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AUTOMATIC MUSIC TRANSCRIPTION 

 

Abstract 

 

Computational music research is spread out of the world in many fields. One of these 

fields is automatic music transcription. During this thesis, we concentrated on the 

detection of music notes inside an audio signal. We decided to work on a percussive 

instrument i.e. piano because percussive onset can be relatively more easier to detect 

than other types of onset. We benefitted from the signal processing techniques like 

FFT, low-pass filtering and the statistical methods like Hinkley’s CUSUM algorithm 

and linear regression. We proposed a transcription algorithm applied to a 

synthetically created audio data which was formed by the notes of middle octave and 

first five note value types. The algorithm transcribes the music scores with an 

average accuracy of 96,7 using the tuned parameters. 
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AUTOMATIC MUSIC TRANSCRIPTION 

 

Özet 

 

Bilişimsel müzik araştırması bir çok alanda dünyaya yayılmıştır. Bu alanlardan biri 

de özdevimli müzik çevriyazımıdır. Bu tez sırasında, bir ses iminin içerisindeki 

müzik notalarının algılanması üzerine yoğunlaştık. Bir vurmalı müzik aleti olan 

piano üzerine çalışmaya karar verdik çünkü vurmalı nota başlangıçlarının 

algılanılması diğer nota başlangıç tiplerine göre göreceli olarak daha kolaydır. Hızlı 

Fourier Dönüşüm'ü ve alçak geçirgen süzgeci gibi im işleme tekniklerinden ve 

Hinkley'in CUSUM algoritması ve doğrusal regresyon gibi sayımlama 

yöntemlerinden faydalandık. Orta oktav notalarından ve ilk beş nota değer 

türlerinden oluşan bireşimsel olarak yaratılmış bir ses verisine uygulanan bir 

algoritma teklif ettik. Algoritma müzik parçalarını ayarlanmış değiştirgeler 

kullanarak ortalama yüzde 96,7 bir doğrulukla yazılı biçime dönüştürmektedir. 
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Chapter 1 

Introduction 

 

Computational music research is a well known and frequently studied area, 

especially after 70’s. A lot of aspects of this field have been studied over the last 

three decades. Among the topics are music genre similarity, onset detection, audio 

classification, key-finding, beat-space segmentation, tempo and beat estimation. 

Automatic music transcription is also one of these areas. 

 

Automatic transcription of music is the extraction of music events i.e. music notes 

for a given audio signal [1]. The transcription system usually concerns western 

monophonic or polyphonic music [4]. We can separate the task into monophonic and 

polyphonic transcriptions [2, 3]. Pieces which have only one instrument playing one 

note at a time are monophonic. Usually more than one instruments can be present in 

a piece of music by playing several notes at a time. In this case, polyphonic 

transcription aims to identify which instruments are played and transcribe which 

notes are played for a length of time [2]. In other words, main focus is to estimate the 

multiple fundamental frequencies (��) of several concurrent audio signals [3]. 

 

A technique used for monophonic transcription is the time-domain autocorrelation 

[4, 5]. For an N-length sample frame of an audio signal, autocorrelation measures the 

similarity between shifted versions of the waveform. The delay of the highest peak 

gives the period of the waveform. From the period, we obtain the pitch of the signal. 

That's why monophonic transcription is sometimes called pitch tracking [2]. The Fast 

Fourier Transform is used to compute the calculation of autocorrelation of a 

windowed signal [4]. A new, accurate, simple, fast and robust ��estimator based on 

autocorrelation is introduced in [6]. Another spectral location type fundamental 

frequency estimation method is presented in [7]. 
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Another method used for monophonic transcription is spectrum-autocorrelation [3]. 

The underlying idea of this technique is the spectral magnitude periodicity of 

harmonic audio signals [8]. The interval between the frequency components 

(harmonics) is investigated. The intervals may not remain constant. Nevertheless, 

they are still more stable than the locations of the components because they shift 

cumulatively [9]. With this method, even the sounds that have inharmonic 

characteristics allow to estimate �� [3].  

 

1.1  Aim of Thesis 

 

In this thesis, we would like to transcript the music scores from a given audio signal 

whose content is only constituted from the music notes. The pieces we work on do 

not contain any chords, rests between notes, or other type of music events. We create 

the test pieces with a program that we have written. In addition, we work only 

percussive instruments i.e. piano whose onset nature eases the detection of notes. 

Moreover, we try to find abrupt changes in the amplitude envelope of audio signal. 

Some of these sudden changes correspond to music notes. Overview of the complete 

system can be seen in Figure 1.1. 

 

 

Figure 1.1: Overview of the system. 
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First, we smooth the envelope waveform by applying a low-pass filter. Then, we 

calculate slopes for the smoothed envelope by using linear regression. Afterward, we 

compute cumulative sums for slopes. Envelope, slopes and cumulative sums are 

together used in note segmentation. There may exist some spurious material in the 

segmented notes. We eliminate them by using a median filter. Segmented notes 

contain onset information where a percussive note begins in music. We detect the 

pitch of note by applying Fast Fourier Transform between successive note onsets. In 

the same manner, we estimate the note durations from the test data. In addition, we 

map note value types to the note durations by sorting them in ascending order in the 

time scale. Then, we assign the note labels to the notes detected. Finally, we compare 

the outcome with the original data in order to compute accuracy of our method. 

 

1.2  Musical Background 

 

1.2.1  What is music ? 

 

Answering this question is not an easy task to do. Maybe a proper and usual 

dictionary definition about that is not acceptable for everyone. We can explain it by 

the actions we made when we are totally or partialy entitled to it. For example, we do 

it when we sing, play or compose, also we feel it when we hear, and of course we 

enjoy it, at least we try. More specific definition can be that music is a succession of 

sound tones arranged in a specific rhythm [10]. 

 

The thing that keeps in touch with us about music is just a sound, indeed. From its 

birth to its perception, it is a totally physical series of events. A musical instrument 

excites a vibration, and then this vibrating thing passes through a milieu, which is 

usually air, at the end it arrives to the human ear. After many operations conducted 

over it, the human auditory system make us perceive sound. It resembles meal 

prepared with plenty of ingredients such instruments, notes, scales, rhythm, tempo, 

intervals, pitch, frequency etc... We will investigate some of these ingredients in a 

different point of view as being the content appeared in a digital music and the way 

of their meaningful interpretations. 
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1.2.2  Sound 

 

Sound is a wave propagating through the air from a source to destination [10]. Its 

vibrations travel and spread out around everywhere until they will be faded out. 

During this journey, vibrations sometimes change the milieu and encounter different 

elements of environment, for instance human beings. We can feel these propagating 

vibrations if we put our hands on music playing speaker. They travel from the 

speaker through the air to our hands. 

 

To explain more precisely the motion of sound, we can call the aids of two important 

concepts which are time and displacement. To make a good observation, we usually 

need the method of comparison that necessitates a solid reference. As being a 

reference, time points to a measurable and observable acting way of the sound. In a 

given amount of time, we may observe that the sound wave starts getting an 

increasing value, after some amount of duration reaches its maximum and then 

returns back to its original starting point (see Figure 1.2). We may well call this 

motion as oscillation. All these parts of this motion can be identified or referenced in 

time scale. The corresponding time intervals of each parts show us the displacement 

of the sound wave. In the cartesian plane, displacement points to the y-ordinate and 

time refers to x-axis. 

 

 

Figure 1.2:  Oscillating sound waves and. displacement as  

a function of time . 

 

 

Times 

Displacement 
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1.2.3  Frequency, Period and Amplitude 

 

Sometimes sound vibrations repeats themselves in a regular period of time (see 

Figure 1.3). For a given unit of time, there exists a number of vibration [10]. 

Normally, they are measured per second and standard unit is Hertz which means one 

vibration per second. When we denote 440 Hz, actually, we try to explain there exist 

440 vibrations per second [11, 12]. 

 

 

Figure 1.3: Periodic waveform. 

 

If we mathematically express the relationship between period and frequency, we will 

notice that period is denoted as the inverse of frequency 

 

 � � 1
�   �� 	
���
	 (1.1)  

 

where � is period and frequency is expressed by �. For this section, finally we 

introduce the concept of amplitude that we often utilize throughout the text. 

Amplitude is the maximum displacement of the vibration from the x-axis (see Figure 

1.3). 
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1.2.4  Musical Note and Pitch 

 

In the music theory, pitch is very essential in every sense [10]. First of all, musical 

notes are distinguished from each other according to their pitch values. In addition, 

their representation, insertion in the musical staff and transcription vary depending 

on this value [11]. Thus, it is important to explain these further. 

 

1.2.4.1  Pitch 

 

A tone is a sound that is played at a specific pitch. Pitch describes the specific 

frequency of a tone. Frequency of the tone is a measurement of how fast the sound 

wave propagates in the air [11]. Faster vibrations mean higher pitches. For example, 

middle A
1
 or in the scientific pitch notation

2
 A4 has a pitch of 440 Hz on the piano. 

The tones that have higher frequency pitch are called higher-pitched and the lower 

counterpart is lower-pitched [10, 11]. In the case of piano, it is clearly noticeable that 

from left to right sound becomes from less bass to more treble and the frequency 

keeps always increasing. Moreover, physical attributes of instruments can have an 

effect on the pitch distribution. Physically larger instruments usually produce lower-

pitched tones, whereas smaller instruments produce higher-picthed tones [10]. This is 

because bigger instruments move more air than the smaller ones do, and more air 

means a lower pitch [11]. This is the why a flute produces higher notes than a tuba 

and why the thin strings on a guitar are higher pitched than the thick strings [11]. 

 

1.2.4.2  Musical Note 

 

While composing music we can not use frequencies or in a more proper terminology, 

note pitches to write music because whole piece would be constituted from a bunch 

of numbers such as 587 Hz, 659Hz, 783Hz, etc... This will be very incomprehensible 

and prevents performing. Therefore, we need an easier way to designate tones that is 

                                                           
1
  Standard pitch (or tuning fork) is middle A. Its pitch is 440 Hz. All other notes are pitche according 

to this note. 
2
  Scientific pitch notation serves to identify the specific pitch by placing a number after the note 

name. The lowest C on a  grand piano is denotated by C1. The next C is C2 and so on. Middle C is 

C4 in this notation. 
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using literal notes for each pitch. The nomenclature of specific musical pitches uses 

the first seven letters of the alphabet A, B, C, D, E, F, and G. For instance, the note A 

always refers to a specific frequency in an octave. We will see details in the Section 

1.5 later. 

 

In music theory, to represent note pitches in a better and visual way, a graphical 

interface was invented: Musical staff has five lines and four spaces that each of them 

represent a specific pitch [11]. However this is not enough to identify all the notes 

pitches of a single instrument. The concept of clef is so vital because the pitches are 

determined by the type of clef at the beginning of the staff. A clef fixes the position 

of a single pitch in the staff and then from its position it is now possible to manage 

other pitches’ places [10, 11]. For instance, the treble clef is positioned just above 

middle C(C4). The treble clef fixes the pitch G which is the second line on the staff. 

That is why this clef is also called as the G clef (see Figure 1.4). 

 

 

Figure 1.4:  From middle C(C4) to an octave higher C(C5), the notes are placed 

 inside the staff with the treble clef. 

 

1.2.4.3  Note Value Types 

 

There are seven main note value types which are whole, half, quarter, eighth, 

sixteenth, thirty-second and lastly sixty-fourth [11]. The context of value type is the 

duration of each single note type. Among them there is a simple mathematical 

relation that each note is, indeed, the half of the previous note type. By dividing the 

largest note seven times into two, we can reach the note value type of the smallest 

64th note. See Figure 1.5 that summarizes first five of these value types.  
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Figure 1.5:  Five note value types in a hierarchical order from largest to smallest. 

 

First of all, the whole note endures all along the measure as the name implies. Its 

representation on the staff is an only empty and oval notehead without a stem or flag 

attached. For example, a measure of 4/4 time, there will be the one whole note that 

fits the measure. This means a whole note’s duration is equal to the sum of the four 

beats durations. In Section 2.7.1, we will see the concept of beat in details. 

 

Secondly, when we divide the whole note, we get exactly the half note. Because a 

whole note lasts a whole measure, the half note lasts a half measure. This means a 

half note duration is equal to the sum of two beats durations. Thus, we can put two 

half notes in a measure. Its representation on the staff looks like the whole note but a 

stem
3
 accompanies to the notehead this time. 

 

Lastly, as being the half of the half note, a quarter note endures an only beat, we can 

fit four quarter notes in a measure if the time signature is 4/4. Its representation on 

the staff likes a half note with the notehead filled completely. 

 

 

                                                           
3
   If the notehead is on or above the third(middle) line of the staff, then the stem should point down 

from the notehead. If the notehead is below the third line of the staff, then the stem should point up 

from the notehead. See Figure 1-3’s last two notes. 
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1.2.5  Intervals 

 

There are some intervals between notes. If we can symbolize each note distinctly 

with a specific and constant frequency, then the ratio of these frequencies yields note 

interval. Let’s have a look at the example of two notes having the frequency values 

200Hz and 300Hz respectively. The interval ratio is 2 to 3. The table summarizes the 

ratio change for a given octave. 

 

Table 1.1: Ratio change in an octave. 

Note Frequency Semitones Ratio 

C3 130,81 0 1,0 

C3# 138,59 1 1,05947558 

D3 146,83 2 1,12246770 

D3# 155,56 3 1,18920572 

E3 164,81 4 1,25991897 

F3 174,61 5 1,33483679 

F3# 185 6 1,41426497 

G3 196 7 1,49835640 

G3# 207,65 8 1,58741686 

A3 220 9 1,68182861 

A3# 233,08 10 1,78182096 

B3 246,94 11 1,88777616 

C4 261,63 12 2,00007647 

 

In the tunng system of western music, each octave has twelve equally “well-

tempered” notes which means that an octave is divided into twelve equal semitones. 

The expression well-tempered refers to the fact that all the semitones are the same 

ratio [10]. Now, we have to answer the question of what is a semitone. A semitione 

is, indeed, such an interval between each note, the previous and the next, that gets 

always the same ratio of √2��
 [13, 11]. Each such an interval is named as semitones. 

In addition, the total interval consisting of twelve semitones corresponds to a total 

frequency ratio of exactly 2 which is defined as octave (see Table 1.1).  

 

In Table 1.1, first column shows the names of notes in the scientific notation. Second 

column shows the frequency values of each note. Third column shows the 
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corresponding semitone number for the current octave and last column shows the 

ratio of each semitone’s frequency divided by the first semitone’s frequency. 

 

1.2.6  Scales 

 

In Western music and pop music (pop songs) scales are so important and determines 

the characteristic of the piece’s composition [13]. They describe which combination 

of notes will be used while composing the music. We can understand the importance 

of scale from the insist of frequent use of “diatonic scale” which dominated Western 

Music for more than 500 years [10, 13]. 

 

A music scale is a sequence of music notes within an octave from which a music 

piece is composed [13]. For instance, diatonic scale is a scale with 7 notes out of 12 

notes. From the previous section, we know that an interval of 12 semitones yields an 

octave. Therefore, with this termonology, we can use the word semitone instead of 

saying notes. In diatonic scale, there exist seven semitones. These seven semitones-

notes- in diatonic scale are C, D, E, F, G, A, B. These are also called “scale tones”. 

 

All scales start on one note and end on that same note one octave higher [11]. For 

example, every C scale starts on C and ends on C. The starting note gives the scale 

its name. In addition, diatonic scale has seven modes with each one using a different 

note as the starting note. Major scale and minor scale are the two most widely used 

modes of diatonic scale. In this scale, the major scale starts from the semitone C and 

the minor scale starts from the semitone A. Let’s investigate the instance of C Major 

and A Minor scales. C Major scale consists of the semitones C, D, E, F, G, A, B and 

C(one octave higher), respectively. A Minor scale consists of the semitones A, B, C, 

D, E, F, G, A(one octave higher), respectively (see Figure 1.6). We will return back 

to C Major scale in the Chapter 2 when we discuss preparation of data with MIDI. 
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Figure 1.6: Red lines show diatonic scale semitones. 

