

AUTOMATIC MUSIC TRANSCRIPTION

BERK EKİM PAŞMAKOĞLU

IŞIK UNIVERSITY

2010

AUTOMATIC MUSIC TRANSCRIPTION

BERK EKİM PAŞMAKOĞLU

B.S., Computer Engineering, Işık University, 2007

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirement for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2010

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

AUTOMATIC MUSIC TRANSCRIPTION

BERK EKİM PAŞMAKOĞLU

APPROVED BY:

Prof. Ercan SOLAK (Işık University) ______________________

(Thesis Supervisor)

Assist. Prof. Boray TEK (Işık University) ______________________

Assist. Prof. Ümit GÜZ (Işık University) ______________________

APPROVAL DATE:

ii

AUTOMATIC MUSIC TRANSCRIPTION

Abstract

Computational music research is spread out of the world in many fields. One of these

fields is automatic music transcription. During this thesis, we concentrated on the

detection of music notes inside an audio signal. We decided to work on a percussive

instrument i.e. piano because percussive onset can be relatively more easier to detect

than other types of onset. We benefitted from the signal processing techniques like

FFT, low-pass filtering and the statistical methods like Hinkley’s CUSUM algorithm

and linear regression. We proposed a transcription algorithm applied to a

synthetically created audio data which was formed by the notes of middle octave and

first five note value types. The algorithm transcribes the music scores with an

average accuracy of 96,7 using the tuned parameters.

iii

AUTOMATIC MUSIC TRANSCRIPTION

Özet

Bilişimsel müzik araştırması bir çok alanda dünyaya yayılmıştır. Bu alanlardan biri

de özdevimli müzik çevriyazımıdır. Bu tez sırasında, bir ses iminin içerisindeki

müzik notalarının algılanması üzerine yoğunlaştık. Bir vurmalı müzik aleti olan

piano üzerine çalışmaya karar verdik çünkü vurmalı nota başlangıçlarının

algılanılması diğer nota başlangıç tiplerine göre göreceli olarak daha kolaydır. Hızlı

Fourier Dönüşüm'ü ve alçak geçirgen süzgeci gibi im işleme tekniklerinden ve

Hinkley'in CUSUM algoritması ve doğrusal regresyon gibi sayımlama

yöntemlerinden faydalandık. Orta oktav notalarından ve ilk beş nota değer

türlerinden oluşan bireşimsel olarak yaratılmış bir ses verisine uygulanan bir

algoritma teklif ettik. Algoritma müzik parçalarını ayarlanmış değiştirgeler

kullanarak ortalama yüzde 96,7 bir doğrulukla yazılı biçime dönüştürmektedir.

iv

Acknowledgements

My kindest and deepest thanks go to Prof. Ercan Solak. During the time I have been

working on my thesis, he spent its time educating and guiding me by giving handy

suggestions and keeping my thesis on an appropriate way. I would also like to thank

him about his patience for my endless questions on the next step and my irrelevant

interrogations about the subject of research.

I would like to thank Assist. Prof. Boray Tek, who helped immensely re-organizing

the methodology of my thesis by addressing many questions and giving invaluable

advice.

I would like to thank Assist. Prof. Ümit Güz for his recommendations of Savitzky–

Golay smoothing filter offered for the segmentation of the note values smaller than

sixteenth note. I also thank him for its advice about the part related to the previously

done works that enrich my thesis.

This work would also not be possible without personal support from several people. I

would like to thank all my mates in computer and electrical engineering

departments. They helped me so much. I am very grateful for their examination

substitutions. To Sevgi Dikmen, I owe a special debt, for her aids and advices at the

thesis redaction.

Finally, I would like to thank my parents for their emotional support over the years

and for everything they did for myself. They always encouraged me to go on. I

would extremely like to thank Özlem Aslan for her kindest and gentlest sublime

love, her amity and for keeping me going through times when it seemed like this

project would never end. It is to you that this work is dedicated.

