrograde with respect to the direction of 

propagation (Figure 2.2). The components of displacement contain a vertical 

component and a horizontal component and the amplitude of the particle motion in 

these waves decreases exponentially with depth. Rayleigh waves in an elastic half-

space are non-dispersive, i.e. phase and group velocities of propagation are equal and 

do not depend on the frequency of the waves. However, when surface waves 

propagate in a layered half-space, their velocities depend on the frequency of the 

vibrations, thickness of the layer, density and elastic properties of the constituents of 

the layers and the half-space. Therefore, they are dispersive and the relationships 

between velocity and frequency (or wavelength) with parameters of the elastic 

properties are plotted as dispersion curves. In this case they are called generalized 
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Figure 2.2   Rayleigh Wave. 

 

 Rayleigh waves. It was established by Tolstoy and Usdin (1953) that the dispersion 

equation of the generalized Rayleigh waves has infinitely many modes unlike 

ordinary Rayleigh waves, which can propagate only in one mode.  

 

Consider an elastic layer over an elastic half-space as shown in Figure 2.3. Wave 

propagation is two dimensional, thus the displacement components  along  x  and  z 

directions u and w are non-zero, while displacement component v along y direction is 

set to be zero, that is 

 

 

 

, ,

0 , 1,2

, ,

m m

m

m m

u u x z t

v m

w w x z t

 


 




                            
(2.10)

 

and Rayleigh wave propagate in the positive direction of x axis. Note that the values 

related to the layer and the half-space are denoted by lower index 1,2m  , 

respectively. According to Helmholtz decomposition rule of the displacement vector, 

these displacement fields can be described by the potentials for the longitudinal 

waves,  , and transverse waves,  , in the following form: 

  
,m m

mu
x z

  
 

                                                  
(2.11) 

  
,m m

mw
z x

  
 

                                                  
(2.12) 
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Figure 2.3   System of a layer over a half-space. 

 

where the potentials must satisfy the wave equations: 

  

2
2

2 2

1
,m

m

m t







 

                                                
(2.13) 

  

2
2

2 2

1
.m

m

m t







 

                                              
(2.14) 

We are looking for the harmonic solutions of equations (2.13) and (2.14), which 

represent harmonic wave propagation along x direction. Thus,  

  

( )( ) ,ik x ct

m m z e 
                                          

(2.15) 

  

( )( ) ,ik x ct

m m z e  
                                         

(2.16) 

where k is the wavenumber and c is the phase velocity of wave propagation. By 

inserting displacements (2.15) and (2.16) into the waves equations (2.13) and (2.14), 

we obtain the following general solutions to the corresponding differential equations 

considering the decay conditions for the half-space: 

  
  ( )

1 cos sin ,ik x ctA kpz B kpz e  
                                

(2.17) 

  
  ( )

1 cos sin ,ik x ctC kqz D kqz e  
                               

(2.18) 

  

( )

2 ,krz ik x ctEe e  
                                                          

(2.19) 

  

( )

2 ,ksz ik x ctFe e  
                                                         

(2.20) 

where 
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2 2

2 2

1 1

1, 1,
c c

p q
 

   

                                        

(2.21) 

2 2

2 2

2 2

1 , 1
c c

r s
 

    .    

                                    

(2.22) 

 

 

2.3.2   Love Waves 

 

While Rayleigh waves exist at free surface of a body,  Love waves require some kind 

of a wave guide like an elastic layer over a half-space to propagate. The particles 

motion in Love waves are only horizontal and perpendicular to the direction of 

propagation (Figure 2.4). These wave are also dispersive because their velocity 

obviously depends on the frequency of the propagation. Moreover, several modes of 

propagation exist, because of the periodic nature of their dispersion function. We will 

consider this type of waves again in chapter 4 where we mathematically derive their 

equation of motion and their dispersion relation profoundly. It is worthy to mention 

once more that, like Rayleigh waves, Love waves also have significant importance in 

many engineering and scientific disciplines. For example, it is used by earthquake 

engineers for understanding the causes and amount of damages to the buildings and 

by seismologist for studying the subsurface structure and properties of the Earth’s 

crustal layer. Love waves propagating in the piezoelectric materials are also 

extensively used in electronic devices such as sensors and transducers.  

 

 

Figure 2.4   Love Wave. 
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Consider again an elastic layer over an elastic half-space as shown in Figure 2.3. 

Now, we will consider only the displacement v along y direction which is 

perpendicular to the direction of wave propagation, while the displacement 

components along x and z directions, u and w both are zero, thus  , ,v v x z t , 

0u w  . In this case, the equations of motion for SH type waves is written as: 

  

2
2

1 2

1

2

1

1
,v

t

v




 

                                                  
(2.23) 

  

2
2

2 2

2

2

2

1
,v

t

v




 

                                                 
(2.24) 

where 

  

2 21 2
1 2

1 2

, ,
 

 
 

 
                                          

(2.25) 

v1 and v2 are displacement components in the layer and the half-space, respectively. 

The resulting harmonic wave propagation along x direction for equations (2.23) and 

(2.24) can be written as:   

  

( )

1 1( , , ) ( ) ,ik x ctv x z t V z e 
                                         

(2.26) 

  

( )

2 2( , , ) ( ) ,ik x ctv x z t V z e 
                                        

(2.27) 

where k is the wavenumber, c the phase velocity of wave propagation, 1( )V z  and 

2 ( )V z  are two undetermined functions with respect to z coordinate only. By inserting 

displacements (2.26) and (2.27) into the waves equations (2.23) and (2.24) we obtain 

the following second order ordinary differential equations for undetermined 

functions 1( )V z  and 2 ( )V z : 

2
2

1 12

1

( ) 1 ( ) 0,
c

V z k V z


 
    

                                      

(2.28) 

2
2

2 22

2

( ) 1 ( ) 0,
c

V z k V z


 
    

                                      

(2.29) 
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The general solutions of the second order differential equations (2.28) and (2.29) can 

be expressed as follows: 

1( )         ,ikpz ikpzV z Ae Be                                          (2.30) 

2( )         ,ikqz ikqzV z C e De                                         (2.31) 

where  

2 2

2 2

1 2

1, 1,
c c

p q
 

   

                                   

(2.32) 

then, 

  (

1

)( , , )         ,ikpz ikpz ik x ctv x z t Ae B ee                               (2.33) 

  (

2

)( , , )       ,ikqz ikqz ik x ctv x z t Ce D ee                               (2.34) 

and A, B, C, D are arbitrary constants which must be determined from boundary 

conditions. 