 

1.2.7  Rhythm of the Music 

 

Rhythm is the task of counting. We count the beats of music [10, 11]. Each beat 

endures an amount of time. A group of a number of beats constitute the concept of 

measure. At the total, all the measures in a music piece must be equal each other. 

This is a rule in the composition of music. Each measure is exposed in the lines of a 

bar. Musicaly, all written notes are divided into bars. Each bar has the same duration. 

We can use both the words of bar and measure interchangeably.  

 

1.2.7.1  Time Signature  

 

The bar duration is designated by a time signature. The most common time signature 

mostly used in nearly all pop, jazz, rock and any kind of similar mainstream musical 

genres is 4/4 time signature. Beside this, there also exist some other mostly used such 

time signatures like 6/8, 3/4, 2/2, 12/8, 9/8, etc... [11]. Notation resembles to a 

fraction however it is not the case. Actually, a number is placed on top of another 

number. In overall, a time signature serves to signify that how many beats are there 

in a measure and what kind of note is used for representing any of these beats. The 

top number is the former and the bottom number is the latter. For instance, in the 

case of a time signature 4/4, in deed, a measure holds the equivalent of four quarter 

notes. The first 4 tells us that the duration of each bar or measure is divided into 4 

beats. The second 4 in the signature specifies the length of the note. So a duration of 

a bar or measure is an equivalent of the total duration of four quarter notes per bar 

(see Figure 1.7).  
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Figure 1.7:  Valid bar of three kind of notes generated via Anvil Studio
4
. 

 

As a summary, because we have four beats in a measure, the top number in the time 

signature is a four and because the beat is a quarter note, the bottom number is a four. 

Moreover, using other note types for the beat is also common, i.e. eighth note in 

classical music [11], as well as the number of beats per bar may be supposed to be 

different i.e: 3, 8, 9. When we have an eighth note time signature likewise the 

examples of 3/8 and 6/8, a beat is an eighth note now. A measure has three eighth 

notes in 3/8 time signature. 

 

1.2.7.2  Tempo 

 

The tempo refers to the number of beats per unit of time. Normally the unit of time is 

minutes, so tempo is given as beats per minute, abbreviated as bpm [10]. For 

example, when we say that tempo is 80 with a time signature 4/4, this means that 

there will be 80 beats per minute or 80 quarter notes if all notes were played in this 

type. 

 

What will happen when the tempo is changed to 100 with the same time signature? 

The definition of the length of any note is now changed, either. This time, we will 

play 100 beats per minute. If a beat is a quarter note as usual, now the length of 

quarter note was shortened a little bit because we have to play more notes than the 

former case but the unit of time still remains as the same before. To be able to satisfy 

this condition, every note has to be more quickier than before. Lastly, tempo often 

                                                           
4
    In Chapter 2, we explained how we used this programme in details. 
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varies gradually during the performance of a musical piece however we assume that 

in our study there is no such a change. 

 

1.3  Organization of Thesis 

 

The rest of the thesis is organized as follows: 

 

Chapter 2 - Computer Music and MIDI   This chapter provides an introduction to 

MIDI. We have used MIDI to create randomly generated music pieces with given 

runtime parameters. We test our algorithm provided in the Chapter 4 with these 

pieces. We explain MIDI file formats, MIDI events, variable length reading/writing 

with some details. We explain parts of MIDI specification that we have 

implemented. 

 

Chapter 3 - Automatic Music Transcription   In this chapter, we explain how 

automatic music transcription is performed. We introduce the techniques we used by 

supporting figures and tables. The topics mentioned are signal information retrieval, 

construction of amplitude envelope of signal, smoothing the envelope, slope 

detection, the Rise-Times Model, CUSUM algorithm, note segmentation, spurious 

attack elimination, pitch detection, note durations calculations, note value types 

detection, and note labels assignment. 

 

Chapter 4 - Proposed Transcription Algorithm   The techniques given in the Chapter 

3 are not enough to produce a good understanding of how we could make automatic 

transcription. That is why we provide a pseudocode at first, then we explain each part 

with details supported in our implementation. 

 

Chapter 5 - Results   Each implemented part of the proposed algorithm in the 

previous chapter are investigated in details. We provide input/output snapshots of 

main implementation and data creator program. We review the details of each part of 

implementation by giving the rationale. We comment on runtime parameters, 

variable initial values, data structures used, and results. Finally, we explain our 

performance measurements for the tested data. 
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Chapter 6 – Conclusion   In the final chapter, we summarize what we have done so 

far. We recap our methods and tools that we used. We discuss the results we obtained 

from our experiments. Lastly, we mention the future work to do. 
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Chapter 2 

Computer Music and MIDI 

 

After the electronic devices were involved so much in every day life, usual and 

traditional habits about any discipline have been changed. Such a discipline 

influenced so much from the new technological changes is music, of course. Through 

the end of 60’s the electronic music appeared and spread out of the world [14]. The 

electronic instruments started to be used by the musicians instead of the old 

traditional ones that used to be played from centuries. Many manufacturers also 

appeared to supply the demand. In addition, during the middle of 80’s, the use of 

personal computers tremendeously increased [14]. Accordingly, the use and need for 

software and multimedia applications rised, as well. Music was and still is one of the 

supporting pillars of multimedia applications. In such case of frequent use and need, 

there was a hole in that reproducibility, maintainability and exchange of any sort of 

sound or musical pieces was nearly impossible or required professional equipment or 

devices that synthesize musical audio information which requires both music theory 

and audio signal processing knowledge at the same time. 

 

In such an environment, a consortium of two associations
5
 came together and 

declared a standard interface describing musical events digitally that serve to 

exchange music. This standardized interface was MIDI which is the abbreviation of 

Musical Instrument Digital Interface [15]. MIDI is not about signal, sound, music or 

anything else. It imitates musical events and stores them in text-based manner in the 

standard midi file format. The digital music or sound we hear is sythtesised by the 

MIDI compatible sound card [16]. There are some application software that enables 

to create and perform music encoded by midi at the background with a handy 

graphical user interface that conceals the MIDI use at the back. These type of 

                                                           
5
   MIDI Manufacturers Association in Los Angeles  from USA and Association of Musical Electronic  

     Industry in Tokyo from Japan. 
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programs are called sequencer because they put in order the text-based MIDI 

messages as a sequence of events. We used such a sequencer Anvil Studio
6
 for data 

validation and virtualization. 

 

For testing our algorithm presented in the Chapter 6, we needed some randomly 

created wave file whose content can be manipulated in a programmatic approach by 

using runtime parameters. For this reason, we have written a small scale sequencer 

that can read and write midi events and also create an output MIDI file. We coded it 

using C programming language. We can consider the whole application as a little 

library constituted from 22 headers. In the rest of this chapter we will explain the 

MIDI file structure and some important aspects of MIDI standard that we coded in 

our program. 

 

2.1  MIDI File Format 

 

A MIDI file is a container for the text-based music events. With the players 

supporting MIDI on personal computers and other devices e.g. synthesizer, we can 

even play it and hear its content whenever we want. The file has a .mid extension. 

MIDI files are written bytes after bytes. Every bytes’s content is an element of 

Extended ASCII table [17]. Every data piece that a sequencer process are 

manipulated in hexadecimal format while reading from and writing to a file. Every 

MIDI file has two important partitions: Header and Track chunks [18]. There can be 

only one header chunk in a MIDI file while the presence of numereous track chunks 

is possible at the same time in the same file. 

 

2.1.1  Header Chunk 

 

This is the beginning of the file. All MIDI files first 14 bytes is this header. Header is 

processed before all to provide information about how to process and execute the rest 

of the file content. Its constant structure has 14 bytes sized. The header itself is 

identified by a string marker which is “4D 54 68 64”. These four bytes can be 

converted to a literal expression by using ASCII Table which produces “MThd” [19]. 

                                                           
6
   http://www.anvilstudio.com/ 
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This string is the same in all MIDI file as a standard. The next four bytes represent 

the size of the rest of the header chunk. Again, it is the same for all MIDI files, and is 

always designated by the literal expression “00 00 00 06”. Actually, this means that 

after read this part, we will encounter new information sized 6 bytes along. These 

new information are file format, number of tracks in file and the number of delta-

time ticks per quarter note. These are all represented by two bytes. 

 

Firstly, the file format can be one of the three options: single-track, multiple 

synchronous track or multiple asynchronous track. These are enumerated from 0 to 2. 

In our program, we use the second format type (enumerated by 1). Secondly, The 

number of tracks field is to warn MIDI sequencer that there will a job to define for a 

number of tracks. Because each track is delimited by a beginning and ending event, 

the number of tracks is very informative about how many delimiter will be 

encountered while playing. Lastly, number of delta-time ticks is time-base for the 

randomly created data. This number of ticks symbolize the duration of a quarter note 

in any tempo. We will give detailed explanations about this topic in the next sections 

of this chapter. See Figure 2.1 for a snapshot of our program. 

 

 

Figure 2.1:  The header part for the file generic-data.mid. 

 

On the first line of the snapshot, we see the hexadecimal header information. A byte 

of information can be represented by two characters at most. For instance, the two 

bytes “ 3 CO” is an hexadecimal number read in the file. The most significant digit is 

the left most character “3” which is written by using only a character. 

Mathematically, we can express the red roman number three of figure by conversion 

formula as following, �3C0���� � �960���� . This is a good example for the 

purpose to show that some part of MIDI has fixed length recording structure and 

some part has variable length recording structure. Header chunk is absolutely 

structured a fixed length record. The red roman numbers I and II of figure can be 

written as “1” and “2” in variable length recording because decimal numbers 1 and 2 

are also hexadecimal numbers, either. In fact, with two bytes, we can create a largest 
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number in hexadecimal format as “FF FF”. However, in variable length recording, it 

has no limit e.g. FF FF FF FF FF FF... FF 7F and so on [17, 19]. See the Section 

2.1.3 for detailed explanation. 

 

2.1.2  Track Chunk 

 

Track chunk consists of every kind of information about musical events directly or 

undirectly related. Its first eight bytes are constant and the rest may vary according to 

data in use. It begins with a four bytes long delimeter expression “4D 54 72 6B” 

whose translation is “MTrk”, literally [17, 18]. Moreover, next four bytes serves to 

express the data size of current track in terms of bytes. The events of a track chunk 

data can be separated into three main groups which are midi events, system exclusive 

events and meta events. For example, one of them is a meta-event and is responsible 

for finishing a track chunk. The finishing delimeter of a MIDI track which is fixed 

for all every track and expressed by the four bytes string “0 FF 2F 0”. To ease the 

understanding, see Figure 2.2 for the track chunk snapshot of our program. 

 

 

Figure 2.2:  Track chunk snapshot provided with 59 bytes data. 

 

In Figure 2.2, the notion of event is introduced, basically. The figure’s first line 

summarizes the fixed division of the track chunk. The second four bytes is the data 

length represented in hexadecimally. The conversion can be shown as �3B���� �
�59���� . After the byte “3B”, the data is coming next and constituted from the 

accumulation of numerous different events. The finishing event is fixed and appeared 

as the last four ones out of 59 bytes. Finally, we use two track chunks: one is used to 

provide some meta events which are not related about MIDI and another chunk 

serves to make sequence of the midi events for the piece which is being created. This 
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second chunck can also contain meta events at the same time. Using two chunks was 

a design of our program. In this way, we simplified the algorithm and divided the 

event coding according to its context. In examples of the manuals we investigated, 

the selection of using more than two track chunks is also available. 

 

2.1.3  Variable Length Reading and Writing 

 

In the standard of MIDI, some numbers are structured as they have the most 

significant bit number seven as clear in their last byte while the rest of the byte series 

having their most significant bit number seven set. An example can be more 

explanatory using a single byte, we can write the largest number hexadecimally as 

“7F” which is equal to 127 and �01111111� !" decimally and binarily, in given 

order. If we would like to generate the decimal number 128 in this manner, we will 

not use the hexadecimal equivalent as “80” [18]. In this way, this will cause a fault 

because this is a single byte representation and so that the bit seven is set. Instead, we 

will use two bytes in which the last byte will be “00” and the first byte will be “81” 

hexadecimally [19, 20]. To understand how we got these two numbers, see the 

Section 2.1.3.1. In Table 2.1, we provide some numbers generated as the variable 

length quantities in order to get familiar with. The decimal and hexadecimal 

equivalent are given before in order to explain clearly which number was trying to be 

expressed. We have written two procedures in our program for both reading and 

writing these types of numbers [17]. Their pseudocodes are provided in Appendix A. 

The most important area of use is expressing the delta times preceding every type of 

events in track chunk data. See the Section 2.2 for this. 

 

Table 2.1: The variable length representation of some numbers. 

Decimal Hexadecimal 
Variable-Length 

Representation 

0 00 00 
127 7F 7F 
128 80 81 00 
240 F0 81 70 
480 01 E0 83 60 
960 03 C0 87 40 

8192 20 00 C0 00 
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2.1.3.1  Variable Length Writing 

 

For a given integer number i.e. 960, we first make a bitwise AND operation with the 

fixed operand “0x7F 
7
” and save the result in an integer variable, say R. Even the 

number is larger than 127, the bitwise AND operation yields an output whose bit 

seven will always be clear. Such a R’s current value is 64(0x40) and this is the case. 

Then, we will make a bitwise RIGHT-SHIFT operation for 960 seven times whose 

meaning is dividing a number by 128. This operation comes up with a solution of 7 

which is saved up in an integer variable say L. If L is greater than zero, a loop has 

started and we will make a LEFT-SHIFT operation for R eight times whose meaning 

is multiplicating a number by 256. This operation results in 16384(0X4000) for R 

and will be saved up in an integer variable say K. Next, we will make another AND 

operationd for L with the operand 0x7F and we get L again as a result. This 

intermediate step is saved up in an integer variable say I. Then, I is bitwise OR’ed by 

the operand 0x80 and this operation gives 0x87 as a result. Moreover, 0x87 is bitwise 

OR’ed with K and we get 0x4087. This is the current value of the data to write. We 

overwrite the value of L to the input number. We make a RIGHT-SHIFT operation 

for the new value of input number seven times. The result is assigned to L, and then 

L is checked with its new value as a condition of loop. The operation result yields 

zeros, as intended.. The loop is broken because the result is not greater than zero. If 

not, the same operations will be repeated. Before entering the loop, if the value of L 

is not greater than zero, the value of data to write will be found by only making a 

bitwise AND operation for the given input number by the operand 0x7F. 

 

At the moment, we have only the data value to write in MIDI file. How can we write 

it down ? In a loop again, we first write the value of the data to write as one byte 

character inside a file by using putc() function of C programming language. This is 

an interesting property that C programming language’s printing procedures can write 

a large number as one-byte character in a file by mapping it to ASCII table. For 

example, 0x4087(16519) will be written in one byte character representation as 0x87 

in the file. Then, we make a bitwise AND operation for the data to write with the 

operand 0x80. If the result is greater than zero, the value of data to write will be 

                                                           
7
   This is the representation of hexadecimal numbers in C programming language environment. The  

      literal prefix can be written as 0x  or 0X. Both are the same thing. 
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bitwise RIGHT-SHIFT’ed eight times. As a result, we get 0x80 and the value is 

shifted by giving 64 as a result, decimally. 64 is also written in the file. By the way, 

writing 64 or 0x40 is the same thing because both of them correspond to the same 

element in ASCII table. Finally, 64 is bitwise AND’ed with the operand 0x80 and the 

loop is now broken because this operation yields zero. All the variable length writing 

is now completely accomplished. See Appendix A.1 for its pseudocode. 

 

2.1.3.2  Variable Length Reading 

 

First of all, we read an hexadecimal number in the file. We assign the value read to 

the variable V. We check whether V’s bit seven is set or not by making a bitwise 

AND operation with 0x80 and we assigned the result to the variable R. If R is greater 

than one, we make following operations: First, we make bitwise AND operation for 

R with 0x7F. The result is assigned to both R and V. Second, we multiplicate V by 

128 and result is assigned to L. Then, we read a new hexadecimal number in the file. 

The number is assigned to Y. We make bitwise AND operation for Y with 0x7F. The 

result is saved in R, this time. R and L is added and the result is assigned to V. 