v

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

List of Symbols xiv

List of Abbreviations xvii

1 Introduction 1

 1.1 Aim of Thesis .. 2

 1.2 Musical Background ... 3

 1.2.1 What is music? .. 3

 1.2.2 Sound .. 4

 1.2.3 Frequency, Period and Amplitude .. 5

 1.2.4 Musical Note and Pitch ... 6

 1.2.4.1 Pitch .. 6

 1.2.4.2 Musical Note ... 6

 1.2.4.3 Note Value Types ... 7

 1.2.5 Intervals ... 9

 1.2.6 Scales... 10

 1.2.7 Rhythm of the Music ... 11

 1.2.7.1 Time Signature .. 11

 1.2.7.2 Tempo ... 12

 1.3 Organization of Thesis .. 13

2 Computer Music and MIDI 15

 2.1 MIDI File Format .. 16

 2.1.1 Header Chunk.. 16

vi

 2.1.2 Track Chunk .. 18

 2.1.3 Variable Length Reading and Writing .. 19

 2.1.3.1 Variable Length Writing ... 20

 2.1.3.2 Variable Length Reading .. 21

 2.2 The Events in MIDI .. 21

 2.2.1 The Track Chunk MIDI Events... 22

 2.2.2 The Meta Events ... 24

3 Automatic Music Transcription 26

 3.1 Getting Input Wave File.. 26

 3.2 Signal Information Retrieval... 27

 3.2.1 Getting ‘Times’ ... 27

 3.2.2 Getting ‘Notes’ and ‘Octaves’ .. 28

 3.3 Making Single Channel Signal ... 28

 3.4 Construction of Amplitude Envelope of Signal .. 29

 3.5 Smoothing the Envelope Shape .. 33

 3.6 Slope Detector ... 36

 3.7 The Model 'Rise-Time'.. 42

 3.7.1 Progressing the Model .. 44

 3.8 CUSUM Algorithm ... 45

 3.9 Note Segmentation .. 46

 3.10 Spurious Attack Elimination ... 49

 3.11 Pitch Detection between Successive Note Onsets 52

 3.12 Note Durations Calculation... 57

 3.13 Note Value Types Detection ... 58

 3.14 Note Labels Assignment ... 61

4 Proposed Transcription Algorithm 62

5 Results 67

 5.1 Data ... 67

 5.2 Envelope ... 68

 5.3 Smoothing ... 69

 5.4 Slope Detection ... 71

 5.5 ‘Rise-Time' Model .. 73

 5.6 CUSUM Algorithm ... 75

 5.7 Note Segmentation .. 75

vii

 5.8 Spurious Attack Elimination ... 77

 5.9 Pitch Detection .. 78

 5.10 Calculation of Note Durations .. 80

 5.11 Note Value Types Detection ... 80

 5.12 Note Labels Assignment ... 82

 5.13 Performance Measurement ... 82

 5.14 Experimental Determination of Parameters .. 84

6 Conclusion 95

References 97

Appendix A Variable Length Writing and Reading 100

 A.1 Pseudocode of Variable Length Writing ... 100

 A.2 Pseudocode of Variable Length Reading .. 101

Appendix B Note Value Types Detection 102

 B.1 Pseudocode of Round#1: Finding Centroids 102

 B.2 Pseudocode of Round#2: Mapping Note Durations 103

Appendix C Pseudocode of Note Label Assignment 104

Curriculum Vitae 105

viii

List of Tables

Table 1.1 Ratio change in an octave .. 9

Table 2.1 The variable length representation of some numbers 19

Table 2.2 The midi event types implemented in our program 23

Table 2.3 The meta events type that we implemented 25

Table 5.1 Results obtained in various steps of implementation 79

Table 5.2 Coefficient values and corresponding average accuracies 85

Table 5.3 Average accuracies and squared error sums for

 varying window sizes ... 87

Table 5.4 Average accuracies and squared error sums for varying

 jump amount values when window size is 50 89

Table 5.5 Average accuracies and squared error sums for

 varying jump amount values when window size is 56 90

Table 5.6 Average accuracies and squared error sums for

 varying jump amount values when window size is 100 91

ix

List of Figures

Figure 1.1 Overview of the system ... 2

Figure 1.2 Oscillating sound waves and. displacement

 as a function of time ... 4

Figure 1.3 Periodic waveform ... 5

Figure 1.4 From middle C(C4) to an octave higher C(C5), the notes

 are placed inside the staff with the treble clef 7

Figure 1.5 Five note value types in a hierarchical order from largest

 to smallest .. 8

Figure 1.6 Red lines show diatonic scale semitones ... 11

Figure 1.7 Valid bar with three kind of notes generated via Anvil Studio 12

Figure 2.1 The header part for the file generic-data.mid 17

Figure 2.2 Track chunk snapshot provided with 59 bytes data 18

Figure 2.3 Three types of midi events for the second track chunk

 of the file generic-data.mid ... 23

Figure 2.4 Track name, channel prefix and sequencer specific meta event