 

 

2.4   Dispersion of Waves 

 

If propagation velocity of waves depends on frequency we say that the waves are 

dispersive. In a dispersive medium a wave changes its shape during propagation, 

because its spectral components propagate with different velocities. This may cause 

some technical problems in the measurements of the velocity of propagation or in 

their transmission. However this process can be used to study the properties of the 

medium which the waves have propagated through.  

 

There are two types of wave dispersion: material dispersion and geometrical 

dispersion. The material dispersion as its name implies is due to the change in the 

material properties of the structure. For example, this type of dispersion is familiar 

from optics, since the velocity of light in media depends on its frequency. The 

geometrical dispersion, on the other hand, is because of the interference of waves. 

This type of waves dispersion occur when the waves propagate in layered structures, 

or along the surface of a medium. As mentioned in the previous sections we shall 

study this type of dispersion in our investigations. 
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2.5   Boundary Conditions 

 

In general quantitative evaluation of physical properties of a considered problem 

requires adequate knowledge and understanding of its nature mathematically. Several 

theoretical methods are available in the literature for studying the influence of 

interfaces on elastic wave propagation depending on the character of the problem to 

be considered. The most frequently used method by many investigators is the 

displacement discontinuity method. 

 

Two classical boundary conditions, that are, perfect bonded interfaces and full 

slipping ones idealize real physical contact between two layers. In perfect contact 

condition also known as welded interfaces all the stress and displacement 

components are continuous across the interface, whereas, in the case of full slipping 

conditions also known as non-welded interfaces there is a discontinuity in the shear 

component of the displacement (Rokhlin and Wang 1991). 

 

Now we consider the formulation of the imperfect contact conditions on the interface 

plane between the covering layer and the half-space. It should be noted that, in 

general, the imperfectness of the contact conditions is identified by discontinuities of 

the displacements and forces across the mentioned interface. A review of the 

mathematical modeling of the various types of incomplete contact conditions for 

elastodynamics problems has been detailed in a paper by Martin (1992). It follows 

from this paper that for most models the discontinuity of the displacement u
  and 

force f
  vectors on one side of the interface are assumed to be linearly related to the 

displacement u
  and force f

  vectors on the other side of the interface. This 

statement, as in the paper by Rokhlin and Wang (1991), can be presented as follows: 

 f Cu Df
   ,   u Gu Ff

   ,                            (2.35) 

where C, D, G and F are three-dimensional  3 3  matrices and the square brackets 

indicate a jump in the corresponding quantity across the interface. Consequently, if 

the interface is at say z h , then: 
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 u u u
z h z h  

  ,      f f f
z h z h  

  .                        (2.36) 

It follows from (2.35) that we can write incomplete contact conditions for various 

particular cases by selection of the matrices C, D, G and F. One such selection was 

made in the paper by Jones and Whitter (1967), according to which, it was assumed 

that C D G 0   . In this case the following can be obtained from (2.35): 

 f 0 ,   u Ff
 ,                                             (2.37) 

where F is a constant diagonal matrix. The model (2.37) simplifies significantly the 

solution procedure of the corresponding problems and is adequate in many real cases. 

Therefore, this model is called a shear-spring type resistance model and has been 

used in many investigations carried out within the framework of classical 

elastodynamics. According to this statement, we also use the model (2.37) for the 

mathematical formulation of the imperfectness of the contact conditions in our 

investigations. 

 

 

2.6   Elastic Waves in Bodies with Initial Stresses 

 

 

Problems related to the nonlinear effects of the elastic waves arise in almost all fields 

of modern engineering branches such as civil, mechanical, aircraft and geophysical 

engineering and many others. One of the most common sources of nonlinearity in 

such problems associated to the initial stress state in the constituents of the medium. 

However, problems related to study of the wave propagation in initially stressed 

bodies cannot be solves within the framework of the classical linear theory of 

elasticity. Although many attempts have been done going back to the 19
th

 century, 

but it did not achieve noticeable progress until the second half of the 20
th

 century that 

the general nonlinear theory of elastic waves intensively developed. Therefore, at the 

present time, most studies of these types of elastodynamics problems are made in the 

framework of the Three-dimensional Linearized Theory of Elastic Waves in Initially 

Stressed Bodies (TLTEWIB). The general concepts and equations of the TLTEWIB 

have been presented elaborately in many classical texts such as Biot (1965), Eringen 
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and Suhubi (1975) and others. It should be noted that, the equations of the 

TLTEWIB are obtained from exact relations of the nonlinear theory of elasticity in 

initially stressed bodies by linearization of the equations with respect to small 

deformation. 

 

 

2.7   Crustal Stress Model 

 

The Earth is not a rigid body at rest and the Earth’s crust moves continuously caused 

by plate tectonics. In addition, earthquake ruptures also create discontinuous 

movements in different regions of the crust. Theses geological processes generate 

different types of stress fields in the crustal regions of the Earth. Moreover, 

anisotropy and heterogeneity of rock mass also can create structural stresses. In the 

context of rock mechanics, stresses within the Earth’s crust are usually described in 

terms of three principal stress components as the vertical stress generally due to the 

weight of the above rock masses (SV), the minimum horizontal stress (Sh) and the 

maximum horizontal tectonic stress (SH). In rock mechanics also the state of stress in 

which these three principal stresses are equal, (i.e. SV = SH = Sh), is referred to as 

lithostatic stress. As shown in Figure 2.5a, in the Earth’s crust the increase of 

lithostatic stress magnitudes with depth is linear with a slope of about 27MPa/km . 

 

  
(a) (b) 

Figure 2.5  Stress models: (a) lithostatic, and (b) biaxial state of stress in the 

Earth’s crust (Zang and Stephansson, 2010). 
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For rock having Poisson ratio of 0.25  , due to the biaxial state of stress model the 

horizontal stresses are each equal to one-third of the vertical stress (Figure 2.5b). 

Consequently, as stresses increase with depths by 27MPa/km in the lithostatic case 

(Figure 2.5a), the slope of horizontal stress with depth is only 9MPa/km

 

in the 

biaxial case (Figure 2.5b). Note that, this law is valid at least in the top third of the 

continental crust beneath Europe down to 9.1 km and approaching temperatures of 

265°C close to the brittle ductile transition (Zang and Stephansson 2010). 
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Chapter 3 

 

Asymptotic Ray Theory 

 

3.1   Introduction 

 

The propagation of seismic waves generally in inhomogeneous and anisotropic 

structure of the Earth is very complicated processes. In such a complex structure, 

analytical solutions of the elastodynamics equations cannot be obtained exactly and 

standard modeling techniques cannot be used. Common approaches to face such 

types of problems are:  

 Numerical solutions of the elastodynamics equations based on the 

methods such as finite-difference or finite-element methods. 