Lastly, we make bitwise AND operation for Y with 0x80. If the result is greater than 

one we return back to the beginning of the second step. Otherwise, we return V as an 

output of the procedure. Before entering the first step, if R is not greater than one, we 

make bitwise AND operation for V with 0x7F and the result is assigned to V itself. 

Finally, we return V as an output of the procedure. See Appendix A.2 for its 

pseudocode. 

 

2.2  The Events in MIDI 

 

Events make the real job in MIDI. They are responsible for data exchanging, device 

controlling, time synchronizing, music events handling, and storing meta-event 

information. They reside only in the track chunk that’s why we can call them as track 

events, either. We can generalize the events under three main categories which were 

mentioned in the Section 2.1.2. Before investigating these three event types 

separately, we would like to introduce the structure of it. An event has two internal 

subdivisions: the first one is delta-time and the second is event (any type). The first 
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subdivision can not be absent in any type of events because it is mandatory. However 

second division can vary according to the context. We can formulate events as 

 

 �#$�% &$'$ �(�#$�% )*
�'
+

,-.
 (2.1)  

 

and where a track event can be shown as 

 

 �#$�% )*
�' � ∆' 0 1�
� | 	3	'
1 
4�56	�*
 | 1
'$7 87 (2.2)  

 

where ∆' is delta-time and 0 1�
� | 	3	'
1 
4�56	�*
 | 1
'$7 87 significates that after a 

delta-time only one type of events occur [16, 17]. The delta-time is a variable length 

quantity. It designates the amount of delta-time ticks for an event. On other words, it 

is the duration of an event in terms of SMPTE times [17, 18]. In addition, we did not 

implemented the system exclusive event type which was out of the context of our 

program that is why we skip this event type and did not give any explanation about 

it. 

 

2.2.1  The Track Chunk MIDI Events 

 

A midi event is a set of 4 pieces of information. These pieces are status byte, channel 

byte, data byte 1 and data byte 2, respectively. Its size is three bytes because first two 

bytes are merged into one byte. The status byte determines the MIDI message type. 

Its size is one byte whose most significant bit is one. It takes values like 0x80, 0x90, 

0xA0, 0xB0, 0xC0, 0xD0, and 0xE0, respectively [21]. It is noticeable that only first 

most significant four bits are used in a status byte. In addition, the channel byte 

determines which channel will be used to receive and send the midi messages to a 

midi compatible device e.g sound card. There are 16 channels in MIDI. This amount 

can be enumerated from 0 to 15 [21]. In contrast with the status byte, the least 

significant four bytes are used in channel byte, this time. Thus, it clear that in both 

status and channel bytes, there are a total number of eight bits that are not used. To 

avoid redundacy, MIDI standard merged these two byte into one byte information. 

For instance, when we see an event like 0x93, we will easily understand that a note 

on event occurs and it is transmitted over the fourth channel. Other two bytes content 

can vary according to the status byte in use. However, in most cases, the first data 
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byte carries information about notes or we can say that it takes the number of midi 

note. The second data byte carries information about the velocity of the related note 

or we can say that it takes the volume intensity of the related note. We show the 

types of midi events that we have implemented in Table 2.2. 

 

Table 2.2:  The midi event types implemented in our program. 

Status | Channel Data Byte 1 Data Byte 2 Explanation 

9x Note number Velocity Note on event 

8x Note number Velocity Note off event 

Cx Instrument number Not available Control change event 

 

We can summarize all the midi event types that we implemented with an example of 

our program. In Figure 2.3, we have all three mentioned midi event types. Program 

change event is responsible for the selection of instrument that will be used in the 

creation MIDI file. By default, our instrument is grand piano which is determined as 

zero in MIDI and we provided it as the third zero in the little yellow rectangle. This 

event has delta-time of zero which is shown as the first zero in the same rectangle. 

Generally, all the zero valued event are related to specify the properties of file out of 

the context of music events, directly. In addition, all such events are happenned and 

processed synchronously at the same time because the MIDI standard makes it 

possible.  

 

 

Figure 2.3:  Three types of midi events for the second track chunk  

of the file generic-data.mid. 

 

Note on and note off event are colored in red and green in the figure. Pay attention 

that the note on event’s delta-time is zero for the midi note number 45 with the 

intesity 127 which is maximum. This event tells the sequencer to play the midi note 

45 instantly. This process was now executed and has just finished. But a note is being 
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played, right now. This event keeps going on until the note off event comes take 

place after “83 60” delta-time ticks. The first two bytes are about the delta-time of 

note off event which is written in variable length recording format. The midi note 45 

is the same with the one in note on event, as expected. However, the intensity of 

volume is zero that makes the note silent or totally terminated after the delta-time 

duration finishes. To conclude, we can say that every note begins with a note on 

event and finish with a note off event. This mechanism seems to the switch of an 

electic circuit. 

 

2.2.2  The Meta Events 

 

The meta event type carries complementary information which is not related directly 

to music or MIDI. There exist many meta events differing from each other but they 

have a common property that all of them start with the pattern “FF” which serves to 

distinguish that type of event from other two main types of events. Its structure can 

be formulated as  

 

 1
'$ 
*
�' � ∆' �99, �

�'���
#, 
$'$ 5
�;'<, 
$'$ � (2.3)  

 

where identifier defines the unique types of meta event [18, 21]. All identifiers are 

represented by one byte. The data length field serves to designate that there will be a 

data for this meta event with the given specific size. The sequencer process the data 

according to the given size. If it was not properly set, the track structure can be 

collapsed. The data part of each different meta event varies accordingly the context 

of it. We give detailed explanations about the meta events that we implemented
8
, 

later. Table 2.3 recaps those events. 

 

 

 

 

 

                                                           
8
   There exist some other meta events that we implemented but not provided because we did not  

     needed to use, later. 
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Table 2.3:  The meta events type that we implemented. 

Pattern Identifier Data Length Data Explanation 
FF 0x03 N bytes Text Track name 

FF 0x20 1 byte Channel number Channel prefix 

FF 0x2F 0 bytes Not available End of track 

FF 0x51 3 bytes Time code 

(SMPTE or MIDI) 
Tempo 

FF 0x7F N bytes Text Sequencer 

specific FF 0x59 2 bytes Scale information Key Signature 

 

We can summarize all the meta event types that we implemented with an example of 

our program (see Figure 2.4). 

 

 

Figure 2.4:  Track name, channel prefix and sequencer specific meta event  

used in the second track chunk. 

 

In Figure 2.4, we see a track name meta event color in red which give the name 

“generic-data” to the second track chunk. Three sequencer specific meta events are 

colored in green and enumerated with roman numbers. They carry the information 

required for a midi file to be played in midi compatible players. For instance, the 

third sequencer specific event describes for which standard the MIDI file was 

prepared for. Its output is “General MIDI”. Lastly, channel prefix event provides the 

information of which channel is in use. Its next event is a midi note on event that has 

not a channel information. In this way, channel prefix event serves to cope with a 

lack of information. 
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Chapter 3 

Automatic Music Transcription 

 

3.1  Getting Input Wav File 

 

At the first spot, we have taken an acoustic music signal as an input which was 

required to be a .wav file for our implementation. The content of it carries only the 

information of one single instrument during the whole the record. The input wav file 

was prepared in the aid of a midi-creator tool which was also written by me using C 

programming language. In fact, this program codes a midi file content according to 

the given runtime arguments and produces a .mid extended output file. Usually, we 

create randomly generated 50 midi notes for testing purpose which come from the 

variety of nine different octaves of the acoustic piano. So, we have 108 possible 

notes every time we generate a note. The midi standard describes musical events in a 

text-based manner to aid exchange of musical interpretation between different 

musical instruments and different musicians. It provides a globally accepted interface 

for the devices processing the midi codes. As a result, we have only a raw data at the 

current phase of implementation. Indeed, we need to convert it into wave form via 

using a tool named ‘winamp’ which is a popular program used by end-users to listen 

to various audio music formats. We have pre-set this program not to play any audio 

format; instead we arranged it to convert the given input file to the wave equivalent 

by using an interior tool which is called ‘Nullsoft Disk Writer’. When the play is 

over, it outputs a wav file into the destination folder. At last, after passed various 

initial steps, the input of our main program is now ready to be tested. Before to 

conclude this part, we would like to tell about a file that is created by our data creator 

program concurrently it prepares the real test wave file. This text-based second 

output file can be considered as a ground-truth data which is used in validation. It 

carries all fully qualified note labels which belong to the notes created by the 

program. This file is named with the name of the test data file in order to establish 
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direct access while calculating the accuracy of algorithm after the last step. For 

instance, test-5-50-notes.wav emerges with test-5-50-notes.txt. The nomenclature is 

used for this text file except the file extension which must be “.txt”, this time. Every 

such a file has a common part except its content. Every file begins with a starting 

label “scores: ” which indicates that music scores are saved in this file. Then, an 

integer number which significates the number of music scores will be given after 

itself. In our data files, this number is fifty. A fragment belonging to the very 

beginnings of the file test-5-50-notes.txt. can be like that: “scores: 50 E2 G16 F16 D4 

F8 G8 E4 D#2 C#16”. 

 

3.2  Signal Information Retrieval 

 

After picking the wav file, we invoke the wavread() function of MATLAB to get 

some handy information from the wave form. We get several outputs as a result: the 

discrete-time representation of musical signal (sampled data) �	=�>�, the sampling 

frequency (in Hertz) ��?�, and the number of bits per sample which was used to 

encode the data in the file ��@�'	�. 
 

3.2.1  Getting ‘Times’ 

 

Clearly, we need the signal information to be expressed as a function of time but it is 

absent. We can build the accompagnying time information manually. First, we get 

the number of samples contained in the signal. Second, the sampling frequency 

signifies the number of samples taken per second. Finally, from the division of 

number of samples into the sampling frequency, we can maintain the signal’s 

duration.  

 

 &6#$'��� �� A�;�$5 � $55 	$1B5
	
	$1B5��; �#
C6
��3 , �� 	
���
	 (3.1)  

 

For the given duration, we can now generate the linearly spaced (via the sampling 

frequency) time vector, '=�>, which starts from second zero and ends at the total of 

duration (in seconds).  
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3.2.2  Getting ‘Notes’ and ‘Octaves’ 

 

We work on 108 notes’ pitches which all represent fundamental frequencies on the 

piano, scattered as the organization of octaves. For the rapid data manipulation, we 

have stored them in a dynamically loaded matrix structure that MATLAB 

environment provides as .mat extended file. This is called D�'$*
	 matrix that is 

constituted of twelve rows and nine columns and designate the twelve half tones of 

nine octaves starting from C to B each time (a complete octave) . The frequency 

range used here is between 16,35 Hz and 7902,13 Hz. Here we see in Figure 3.1 

some part of piano keys and their corresponding fundamental frequencies [22]. 

 

 

Figure 3.1:  Pitches on the piano shown in the scientific notation. 

 

3.3  Making Single Channel Signal 

 

As an intermediate step, we have reduced the matrix 	=�> to a column vector by 

eliminating the second column. If we call the matrix with two columns as a stereo 

channel music wave, therefore we obtained a mono channel one since the 

representation of music signal is by default stereo in MATLAB environment. We 

assumed that the information in the second column of 	=�> is redundant to carry on 

for the further steps and the first column’s information is sufficient to make 

appropriate processing. We can see signal versus times in Figure 3.2. 
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Figure 3.2:  The sound waveform carrying the information of 16 notes. 

 

3.4  Construction of Amplitude Envelope of Signal 

 

At the second step, we construct a magnitude envelope of the signal. All along it, we 

traverse through the signal data a sliding window in which we search positive 

maximum [23]. The peaks below this amount are just ignored while calculating the 

envelope. Actually, the window represents just a proportion of the full data. Window 

size can be adjusted before the runtime. Beside this, the behaviour of the window 

traversal is quite worth of mentioning because it has an important role on the 

detection of right peaks. Each successive window is next to the last one. For this 

sake, we defined a jump amount which signifies the overlapping data number among 

these windows. In other words, the commencement of the further window is assigned 

by adding the jump amount to the previous windows’s beginning. And current 

window’s end is calculated according to the size of window. Moreover, size of 

window and jump amount can be represented (explained from this point further as 

E	 and F$, respectively) by an unit of time or a number of indexes that a single 

window covers along the signal data. As intended, we save the locations where we 
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find the maximum valued peak in any window. After traversing the whole signal, we 

get a magnitude envelope )�* and an index array G)�*. 

 

In our implementation, we deal with the percussive sounds which are not generally 

periodic that’s why the selection of the window size is independent from the cyclic 

structure of the periodic signals which repeats themselves in a definite period [24]. 

While working with periodic sounds, it is a wise choice to select a window which is 

one period long. However, in our case, a sufficiently large window size must be 

determined in order to satisfy both frequency and time resolution. If the window size 

is too large, we may not catch the peaks having meaningful magnitude values which 

can vary in a much smaller interval of time than the window can sense. Therefore, 

onset detection will skip and fail some notes in the further steps of implementation 

(i.e note segmentation) because time resolution is lost.  

 

On the other hand, to cope with frequency resolution, the window size must be at 

least equal or greater than the duration of the lowest frequency- �HI,J -pitched note 

since the period of this note, �HI,J, is equal to  

 

 �HI,J � 1
�HI,J   seconds. (3.2)  

 

In our case, the lowest possible �HI,J which is 16 Hz, scalarly, is the lowest audible 

pitch (for a healthy ear) in the human audible threshold [25]. It will usually a good 

choice to have E	 R �HI,J for tracing only the peaks [23]. This aids to get good 

results in the case of the test song having notes generated from one or two octaves 

with restricted note value types only allowed while the waveform has such a well-

drawn shape seen like on Figure 3.3.  

 

Contradictorily, this approach did not work fine for most of our test cases which 

were constituted randomly generated notes coming over nine octaves while all seven 

main note durations allowed. Instead, we approached setting the window size a little 

bit different that we made parameterized the window size as a scalar assigned to the 

construction of amplitude envelope process. A good one which we always used, was 

over at least four times greater than �HI,J with which we have gotten good results. At 
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the same time, we used an overlapping jump amount equal to the quarter of window 

size, by default. In Section 5.14, we provide lot of information about the reason of 

this selection regarding to the support of the experimental results that we obtained 

espescially in the third experiment we conducted (see Table 5.4, 5.5, and 5.6 with 

Figure 5.18 - 5.23). We have kept so rigid the overlapping amount in the sense of 

repeating nearly most part of the previous window content. We iterate the window 

one quarter at a time in our runs. We do not want to get only major peaks, beside, 

also to maintain the ones which are relatively minor. They could be not easy to 

notice at first sight. The relatively minor peaks must be caught in order to segment 

notes with too small durations such 32nd’s or 64th’s in the further steps. Figure 3.3 

shows the signal’s amplitude envelope-colored as red- which was constructed 

according to the mentioned method. The signal is colored as blue. 

 

 

Figure 3.3:  The amplitude envelope drawn onto the original waveform. 
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We provide the pseudocode for amplitude envelope construction in Figure 3.4. 

 

COSTRUCT-AMPLITUDE-ENVELOPE-ALGORITHM( S=T>, US, VW) 

00 

01 # If not assigned, initialize to default values (64 and 16) 

02  E	 X 64 

03  F$ X 16 

04 # Otherwise 

05  continue 

06 

07 # Initialization 

08 starting X 1  and  ending X E	 

09 counter X 1 

10 )�* X array[1 Y ��6�'
#] 

11 G)�* X array[1 Y ��6�'
#] 

12 

13 # Traversing a window through signal 

14 while  ending  ≤  length( 	=�> ) 
15 

16  # We try to find a maximum amplitude value in each window 

17  E��
�EZI[H,J\ X  	( starting  to  ending ) 

18  maximum X max( E��
�EZI[H,J\) 

19 

20  # Find the index of maximum valued window element 

21  index X find( maximum==E��
�EZI[H,J\  ) 

22 

23  # Save the value of maximum and its location in signal 

24  )�*(counter) X maximum 

25  G)�*(counter) X starting  +  index  –  1 

26 

27  # Iterating the window boundaries 

28  starting=starting  +  F$ 

29  ending=starting  +  E	 

30 

31  # Check out the array out of boundaries  

32  if ending  ]  length(	=�>)  then 

33   break 

34  end if   

35 

36  # Increment counter by 1 

37  counter X counter + 1    

38 end while 

39 

40 # Return envelope and its indices 

41 return )�* and G)�* 

 

Figure 3.4:  Pseudocode of the amplitude envelope construction. 
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Figure 3.5:  The amplitude envelope of S=T> viewed alone. 