 used in the second track chunk .. 25

x

Figure 3.1 Pitches on the piano shown in the scientific notation 28

Figure 3.2 The sound waveform carrying the information of 16 notes 29

Figure 3.3 The amplitude envelope drawn onto the original waveform 31

Figure 3.4 Pseudocode of the amplitude envelope construction 32

Figure 3.5 The amplitude envelope of ���� viewed alone 33

Figure 3.6 Frequency response of an ideal LPF with its cutoff at ����	

 35

Figure 3.7 Smoothed envelope suitable for note segmentation 36

Figure 3.8 Slope detection’s result seen. The top part of the plot shows

 the squared area of ��
�. At the bottom part, the squared

 area is zoomed ... 40

Figure 3.9 Pseudocode of the slope detection ... 41

Figure 3.10 All rise-slope values above 0,016 seen and colored as

 red and green, alternatively .. 43

Figure 3.11 Slopes placed between rise-slope and time-of-max 44

Figure 3.12 The real attacks after progressing the model 45

Figure 3.13 Three phases of single note segmentation process 46

Figure 3.14 Notes segmented for the file generic-data-modified.wav 48

Figure 3.15 Two spurious attacks enclosed in red squares 49

Figure 3.16 Note components and the length of attack � 50

xi

Figure 3.17 All remaining notes seen after spurious attack elimination 52

Figure 3.18 Three successive frames. We try to find a pitch value for each 54

Figure 3.19 The most powerful frequency and its strength, holding

 for the musical note A from the middle octave 55

Figure 3.20 Pitch values drawn according to their pitch times 56

Figure 3.21 Note duration calculation made for all successive note onsets 58

Figure 3.22 Mechanism of centroid calculation and its

 representaion in the plane .. 59

Figure 3.23 The centroids and their surrounding data points seen 60

Figure 4.1 Pseudocode of proposed transcription algorithm (continued) 62

Figure 5.1 The content of the file test-5-50-notes.txt .. 67

Figure 5.2 28 notes out of 50 placed in the music staff 68

Figure 5.3 The amplitude envelope drawn onto the original waveform 69

Figure 5.4 Amplitude envelope before smoothing .. 70

Figure 5.5 Amplitude envelope after smoothing ... 70

Figure 5.6 Slope detection result for the file test-5-50-notes.wav 71

Figure 5.7 Close-up of the slope detection result .. 72

Figure 5.8 The ‘Rise-Times’ Model and its progression viewed 74

xii

Figure 5.9 Segmented notes drawn with three temporal components 76

Figure 5.10 Segmented notes seen after the elimination 77

Figure 5.11 Pitches found for the fifty segmented notes 79

Figure 5.12 Second largest centroid zoomed.very near to 1,5 seconds 81

Figure 5.13 Distinct note value types-centroids seen with data points 81

Figure 5.14 A fragment of the comparison matrix for

 the test file test-0404.wav .. 83

Figure 5.15 Average accuracies of 50 test files for 1st experiment 86

Figure 5.16 Average accuracies of 50 test files for 2nd experiment 87

Figure 5.17 Average squared error sums of 50 test files for 2nd experiment 88

Figure 5.18 Average accuracies for 3rd experiment when window size is 50 92

Figure 5.19 Average accuracies for 3rd experiment when window size is 56 92

Figure 5.20 Average accuracies for 3rd experiment when window size is 100 93

Figure 5.21 Average squared error sums for 3rd experiment when

 window size is 50 ... 93

Figure 5.22 Average squared error sums for 3rd experiment when

 window size is 56 ... 94

Figure 5.23 Average squared error sums for 3rd experiment when

 window size is 100 ... 94

xiii

Figure A.1 Algorithm of variable length writing ... 100

Figure A.2 Algorithm of variable length reading ... 101

Figure B.1 Algorithm of finding centroids .. 102

Figure B.2 Algorithm of mapping note durations .. 103

Figure C.1 Algorithm of note label assignment ... 104

xiv

List of Symbols

������ n-by-2 matrix denotes the remaining attacks after progression

��,� Squared error sum for �� notes of a test file

�� Centroid of a group

� Constant used to tune the elimination threshold

� Number of features

���� !" Number of distinct note value types

�#$|Χ& Empirical error of the model for a given data set

��' Amplitude Envelope of signal