 Asymptotic solutions of the elastodynamics equations using approximate 

high-frequency analysis. The most well-known representative of these 

techniques is the Wentzel-Kramers-Brillouin (WKB) method which is 

based on the Asymptotic Ray Theory. The solution is usually given in the 

form of the so-called ray series or asymptotic series. In fact, this is 

another way of using an infinite series to describe a functions at a point. 

It is also interesting to note that most of the time even only the leading 

term of such a series make desired accuracy for the problem (zero-order 

ray solution). 

 

Asymptotic ray theory (ART) for elastodynamics problems has been introduced for 

the first time by Babich (1956) and Karal and Keller (1959). The theory has been 

described elaborately in several text books, such as, Nayfeh (1981), Bender (1999), 
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Holms (1995) and Awrejcewicz and Krysko (2006). Here we only give some basic 

definitions and ideas behind asymptotic analysis and consider a brief review of the 

principle concepts related to the asymptotic solution of high-frequency wave 

propagation problems. 

 

3.2   Asymptotic Approximation 

 

Definitions: 

1. We say: 

 ( ) ( )f x O g x  as 0x x ,                                  (3.1) 

if there is a constant A such that: 

( ) ( )f x A g x , 

for all x sufficiently near x0. 

If one function is much smaller than another we write: 

 ( ) ( )f x o g x  as 0x x ,                                    (3.2) 

if 

0

( )
lim 0

( )x x

f x

g x
 . 

2. Given two functions ( )f x  and ( )g x , we say that g  is an asymptotic 

approximation to f as 0x x  whenever the relative error between f and g  

goes to zero as 0x x : 

0

lim ( ) ( ) 0,
x x

f x g x


   

where f  and g  are defined on some interval containing 0x . Or equivalently: 

0

( )
lim 1

( )x x

f x

g x
 .                                           (3.3) 

We denote this equivalency by f g  as 0x x . Usually g  is called the 

gauge function. 

3. A set of gauge functions  ( ) , 1,2,...ng x n   is an asymptotic sequence as 

0x x  if:  

 1( ) ( )n ng x o g x  . 
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4. We say that ( )f x  has an asymptotic expansion with respect to the 

asymptotic sequence  ( )ng x  if there are constants ak such that for each n, 

 
0

( ) ( ) ( )
n

k k k

k

f x a g x o g x


   as 0x x , 

or 

0

( ) ( )
n

k k

k

f x a g x


  as 0x x .                                (3.4) 

5. The power series 
0

0

( )n

n

n

a x x




  is said to be asymptotic to function 

( )f x  as 0x x  if: 

0
0

0

lim ( ) ( ) 0,n

n
x x

n

f x a x x





 
   

 
  

then we write: 

0

0

( ) ( )n

n

n

f x a x x




 .                                       (3.5) 

We can simply find the coefficients of the asymptotic series from definition 

(3.5), starting from computing 0a , then 1a  and so on. Note that, asymptotic 

series are divergent most of the time. It definitely makes no sense to sum 

terms of an asymptotic series up to some high number. In fact, we usually 

take just the first few terms of an asymptotic series or even the leading term 

only. 

 

3.3   WKB Method 

 

As mentioned earlier, wave propagation in inhomogeneous and anisotropic media is 

a complex physical phenomena, whose analytic solution is difficult or may be 

impossible. However, at high-frequency excitation of the medium the process can be 

accurately described by a relatively simple asymptotic expression. Practically, high-

frequency asymptotic approximation is valid if no significant changes in the elastic 

parameters of the medium occur within a wavelength of excitation. The asymptotic 
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representation that we describe in this section is the well-known WKB expansion. 

The exponential approximation known as a WKB approximation, named after 

Wentzel, Kramers, and Brillouin who popularized the theory. Consider wave 

equation: 

 
2

2 2

2
,

v
v n

t


 


                                                  (3.6) 

where 2  is Laplacian operator. We are interested in the time-harmonic response of 

the equation (3.6) and so let: 

( , ) ( ) .i tv t u e x x                                              (3.7) 

Substituting this into the equation (3.6) yields what is known as Helmholtz equation 

or the reduced wave equation, given as: 

2 2 2 0.u n u                                                (3.8) 

We are looking for the solution of equation (3.8) in the following form: 

i Su Ae                                                         (3.9) 

where A  is the amplitude and S  is the eikonal, both depend on the coordinates. 

According to WKB procedure, in order to find the asymptotic solution of (3.8) for 

large values of   we substitute equation (3.9) into equation (3.8) and equate the 

coefficients of power of   and 
2  to zero, we got equations for S  and A  as: 

 
2 2 ,S n                                                      (3.10) 

2 0.S A A S                                                 (3.11) 

Equation (3.10) is known as the eikonal equation in optics. This is a first-order 

nonlinear partial differential equation which plays a very important role in optics and 

in wave propagation in elastic media. Physically, this equation determines a surface 

of constant phase as wave fronts. The solution of this nonlinear equation can be 

obtained for example using the classical characteristics or ray method for the first-
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order nonlinear partial differential equations (e.g. Courant and Hilbert 1989). 

Advantage of the characteristics method is that the partial differential equation is 

replaced by a set of ordinary differential equations, which are in general, easier to 

solve. It should be mentioned that, it is customary to write characteristics equations 

in terms of Hamiltonians, so, in Hamiltonian formulation we can obtain ray 

equations as follows: 

,i

i

dx H

dt p





 

, 1,2,3.i

i

dp H
i

dt x


  


                              (3.12) 

Equation (3.11) is called the transport equation. In fact, the transport equation 

describes the amplitude along the wave front. Although this is a linear ordinary 

differential equation its character might be complicated, however, it turns out that the 

transport equation can be solved in terms of rays as well. 

 

Theoretically WKB method can be applied to multi-dimensional wave equation with 

partial derivatives, however, here we only consider one dimensional wave equation 

in more details because it describes our model for surface wave equation which we 

will use in the next chapter.  