 

3.5  Smoothing the Envelope Shape 

 

In Figure 3.5, we see a massive amount of data that is quite far from being useful in 

detecting the notes. We have to reduce or basically simplify it by using some pre-

processing methods like ‘smoothing’. It is possible to notice easily that both the 

increase of the amplitude envelope and sudden change in the envelope probably 

means the occurence of an onset, especially for the percussive music containing 

strong percussive transients [26]. Here the onset detection function is an envelope 

follower in terms of time in order to be able to detect where and when the abrupt 

change occurs. This type of transient exhibits typical behaviour of percussive onset 

which will rise and reach its locally maximal peak value in a very small interval of 

time. Actually, we are dealing with one of the signal’s temporal features that concern 

abrupt events happening in the signal.  

 

The content of the signal can be differentiated as onset events and other abrupt 

events. This distinction is fully dependent to the ability of classification and internal 
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organization of the detection function. We have to focus more intensively on how the 

detection function chooses identifiable features to detect right onset events. One of 

these features is local maximum. However not all local maxima must to yield a 

musical note. Local maxima can vary in size and shape but not tremendously. Some 

local maximum is affected from noise, or the other kind of musical events like 

vibrato, tremolo, etc...[26] This type of amplitude modulation causes non-related 

peaks with the concurrent presence of event-related peaks. For all the reasons we 

have told above, the implementation requires a filtering of non-related peaks by 

smoothing the amplitude envelope. General convention is based on low-pass 

filtering. By applying this filter, we tend to make possible a simple and 

computationally efficient temporal method which lets clearly to pick the right peaks 

from the smoothed envelope for highly percussive onsets-transients or events. 

 

What is a filter? Generally, a filter is a sytem that is designed to remove some 

component or modify some characteristics of a signal. Among these characteristics, 

we are interested especially in frequency, hence the filter that we will design has to 

be specialized on frequency. Among several options, there are three ‘frequency 

selective’ filters: Lowpass, Highpass, and Bandpass Filters. 

 

All the listed filter types have a common feature that all of them may well remove 

certain frequencies while letting others pass through the system relatively 

unmodified [27]. For example, a highpass filter allows to be passed for high 

frequency components of a signal without changing them at the same time by killing 

all low frequencies [27]. Oppositely, low frequency components of a signal will pass 

through the filter unmodified while high frequencies will be completely eliminated if 

a lowpass filter is used [27]. Beside these, bandpass filter seems to be more selective 

than other two because a band of frequencies which are now allowed to be passed 

may possibly be pertained to some part of low and high frequency regions at the 

same time. All frequency components of a signal that fall into the range of the given 

band are passed unchanged through the filter while all other frequencies stayed out 

the range will be completely removed [27]. 
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Let’s have a look at the organization of lowpass filter. We can separate the frequency 

response of LPF into two regions or strictly saying two bands. These bands are 

passband and stopband, respectively. The response of the filter inside the boundaries 

of passband is one. Outside the boundaries, so it means in stopband region, its 

response is simply zero. The passband boundaries are determinated by a ‘cutoff 

frequency’. All the stuff we mentioned about LPF until here is legitimate in the sense 

of a theoretical and ideal LPF. To ease the understanding, Figure 3.6 shows the 

behaviour of the ideal LPF. 

 

 

Figure 3.6:  Frequency response of an ideal LPF with its cutoff at ^Z[,I__ . 

 

An ideal lowpass filter is defined as 

 

 `abc�F^� � d 1  |E| e  ^Z[,I__ 0  |E| ]  ^Z[,I__ 7 (3.3)  

 

where ^Z[,I__ is the cutoff frequency and `abc�F^� is the response of the filter [28]. 

 

We have used a Butterworth IIR filter as a low-pass filter [27]. In MATLAB 

environment, we create a low-pass filter design with five arguments which are 

passband frequency,stopband frequency, passband ripple, stopband attenuation and 

sampling frequency. Then, the filter returned an output for the given input which was 

the amplitude envelope. The output is the smoothed version of the envelope. See 

Figure 3.5 and then Figure 3.6. The effect is apparent. 

 

f^Z[,I__ ^Z[,I__ 

1 

0 

Frequency  ^ 

Frequency Response HLPF(j ^) 
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Figure 3.7:  Smoothed envelope suitable for note segmentation. 

 

In Figure 3.7, attacks are seen very clearly. This data is more convenient for 

segmentation than the previous one in Figure 3.5. 

 

3.6  Slope Detector 

 

At the previous step, we have smoothed the amplitude envelope and we obtained its 

smoothed version, A)�*. In this step, we use a slope detector. It is applied to the data 

of A)�* by computing a linear regression over its several data points. The slope 

detector traverses through every data point of A)�* one by one. It is proposed to use 

a number of points-say % points- at a time while approximating. These % points get 

the name “approximation points”. In the literature, the proposed number of 

approximating must be at least four or eight at most [23]. The slope detector creates a 

sequence of overlapping line segments that float over the data. The slope of each line 

segment is saved up and forms a piece of the slope array Ag�h. This array is very 

crucial and will be used in the few next phases of our implementation. 
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Basically, the idea of regression is to fit a curve to the data. Actually, we would like 

to approximate the output by using a model. In our case, linear regression is our 

model and we try to fit a line to our data which is A)�*. It must be considered the 

data as a separate data points distributed over the cartesian plane. Moreover, our data 

has a smoothed wave form of amplitude envelope containing percussive peaks. 

Actually, every smoothed envelope value can be identified as a function of time. So, 

the plane’s horizontal axis is the array '=�> and the vertical axis is the array A)�*. 

The demonstration of this data set in machine learning convention is X � g4,, #,h.+ 

where 4, is '=�> and #, is A)�*. 

 

In the machine learning literature, the model is structured as a discriminant function 

;�j� which is considered as the best representative of the general trend or data set 

[29]. If the model in use fits the data very well, its approximation will be quite good 

and the model error will be very low. This is so called empirical error. We can define 

it for a given training set Χ as 

 

 )�;|Χ� � 1
kl=#, f ;�j,�>m

+

,-.
 (3.4)  

 

Here, the least square error function is used because we try to minize the empirical 

error [23]. The discriminant function must satisfy this constraint. The # and ;�j� 
have numeric values. For a good slope detector, best choice of discriminant function 

is a line equation which can be demostrated with the generalized equation  

 

 ;�j� � E.4. nonEp4p n E� �lEq4q n E�
p

q-.
 (3.5)  

 

where 
 is the number of features. In our case, 
 is one because we try to estimate 

only the value of A)�*. So, we can rewrite it as a linear equation as 

 

 ;�j� � E.j n E� (3.6)  

 

where E. $�
 E� are the parameters that we learn form the data. 

 



38 

 

Thus, the linear model parameters E. $�
 E� should minimize the empirical error 

which can be shown as 

 

 )�E., E�|Χ� �l=#, f �E.4 n E��>m
+

,-.
 (3.7)  

 

The minimum value of the given empirical error above can be calculated by taking 

the partial derivatives of E with respect to E. $�
 E�then setting them equal to zero 

and solving for the two unknowns 

 

 E. � ∑ 4,#,+,-. f 4#sssk
∑ �4,�m+, f k4tm  (3.8)  

 

 E� � #t f E.4t (3.9)  

 

where 

 

 4t �  ∑ 4,+,-.k    and   #t �  ∑ #,+,-.k  (3.10)  

 

While running slope detector, we minimized the amount of data that linear regression 

used to get once when it is executed. Normally, linear regression or any kind of 

regression gets a complete data set like Χ. However this time, we separate our data 

set into pieces where each piece can contain only % approximation points. For these 

set of points, we try to find a line segment which best fits to the small data of % 

approximating points. The slope we want to find is E., actually.  

 

In the machine learning literature, j is written in bold for the purpose of significating 

that j is a set of data. During the traversal of slope detector, we calculate a slope 

value for a set of data points j starting from the actual data point and ending with the 

data point which is % index further from the actual data point. For example, if % is 

eight and the current data index is �, we will calculate a slope of line approximated 

for these eight points denoted with the pair of indices ��, � n % f 1�. After computing 

the intercept value, E�, we can even draw the line for the given set of % points over 
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the main data in order to see if ;�j� does really follow the trend and fits to the data, 

too. 

 

The more the index � incremented, the more the new lines will appear which are 

overlapped since the new approximation will be proceeeded between the data points 

indexes expressed as �� n 1, � n 1 n % f 1�. This shows that nearly most of the two 

successive set of % points ultimately overlaps each other. Therefore, the lines derived 

from the two or more successive set of % are overlapped each other, as well. Now, it 

is possible to see that those lines are very good follower of the waveform of A)�* 

(see Figure 3.8). 

 

In Figure 3.8, The result of slope detector is shown. Firstly, the top part of the plot 

shows an excerpt of two peaks from the data of A)ku in a time interval between 

4,325th second and 4,37th second. At the bottom part, it is seen the zoomed version 

inside the squared area. The lines computed during slope detection are drawn in 

black and fit very well to the data. Data points pertaining to A)ku are shown in red 

asteriks. 

 

To conclude this part, we can add the point that during the traversal, linear regression 

calculation is repeated each time for a new set of approximation points. Even though 

each separate calculation made in each linear regression iteration for a set of % points 

can be assumed as they are executed in a constant time, the number of repetition can 

affect the performance especially for a long music piece. This case happens because 

we linearly traverse the data and at each index we repeat the same number of 

operations. For an amplitude envelope length v in terms of indexes that it consists of, 

the runtime of this algorithm is Ο�v�, asymptotically. The pseudocode of the 

algorithm is given in Figure 3.9. 
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Figure 3.8:  Slope detection’s result seen. The top part of the plot shows the squared  

area of A)ku. At the bottom part, the squared area is zoomed. 
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RUN-NOVEL-SLOPE-DETECTOR-ALGORITHM( A)�*, '=G)�*>, % ) 

01 

02 # Check 4 ≤ % ≤ 8. Otherwise % is assigned to default as 4 

03 if condition fails then 

04  % X 4 

05 

06 # Initialization slopes array 

07 counter X 1  and  index X 1 

08 Agh X array[1 Y ��6�'
#] 

09 G�'
#�
B'	 X array[1 Y ��6�'
#] 

10 

11 # Calculating linear regression for a data set with % points of A)�* 

12 while index ≤ length(')  and  index + % ≤ length(') 
13 

14  # y is a %-points data set piece and x is time correspondent 

15  x X array '( index to index + % - 1  ) 

16  y X array A)�* ( index to index + % - 1  ) 

17 

18  # xy is a vector whose elements are the result of the 

19  # the elementwise multiplication of x and y 

20  xy X x.*y 

21 

22  # x2 and y2 are arrays created in the same manner 

23  x2 X x.*x 

24  y2 X y.*y 

25 

26  # The series of some scalar values which is found by summation 

27  sumx  X sum(x) 

28  sumy  X sum(y) 

29  sumxy  X sum(xy) 

30  sumx2  X sum(x2) 

31  sumy2  X sum(y2) 

32 

33  # squares of the scalar values sumx and sumy are computed 

34  squaresumx  X sumx * sumx 

35  squaresumy  X sumy * sumy 

36 

37  # a slope is calculated 

38  m  X [ (% * sumxy) - (sumx * sumy) ] / [ (% * sumx2) - squaresumx ] 

39  Ag ��6�'
# h  X m 

40 

41  # an intercept is calculated 

42  intercept  X [ sumy - ( m * sumx ) ] / %  

43  G�'
#�
B'	( counter )  X intercept 

44 

45  # increment the values of counter and index 

46  counter X counter + 1 

47  index X index + 1 

48 end while 

49 

50 # Slope array is returned 

51 return  Ag�h 
 

Figure 3.9:  Pseudocode of the slope detection. 
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3.7  The Model ‘Rise-Time’ 

 

With a smoothed envelope as in Figure 3.7, we can easily concentrate on the attacks 

events. When an attack happens, energy change per unit time change [24, 26]. Also, 

the slope of the rising peaks change, either [24]. This case generally occurs at the 

onset for the percussive music. Remember that a note onset is a place that intensity 

of amplitude is very low. Suddenly, the intensity tremendously starts to increase. We 

call this time as ‘rise-time’ [24]. Piano is an instrument that has very quick attack 

near its onset [24]. We can model this behaviour. The model will have two 

parameters: the ‘rise-time’ and the ‘rise-slope’. When a ‘rise-time’ occurs, we could 

find some attacks that their intensities are always higher than a threshold value [24]. 

Usually, this threshold can be tuned according to the need. In such a case, the attack 

or the peak gets its maximum value. This is called ‘time-of-max’. We pick these 

peaks when they reach their time-of-max. In addition, we can use the ‘rise-slope’ 

parameter. We have seen how the slopes are obtained with a slope detector in Section 

3.6. At the time a percussive attack occurs, the amount of change in the slope mean 

ultimately increased, too. If we can find such a point that a sudden change occurs in 

the slope mean we can identify the note onset. This point is called ‘rise-slope’. When 

a rise time has just started, the slope value gets a very big value. However, as well as 

the intensity of the attack increases, slopes begin to loose its intensity. Just after the 

time-of-max, the slope changes its sign. The attack intensity begins to decrease after 

this point.  

 

Because we have all the data, we can search and find for the slopes values which are 

greater than a given threshold i.e. 0,016. In fact, these slopes values correspond to the 

attacks (see Figure 3.10). 
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Figure 3.10:  All rise-slope values above 0,016 seen and colored as  

red and green, alternatively. 

 

In Figure 3.10, all rise-slopes are shown. To differentiate them from each other, they 

are colored in an alternative modulation of red and green. It is clearly seen that some 

slopes values above the threshold can not be related to attacks.. They have very little 

values when comparing other major slope peaks. However, we collect all the attacks. 

When we draw all these attacks over the waveform of the smoothed envelope we got 

in Section 3.5, we notice that they are perfectly placed between the onset and time-

of-max (see Figure 3.11). 
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Figure 3.11:  Slopes placed between rise-slope and time-of-max. 

 

There must be much more attacks than the number of notes that we would like to 

detect. In Figure 3.11, we see three long attack covered by slopes values. These are 

suitable for detection. However, the very short one must be cleaned. They can cause 

in false detection. In the figure, red asteriks symbolize the slopes data points. 

 

3.7.1  Progressing the Model 

 

To avoid the false detection, most of these short attacks will be eliminated by a 

simple approach. We will compute arithmetic means for all slope blocks in Figure 

3.10. Then, we find the maximum valued mean among them. We normalize all of 

them with this maximum value. By using a mean threshold this time, we get rid of all 

slopes blocks whose values are less than the threshold. Probably, a threshold of 0,1 

may be sufficient for this kind of elimination. Afterward, the short slope blocks are 

eliminated. This means that only related attacks remain (see Figure 3.12). This 

improvement is our contribution to the model. We denote these remaining attacks by 

a n-by-2 matrix, w5��%	. First column of this matrix carries the starting index 

information of an attack and second column carries the ending index information of 

that same attack. All indices information correspond to the position of attacks in the 

slope array Ag�h. 
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Figure 3.12:  The real attacks after progressing the model. 

 

3.8  CUSUM Algorithm 

 

To segment the notes from the smoothed envelope, we will need cumulative sums of 

slopes. We search a point whereas a sudden change in the slope occurs. In statistics, 

this problem is described as the problem of a change in mean or described as the 

detection of jumps in mean [30, 31]. One of the important algorithms offered to solve 

this problem is Hinkley’s cumulative sum [30]. 

 

The algorithm searches for jumps in the mean. It tries to find deviations with respect 

of the cumulative sum [30]. Hinkley offered two detectors: One is responsible for 

downward jumps and other one is the responsible for upward jumps. We are 

interested in the second one because we are in quest of a sudden increase of slopes. 

The detector formula can be given by 

 

 xy �lz3{ f |� f *y2 }
+

{-.
 (3.11)  
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where xy is cumulative sums and 3{ is current data and *y is the jump magnitude 

and |� is the mean of the current data [30]. For i=0, |� is equal to zero. The jump 

magnitude can be shown as *y � |{~. f |{. 
 