"(Experimental error due to pitch estimation

) Frequency

)� Strongest frequency obtained by power spectrum analysis

)* Fundamental frequency

)�	�+ Lowest frequency for a pitched note

), Sampling frequency

$#-& Discriminant function which best represents the data , the model

. Threshold used in Page-Hinkley stoping rule

./01#2�& Frequency response of a lowpass filter

3 Threshold value used in spurious attacks elimination

4��' Index array for amplitude envelope

25 Jump amount of window

� Number of segmented notes from a test file

�� Number of remaining notes after spurious attacks eliminated

� Number of approximation points

�")6� Peripheral boundary limits a group at left

�(Attack lenghth of �th note

��� Longest note duration

xv

�6) Look-up table frequency

75!89: Mapped note durations

75; Index array for local maxima

75;�5� Corresponding smoothed envelope values for note attack

7�� Index array for local minima

7���5� Corresponding smoothed envelope values for note finish

< Median of attack lengths

=:�9�� Notes durations standing in a group peripheral boundaries

89: Calculated note durations

">4�� Non-spurious attacks’ indices after elimination

??� Length of the Fast Fourier Transform

� Minimum cumulative sum value used in Page-Hinkley stoping rule

5<" Array consisting note names of all �� notes

�6"� Look-up table for note names

���6� Number of bits per sample used to encode the data in wave file

�">_�(�th frame of the signal ����

�">_6(�th frame of time vector 6���

A�65'"� 12-by-9 matrix carrying 108 notes’ pitches

A��"6 Index array for physical onsets

A��"6�5� Corresponding smoothed envelope values for note onset

B�6�3 Pitch array of all remaining �� notes

!":�B": Scalar constant used to compute peripheral boundaries

:�$36� Peripheral boundary limits a group at right

:� Second feature of the data set

���' Smoothed version of the amplitude envelope

�C�D Slope array

���� Discrete-time representation of musical signal

� Period

��	�+ Period of for a pitched note with lowest frequency

6"<!� Pseudo centroid of a group

6��� Time vector

∆6 Delta-time ticks for an event

FG Cumulative sums

xvi

H Index vector whose values denote where an onset detected

I* Mean of the current data

J Index vector whose values denote where a local maximum detected

'G Jump magnitude

K Index vector whose values denote where a local minimum detected

� Angular frequency

>L, >* Linear model parameters

>� Window size used in amplitude envelope construction

����	

 Cutoff frequency

M Data set used in linear regression

;� First feature of the data set

N Output of FFT, the transform

 (Current slope value used in Hinkley’ CUSUM

xvii

List of Abbreviations

=��44 American Standard Code for Information Interchange

�F�F7 Hinkley’s Cumulative Sum

8�� Decimal

??� Fast Fourier Transform

.�O Hexadecimal

44P Infinite Impulse Response Filter

QB? Lowpass Filter

7484 Musical Instrument Digital Interface

�7B�� Society of Motion Picture and Television Engineers

1

Chapter 1

Introduction

Computational music research is a well known and frequently studied area,

especially after 70’s. A lot of aspects of this field have been studied over the last

three decades. Among the topics are music genre similarity, onset detection, audio

classification, key-finding, beat-space segmentation, tempo and beat estimation.

Automatic music transcription is also one of these areas.

Automatic transcription of music is the extraction of music events i.e. music notes

for a given audio signal [1]. The transcription system usually concerns western

monophonic or polyphonic music [4]. We can separate the task into monophonic and

polyphonic transcriptions [2, 3]. Pieces which have only one instrument playing one

note at a time are monophonic. Usually more than one instruments can be present in

a piece of music by playing several notes at a time. In this case, polyphonic

transcription aims to identify which instruments are played and transcribe which

notes are played for a length of time [2]. In other words, main focus is to estimate the

multiple fundamental frequencies (��) of several concurrent audio signals [3].