 

We are interested to approximate the solution of differential equations of the form: 

2 ( ) 0,y q x y                                                  (3.13) 

where 
2  is a large parameter. Closed form solution of the equation (3.13) only 

exists for some very simple forms of the function ( )q x . However, when 
2  is very 

large then the equation (3.13) would have the solutions of the form: 

 ( )( ) i S xy A x e  ,                                               (3.14) 

where A  and S  are undetermined functions of x. Assuming, 
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0 1 22

1 1
A A A A

 
    , 

we will have: 

( )

0 1 0 1

1 i S xy A A i A S iA S e 


 
         

 
                                    (3.15) 

                     0 1 0 0 1 1

1
y A A i A S i A S iA S iA S 




             


     

2 2 2 ( )

0 1 0 1

i S xi A S iA S A S A S e   


          


.      (3.16) 

Substituting equations (3.16) and (3.14) into equation (3.13) and equating the 

coefficients of each power of   to zero, we got the following infinite number of 

equations: 

2

0 0 0,S A qA                                                  (3.17) 

0 02 0,S A S A                                                   (3.18) 

0 1 12 0,A iS A iS A                                             (3.19) 

… 

Solutions of the equations (3.17) and (3.18) can be find easily:  

( ) ,S q x dx                                                 (3.20) 

1/4

0 ( ) .A q x                                                        (3.21) 

We have therefore found first-term approximation of the general solution of equation 

(3.13) as follow: 

 1/4 2  ( ) ~   ( ) ( ) ( ) ,expy x q x i q x dx O    
                    (3.22) 

thus, the general homogenious solution of the equation for oscillatory case is of the 

form: 

                 
1/4 2  ( ) ~   ( ) )s ( ) (coAy x q x q x dx O  


 

   

2  ( ) (si ) ,nB q x dx O   
               (3.23) 
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where A and B are arbitrary constants. When O-terms are omitted the solution (3.23) 

is called the WKB approximation.  

 

Note that the non-oscillatory solution of the equation (3.13) can also be obtained 

simply by changing the sign of the function ( )q x  in that equation. We have therefore 

found a first-term approximation of the general solution of (3.13) for non-oscillatory 

case as: 

    1/4  ( ) ~   ( )  exp ( ) ex ( ,p )y x q x C q x dx D q x dx                (3.24) 

where C and D are arbitrary constants. 

 

As stated above in deriving the WKB approximation, the points where ( )q x  is zero, 

entirely change the behavior of the solution. So, the function ( )q x  must be nonzero 

and the values of x where ( )q x  become zero are called turning points. Suppose there 

exists a single turning point  xt  where ( ) 0q x   if x > xt and ( ) 0q x   if  x < xt. This 

means that the solution of equation (3.13) will be oscillatory if x < xt and exponential 

if x > xt and we must use the WKB approximation on either side of the turning point 

separately to obtain the general solution of the problem. 

 

 

3.4   Caustics 

 

Classical asymptotic ray theory fails near singularities. The points of the ray, at 

which the ray Jacobian vanishes, are called caustic points. Theoretically, caustics 

correspond to points at which the amplitude of the signal tends to infinity. This can 

be viewed as limitations to the classical asymptotic ray theory. In most general form 

in three dimensional space caustics are the envelopes of the characteristics, however,  

as indicated above, the solution of the transport equation also might have a 

singularity, which is a caustic. 
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Figure 3.1  Formation of a caustic. 

 

In optics the name caustic is given to the envelope of rays after their reflection or 

refraction, which is related to extraordinary brightness. The same idea applies to 

seismic rays associated with large amplitudes. Figure 3.1 shows a simple example of 

caustics. It shows the formation of a caustic as an envelope of SH rays reflected from 

the free surface of an elastic half-space in which the velocity is a linear function of 

depth (Ben-Menahem 1981). 

 

It should be mentioned that the asymptotic solutions of wave equation close to 

caustics can also be derived, and correct amplitude of the ray can be computed, 

however, for these situations more detailed models such as uniform asymptotic 

expansions are needed (Borovikov and Kinber 1994). 

 

 

 

  

 

 

 

 

 

 

 

 

 



29 
 

 

 

 

 

 

Chapter 4 

 

Numerical Results      

 

4.1   Formulation of the Problem 

 

Consider an elastic half-space covered by an elastic layer with thickness h as shown 

in Figure 4.1. Here we determine the positions of the points by the Cartesian system 

of coordinates Oxyz with  O  being  any  point  on  the  free  surface. The layer and 

the half-space occupy the regions  ,x    ,y   0 z h   and 

 ,x    ,y   h z   , respectively. We assume that Love wave 

propagate in the positive direction of x axis. Thus, the displacement component v 

along y direction is non-zero while the displacement components along x and z 

directions, u and w both are zero, i.e. 0u w  ,  , ,v v x z t . Let the system be 

under initial normal compressive stress 
0

z  along z direction and compressive or 

tensile initial stress 
0

x  along  x direction, respectively. The initial compressive stress 

0

z  may be due to weight of the material of the layer and the half-space or some 

other external loads. However, the initial stress 
0

x  might have been generated 

through other processes such as creep, temperature difference or some external 

forces. Note that the following notation will be used through the formulations: The 

values related with the covering layer and the half-space are denoted by upper 

indices 1 and 2, respectively. The values related to the initial stresses, though, are 

denoted by upper index 0.   

  



30 
 

 
Figure 4.1   The geometry of the problem. 

 

The dynamical equations of motion for initially stressed incompressible medium 

assuming small initial deformations are written as (Biot 1965), 

 

  

( ) ( ) 2 2 2
0 0 ( )

2 2

( ) ( ) ( )

2
, ( 1,2)

m m m m m
xy yz m

x z

v
m

x z x z

v

t

v 
  

    
    

            
(4.1) 

 

where 
( )m

xy
 
and 

( )m

yz  are components of the Cauchy stress tensor, ( )mv  are the 

components of the displacement vector along y direction, ( )m  are the mass density 

of the layer and the half-space, respectively. Note that, constitutive relations for a 

linear isotropic elastic solid are given by: 

 

( ) ( )
( ) ( ) ( ) ( ), , ( 1,2)

m m
m m m m

xy yz

v v
m

x z
   

 
  

 
                   (4.2) 

 

where ( )m  is the shear modulus or Lame’s second parameter. The strain 

components in equation (4.2) can be calculated through the following formula: 

 

( )
( ) ,

m
m

x

u

x






   

( )
( ) ,

m
m

z

w

z






   

( ) ( )
( ) 1

,
2

m m
m

zx

u w

z x


  
  

  
 ( 1,2)m  .       (4.3) 

The displacements components of the considered system can be assumed to have the 

following form: 
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( ) ( ) ( )( , , ) ( ) , ( 1,2)m m ik x ctv x V z e mz t  
                          

(4.4) 

 

where k is the wavenumber, c the phase velocity of wave propagation, 1i   , 

(1) ( )V z  and 
(2) ( )V z  are two undetermined functions with respect to z coordinate 

only. This way we obtain the following equation for 
(1) ( )V z  and 

(2) ( )V z from the 

equation (4.1)–(4.4) as: 

2 (1)
2 (1) (1)

2

d ( )
( ) ( ) 0,

d

V z
k q z V z

z
 

                                      

(4.5) 

2 (2)
2 (2) (2)

2

d ( )
( ) ( ) 0,

d

V z
k q z V z

z
                                       (4.6) 

where 

(1) 0 (1) 2
(1)

(1) 0

( )
( ) ,

( )

x

z

z c
q z

z

  

 

  



                                     

 (4.7) 

(2) 0 (2) 2
(2)

(2) 0

( )
( ) .