In order to find the point where an abrupt change (increase or upward jump) occurs, 

we have to apply Page-Hinkley stoping rule [31]. This rule checks for every xy that 

the susbstraction of this value from the minimum cumulative sum is whether greater 

than a threshold value or not. Usually, such a threshold is given as ` and gets a value 

like 0.00001. If this case holds, the index which denotes the current value of 

cumulative sum is saved to locate where the abrupt change once occurred. We can 

recap the test we apply by a formula as follows  

 

 test the case for  xH f kH  R ` (3.12)  

 

where kH � min� � � � H x� . 

 

3.9  Note Segmentation 

 

So far, we obtained a smoothed envelope, a slope array for this envelope, cumulative 

sums, and attacks gotten from the ‘Rise-Times’ Model. Segmentation uses all the 

information mentioned above. We apply a procedure which has three partitions. They 

are proceeded in order for each note. The first partition is about to find abrupt change 

in the slope array with the aid of cumulative sums. The second partition aims to find 

local maxima values for every attack. And the third step, we would like to find local 

minima values. Overview of three note segmentation phases is seen in Figure 3.13. 

 

 

Figure 3.13:  Three phases of single note segmentation process. 
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To find abrupt change in the slope array, we test the Hinkley’s stopping rule for a 

given attack and a treshold value [26, 23]. For the attack detected from the step 

described in Section 3.7, we try to find a jump point. If the test holds for an index 6 

located in the cumulative sums, we save this location in the array D�	
' as the onset 

index of the note segmenting. In fact, this D�	
' value is obtained by the expression 

of the amplitude envelope indices array as a function of the index 6. We can 

formulate the case as follows 

 

 D�	
'{ � G)ku�6� (3.13)  

 

where � symbolizes the currently segmenting note. 

 

Then, we try to find time-of-max for the segmenting attack. From the index 6, we 

begin to search in the slope array a location where the slope change its sign. We test 

the current slope data for a given epsilon value e.g. 0.00001. We can show the test as 

follows 

 

 AH�.  ]  � $�
 AH  �  f� (3.14)  

 

where AH�. and AH are the slope value [23]. In fact, the local maximum value is the 

most mature part of the attack transient. From this point, it begins to loose its 

intensity [26]. We save the index location * for the slope array whereas the test 

holds. By putting the index * inside the array G)ku, we express the index position in 

terms of amplitude envelope indices. We store all these expressions for all 

segmenting notes inside the array �$4. We can formulate the case as follows 

 

 �$4{ � G)ku�*� (3.15)  

 

Finally, we try to find a local minimum that the note segmenting starts to fade out. 

Before detecting the next onset, we absolutely need this information for the 

appropriate onset estimation. From the index *, we begin to search in the slope array 

a location where the slope change its sign. This time, we make the same test for the 

current slope data but the sign of slope will be positive [23]. We can show the test as 

follows 
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 AH�.  �  f� $�
 AH  ]  � (3.16)  

 

We save the index location E for the slope array whereas the test holds. The 

expression of E in terms of amplitude envelope indices is stored in an array ��� for 

all segmenting notes. We can formulate the case as follows  

 

 ���{ � G)ku�E� (3.17)  

 

Therefore, an iteration of the note segmentation phase was completed. We repeat 

these three steps until all attacks detected by using the model Rise-Times are 

segmented. See Figure 3.14 for the segmented notes. 

 

 

Figure 3.14:  Notes segmented for the file generic-data-modified.wav. 

 

In Figure 3.14, we see the segmented notes. Their onsets are colored in red. The local 

maxima are colored as green and the local minima are colored as yellow. Each set of 

three asteriks forms a note segmented. We can consider each three components as the 

note’s starting, attack value, and finishing. 
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3.10  Spurious Attack Elimination 

 

After note segmentation process, we have a number of notes detected. Among them, 

some are the real ones that we would like to keep but some are not. The nature of 

percussive music causes these types of undesirable attacks just before or after the 

major attacks that we want to detect [24, 26]. These attacks are significantly tinier 

both in durations and amplitudes when compared with the genuine and major attacks 

(see Figure 3.15).  

 

 

Figure 3.15:  Two spurious attacks enclosed in red squares. 

 

In Figure 3.15, two spurious attack fragments which were taken from Figure 3.14 are 

viewed and enclosed in red squares. The left one is an example for a spurious attack 

before a major attack. The right spurious attack is an example for an spurious attack 

just after the major attack. 

 

By using this property, we can distinguish these spurious attacks from the set of 

detected notes in Section 3.9. These redundant notes must be eliminated in order to 

make a proper transcription [32]. Otherwise, accuracy of the method will be 

tremendously decreased [26]. Elimination method consists of three steps: Firstly, we 

compute the length of each attack. Then, we find a median of these lengths and 

calculate a threshold value by multiplying the median with a specific constant. 

Lastly, we get rid of the lengths which is smaller than the threshold value.  
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First of all, all attacks are shown in Figure 3.14 as data points whose compositions 

are a 3-tuple set. In the cartesian plane, each note has three values in both x and y 

axes. When we put the onset, local maximum, and local minimum indices’ values 

inside the time array ', we get the corresponding time components for each note as a 

result. To obtain the y axis values, we use three index vectors �, �, and U which are 

formed during the note segmentation process. When we put them as index inside the 

smoothed envelope array A)ku, we get all y axis values for each tree components of 

all segmented notes. We can formulate the case as follows  

 

 D�	
'u$5 � A)ku���,�$4u$5 � A)ku��� and ���u$5 � A)ku�U� (3.18) 

 

respectively. Two of these y axis values are used in the calculation of an attack 

length. For all the segmented notes, we compute an attack length by substracting the 

onset value from local maximum value. As a result, the substraction yields a scalar 

value 5{. We can formulate the substraction as follows 

 

 5{ � �$4u$5{ f D�	
'u$5{ (3.19)  

 

where � denotes the corresponding note. Figure 3.16 summarizes a generic step of 

attack length computation. 

 

 

Figure 3.16:  Note components and the length of attack �. 
 

In Figure 3.16, onset, local maximum, local minimum values and their correspon-

ding time components for a note are seen. The length of a generic attack is also 

provided. 
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After obtaining all attack lengths, we would like to calculate the threshold <. Firstly, 

we find the median of attack lengths. We denote it as 1. Then, we multiply this 

value with a specific constant � in order to produce the elimination threshold. We can 

formulate the case as follows 

 

 < � 1� (3.20)  

 

The value of the coefficient is so vital for both the achievement of elimination and 

the accuracy of entire transcription process. We determine its value according to the 

results of the first experiment explained in Section 5.14 (see Table 5.2 and Figure 

5.15). 

 

Therefore, we finish the preparation steps for the core elimination phase. All we only 

do next is to check whether an attack length is greater than the threshold < or not. If 

that condition is satisfied, we add the currently testing attack length’s index to a new 

set of non-spurious attacks’ indices. We denote this newly formed set as k
EG�
 

which is used to update the content of the arrays D�	
', D�	
'u$5,�$4,�$4u$5,
��� and ���u$5. Hence, this update operation purges the spurious attacks’ indices 

from these arrays by only inserting the clean ones this time. Consequently, we 

prevent detecting the spurious notes. After elimination, the clean case of all 

segmented notes is shown in Figure 3.17. 
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Figure 3.17:  All remaining notes seen after spurious attack elimination. 

 

In Figure 3.17, all remaining notes are shown after spurious attack elimination. The 

red asterisks denote the note onsets. The green asteriks denote the time-of-max of 

every attack. Lastly, the yellow asteriks represent the end of the note. 

 

After the elimination process is completed, the difference between Figure 3.14 and 

Figure 3.17 is apparent. Some spurious attacks which are relatively shorter in lengths 

and smaller in amplitudes are eliminated. When two figures are compared, it can be 

easily noticed that some local maxima values are absent in the second one, especially 

around the envelope value 0.08. The segmented notes are ready for the pitch 

detection phase. 

 

3.11  Pitch Detection between Successive Note Onsets 

 

In Section 1.2.4.1, we explain that pitch describes the fundamental frequency of a 

music note. This fundamental frequency serves to place the musical note in the 

musical staff as mentioned in 1.2.4.2. Staff representation also indicates the note’s 

place as a function of time [10]. Moreover, note pitches of piano instrument are well-
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known for a number of octaves [22, 33]. By estimating the pitch of the note, we aim 

to detect the note name from where it falls to an appropriate octave location. Pitch 

detection proceeds in three steps: Firstly, we prepare the frames of the signal 	 
between all successive note onsets. Then, we obtain the frequency components for 

each frame by taking � fpoint FFT. We pick the most powerful frequency 

component as a candidate pitch. Lastly, we look-up the most nearest piano pitch for 

this candidate. From its place in the look-up table, we can reach the name of the note 

we try to detect. 

 

To be able to detect note pitches, we assume that there should probably exist a 

leading frequency component between the interval of two successive note onsets. In 

fact, this interval constitutes a frame of the signal which is denoted as �
E_	{. Every 

such frame �
E_	{ has a different size because the starting and ending positions vary 

according to the currently employed successive onsets. In addition, we make another 

assumption is that the instant that the note occurs can be estimated by calculating the 

median of the simultaneously evaluating frame in terms of time. For that reason, a 

time frame �
E_'{ which corresponds to �
E_	{ is required to approximate the pitch 

time. In birief, the estimated pitch time is the median of �
E_'{. Figure 3.18 shows 

the successive frames for the segmented second, third and fourth notes of Figure 

3.17. 
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Figure 3.18:  Three successive frames. We try to find a pitch value for each. 

 

Frequency components of each frame are calculated via the Fast Fourier Transform. 

This operation requires two inputs: a signal frame �
E_	{ and a number k99� 

which indicates the length of the transform. Because every frame may have different 

frame length, k99� is computed in every iteration according to the frame size. In 

order to run FFT algorithm efficiently, it is a wise choice to select a k99� value 

which is power of two [33]. Hence, we can formulate the computation of k99� as 

follows 

 

 k99� � 2HJ�,�I�m� �HJ����� (3.21)  

 

where |�
E_	{| is the length of the �th frame and �
4'B�E2 is the operator which 

returns the smallest exponent that makes the value of k99� greater than or equal to 

the length of the frame. As a result of the transform, we obtain the frequency 

components of the signal frame �
E_	{. We denote the transform as � which is 

expressed as a function of frequencies. 

 

 � � ��'��
E�{, k99�� (3.22)  
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The power spectrum of the signal frame �
E_	{ is the elements of array |�|m k99�⁄  

[34]. It is well known that the square of the signal represents its power. We measure 

the energy distribution at various frequencies. We mention that a frequency leads for 

each frame. Its power should be ultimately greater than other frequencies. Therefore, 

the pitch candidate that we seek is the most powerful frequency of the frame (see 

Figure 3.19 ). The range of frequencies varies from 0 to the half of the human 

audible threshold [25]. The values greater than this range may well be spare because 

we utilize nine octaves with frequencies of 8 kHz at maximum [35]. 

 

 

Figure 3.19:  The most powerful frequency and its strength, holding for the musical  

note A from the middle octave. 

 

In Figure 3.19, the value of the strongest frequency �� is 439,9 Hz. Mathematically, 

we can express the case as follows 

 

 max��� � ����� (3.23)  

 

where ��� ′� is equal to 0,01341. Other frequencies are relatively weak in 

comparison with � ′. Thus, we find the measured frequency of the second segmented 
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note in Figure 3.17. In addition, it exactly matches with the first frame’s pitch of 

Figure 3.18.  

 

After obtaining the most powerful frequency � ′, we seek the nearest value inside the 

look-up table of D�'$*
	. The look-up table frequency 5'� will be the pitch value 

(��'�<q) that we would like to detect. The row and column information of 5'� stands 

for two different concepts: Its column index points to the octave number i.e. the note 

middle A resides in the fourth octave. In addition, the row index corresponds to the 

note number inside the look-up table k�'
	. With this number, we obtain the name 

of the note (kk$1
q) from k�'
	 i.e. the note middle A is located inside the tenth 

row of D�'$*
	. Because there are twelve semitones in the western music, the tenth 

one refers to an A note when sorted from the note C to the note B. To conclude, we 

obtain the pitch values and note names of segmented notes. In addition, we store 

them in ��'�< and kk$1
 arrays, respectively. For instance, the three successive 

frames in Figure 3.18 get the pitch values as 440Hz, 493.88Hz, and 293.66Hz and 

the note names as A, B and D, respectively. By using the pitch time information, we 

can demonstrate all detected pitches as a function of time for all segmented notes 

(see Figure 3.20). 

 

 

Figure 3.20:  Pitch values drawn according to their pitch times. 
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There may be some time shift while representing the note pitches because we take 

the median values of each time frame as our assumption illustrates. This approach 

does not cause any severe problem because all notes’ pitches are shifted a bit 

relatively to their genuine locations in the time axis. 

 

3.12  Note Durations Calculation 

 

In order to find note value types, we need note durations. Because we already know 

the note onsets, we can estimate all note durations from their corresponding time 

values. From this point of view, a note duration can be described as the amount of 

time passed from one onset to its right sibling. We assume that the successive onsets 

can be used as note offsets interchangeably because we only deal with the musical 

notes as music events. For example, there is no rest between the notes in our data. 

 

For all onsets, we first obtain the matching time values. Then, we substract the 

current onset time from the right sibling’s one except the last onset time which is 

substracted from the total playing time of the data. This is because the last onset does 

not have any right sibling onset. We can generalize the case with the formula as 

follows 

 

 k&6#�F� � '�D�	
'q~.� f '=D�	
'q> (3.24)  

 

where k&6#�F� is a note duration computed for the Fth note and '=D�	
'q> is the 

instant when the Fth note onset occurs. Figure 3.21 summarizes the whole process. 
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Figure 3.21:  Note duration calculation made for all successive note onsets. 

 

3.13  Note Value Types Detection 

 

In Section 1.2.4.3, we introduced five different note value types that are unknown in 

our test data and we would like to detect and offer a value type for each note we 

segment. We assume an algorithm to solve this problem. The task is constituted from 

two rounds. In the first round, we try to classify the note durations estimated in 

Section 3.12 according to the five known classes. As intended, they are all five 

rhythmic note value types mentioned in Section 1.2.4.3. We denote the number of 

distinct note value types as 
�	�3B
. We try to find groups of note durations which 

are gathered very close to each other. For each distinct group, we calculate an 

arithmetic mean that symbolizes the average note duration. In the second round, we 

assign each group’s average to all note durations falling into that group. 

 

At the beginning of the first round, we have note durations and distinct types of note 

values known. First of all, we find the longest note duration 5�
. We collect all note 

durations standing in the range of peripheral boundaries. They are scalar values to 

limit a group’s circumference. There exist one left (5
�'w) and one right (#�;<'w) 

boundaries at total. In this case, the right boundary is 5�
 itself and the left boundary 

is calculated by the multiplication of 5�
 and a constant denoted as B
#��
#. This 
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constant describes a percentage. Then, we add all note durations that are greater than 

or equal to 5
�'w and smaller than or equal to #�;<'w to the current group whose 

name is ‘notes-around’ (k�#�6�
). We call as the centroid (��) for the arithmetic 

mean of this group. Next, we compute a pseudo centroid ('
1B�) of the next group 

in order to calculate this group’s centroid at the next iteration. For this purpose, we 

only divide �� by two. This is the special step of this algorithm. In a generic step, we 

compute the peripheral boundaries according to '
1B�. In this case, the left 

boundary is calculated by the multiplication of '
1B� and a constant denoted as 

B
#��
# and the right boundary is calculated by the multiplication of '
1B� and the 

result of �1 f B
#��
#�. To cope with the risk of the failure of the boundary 

condition checking, we assign '
1B� as the centroid value because we do not have 

any suitable note durations to calculate a mean. This round finishes by obtaining all 

centroid values (see Figure 3.22). 

 

 

Figure 3.22:  Mechanism of centroid calculation and its representaion in the plane. 