A technique used for monophonic transcription is the time-domain autocorrelation

[4, 5]. For an N-length sample frame of an audio signal, autocorrelation measures the

similarity between shifted versions of the waveform. The delay of the highest peak

gives the period of the waveform. From the period, we obtain the pitch of the signal.

That's why monophonic transcription is sometimes called pitch tracking [2]. The Fast

Fourier Transform is used to compute the calculation of autocorrelation of a

windowed signal [4]. A new, accurate, simple, fast and robust ��estimator based on

autocorrelation is introduced in [6]. Another spectral location type fundamental

frequency estimation method is presented in [7].

2

Another method used for monophonic transcription is spectrum-autocorrelation [3].

The underlying idea of this technique is the spectral magnitude periodicity of

harmonic audio signals [8]. The interval between the frequency components

(harmonics) is investigated. The intervals may not remain constant. Nevertheless,

they are still more stable than the locations of the components because they shift

cumulatively [9]. With this method, even the sounds that have inharmonic

characteristics allow to estimate �� [3].

1.1 Aim of Thesis

In this thesis, we would like to transcript the music scores from a given audio signal

whose content is only constituted from the music notes. The pieces we work on do

not contain any chords, rests between notes, or other type of music events. We create

the test pieces with a program that we have written. In addition, we work only

percussive instruments i.e. piano whose onset nature eases the detection of notes.

Moreover, we try to find abrupt changes in the amplitude envelope of audio signal.

Some of these sudden changes correspond to music notes. Overview of the complete

system can be seen in Figure 1.1.

Figure 1.1: Overview of the system.

3

First, we smooth the envelope waveform by applying a low-pass filter. Then, we

calculate slopes for the smoothed envelope by using linear regression. Afterward, we

compute cumulative sums for slopes. Envelope, slopes and cumulative sums are

together used in note segmentation. There may exist some spurious material in the

segmented notes. We eliminate them by using a median filter. Segmented notes

contain onset information where a percussive note begins in music. We detect the

pitch of note by applying Fast Fourier Transform between successive note onsets. In

the same manner, we estimate the note durations from the test data. In addition, we

map note value types to the note durations by sorting them in ascending order in the

time scale. Then, we assign the note labels to the notes detected. Finally, we compare

the outcome with the original data in order to compute accuracy of our method.

1.2 Musical Background

1.2.1 What is music ?

Answering this question is not an easy task to do. Maybe a proper and usual

dictionary definition about that is not acceptable for everyone. We can explain it by

the actions we made when we are totally or partialy entitled to it. For example, we do

it when we sing, play or compose, also we feel it when we hear, and of course we

enjoy it, at least we try. More specific definition can be that music is a succession of

sound tones arranged in a specific rhythm [10].

The thing that keeps in touch with us about music is just a sound, indeed. From its

birth to its perception, it is a totally physical series of events. A musical instrument

excites a vibration, and then this vibrating thing passes through a milieu, which is

usually air, at the end it arrives to the human ear. After many operations conducted

over it, the human auditory system make us perceive sound. It resembles meal

prepared with plenty of ingredients such instruments, notes, scales, rhythm, tempo,

intervals, pitch, frequency etc... We will investigate some of these ingredients in a

different point of view as being the content appeared in a digital music and the way

of their meaningful interpretations.

4

1.2.2 Sound

Sound is a wave propagating through the air from a source to destination [10]. Its

vibrations travel and spread out around everywhere until they will be faded out.

During this journey, vibrations sometimes change the milieu and encounter different

elements of environment, for instance human beings. We can feel these propagating

vibrations if we put our hands on music playing speaker. They travel from the

speaker through the air to our hands.

To explain more precisely the motion of sound, we can call the aids of two important

concepts which are time and displacement. To make a good observation, we usually

need the method of comparison that necessitates a solid reference. As being a

reference, time points to a measurable and observable acting way of the sound. In a

given amount of time, we may observe that the sound wave starts getting an

increasing value, after some amount of duration reaches its maximum and then

returns back to its original starting point (see Figure 1.2). We may well call this

motion as oscillation. All these parts of this motion can be identified or referenced in

time scale. The corresponding time intervals of each parts show us the displacement

of the sound wave. In the cartesian plane, displacement points to the y-ordinate and

time refers to x-axis.