( )

x

z

z c
q z

z

  

 

 



                                       (4.8) 

 

Equations (4.5) and (4.6) are second order differential equation with variable 

coefficients and in general obtaining the exact solution of the problem is very 

difficult. However, for high-frequency waves whose wavenumber is very large,  i.e.  

k >> 1, the WKB asymptotic approximation method can be applied to obtain 

approximate solution of the problem. Thus by assuming that k is a large number then 

1/ 1k    will be a very small number and the equations (4.5) and (4.6) in general 

form can be recast as: 

2
2

2

d ( )
( ) ( ) 0.

d

V z
q z V z

z
                                           (4.9) 

We are looking for the solution of equation (4.9) in the following form: 

 

( )/

0

( ) ( )i z n

n

n

V z e S z  




 ,                                         (4.10) 
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where   and , 0,1,2,3,...iS i   are undetermined functions of z. Substituting equation 

(4.10) into (4.9) and equating the coefficients of each power of   to zero, we get an 

infinite number of equations: 

2

0 0 0,S qS                                                   (4.11) 

0 02 0,S S                                                   (4.12) 

0 1 12 0,S i S i S      
                                   

   (4.13) 

… 

where superscript ’ denotes differentiation with respect to the coordinate z. Equation 

(4.11) is a first order nonlinear differential equation and is called the eikonal 

equation. Its solutions can be find easily:  

 

( ) .q z dz                                                   (4.14) 

 

The other equations are linear and determine the higher order terms in the expansion.  

The second equation is called the transport equation, then we got the following 

expression for 
0S from equation (4.12), 

 
1/4

0 .S q                                                        (4.15) 

 

We have therefore found that a first-term approximation of the general solution of 

equations (4.5) and (4.6) are: 

   

(1) (1)( )   ( )
(1) (1) 1/4

1 1  ( ) ~   ( )     ,
i i

q z dz q z dz

V z q z A e B e 



  

 
                    

(4.16) 

( 2)1
( )

(2) (2) 1/4

2  ( ) ~   ( )   ,
q z dz

V z q z A e 



 
 
 

                                         (4.17) 

where A1, B1 and A2 are arbitrary constants. Note that, the solution of the second 

equation in (4.17) satisfies the decay condition i.e. 
(2) ( ) 0V z   as z  . Hence, 

the displacement components in the covering layer and half-space are given by: 
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(1) (1)( )   ( )(1) (1) 1/4

1 1

( )  ( , , ) ~   ( )     ,
ik q z dz ik q z d ik x ctz

v x z t e eq z A e B
    

            
(4.18) 

( 2)  ( )(2) (2) 1/4 ( )

2( , , ) ~   ( )   ik x ctk q z dz
v x z t q A e ez

   
 
 

 .                                (4.19) 

 

4.2   Boundary Conditions and Dispersion Equation 

 

We assume that the following boundary conditions on the free face plane of the 

covering layer satisfy:  

(1)

0
0yz z



 .                                               (4.20) 

Now we consider the formulation of the imperfect contact conditions on the interface 

plane between the covering layer and the half-space. It should be noted that, in 

general, the imperfectness of the contact conditions is identified by discontinuities of 

the displacements and forces across the mentioned interface. According to the 

discussion made in the previous subsection and according to Martin (1992) the 

mathematical formulation of the imperfectness of the contact conditions and these 

conditions are written as follows: 

 

(1) (2) ,yz yzz h z h
 

 
                                               (4.21) 

(2) (1 (2)

(2)

) | , 0z hz h z h yzv
h

F Fv 


 
                          (4.22) 

 

where F  is a non-dimensional shear-spring parameter and 0 F  . Note that the 

case where 0F 
 
means that the displacement component across the interface is 

continuous and therefore the half-space and the covering layer are perfectly bonded 

together or to say that they are in welded contact condition. At the other extreme, 

F 
 
implies that the half-space and the covering layer are completely unbounded 

together and the full slipping condition is satisfied. Thus, any other finite positive 

values of F  expresses different imperfect interface conditions in the problem. 
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Substituting of the equations (4.18) and (4.19) and their corresponding stress 

displacement components into the equations of motion (4.1) and considering the 

boundary conditions (4.20)-(4.22) yields the system of three homogenous algebraic 

equations for A1, B1 and A2. For a nontrivial solution the determinant of the 

coefficients must vanish giving the dispersion equation of Love wave propagation, 

 

det 0, , 1,2,3.ij i j                                          (4.23) 

 

Since the explicit expressions of the ij  in the dispersion equation (4.23) are 

cumbersome we are omitting these details. This completes the formulation of the 

problem and in the case where 0 0 0x z    this formulation transforms to the 

corresponding one made within the scope of the classical linear theory of 

elastodynamics. 

 

 

4.3   Numerical Results 

Now we perform numerical calculations here to study the quantitative and qualitative 

influence of initial stresses and imperfect bonding conditions on dispersion of Love 

wave propagation. In the following numerical example, we assume that 

(1) 32800 kg/m  ,
 

(1) 3000 m/s 
 

and 
(2) 33200 kg/m  , 

(2) 5000 m/s 
 

and 

10 kmh   (Aki and Richards 2002); where 
(1) , 

(2)  are the mass density and 
(1) , 

(2)  are the shear wave velocities in the layer and the half-space, respectively, and h 

is the thickness of the crustal layer. We assume that all the initial stresses in the 

medium are zero (i.e.
 

0 0 0x z   ), and study the effect of imperfectness of the 

contact conditions first. After programming of the dispersion equation (4.23), we 

obtain Love wave dispersion curves as Figure 4.2, which shows the dependencies 

between non-dimensional phase velocity 
(1)/c   and non-dimensional wavenumber 

kh  for different imperfect contact conditions for the considered example. Figure 4.2 

gives dispersion curves for the first four modes of Love wave propagation in the 
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Figure 4.2  Dispersion curves for the first four mode of Love wave propagation for 

the considered example. The numbers in the figure fields show the values of the 

parameter F . 