 

In the second round, we map the centroid values to all given note durations. For this 

sake, we find the most nearest centroid value �� for any note duration k&6#�F� and 
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then we assign �� to k&6#�F�. After this round completed, we have the same note 

duration for all data points of the same group. The mapped note durations are 

denoted with �$B&6#. Obligatorily, all members of a rhythmic note value type 

must have the same note durations as the music rules imply. In the next phases, we 

use these generalized note durations. Figure 3.23 summarizes the result of the second 

round. See Appendix B.1 and B.2 for the pseudocodes of both two rounds. 

 

 

Figure 3.23:  The centroids and their surrounding data points seen. 

 

In Figure 3.23, we encounter three calculated centroids and two pseudo centroids 

which does not have any data points at their surroundings. When zoomed, the note 

durations residing in an environment of a centroid, usually differ from each other. 

The underlaying reason for this deviation is that we calculate note durations from the 

temporal distances of two successive onsets. This distance can be varied (very close 

or just close) for a group of durations because the onset position is dependent on the 

percussive music waveform. We do not expect that abrupt changes in the waveform 

have regularities for a data file completely created in a random fashion in terms of 

note value types. 
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3.14  Note Labels Assignment 

 

To complete the transcription, we need to give labels to the segmented notes. In the 

music theory, rhythmic note value types are described as even numbers from two to 

sixty four except the whole note [10]. In Section 1.2.4.3, we explain the relationships 

between rhythmic notes. Whole note gets the number one, half note gets the number 

two, quarter note gets the number four, eighth note gets the number 8 and so on. We 

provide another algorithm which combines the note names with the labeling numbers 

mentioned above in order to provide fully qualified note names such as 

�1, �#2, w8, &4, �16, etc... This matching operation is made via the mapped 

centroid durations. We assume that largest centroid should get the label of whole 

note. In the same manner, second largest centroid should be matched with the label 

of half note. In fact, we match the labels of five different note value types to the 

provided centroids durations in ascending order. In addition, the centroids are 

automatically sorted due to the nature of the detection method (see Section 3.13). We 

assume that this algorithm works appropriately when the randomly created data 

content is constituted by all five value types. A counter example can explain easily 

how procedure works. If we have a set of notes whose value types are quarter, eighth 

and sixteenth, the procedure combines the labeling numbers one, two and four with 

the corresponding note names of this set. In this case, the algorithm assigns these 

labeling numbers to this set because the decision is made according to the provided 

centroid values. Figure 3.23 is an example of this situation. See Appendix C for the 

pseudocode of the note label assignment algorithm. 
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Chapter 4 

Proposed Transcription Algorithm 

 

In this section, we propose an algorithm which is used for detecting notes of a 

musical signal. We have explained the components in the third chapter. The 

algorithm’s intermediate values are fully dependent to the previous outcomes since 

they are required to be inputs in the next components executions. So, we can define 

this situation as a linear dependency of algorithm’s contents. In software architecture 

literature, this structure is named as Pipe Line or just Pipes [36]. Here we have the 

pseudocode for the algorithm: 

 
PROPOSED-TRANSCRIPTION-ALGORITHM(	=�>, '=�>, �?, k�'
	, D�'$*
	) 

01 # 1. Construction of amplitude envelope of signal 

02 =)�*, G)�*> X constructMagnitudeEnvelope (	=�>, E	, F$) 

03 

04 # 2. Smoothing the envelope waveform 

05 A)�* X smoothEnvelope()�*, �?) 

06 

07 # 3. Run slope detector 

08 Ag�h  X runNovelSlopeDetector(A)�*, '=G)�*>, %) 

09 

10 # 4. Launch ‘Rise-Times’ Model 

11 w5��%	 X  runModel(Ag�h,1�

5�<#
	<�5
) 

12 

13 # 5. Progress the model 

14 w5��%	  X  progressModel(Ag�h, w5��%	,1
$��<#
	<�5
) 

15 

16 # 6. Run Hinkley’s CUSUM algorithm 

17 xy  X runCusum(Ag�h, 

'
�'�#�3B
) 

18 

19 # 7. Segment the notes 

20 =D�	
', D�	
'u$5,�$4,�$4u$5,���,���u$5> X  

21   segmentAllNotes�A)�*, Ag�h, G)�*,x�, w5��%	, `, �� 
22 

23 # 8. Spurious attacks elimination 

24 k
EG�
 X clearSpuriousAttacks�D�	
'u$5,�$4u$5, �� 
25 

26 # 9. Reassignment of new indices 

27 D�	
' X D�	
'�k
EG�
� and D�	
'u$5 X D�	
'u$5�k
EG�
� 
28 �$4 X �$4�k
EG�
� and �$4u$5 X �$4u$5�k
EG�
� 
29 ��� X ����k
EG�
� and ���u$5 X ���u$5�k
EG�
� 
 

Figure 4.1:  Pseudocode of proposed transcription algorithm (continued). 
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30 # 10. Pitch detection between successive note onsets 

31 =��'�<, kk$1
>  X  detectPitch(k�'
	, D�'$*
	, D�	
', '=�>, 	=�>, �?�  
32 

33 # 11. Note durations calculation     
34 k&6# X  calculateNoteDurations ('=�>, D�	
') 
35 

36 # 12. Note Value Types Detection 

37 =�,�$B&6#>  X findNoteValueTypes(k&6#, B
#��
#, 
�	�3B
) 

38 

39 # 13. Notes Labels Assignment 

40 k�'
v$@
5	 X assignNoteLabels(�$B&6#, kk$1
) 

 

Figure 4.1:  Pseudocode of proposed transcription algorithm (continued). 

 

In Figure 4.1, we present our proposed transcription algorithm. It can be considered 

as a final summary of all we talked about in Chapter 3. The input arguments of the 

algorithm are the audio signal (	=�>), its corresponding time vector ('=�>), the 

sampling frequency (�?), the look-up tables k�'
	 and D�'$*
	, respectively. By 

using these arguments, our aim is to transcribe fully qualified note names at the end 

as it is stated as k�'
v$@
5	 in line 40 of the figure. There are 13 phases to achieve 

the transcription task. 

 

In the first phase, we construct an amplitude envelope of the audio signal (	=�>) 
because the percussive music pieces that we work on allow to segment note onset 

easily (line 02). This situation facilitates the entire segmentation process (see Section 

3.4). In order to obtain the envelope, we used a windowing system that results in 

picking the maximum valued signal element from the window. Every window has a 

size denoted by E	. Windows slide through the signal according to a jump amount 

(F$). At the end of this phase, we obtain an envelope array )�* and its corresponding 

index array G)�*. 

 

As it is seen in Figure 3.5, the envelope is not suitable for note segmentation. We 

apply a Butterworth IIR lowpass filter to the envelope ()�*). As a result, we obtain 

the smoothed envelope (A)�*) (see Figure 3.7). Beside the usual parameters of 

lowpass filter (see Section 3.5), we also used sampling frequency (�?) as a parameter 

(line 05). 
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In the third phase, we built overlapping lines over the waveform of smoothed 

envelope (A)�*) by employing the linear regression (line 08). We utilize % 

approximation points of A)�* each time in order to get a line from the regression. 

Each line’s slope is stored as an element of the slope array Ag�h. Abrupt changes in 

the slope can be considered as an onset of a musical note. 

 

To select significant slope values, we employ the ‘Rise-Times’ Model. This model 

eliminates the slope values below a certain threshold value (1�

5�<#
	<�5
) (line 

11). We expect to detect a note event from slope changes (see Figure 3.10). Such a 

slope change first makes a sudden rise in magnitude and then reaches a peak point. 

From that point, it begins to decay below the threshold value. Every such slope 

motion is called “block”. We collect the starting and ending indices of all blocks into 

the first and second columns of the matrix of w5��%	, as an output. 

 

With respect to the nature of percussive onsets, the slope blocks correspond to the 

attacks of the smoothed envelope (see Figure 3.11). They are placed between rise-

slope and time-of-max. However, not all attacks can be note events. Some of the 

attacks have significantly smaller amplitudes. We can process the model by 

eliminating the blocks whose arithmetic means are less than the mean threshold 

value (1
$��<#
	<�5
). Thus, some blocks are eliminated from the matrix w5��%	 
which is returned at the end (line 14). 

 

In the sixth phase, Hinkley’s CUSUM calculates the cumulative sums (xy) of the 

slopes (line 17). Because we look for sudden changes or increases in slope, the 

detector type (

'
�'�#�3B
) must be assigned to ‘increase’. 

 

In note segmentation phase, our target is to retrive the note event as a union of three 

components: physical note onsets (D�	
'), time-of-max or in other words local 

maxima (�$4), and local minima (���). These are all index arrays. Beside these, 

there are also corresponding smoothed envelope (A)�*) values for all of them: 

D�	
'u$5, �$4u$5, and ���u$5. The last three are representative of y-ordinate in 

the plane while the former ones represent x-axis values (see Figure 3.16). For each 

block of w5��%	, we segment a single note (line 20 and 21). First, we obtain note 



65 

 

onset by applying the Page-Hinkley stopping rule over the data of cumulative sums 

(xy). A threshold (`) is employed to determine the occurence of an abrupt change. 

Moreover, to get the local maxima and minima values, we try to detect where the 

absolute value of slope (Ag�h) falls below (�) or (f�) (3.14 and 3.16). 

 

During the execution of the previous phase, some unrelated attacks are also detected 

as music events. We have to eliminate these spurious attacks (line 24). We compute 

the length of every attack by substracting onset value from time-of-max value (3.19). 

We discard the attacks whose lengths are lower than the elimination threshold (<). 

This threshold is calculated from the multiplication (3.20) of the median of all 

attacks with the given coefficient (�). Exclusion includes all three components of a 

segmented note. Finally, we return a set of remaining attacks as k
EG�
. 

 

In the ninth phase, an obligatory update operation is made in order to reflect the 

absence of eliminated attacks. From line 27 to 29 of the figure, six arrays are affected 

since they are redefined with the new set of attacks (k
EG�
). Therefore, 

elimination is accomplished in system wide. Accuracy of the subsequent phases 

strongly depends on this phase. Otherwise, it can decrease drastically. 

 

For every segmented note, we aim to get a pair of pitch and note name (��'�<,
kk$1
) in the pitch detection phase (line 31). This operation is proceeded between 

the successive physical onsets (D�	
'). For given time vector ('=�>), signal (	=�>), 
and sampling frequency (�?), we split two frames of first two parameters each time 

we investigate successive note onsets. These two frames are used in a FFT to find the 

main frequency component. By comparing to a look-up table of frequencies 

(D�'$*
	), we learn the closest equivalent piano pitch of our estimated frequency. 

From the column number where we get the pitch value, we retrieve the note name by 

inserting it as an index inside the look-up table of note names (k�'
	). 

 

In order to calculate note durations, we first obtain the temporal equivalent of the 

physical onsets (D�	
') by using the time vector '=�>. Next, we substract every 

successive onsets’ temporal equivalents from each other. Every temporal difference 
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we get signifies an estimated note duration. We store them in a note duration array 

k&6# (line 34). 

 

In the twelfth phase, we consider that estimated note durations (k&6#) are 

distributed according to a clustered and hierarchical order (line 37). We illustrate this 

distribution as in Figure 3.23. Every cluster corresponds to a generalized note 

duration. Our aim is to find these generalized note durations. In addition, we have a 

constraint that the number of note duration clusters (
�	�3B
) that an audio file can 

possibly yield is fixed and known i.e: 5. We use a two-round algorithm to estimate 

clustered note durations (Section 3.13). At the first round, we match data points to 

their related clusters which are formed according to the calculation of scalar 

boundaries for a given peripheral percentage amount (B
#��
#). Every cluster’s 

mean value gives the centroid of this cluster. Distinct note type values refer to the 

centroid values (�). At the second round, every note duration is associated with its 

distinct note value type. As an output, a mapped note duration array (�$B&6#) is 

obtained. 

 

In the final phase, we try to estimate the fully qualified note labels in conjunction 

with the rhythmical representation of mapped note durations (�$B&6#) and note 

names (kk$1
). For the mapped duration of every note, we infer a label number 

from the ordered list of labels (“1, 2, 4, 8, 16”). The highest and lowest marks are “1” 

and “16”, respectively. Lastly, this mark is appended to a note name. The result is a 

fully qualified note label like �#8 (line 40). All note labels are stored in the array 

k�'
v$@
5	 which is the only output of the entire algorithm. 
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Chapter 5 

Results 

 

5.1  Data 

 

In our experiments, we have used a data of wave file each time. I used a software 

which was completely written by me and serves to generate these wave files as it was 

mentioned in Section 3.1 . Each file consists of 50 randomly generated notes. These 

randomly generated notes may be one of the notes coming from the octave where 

middle C( C4 ) is located as the beginning note and C5 is the finishing note. We can 

say that there are possibly 12 notes when generating a note. The midi note numbers’ 

equivalents are the interval of integers from 60 to 72 for this octave. Moreover, we 

have another constraint that these randomly generated notes may have five different 

note values types which were pre-set as whole, half, quarter, eighth, and sixteenth. 

This setting is configurable in our data creator program.  

 

A wave file created under these circumstances i.e. test-5-50-notes.wav plays for 33 

seconds. It is prepared by using Pulse Code Modulation and was sampled with 

44.100 Hz where each sample is encoded with 16 bits.  

 

Every data file like test-5-50-notes.wav comes with an another text file which gives 

the music scores as mentioned in Section 3.1. Here we have test-5-50-notes.txt for 

the test file provided above (see Figure 5.1). 

 

 

Figure 5.1:  The content of the file test-5-50-notes.txt. 

 



68 

 

In Figure 5.1, there are 50 music scores preceded by a starting label “scores:”. This 

label is followed by an integer number to indicate the number of notes inserted in this 

file. Then, fifty fully qualified note names are appeared. 

 

A fragment of randomly generated notes inside this mentioned file above is exhibited 

in Figure 5.2 as following: 

 

 

Figure 5.2:  28 notes out of 50 placed in the music staff. 

 

5.2  Envelope 

 

As stated in Section 3.2 and its sub sections, we retrieved the signal and its related 

accompanying set of information e.g t[n]. Now, the signal retrieved is just a column 

vector whose size is [730384x1]. This size holds for the column vector t[n] which 

was prepared with the rationale explained in Section 3.2.1 and its size is equal to the 

size of the signal. We constructed an amplitude envelope for this signal with a 

window size of 64 and a jump amount of 16. These are specific scalar values and can 

be tuned according to the subjected data. In addition, we determine these parameters’ 

values in the light of the resuls of the second and third experiments that we 

conducted (see Table from 5.3 to 5.6 and Figure from 5.17 to 5.23). Detailed 

information about the reason of the selection of the assigned values i.e: E	=64 is 

provided in Section 5.14. As a result, we obtained an array )�* whose size is 

[1x45645] (see the Figure 5.3). 
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Figure 5.3:  The amplitude envelope drawn onto the original waveform. 

 

5.3  Smoothing 

 

For the sake of good note segmentation, we have smoothed the envelope data by 

using a low-pass filter which was designed as a Butterworth filter whose passband 

frequency is 150Hz, stopband frequency is 450Hz, stopband attenuation is 60, and 

passband ripple is 1. As a result, we obtained an array A)�* whose size is equal to 

the one of the array )�* as intended. As a result, we have a better waveform without 

such a very quick and instantaneous vibrations. We benefit from its reduced 

waveform in the next step. To ease the understanding, see Figure 5.4 and Figure 5.5. 

When we compare them, Figure 5.4 carries lot of information which may be 

redundant, affects the algorithm performance and must be further smoothed before 

the filter was applied. However, the filter smooths the envelope and then, we deal 

with less amount of information which is more useful for the sake of implementation. 
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Figure 5.4:  Amplitude envelope before smoothing. 

 

 

Figure 5.5:  Amplitude envelope after smoothing. 
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5.4  Slope Detection 

 

The smoothed version of amplitude envelope is used in slope detection by 

calculating linear regression for a given small data set of % approximation points. We 

have discussed the internal organization of this method in Section 3.6 . By using 

eight approximation points each time for one step of the detection, we get an array 

Slopes filled with slopes of each line created during the process. The size of this 

array is equal to the size of the smoothed envelope minus eight because. Actually, 

when the number of approximation points is eight, from the last eighth data point of 

the smoothed envelope, there did note remain any more eight points to approximate 

and never will be present because the data is finished. So, the last slope value 

belongs to the line which was derived from the eight last points. See Figure 5.6 and 

its zoomed close-up version of Figure 5.7. 