Figure 1.2: Oscillating sound waves and. displacement as

a function of time .

Times

Displacement

5

1.2.3 Frequency, Period and Amplitude

Sometimes sound vibrations repeats themselves in a regular period of time (see

Figure 1.3). For a given unit of time, there exists a number of vibration [10].

Normally, they are measured per second and standard unit is Hertz which means one

vibration per second. When we denote 440 Hz, actually, we try to explain there exist

440 vibrations per second [11, 12].

Figure 1.3: Periodic waveform.

If we mathematically express the relationship between period and frequency, we will

notice that period is denoted as the inverse of frequency

 � � 1
� �� 	
���
	 (1.1)

where � is period and frequency is expressed by �. For this section, finally we

introduce the concept of amplitude that we often utilize throughout the text.

Amplitude is the maximum displacement of the vibration from the x-axis (see Figure

1.3).

6

1.2.4 Musical Note and Pitch

In the music theory, pitch is very essential in every sense [10]. First of all, musical

notes are distinguished from each other according to their pitch values. In addition,

their representation, insertion in the musical staff and transcription vary depending

on this value [11]. Thus, it is important to explain these further.

1.2.4.1 Pitch

A tone is a sound that is played at a specific pitch. Pitch describes the specific

frequency of a tone. Frequency of the tone is a measurement of how fast the sound

wave propagates in the air [11]. Faster vibrations mean higher pitches. For example,

middle A
1
 or in the scientific pitch notation

2
 A4 has a pitch of 440 Hz on the piano.

The tones that have higher frequency pitch are called higher-pitched and the lower

counterpart is lower-pitched [10, 11]. In the case of piano, it is clearly noticeable that

from left to right sound becomes from less bass to more treble and the frequency

keeps always increasing. Moreover, physical attributes of instruments can have an

effect on the pitch distribution. Physically larger instruments usually produce lower-

pitched tones, whereas smaller instruments produce higher-picthed tones [10]. This is

because bigger instruments move more air than the smaller ones do, and more air

means a lower pitch [11]. This is the why a flute produces higher notes than a tuba

and why the thin strings on a guitar are higher pitched than the thick strings [11].

1.2.4.2 Musical Note

While composing music we can not use frequencies or in a more proper terminology,

note pitches to write music because whole piece would be constituted from a bunch

of numbers such as 587 Hz, 659Hz, 783Hz, etc... This will be very incomprehensible

and prevents performing. Therefore, we need an easier way to designate tones that is

1
 Standard pitch (or tuning fork) is middle A. Its pitch is 440 Hz. All other notes are pitche according

to this note.
2
 Scientific pitch notation serves to identify the specific pitch by placing a number after the note

name. The lowest C on a grand piano is denotated by C1. The next C is C2 and so on. Middle C is

C4 in this notation.

7

using literal notes for each pitch. The nomenclature of specific musical pitches uses

the first seven letters of the alphabet A, B, C, D, E, F, and G. For instance, the note A

always refers to a specific frequency in an octave. We will see details in the Section

1.5 later.

In music theory, to represent note pitches in a better and visual way, a graphical

interface was invented: Musical staff has five lines and four spaces that each of them

represent a specific pitch [11]. However this is not enough to identify all the notes

pitches of a single instrument. The concept of clef is so vital because the pitches are

determined by the type of clef at the beginning of the staff. A clef fixes the position

of a single pitch in the staff and then from its position it is now possible to manage

other pitches’ places [10, 11]. For instance, the treble clef is positioned just above

middle C(C4). The treble clef fixes the pitch G which is the second line on the staff.

That is why this clef is also called as the G clef (see Figure 1.4).

Figure 1.4: From middle C(C4) to an octave higher C(C5), the notes are placed

 inside the staff with the treble clef.

1.2.4.3 Note Value Types

There are seven main note value types which are whole, half, quarter, eighth,

sixteenth, thirty-second and lastly sixty-fourth [11]. The context of value type is the

duration of each single note type. Among them there is a simple mathematical

relation that each note is, indeed, the half of the previous note type. By dividing the

largest note seven times into two, we can reach the note value type of the smallest

64th note. See Figure 1.5 that summarizes first five of these value types.

8

Figure 1.5: Five note value types in a hierarchical order from largest to smallest.