 

system consisting a covering layer and a half-space as described in above example. 

Note that, the numbers labeled on the curves correspond to the dimensionless 

imperfect parameter F of the related curves. Also, note that the curves given in the 

figure for welded contact condition, i.e. where 0F  , coincide with corresponding 

ones in classical theory for perfect contact condition. It follows from Figure 4.2  that 

the imperfectness between the constituents causes to decrease of the wave 

propagation velocity for all modes of propagation of Love waves. In this cases values 

of the velocity decrease monotonically with the shear-spring parameter F . It is seen 

from the figure that the dimensionless wavenumber kh  has cut-off values for the 

higher modes of wave propagation, however, the imperfectness of the interface 

conditions do not effect or change these cut-off values for the higher mode of 

propagation. In addition, as the figure illustrates the low and the high wavenumber 

limit values of the wave propagation velocities as 0kh  and kh , do not 

depend on the imperfectness of the interface, i.e. on the parameter F . It is also seen 

that, in general, in lower wavenumbers the higher modes of Love wave propagation 

are less sensitive to interface conditions than the first mode of propagation. In other 

words, higher the mode number, less sensitivity to imperfectness of the interface 

conditions. 
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Now we analyze the numerical results related to the influence of the initial stresses in 

the constituents of the medium on the wave propagation velocity. However, before to 

obtain explicit expressions for dispersion equation (4.23) and consequently to obtain 

related dispersion curves we need to determine the variation pattern of the initial 

stresses in the system. It is known that approximately initial stress magnitudes in the 

Earth’s crust show a linear increase with depth (Zang and Stephansson 2010). 

Accordingly, here we also assume that the initial stresses vary linearly with depth 

and the variation pattern of the initial stresses in both normal and transverse 

directions are taken as the following relations: 

0 0( ) (1 )x xz mz   
                                           

(4.24) 

0 0( ) (1 )z zz nz                                                (4.25) 

where 
0

x ,
 

0

z
 
denote the magnitudes and m , n  denote the gradient coefficients of 

the inhomogeneous initial stresses in the transverse Ox and in the normal Oz 

directions, respectively. 

 

For now, we assume that the magnitudes of the both initial stresses in the normal and 

the transverse directions do not change in depth, i.e. 0
x  and 0

z  both are constants or 

saying that, 0m n  . We will consider different possible combinations of the initial 

stresses in the system. So in the following we will study the results for the five initial 

stress cases as: 

Case 1.   0 0x  ,   0 0z  ; 

Case 2.   0 0x  ,   0 0z  ; 

Case 3.   0 0x  ,   0 0z  ; 

Case 4.   0 0x  ,   0 0z  ; 

Case 5.   0 0x  ,   0 0z  .                                      (4.26) 

For estimation of the magnitude of the initial stresses we also introduce a new 

dimensionless parameters as: 

 
 

0

1 1

x



 ,   

 

0

2 1

z



 .                                         (4.27) 
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Moreover, we introduce the notation: 

 1 2 1 2

1 2

0; 0 0; 0

0; 0

c c

c

   

 


   

 


 ,                               (4.28) 

for estimation the influence of the initial stresses in the constituents, i.e. the influence 

of the parameters 1  and 2  on the wave propagation velocity. Thus, through the 

graphs of the dependencies between   (4.28) and kh  constructed for various values 

of the parameters 1 , 2  and F  we analyze the effect of the imperfectness of the 

contact conditions between the covering layer and the half-space on the influence of 

the initial stresses in the constituents on the wave propagation velocity in the cases 

noted in (4.26).  

 

Numerical results obtained for the above mentioned five initial stress cases are given 

in Figures 4.3 through 4.7, respectively. Note that in these figures the graphs 

indicated by letter a correspond to the first and the graphs indicated by letters b 

correspond to the second mode of the wave propagation. Also note that the numbers 

in the figure fields show the values of the imperfectness parameter F
 
for the related 

curves. 

 

Figure 4.3 shows the influence of the imperfect bonding conditions and initial 

stresses on the dispersion of Love wave for the first and second modes of the wave 

propagation in Case 1 ( 0 0x  , 0 0z  ). The graphs indicate that the initial stretching 

stresses in the covering layer and in the half-space causes to increase the wave 

propagation velocity and the velocity increase monotonically with 1 . Also, the 

graphs show that the wave propagation velocity increase monotonically with the 

parameter F . Consequently, the imperfectness of the contact conditions causes to 

increase the influence of the initial stretching in the covering layer and in the half-

space on the wave propagation velocity related to the first and second modes of the 

propagation. 
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(a) 

(b) 

Figure 4.3  The influence of the imperfect bonding conditions and the initial 

stresses on the dispersion of Love wave for (a) the first and (b) the second mode of 

the propagation for Case 1. The numbers in the figure fields show the values of the 

parameter F . 

 

Figure 4.4 shows the influence of the imperfect contact conditions and initial stresses 

on the dispersion of Love wave for the first and second modes of the wave 

propagation in Case 2 ( 0 0x  , 0 0z  ). These graphs show that as a result of the 

initial compressing stresses in the covering layer and in the half-space, unlike the 

initial stretching stresses as considered in previous case (Figure 4.3),  the wave 

propagation velocity decreases. In this case the imperfectness of the contact 

conditions also decrease the wave propagation velocity related to the first and the 

second modes of propagation and the velocity decrease monotonically with 1 . 
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(a) 

(b) 

Figure 4.4  The influence of the imperfect bonding conditions and the initial 

stresses on the dispersion of Love wave for (a) the first and (b) the second mode of 

the propagation for Case 2. The numbers in the figure fields show the values of the 

parameter F . 

 

Consequently, the imperfectness of the contact conditions, as in the previous case, 

also increase the influence of the initial compressing in the system. Figure 4.5 

illustrates the influence of the imperfect interface conditions when there exists only 

initial compressive stresses in normal direction,  Case 3 ( 0 0x  , 0 0z  ), on the 

dispersion of Love wave velocity for the first and second modes of the wave 

propagation. The figure shows that as a result of the initial compression in normal 

direction the wave propagation velocity increases. In this case the imperfectness of 

the contact conditions, in general, causes to increase the wave propagation velocity 

related to the first and the second modes.  However, the imperfectness of the contact 
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(a) 

(b) 

Figure 4.5  The influence of the imperfect bonding conditions and the initial 

stresses on the dispersion of Love wave for (a) the first and (b) the second mode of 

the propagation for Case 3. The numbers in the figure fields show the values of the 

parameter F . 