 

 

Figure 5.6:  Slope detection result for the file test-5-50-notes.wav. 

 

In Figure 5.6, the black lines created by the slope detector’s execution are seen. They 

perfectly fit the waveform of A)ku. The red asteriks are data points of A)ku. 
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Figure 5.7:  Close-up of the slope detection result. 

 

In Figure 5.7, a close-up of Figure 5.6 is viewed. The top part of the figure shows an 

excerpt of two peaks from the data of A)ku in a time interval between 17th second 
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and 18th second. At the bottom part, it is seen the zoomed version inside the squared 

area. The lines computed during slope detection are drawn and fit very well to the 

data. Data point are shown in red asteriks.  

 

5.5  'Rise-Time' Model 

 

With the slopes calculated, we can now concentrate on the attack rise times in the 

data. One way is discussed in Section 3.7 that the slopes values being over a selected 

threshold can be considered as valuable material and we would like to focus such 

areas where we can pick some candidates to detect a music note. We configured the 

model threshold to the real value of 0,016. The slope values over this threshold are 

related to possible attack time of a note. When we launch this model, we get all 

attacks having slope values over the threshold. Some of them are related attaks and 

some of them, unfortunately not. We save every attacks’ starting and ending 

locations as a function of time and indices. For test-5-50-notes.wav, by using this 

model, we get 145 attacks. We have a prior knowledge that data consists of 50 notes. 

There are lot of attacks to be eliminated. We can even make this elimination by 

making just a little trick. In Section 3.7.1, we discussed how we can improve our 

model. This makes a significant improvement that there remain only 55 attack 

blocks. This amount is very close to the real number of notes. We can show this 

elimination effect with the close-up views in a before-and-after manner (see Figure 

5.8). Onto the waveform of smoothed envelope(drawn in blue), we draw the attack 

derived from the model in red. Actually, the attack represent the slope values 

corresponding to a musical event. This is true mostly for the related attacks. For 

instance, the slopes values perfectly reside on the percussive onset startings and get 

through along the transient and finally it reaches to the top of the peak which is a 

local maximum. This case is exhibited apparently on Figure 5.8. The slope values fit 

to the smoothed envelope perfectly while floating over its surface. After the 

elimination, we understand that the redundant attack components were disappeared 

from where they were black-squared, previously. 
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Figure 5.8:  The ‘Rise-Times’ Model and its progression viewed. 
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In Figure 5.8, we see the application of the Rise-Times Model and its progression’s 

result. The top sketch shows the redundant attacks found by the model enclosed in 

the black squares. By progressing the model, we leave these attacks and we get more 

cleanier and redundant attacks isolated model state. The top graph is before case and 

the bottom graph is after case. In both cases, a little excerpt of the complete data was 

zoomed for the convenience reason. 

 

5.6  CUSUM Algorithm 

 

To find out where the abrupt increase happens when a percussive music event 

occurs, we are in quest of getting cumulative sums of the slope array. The CUSUM 

algorithm was configured to detect sudden increase because the detector type is set to 

‘increase’. The reason of the selection of the detector type was explained in Section 

3.8. As a result of the execution of this algorithm, we obtained cumulative sums of 

the slope array. The cumulative sums are stored in an array data structure with the 

size equal to the one of slope array. We will use this information while we segment 

the notes. 

 

5.7  Note Segmentation 

 

We call the segmentation procedure with all information obtained from the previous 

steps of our implementation as it was denoted in Section 3.9 earlier. In addition, we 

add two segmentation threshold variables which are used in calculating the ‘end-of-

attack’ part of the ‘Rise-Times’ model and at the local minimum computation. These 

two variables which are named as threshold and epsilon may well be tuned according 

to the data tested.Their default values are 0,00001 for both. As a result, we obtained 

the values of physical onsets, the values of local maxima, and the values of local 

minima with their corresponding locations as a function of index. To ease of 

understanding, we show them in Figure 5.9. 

 



76 

 

 

Figure 5.9:  Segmented notes drawn with three temporal components. 

 

In Figure 5.9, physical note onsets are drawn in red asteriks. Having being percussive 

onset, the note starting location in the time may well be designated with the pointing 

of onset. This is a legitimate statement also for the yellow asteriks which remark the 

finish of the notes. The green ones are the attack most mature part signifying the 

peak value. As a result, we got all these values for the previously detected 55 attacks 

and stored them in the three different representative arrays whose names are 

D�	
'u$5, �$4u$5 and ���u$5, respectively. In addition, we saved the locations of 

all these values in a function of time and indices, in three different arrays again as 

natural. All these six arrays size are [1x55]. This size alarms us about the excess 

attack value determined in a redundant fashion. 
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5.8  Spurious Attack Elimination 

 

As stated in Section 5.10, the elimination of the spurious attacks maintains the 

accuracy of the implementation. We obligatorily apply this process because the 

nature of percussive onset is wide open to introduce kind of spurious attack with the 

genuine attack. When we run this procedure, we found out the last case of attacks 

totally purged from the spurious ones. Therefore, number of the candidate attacks to 

be assessed as a music note in a while was reduced to fifty. This is the number that 

we would like to get however it is too early to smile. Did we appropriately get rid of 

the right attacks from our attack set? We will learn this in a few steps further. Figure 

5.10 shows the situation of segmented notes after the elimination spurious attacks for 

the test file test-5-50-notes.wav. 

 

 

Figure 5.10:  Segmented notes seen after the elimination.  

 

Via the figure, we can identify easily which five attacks are eliminated. Pay attention 

to notice the difference between this figure and the previous one. If we focus on the 
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center of graph, we will notice that five green asteriks present in Figure 5.9, are now 

absent near the amplitude value of 0,08. This helps seeing that some of the real 

attacks were eliminated. Of course, other two component of these eliminated five 

attacks are also eliminated from the set of detected onsets and local minima. 

 

5.9  Pitch Detection 

 

At the moment, we have segmented fifty notes whose pitches are unknown. We will 

learn the note pitches by making a number of Fast Fourier Transform operations 

between the successive physical onsets remained after the spurious attack elimination 

phase by applying the criteria stated in Section 3.11. These pitches are the frequency 

values of the notes which are originated from the middle octave of grand piano 

instrument. As a result, we got pitches and corresponding names of notes for these 

pitches. We have found fifty pitches and fifty note names. We provide a figure for 

the display of the pitches found as a function of time in Figure 5.11. In the figure, 

every red asterisk actually shows a detected note and is placed into the cartesian 

plane according to its pitch value and its corresponding pitch time derived as 

mentioned in the section 3.11. We summarize the pitches and the note names that we 

found in Table 5.1’s second and third columns. 

 

Table 5.1 summarizes all the results obtained in various steps of implementations for 

fifty notes. The column names are very obvious. At the leftmost column, the 

abbreviation of number is used and signifies the note index in the order of detection. 

The fourth colum represents the note duration calculated in Section 3.12. Then, all 

notes are mapped to their corresponding centroid durations in Section 3.13. Finally, 

the last colum is the output of the label assignment process of Section 3.14. The 

numbers used in the note label signify the note value type in a rhytmic metric. 
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Figure 5.11:  Pitches found for the fifty segmented notes. 

 

Table 5.1: Results obtained in various steps of implementation. 

 

# 

Pitch 

(Hertz) 
Note 

Duration 

(seconds) 

Mapped       

Duration 

(seconds) 

Label # 
Pitch 

(Hertz) 
Note 

Duration 

(seconds) 

Mapped       

Duration 

(seconds) 

Label 

1 329.6300 E 1.5012 1.4935 E2 26 440.0000 A 0.1981 0.1964 A16 

2 392.0000 G 0.1968 0.1964 G16 27 392.0000 G 0.7390 0.7405 G4 

3 349.2300 F 0.1903 0.1964 F16 28 261.6300 C 0.3802 0.3773 C8 

4 293.6600 D 0.7382 0.7405 D4 29 369.9900 F# 2.9927 2.9960 F#1 

5 349.2300 F 0.3800 0.3773 F8 30 277.1800 C# 0.3940 0.3773 C#8 

6 392.0000 G 0.3805 0.3773 G8 31 293.6600 D 0.1842 0.1964 D16 

7 329.6300 E 0.7395 0.7405 E4 32 392.0000 G 0.1840 0.1964 G16 

8 311.1300 D# 1.4996 1.4935 D#2 33 293.6600 D 0.2050 0.1964 D16 

9 277.1800 C# 0.2108 0.1964 C#16 34 293.6600 D 0.7207 0.7405 D4 

10 329.6300 E 0.1847 0.1964 E16 35 349.2300 F 0.7557 0.7405 F4 

11 349.2300 F 0.7312 0.7405 F4 36 349.2300 F 0.3708 0.3773 F8 

12 329.6300 E 0.7507 0.7405 E4 37 329.6300 E 0.2011 0.1964 E16 

13 392.0000 G 0.7480 0.7405 G4 38 293.6600 D 0.3782 0.3773 D8 

14 349.2300 F 0.3783 0.3773 F8 39 293.6600 D 1.4790 1.4935 D2 

15 311.1300 D# 0.3844 0.3773 D#8 40 349.2300 F 0.2059 0.1964 F16 

16 261.6300 C 1.4875 1.4935 C2 41 440.0000 A 0.1872 0.1964 A16 

17 349.2300 F 1.5016 1.4935 F2 42 293.6600 D 0.1949 0.1964 D16 

18 293.6600 D 1.4969 1.4935 D2 43 329.6300 E 0.1795 0.1964 E16 

19 329.6300 E 0.2089 0.1964 E16 44 261.6300 C 0.3689 0.3773 C8 

20 415.3000 G# 0.3677 0.3773 G#8 45 440.0000 A 1.4888 1.4935 A2 

21 261.6300 C 0.1990 0.1964 C16 46 392.0000 G 0.7529 0.7405 G4 

22 440.0000 A 0.7271 0.7405 A4 47 311.1300 D# 0.2075 0.1964 D#16 

23 293.6600 D 0.2048 0.1964 D16 48 415.3000 G# 0.3669 0.3773 G#8 

24 392.0000 G 0.7325 0.7405 G4 49 369.9900 F# 0.1927 0.1964 F#16 

25 369.9900 F# 0.7504 0.7405 F#4 50 349.2300 F 2.9993 2.9960 F1 
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5.10  Calculation of Note Durations 

 

We calculated note durations of fifty notes by substracting the corresponding time 

locations of the two successive notes’ physical onsets as stated in Section 3.12. We 

obtained fifty note durations which will be used in the note value types detection. We 

also provide these values in Table 5.1. 

 

5.11  Note Value Types Detection 

 

Until this step, we do not have any prior knowledge about the note value types of the 

notes segmented. We discussed how we try to approximate the note type values from 

the data of note durations in Section 3.13. In the detailed explanation of this 

approximation, we introduced a variable named B
#��
# whose default value is 0,8. 

This value is used while seeking the possible note durations in the entourage of a 

note centroid. This algorithm seems to resemble K-Means algorithm (although the 

contexts are different) in the sense that both require to be given the number of means 

to be detected, as an input [29]. Here we deal with the distinct note types and our £ 

is five, apparently. As a result, we got two important new information which are 

distinct note value types and mapped note durations, respectively. The note value 

types detected for the file test-5-50-notes.wav are 2.9960, 1.4935, 0.7405, 0.3773, 

0.1964, 0.0982, and 0.0491 seconds, in descending order. One important thing is that 

these are the generalized note types that we would like to map to the note durations 

found in the previous step instead of their values obtained from the measurement 

conducted between the successive onsets’ time locations. Thus, the meaning of the 

mapped note durations are now revealed. At the moment, all note durations can be 

one of the five generalized and distinct note type values. Finally, we will use the 

mapped note durations in the final step of our implementation while we try to give a 

complete descriptive label to the notes segmented. See Figure 5.13 in order to 

investigate the five distinct note value types. Each note value type is exactly the half 

of the one previous note type. In the figure, red asteriks show the centroids calculated 

by taking the mean of the data points in its entourage. Blue asteriks show our current 

data points which are indeed the note durations calculated at the previous step. They 

are distributed in the plane as if they are coming from the different clusters. The case 
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of the centroid and its entourage data points can be seen better with a close-up plot 

(see Figure 5.12). 

 

 

Figure 5.12:  Second largest centroid zoomed.very near to 1,5 seconds. 

 

 

Figure 5.13:  Distinct note value types-centroids seen with data points. 
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5.12  Note Labels Assignment 

 

In Section 1.2.4.3, we have investigated different note value types that are the basis 

for our test data. In Section 1.2.7.2, we explained the rationale of the relative change 

of these note value types under the circumstances that tempo gets slower or faster. In 

Section 3.14, we have introduced the proposed approximation method of mapped 

note durations to absolute note value types in a given tempo. So, we give the 

assignment routine that map note durations and the names of notes found. It returns 

the fully qualified note name labeled with its note value type likewise the examples 

of E2, F16, D4, G8, F#1 which are all given for a different value type. We got fifty 

note labels in this format. All note labels can be seen in Table 5.1. We will use these 

note labels in calculating the accuracy of the algorithm that is validated for a given 

data test-5-50-notes.wav. 

 

5.13  Performance Measurement 

 

Performance measure of our proposed algorithm is its accuracy. We calculated the 

percentage of correctly identified notes. The accuracy can be given as the following 

 

 ���6#$�3 � �61@
# �� $��6#$'
53 	
;1
�'

 ��'
	'�'$5 �61@
# �� ��'
	  (5.1)  

 

where ���6#$�3 ¤  ¥ $�
 0 e ���6#$�3 e 100 . We obtained an accuracy value 

of 100% for the data file test-5-50-notes.wav. We have found fifty accurately 

segmented notes in our test data.  

 

We tested the algorithm in an experiment of thousand randomly created wave files 

which contain the notes from middle octave and with first five note value types. As a 

result, our proposed transcription algorithm has an average accuracy of 97,6 with the 

tuned parameters (see Section 5.14). In this experiment, we successfully transcribed 

the music scores of 960 test files with one hundered per cent accuracy.  

 

For 12 files, we got partial accuracies varying from 40% to 80%. The decrease in the 

accuracy is caused by the validation method of transcribed scores with the ground-

truth data. If the segmentation of one note is skipped or one exces note could not be 
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eliminated during the spurious attack elimination, this situation affects linearly the 

validation of all subsequent transcribed scores. In this experiment, such a case occurs 

for the file '
	' f 0404.E$* for which the algorithm yields an accuracy of 41,2. We 

show a fragment of the comparison process of ground-truth data with transcripted 

scores in Figure 5.14. 

 

 

Figure 5.14:  A fragment of the comparison matrix for the test file test-0404.wav. 

 

Figure 5.14 explains the cases which decrease the accuracy. We first see that the note 

916 was transcribed as 98. The correct note duration may not be properly mapped to 

the right centroid. All in all, this is a false transcription example even though the note 

name and its pitch were detected appropriately. Secondly, the algorithm skipped to 

detect �16 after 916 and that’s why we add a padding zero to the end of the testing 

scores. This error causes a series of failures in the validation of testing data despite 

the rest was transcribed successfully (follow the red arrows). This massive decrease 

in the accuracy is due to the subsequent dependence of the algorithm pieces. If one 

fails, the subsequent pieces fail.  

 

Beside these, we got zero acccuracy for 28 test files. One of the main reason for this 

bad result is randomness. Notes and their durations were created in a random fashion. 

This approach does not fit with the general music composition style [10]. In general, 

harmony, consonance and tonality are the main goal to reach for composers [11]. 

However, we discarded these aesthetic elements while we create our synthetic test 

data in order to force our algorithm. Another reason for the fall of accuracy is that the 

absence of one of more value types in note value type detection process. Lastly, for 
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some files, our algorithm parameters may be re-tuned even the majority of the test 

files we got 100% accuracy. For example, spurious attack elimination is a good 

example of the requirement for parameter tuning. If the threshold is not selected well, 

elimination fails to remove excess attacks which directly affects the performance. 

We explain the determination of parameters values in Section 5.14. 