First of all, the whole note endures all along the measure as the name implies. Its

representation on the staff is an only empty and oval notehead without a stem or flag

attached. For example, a measure of 4/4 time, there will be the one whole note that

fits the measure. This means a whole note’s duration is equal to the sum of the four

beats durations. In Section 2.7.1, we will see the concept of beat in details.

Secondly, when we divide the whole note, we get exactly the half note. Because a

whole note lasts a whole measure, the half note lasts a half measure. This means a

half note duration is equal to the sum of two beats durations. Thus, we can put two

half notes in a measure. Its representation on the staff looks like the whole note but a

stem
3
 accompanies to the notehead this time.

Lastly, as being the half of the half note, a quarter note endures an only beat, we can

fit four quarter notes in a measure if the time signature is 4/4. Its representation on

the staff likes a half note with the notehead filled completely.

3
 If the notehead is on or above the third(middle) line of the staff, then the stem should point down

from the notehead. If the notehead is below the third line of the staff, then the stem should point up

from the notehead. See Figure 1-3’s last two notes.

9

1.2.5 Intervals

There are some intervals between notes. If we can symbolize each note distinctly

with a specific and constant frequency, then the ratio of these frequencies yields note

interval. Let’s have a look at the example of two notes having the frequency values

200Hz and 300Hz respectively. The interval ratio is 2 to 3. The table summarizes the

ratio change for a given octave.

Table 1.1: Ratio change in an octave.

Note Frequency Semitones Ratio

C3 130,81 0 1,0

C3# 138,59 1 1,05947558

D3 146,83 2 1,12246770

D3# 155,56 3 1,18920572

E3 164,81 4 1,25991897

F3 174,61 5 1,33483679

F3# 185 6 1,41426497

G3 196 7 1,49835640

G3# 207,65 8 1,58741686

A3 220 9 1,68182861

A3# 233,08 10 1,78182096

B3 246,94 11 1,88777616

C4 261,63 12 2,00007647

In the tunng system of western music, each octave has twelve equally “well-

tempered” notes which means that an octave is divided into twelve equal semitones.

The expression well-tempered refers to the fact that all the semitones are the same

ratio [10]. Now, we have to answer the question of what is a semitone. A semitione

is, indeed, such an interval between each note, the previous and the next, that gets

always the same ratio of √2��
 [13, 11]. Each such an interval is named as semitones.

In addition, the total interval consisting of twelve semitones corresponds to a total

frequency ratio of exactly 2 which is defined as octave (see Table 1.1).

In Table 1.1, first column shows the names of notes in the scientific notation. Second

column shows the frequency values of each note. Third column shows the

10

corresponding semitone number for the current octave and last column shows the

ratio of each semitone’s frequency divided by the first semitone’s frequency.

1.2.6 Scales

In Western music and pop music (pop songs) scales are so important and determines

the characteristic of the piece’s composition [13]. They describe which combination

of notes will be used while composing the music. We can understand the importance

of scale from the insist of frequent use of “diatonic scale” which dominated Western

Music for more than 500 years [10, 13].

A music scale is a sequence of music notes within an octave from which a music

piece is composed [13]. For instance, diatonic scale is a scale with 7 notes out of 12

notes. From the previous section, we know that an interval of 12 semitones yields an

octave. Therefore, with this termonology, we can use the word semitone instead of

saying notes. In diatonic scale, there exist seven semitones. These seven semitones-

notes- in diatonic scale are C, D, E, F, G, A, B. These are also called “scale tones”.

All scales start on one note and end on that same note one octave higher [11]. For

example, every C scale starts on C and ends on C. The starting note gives the scale

its name. In addition, diatonic scale has seven modes with each one using a different

note as the starting note. Major scale and minor scale are the two most widely used

modes of diatonic scale. In this scale, the major scale starts from the semitone C and

the minor scale starts from the semitone A. Let’s investigate the instance of C Major

and A Minor scales. C Major scale consists of the semitones C, D, E, F, G, A, B and

C(one octave higher), respectively. A Minor scale consists of the semitones A, B, C,

D, E, F, G, A(one octave higher), respectively (see Figure 1.6). We will return back

to C Major scale in the Chapter 2 when we discuss preparation of data with MIDI.

11

Figure 1.6: Red lines show diatonic scale semitones.