 

conditions before a certain value of the kh  causes to decrease the wave propagation 

velocity. In other words, the influence of the parameter F  on the graphs between   

and kh  which are shown in Figure 4.5, has a complicate character. For instance, in 

the first mode of propagation at interval 0 0.5kh  ; and in the second mode at 

interval 0 4kh  , the imperfectness of the contact conditions can cause to change 

the character of the dispersion curve. Consequently, the shear-spring type 

imperfectness between the constituents can acts on the dispersion curves not only 

quantitatively, but also qualitatively. Moreover, the influence of the parameter F  on 
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(a) 

(b) 

Figure 4.6  The influence of the imperfect bonding conditions and the initial 

stresses on the dispersion of Love wave for (a) the first and (b) the second mode of 

the propagation for Case 4. The numbers in the figure fields show the values of the 

parameter F . 

 

wave propagation velocity is non-monotonic. In is also worth to notice that in this 

case, i.e. when only initial compressive stress in normal direction acts on a system 

the low and the high wavenumber limit values of the wave propagation velocities as 

0kh  and kh , unlike other four considered cases, do not depend on the 

imperfectness of the interface, i.e. on the parameter F . 

 

Figure 4.6 shows the influence of the imperfect contact conditions and initial stresses 

on the dispersion of Love wave for the first and second modes of the wave 
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(a) 

(b) 

Figure 4.7  The influence of the imperfect bonding conditions and the initial 

stresses on the dispersion of Love wave for (a) the first and (b) the second mode of 

the propagation for Case 5. The numbers in the figure fields show the values of the 

parameter F . 

 

propagation in Case 4 ( 0 0x  , 0 0z  ). The figure shows that as a result of this  

initial stress pattern the wave propagation velocity also increases. However, just as 

the previous case, the imperfectness of the contact conditions has a complicate 

 character and before a certain value of the kh  causes to decrease the wave 

propagation velocity. For instance, in the second mode at interval 0 4kh  , the 

imperfectness of the contact conditions change the character of the dispersion curve 

and decreases the velocity of wave propagation. Similarly, the influence of the 

parameter F  on wave propagation velocity also is non-monotonic. 
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Finally, Figure 4.7 shows the influence of the imperfect contact conditions and initial 

stresses on the dispersion of Love wave for the first and second modes of the wave 

propagation in Case 5 ( 0 0x  , 0 0z  ). The results of this initial stress pattern are 

similar to the case 2 (Figure 4.4). Figure 4.7 show that as a result of this initial stress 

pattern the wave propagation velocity decreases. In this case also the imperfectness 

of the contact conditions decrease the wave propagation velocity related to the first 

and the second modes of propagation and the velocity decrease monotonically.  

 

This completes our analyses of the numerical results related to constant initial 

stresses in the constituents of the system and now we are going to study the effect of 

inhomogeneous initial stress on dispersion of Love wave propagation on a system 

consisting of an elastic layer over an elastic half-space.  

 

As discussed in the foregoing sections we assume that the initial stresses vary 

linearly with depth and the variation pattern of the initial stresses in both normal and 

transverse directions are taken as equations (4.24) and (4.25). Substituting these 

equations into the equations (4.7) and (4.8), respectively, we got: 

 
(1) (1) 2

(1)

(1) 0

0 (1 )
( ) ,

(1 )

x

z

mz c
q z

nz





 



    


  
                           

 (4.29) 

(2) (2) 2
(2)

(2) 0

0 (1 )
( ) .

(1 )

x

z

mz c
q z

nz

 

 

   


  
                             (4.30) 

To obtain the displacement components in the covering layer and in the half-space as 

given by equations (4.18) and (4.19) we have to integrate 
(1) ( )q z  and 

(2) ( )q z . 

However, without loss of generality, we assume that, ( )
a z b

q z
c z d





, to simplfy the 

calculations and integarte it in the following general form: 

 

 
 

 

2 2 2 2 22 2 2 2

3 3

1
5/2

3/2

( ) 22
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a a cz d
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 
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  



,
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where in the case of (1) ( )q z  and (2) ( )q z , the expressions for the parameters a, b, c 

and d are given by:  
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(1)
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(1) 0

0

0
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x
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z
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(2) (2) 2
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(2

0

0

) 0
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x
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z

z

a m
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q z

c n
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

 
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  
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


 

 

 

Inserting these results to the displacement components in the covering layer and the 

half-space, equations (4.18) and (4.19), and considering the boundary conditions, 

equations (4.20)-(4.22), yields the system of three homogenous algebraic equations 

as discussed in the earlier sections. For a nontrivial solution the determinant of the 

coefficients must vanish giving the dispersion equation of Love wave propagation. 

Since the expressions for the components of the matrix of the corresponding 

dispersion determinant are cumbersome we are omitting here these details.  The 

explicit expressions of the ij  in the dispersion equation (4.23) for two typical 

examples when 
0( )x z m z  , 

0 0z 

 

and 
0 0x  , 

0

z n z 

 

as special cases are 

presented in the end of this chapter. 

 

Now, again we consider the numerical results in our pervious geophysical example; 

this time we assume that the initial stresses are not constant and vary linearly with 

depth, equations (4.24)-(4.25). We assume that 
(1) 32800 kg/m  ,

 

(1) 3000 m/s 
 

and 
(2) 33200 kg/m  , 

(2) 5000 m/s 
 
and thickness of the Earth’s crustal layer is  

10 kmh  . As discussed in chapter 2, in the Earth’s crust the lithostatic stress 

magnitudes increases linearly with depth, therefore we assume that the gradient 

coefficients of the inhomogeneous initial stresses in the transverse and in the normal 

directions are 9000 MPa/kmm  and 27000 MPa/kmn  , respectively. Figure 4.8 

through Figure 4.11 show the dispersion curves for the first four modes of Love 

wave propagation in this example for the initial stress cases as described before by 

equation (4.26). Note that each curve in the graphs is obtained for different value of 

the initial stress values 
0

x  and 
0

z  as indicated in the figures. 
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Figure 4.8 The influence of the inhomogeneous initial stress on the dispersion 

curves for the first four mode of Love wave propagation for Case 1. 

 

 

 

 

Figure 4.9 The influence of the inhomogeneous initial stress on the dispersion 

curves for the first four mode of Love wave propagation for Case 2. 
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Figure 4.10 The influence of the inhomogeneous initial stress on the dispersion 

curves for the first four mode of Love wave propagation for Case 4. 