 

Another criterion to evaluate the performance of our algorithm is its squared error 

sum. This is computed for each test file used in an experiment. In Section 3.9, we 

segment £ notes from a test file. Then, we eliminate the spurious notes in Section 

3.10. The number of remaining notes is denoted by £�. For each detected note �, we 

calculate an experimental error 
{ by substracting the look-up table frequency value 

(5'�) from the most powerful frequency value (� ′ ) obtained by the power spectrum 

analysis (see Section 3.11). For all remaining notes for a test file, we can formulate 

the squared error sum @¦,H as follows 

 

 

@¦,H �l
{m
§¨

{
�l���{ f 5'�{�m

§¨

{
 (5.2)  

 

where 1 is the number of current test file and � is the window size (see Table 5.3) 

and the jump amount (see Tables 5.4, 5.5 and 5.6) in the second and third 

experiments, respectively. 

 

5.14  Experimental Determination of Parameters 

 

The performance of the transcription algorithm is affected from the value of 

parameters used in various steps. We made some experiments to determine the 

crucial parameter values. One of these parameters is the coefficient value used to 

compute the threshold in the spurious attack elimination phase. The other one is the 

window size utilized during the construction of amplitude envelope. Thirdly, the 

jump amount affects the performance of the algorithm. We conducted an experiment 

to show how we calibrated the proportional ratio of window size and jump amount. 
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In our first experiment, we try to improve the performance of spurious attack 

elimination process. This process depends on to the value of a coefficient given 

during the runtime because we separately calculate a treshold value for each data file 

in order to eliminate the redundant attacks (see Section 3.10). The threshold is 

calculated via the formula < � 1� where < is threshold, 1 is the median of attacks 

lengths, and � is the coefficient. For randomly created 50 files (each consisting of 50 

notes), we tested 10 different values of the coefficient which vary from 0.1 to 1.0 by 

an increment of 0.1. We got the best average accuracy of 98% while the coefficient 

value is 0.3 (see Table 5.2). After the coefficient value continues to increase, the 

average accuracy begins to decrease (see Figure 5.15). That’s why we decided to use 

the coefficient value as 0,3 in the experiement where we got an accuracy of 97,6 for 

thousand files. 

 

Table 5.2:  Coefficient values and corresponding average accuracies. 
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Figure 5.15:  Average accuracies of 50 test files for 1
st
 experiment. 

 

In the second experiment, we try to understand how window size influences the 

average accuracy and squared error sum. We deal with the window size while we 

construct the amplitude envelope of the signal (see Section 3.4). In this phase, we 

take the frames of signal and we get the maximum signal value for each frame. We 

would like to know if the size of frame(in terms of samples) matters of not. We 

conducted the experiment with 18 different window sizes. They vary from 32 to 100 

in an increment amount of four. We got the optimum result when the window size is 

equal to 56. For this value, we obtained an average accuracy of 98 for 50 randomly 

created test files. Concurrently, the average squared error sum must get the smallest 

value while the average accuracy must take the largest value. Error rate decreases in 

parallel with the increase of window size (see Figure 5.17). Approximately, the 

average squared error sum is 26,73 when window size is equal to 56 (see Table 5.3). 

After window size has once reached the value of 48, the accuracy did not decrease 

under the value of 93 (see Figure 5.16).  
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Figure 5.16:  Average accuracies of 50 test files for 2
nd

 experiment. 

 

Table 5.3:  Average accuracies and squared error sums for varying window sizes. 
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We decided to use a window size value as 64 in the experiement where we got an 

accuracy of 97,6 for thousand files because the average accuracy still stands for 98% 

while the average squared error sum is very close to the value in the optimum case 

(see Figure 5.17). Computationally, algorithm may work relatively faster while 

window size is equal to 64 instead of 56. 

 

 

Figure 5.17:  Average squared error sums of 50 test files for 2
nd

 experiment. 

 

In the third experiment, we investigated the relationship between the window size 

and jump amount. Both parameters are used in the construction of the amplitude 

envelope (see Section 3.4). We want to infer for which value of jump amount we can 

get the best result. For the three different window sizes including the optimum 

window size value of the previous experiment, we conducted twenty different jump 

amounts for fifty different randomly created test files. The window sizes are 50, 56, 

and 100, respectively. Jump amout vales vary from 5 to 100 by increments of five. 

For the window sizes 50 and 56, we tested the maximum jump amount values 50 and 

55, respectively. The size of jump amount should not exceed the size of the window 
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size. For three different window sizes, we got three different best results which are 

provided in Tables 5.4, 5.5, and 5.6. 

 

When window size is equal to 50, we got the optimum result while the size of jump 

amount is 20. In this case, the average accuracy for 50 files is 94,88 and the average 

squared error sums is 35, 25 (see Table 5.4). The secondary best result was obtained 

when the jump amount is equal to 15. In this case, we got an average accuracy of 

94,08 which is lesser than the optimum result’s one. 

 

Table 5.4:  Average accuracies and squared error sums for  

varying jump amount values when window size is 50. 

 

 

For this value of the window size, we can use the second optimum result whose 

average accuracy is equal to the most optimum solution’s one. In addition, the 

average squared error sums is relatively smaller than the optimum solution. So, they 

can be used interchangeably. Thus, the ratio of the window size over jump amount is 

equal to 3,33 which is close to 4.  
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When window size is equal to 56, we got the optimum result while the size of jump 

amount is 15. In this case, the average accuracy for 50 files is 98 and the average 

squared error sums is 27, 1 (see Table 5.5). The secondary best result was obtained 

when the jump amount is equal to 20. In this case, we got an average accuracy of 

95,582 which is lesser than the optimum result’s one. 

 

Table 5.5:  Average accuracies and squared error sums for  

varying jump amount values when window size is 56. 

 

 

For this value of the window size, the ratio of the window size over jump amount is 

equal to 3,73 which is also close to 4.  

 

When window size is equal to 100, we got the optimum result while the size of jump 

amount is 25. In this case, the average accuracy for 50 files is 98 and the average 

squared error sums is 32,3 (see Table 5.6). The secondary best result was obtained 

when the jump amount is equal to 20. In this case, we got an average accuracy of 

96,68 which is lesser than the optimum result’s one. 
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Table 5.6:  Average accuracies and squared error sums for  

varying jump amount values when window size is 100. 

 

 

For this value of the window size, the ratio of the window size over jump amount is 

equal to 4, exactly. Therefore, we can claim that when the ratio of the window size 

over jump amount approximates to 4, we get an average accuracy of 98 and an 

average square error sum of 29,7 ( [27,1 + 32,3]/2 ). That’s why we decided to use 

this ratio in the experiment we got an accuracy of 97,6 for thousand files by using a 

window size of 64 and a jump amount of 16. To conclude, we provide six figures to 

explain the situation of average accuracies and squared error sums in terms of the 

change in jump amount for three different window sizes (see Figures 5.18, 5.19, 

5.20, 5.21, 5.22, and 5.23). 
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Figure 5.18:  Average accuracies for 3
rd

 experiment when window size is 50. 

 

 

Figure 5.19:  Average accuracies for 3
rd

 experiment when window size is 56. 
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Figure 5.20:  Average accuracies for 3

rd
 experiment when window size is 100. 

 

 
Figure 5.21:  Average squared error sums for 3

rd
 experiment when  

window size is 50. 
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Figure 5.22:  Average squared error sums for 3
rd

 experiment when  

window size is 56. 

 

Figure 5.23:  Average squared error sums for 3
rd

 experiment when  

window size is 100. 
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Chapter 6 

Conclusion 

 

In this thesis, we have discussed automatic music transcription of music notes for an 

audio signal. We attempted to transcript percussive note onsets for the instrument 

piano. For this purpose, we used our data creator program in order to provide random 

data to our implementation. To transcript notes, we have used both temporal and 

frequency domain features. 

 

Our aim was to detect music notes and estimate their physical attributes like onset 

and attack times, durations, labels, value types and their pitches. We have applied a 

series of techniques to obtain all the mentioned attributes. We believed that abrupt 

changes in the amplitude envelope could be a guide to find out the note events. 

Because the envelope had so much unrelated peaks, we needed to smooth it to get 

more comfortable data to work on. We benefitted from the sudden increase in the 

mean of slopes data. We detected these increases by calculating cumulative sums. By 

using the data obtained until this step, we segmented notes in audio signal. Some of 

them were truely related to music events but some were not. We eliminated these 

spurious ones from our data. Until right now, these were our temporal features. In 

order to obtain notes pitches, we made a frequency domain operation like FFT. 

Beside this, we got note names by only mapping their pitches into a look-up table of 

nine octaves frequencies for piano instrument. We estimated note durations from the 

differences of two successive onsets. Then, we have splitted note durations in some 

clusters. We used the mean of each cluster as a generalized note value type. 

Moreover, the mapped durations were assigned to the segmented notes. Each note 

got a label according to its mapped duration, e.g. F#4. As a result, we had a series of 

labeled notes like F#4.  
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Our proposed transcription algorithm has an average accuracy of 97,6 for randomly 

created thousand synthetic data with the tuned parameters. The performance of the 

algorithm is affected from the values of parameters in various steps. We provide 

experimental results to illustrate the tuning of parameters. Especially, the values of 

window size and jump amount in construction of amplitude envelope and the 

threshold used in spurious attack elimination have direct influence on the rate of 

accuracy. As a future work, the algorithm can be improved to detect 32
nd

 and 64
th

 

notes in the middle octave, as well as the other octaves. Moreover, the algorithm can 

be tested on the real data in the future. This may well be more chanllenging for our 

algorithm. 
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Appendix A  Variable Length Writing and Reading 

 

A.1  Pseudocode of Variable Length Writing 

 
WRITE-VARIABLE-LENGTH( value, file ) 
00 # initialize and define an integer R by making bitwise AND with 0x7F 

01 R X value & 0x7F 

02  

03 # bitwise RIGHT-SHIFT operation: division by 128 

04 L  X value >> 7 

05 

06 # Check L > 0 

07 if L > 0 then 

08  do 

09   # bitwise LEFT-SHIFT: multiplication by 256 

10   K X R << 8 

11 

12   # bitwise AND operation for L with 0x7F 

13   I  X L & 0x7F 

14 

15   # bitwise OR operation for I with 0x80 

16   temp  X I | 0x80 

17 

18   # bitwise OR operation for K with temp 

19   data  X K | temp 

20 

21   # L is assigned to value 

22   value  X  L 

23 

24   # loop condition will be tested with the value of L  

25   L  X  value >> 7 

26  while L > 0 

27 else 

28  # bitwise AND operation for value with 0x7F 

29  data  X value & 0x7F 

30 

31 # writing data into the file 

32 while TRUE 

33  # writing data as one-byte character inside a file 

34  write( data, file ) 

35 

36  # if data’s seven bit is set 
37  if ( data & 0x80 ) 

38   # divide data by 256 and assign the result to itself 

39   data  X data >> 8 

40  else 

41   break 

42 end while 
 

Figure A.1:  Algorithm of variable length writing. 
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A.2  Pseudocode of Variable Length Reading 

 
READ-VARIABLE-LENGTH( value, file ) 

00 # we read an hexadecimal number from the file 

01 VX read(file) 

02 

03 # bitwise AND operation with 0x80 

04 R X V & 0x80 

05 

06 # check R >= 1 

07 if  R >= 1 then 

08 

09  # bitwise AND operation with 0x7F 

10  R X V & 0x7F 

11  V X R 

12 

13  do 

14   # V is multiplied by 128 

15   L X V << 7 

16 

17   # a new value is read from file 

18   Y X read(file) 

19 

20   # bitwise AND for Y with 0x7F 

21   RX Y & 0x7F 

22 

23   # V is assigned to the addition of L and R 

24   V X L + R 

25 

26   # loop condition will be tested with the value of temp 

27   temp X Y & 0x80 

28 

29  while temp > 0 

30 

31 else  

32  # bitwise AND operation for V with 0x7F 

33  R X V & 0x7F 

34  V X R 

35 

36 return V 
 

Figure A.2:  Algorithm of variable length reading. 
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Appendix B  Note Value Types Detection 

 

B.1  Pseudocode of Round#1:  Finding Centroids 

 

FIND-CENTROIDS( k&6#, B
#��
#, 
�	�3B
 ) 

00 

01 # Initialization of groupCount and centroids array � 

02 groupCount  X 1 

03 � X array[1 Y 
�	�3B
] 

04 

05 # Iteration to calculate note value types 

06 for    q X 1  to  
�	�3B
 

07 

08  # If current iteration is 1 

09  if    q==1   then 

10   #�;<'w X max(k&6#) 

11   5
�'w X #�;<'w Y B
#��
# 

12  else 

13   5
�'w X '
1B� Y B
#��
# 

14   #�;<'w X '
1B� n '
1B� Y �1 f B
#��
#� 
15 

16  # Notes around participates a mutual group 

17  k�#�6�
 X k&6#(k&6# R 5
�'w & k&6# e #�;<'w ) 

18 

19  # Check number of elements if it is zero or not 

20  if  	�k�#�6�
� == 0   then 

21 

22   # No notes were found at this  ªth iteration 

23   �«\I[�¬I[H, X '
1B� 

24 

25   # Pseudo centroid is calculated to advance 

26   '
1B� X �«\I[�¬I[H,  / 2 

27   groupCount X groupCount  +  1 

28 

29  else 

30   # There are some notes around 

31   �«\I[�¬I[H, X mean( k�#�6�
 ) 

32 

33   # Pseudo centroid is calculated to advance 

34   '
1B� X �«\I[�¬I[H,  / 2 

35   groupCount X groupCount  +  1 

36 end for 

37 

38 # Return centroids 

39 return  � 

 

Figure B.1:  Algorithm of finding centroids. 
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B.2  Pseudocode of Round#2:  Mapping Note Durations 

 

MAP-NOTE-DURATIONS( k
6#, � ) 

00 

01 # Initialization mapped note durations 

02 �$B&6# X array[ 1 Y 5
�;'<�k&6#� ] 
03 

04 # Assignment of generalized durations to real durations 

05 for    counter  X 1  to  length(k&6#) 

06 

07  # Finding most nearest centroid value to Fth note duration 

08  [row, column]  X MNV( �, k&6#q  ) 
09 

10  # Assign the centroid value as note value type to this note duration 

11  �$B&6#( counter )  X ����561��  
12 

13 end for 

14 

15 # Return mapped note durations 

16 return   �$B&6# 

 

Figure B.2:  Algorithm of mapping note durations. 
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Appendix C  Pseudocode of Note Label Assignment 

 

ASSIGN-NOTE-LABELS( �$B&6#, kk$1
 ) 

00 

01 # Initialization 

02 Extensions  X {‘1’, ‘2’, ‘4’, ‘8’, ‘16’} 

03 Labels  X array[ 1 Y 5
�;'<�kk$1
� ] 
04 

05 # Loop produces note labels according to its mapped durations 

06 for    j  X 1  to   length(kk$1
) 

07 

08  # If mapped durations is one of the descendingly ordered note value type 

09  switch(  �$B&6#q   ) 
10 

11   # Case corresponds to whole note 

12   case   �. 

13    # suffix to append is ‘ 1 ’  

14    Labels(F)  X cat( kk$1
q , Extensions(F) ) 
15 

16   # Case corresponds to half note 

17   case   �m 

18    # suffix to append is ‘ 2 ’ 

19    Labels(F)  X cat( kk$1
q , Extensions(F) ) 
20 

21   # Case corresponds to quarter note 

22   case   �® 

23    # suffix to append is ‘ 4 ’ 

24    Labels(F)  X cat( kk$1
q , Extensions(F) ) 
25 

26   # Case corresponds to eighth note 

27   case   �¯ 

28    # suffix to append is ‘ 8 ’ 

29    Labels(F)  X cat( kk$1
q , Extensions(F) ) 
30 

31   # Case corresponds to sixteenth note 

32   case   �° 

33    # suffix to append is ‘ 16 ’ 

34    Labels(F)  X cat( kk$1
q , Extensions(F) ) 
35  end  switch 

36 end  for 

37 

38 # Return fully qualified note labels i.e: G#16 

39 return   Labels 

 

Figure C.1:  Algorithm of note label assignment. 
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