 

 

 

 

Figure 4.11 The influence of the inhomogeneous initial stress on the dispersion 

curves for the first four mode of Love wave propagation for Case 5. 
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As Figure 4.8 through Figure 4.11 show, the effect of inhomogeneous initial stresses 

on the dispersion of Love wave are almost similar to the constant initial stresses 

qualitatively, as discussed in forgoing sections for first two modes of the 

propagation, but with more intensive magnitudes, as might expected. For example, 

both Figure 4.7 and Figure 4.11, which show the effect of initial stresses on the 

dispersion curves of Love wave propagation for Case 5, indicate that as a result of 

this initial stress pattern the wave propagation velocity decreases. However, as 

mentioned above the effect of inhomogeneous initial stress are more significant in 

comparison to constant one. 

  

Now we consider the same example, but here we assume that the initial stresses have 

the following form: 
0( )x z m z   and 

0 ( )z z n z  , to exactly overlap with Earth’s 

crustal stress model as discussed in the previous sections. Figure 4.12 illustrate the 

geometry, mechanical constants and initial stress patterns related to that problem. 

Love wave dispersion curves for the first four modes of propagation for this example 

is also shown in Figure 4.13. To study an example of Love wave propagation at high 

frequency, we concentrate on a wave with wavelength equal to, say 1/4 of the layer 

thickness for instance, i.e. 8kh  . We are focusing on the first fundamental mode 

of propagation (Figure 2.13). We find numerically that it propagates with speed 

(1)1.002c  , then 3006 m/sc  . Roots of 
(1) ( ) 0q z  , have vital importance 

because at these points differential equation of the motion changes its characteristic 

 

 

Figure 4.12  The geometry of the geophysical example. 
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Figure 4.13   Dispersion curves for the first four mode of Love wave propagation 

for the considered example in Figure 4.12 (WKB approximation). 

 

and as equation (4.15) shows mathematically amplitude of the wave at these points 

goes to infinity and as we discussed in chapter 3, these are called caustic points. So, 

we are interested on the roots of 
(1) ( )q z , which we repeated here for convenience, 

equation (4.7): 

(1) 0 (1) 2
(1)

(1) 0

( )
( ) .

( )

x

z

z c
q z

z

  

 

  



 

Here, 
(1) ( ) 0q z  , requires that 

(1) 0 (1) 2( ) 0x z c       or 
0 (1) 2 (1)( )x z c    . 

Now if we substitute the values of 
(1) , 

(1)  and c  in this equation, we find that 

0( ) 100.9 MPax z  . Thus substituting this again into equation 
0 (1) 2 (1)( )x z c    , 

and solving for z  we obtain 11.21kmz  . This value is outside the acceptable 

region for z, which for covering layer was, 0 10 kmz  . Therefore this point 

cannot be a caustic point for this example, however, if the gradient coefficient of the 

inhomogeneous initial stress m has bigger values, then this may create such caustic 

points in the region. For instance, if the gradient coefficient of the inhomogeneous 

initial stress for this example be 12 MPa/kmm  , then at 8.41kmz  , 
(1) ( ) 0q z   

and this point will be caustic point at the region. The character of differential 

equation at that point will change completely and the amplitude of the wave as can 

be seen from equation (4.15) tends to infinity. Physically this is not possible and 

though the intensity of the wave at such caustic points increases dramatically the 
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amplitude of the wave cannot be infinity and this is the most important limitation and 

shortcoming of the classical WKB asymptotic approximation method. As discussed 

in the chapter 3 it should be noted that the asymptotic solutions of wave equation 

near the caustics points can also be obtained, and correct amplitude of the ray can be 

computed, however, for these situations more detailed methods such as uniform 

asymptotic expansions will be needed. 
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The expressions of the components , , 1,2,3.ij i j 

  

 

For the case when 
0( )x z m z 

 
and 0 0z  : 
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Chapter 5 

 

Conclusions and Recommendations            

 

Classical closed form solution of many interesting physical and practical problems 

such as elastodynamics problems do not exist and most of the time accuracy of 

numerical methods are in doubt. Asymptotic analysis, then, is an analytical 

approximate method which provides a new and modern alternative tools to solve 

such complex problems. In this thesis we exploited one of the most powerful and 

famous asymptotic methods so called WKB high-frequency analysis to solve seismic 

Love wave dispersion problem under the effect of some special inhomogeneous 

initial stress pattern. Theoretical derivations are obtained in the framework of 

classical linearized theory of elastic waves in initially stressed bodies for small 

deformations and numerical examples are given and discussed. The influence of the 

imperfectness of the contact conditions on Love wave propagation velocity has also 

been studied through the influence of the interface imperfectness parameter F, 

equation (4.22), on the wave propagation velocity. In the vicinity of caustic points 

also some possible asymptotic solutions of the wave problem is discussed. From 

these discussions the following main conclusions are derived: 

- The imperfectness of the contact conditions cause to decrease of the wave 

propagation velocity of Love waves. 

- The low wavenumber and high wavenumber limit values of the wave 

propagation velocity do not depend on the imperfectness of the contact 

conditions. 

- The imperfectness of the contact conditions causes to increase the influence 

of the initial stresses in the wave propagation velocity. 



54 
 

- Influence of the imperfectness of contact conditions of Love wave 

propagation velocity in general is complex and frequency dependent.  In this 

case before (after) a certain value of the wavenumber, the influence of the 

parameter F causes to increase (decrease) the wave propagation velocity. 

- In general, the graphs of the dependence between the imperfectness 

parameter and the influence of the initial stresses on the wave propagation 

velocity cannot be limited with the corresponding ones obtained at complete 

contact or full slipping ones. 

- For linearly varying initial stress pattern, as we considered in our example, 

for some big values of gradient coefficients of the linearly varying initial 

stresses a caustic points can be created which then it completely will change 

the behavior of wave propagation in the medium. 

 

Rapid development of electronic devices, specially, has revolutionized elastic 

surface waves applications in many engineering fields through the last decade. 

Indeed, variety of mechanical, material and structural properties, presence of 

damages or cracks, etc. make the study of these wave processes an active field of 

research. In our study, we consider some of those parameters, namely the effect of 

initial stresses and contact conditions. For the future works it is desirable to consider 

the effect of different patterns of initial stresses rather than only the linear one. It is 

also possible to consider the effects of lateral inhomogeneity in material properties of 

the medium. And finally, we consider a one dimensional aspect of the problem in our 

study, however in general the related wave propagation problem is in three 

dimensional space and it create caustics which are some two dimensional surfaces in 

the space. This study can also be extended to include such interesting type of 

problems.        
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