1.2.7 Rhythm of the Music

Rhythm is the task of counting. We count the beats of music [10, 11]. Each beat

endures an amount of time. A group of a number of beats constitute the concept of

measure. At the total, all the measures in a music piece must be equal each other.

This is a rule in the composition of music. Each measure is exposed in the lines of a

bar. Musicaly, all written notes are divided into bars. Each bar has the same duration.

We can use both the words of bar and measure interchangeably.

1.2.7.1 Time Signature

The bar duration is designated by a time signature. The most common time signature

mostly used in nearly all pop, jazz, rock and any kind of similar mainstream musical

genres is 4/4 time signature. Beside this, there also exist some other mostly used such

time signatures like 6/8, 3/4, 2/2, 12/8, 9/8, etc... [11]. Notation resembles to a

fraction however it is not the case. Actually, a number is placed on top of another

number. In overall, a time signature serves to signify that how many beats are there

in a measure and what kind of note is used for representing any of these beats. The

top number is the former and the bottom number is the latter. For instance, in the

case of a time signature 4/4, in deed, a measure holds the equivalent of four quarter

notes. The first 4 tells us that the duration of each bar or measure is divided into 4

beats. The second 4 in the signature specifies the length of the note. So a duration of

a bar or measure is an equivalent of the total duration of four quarter notes per bar

(see Figure 1.7).

12

Figure 1.7: Valid bar of three kind of notes generated via Anvil Studio
4
.

As a summary, because we have four beats in a measure, the top number in the time

signature is a four and because the beat is a quarter note, the bottom number is a four.

Moreover, using other note types for the beat is also common, i.e. eighth note in

classical music [11], as well as the number of beats per bar may be supposed to be

different i.e: 3, 8, 9. When we have an eighth note time signature likewise the

examples of 3/8 and 6/8, a beat is an eighth note now. A measure has three eighth

notes in 3/8 time signature.

1.2.7.2 Tempo

The tempo refers to the number of beats per unit of time. Normally the unit of time is

minutes, so tempo is given as beats per minute, abbreviated as bpm [10]. For

example, when we say that tempo is 80 with a time signature 4/4, this means that

there will be 80 beats per minute or 80 quarter notes if all notes were played in this

type.

What will happen when the tempo is changed to 100 with the same time signature?

The definition of the length of any note is now changed, either. This time, we will

play 100 beats per minute. If a beat is a quarter note as usual, now the length of

quarter note was shortened a little bit because we have to play more notes than the

former case but the unit of time still remains as the same before. To be able to satisfy

this condition, every note has to be more quickier than before. Lastly, tempo often

4
 In Chapter 2, we explained how we used this programme in details.

13

varies gradually during the performance of a musical piece however we assume that

in our study there is no such a change.

1.3 Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 - Computer Music and MIDI This chapter provides an introduction to

MIDI. We have used MIDI to create randomly generated music pieces with given

runtime parameters. We test our algorithm provided in the Chapter 4 with these

pieces. We explain MIDI file formats, MIDI events, variable length reading/writing

with some details. We explain parts of MIDI specification that we have

implemented.

Chapter 3 - Automatic Music Transcription In this chapter, we explain how

automatic music transcription is performed. We introduce the techniques we used by

supporting figures and tables. The topics mentioned are signal information retrieval,

construction of amplitude envelope of signal, smoothing the envelope, slope

detection, the Rise-Times Model, CUSUM algorithm, note segmentation, spurious

attack elimination, pitch detection, note durations calculations, note value types

detection, and note labels assignment.

Chapter 4 - Proposed Transcription Algorithm The techniques given in the Chapter

3 are not enough to produce a good understanding of how we could make automatic

transcription. That is why we provide a pseudocode at first, then we explain each part

with details supported in our implementation.

Chapter 5 - Results Each implemented part of the proposed algorithm in the

previous chapter are investigated in details. We provide input/output snapshots of

main implementation and data creator program. We review the details of each part of

implementation by giving the rationale. We comment on runtime parameters,

variable initial values, data structures used, and results. Finally, we explain our

performance measurements for the tested data.

14

Chapter 6 – Conclusion In the final chapter, we summarize what we have done so

far. We recap our methods and tools that we used. We discuss the results we obtained

from our experiments. Lastly, we mention the future work to do.

15

Chapter 2

Computer Music and MIDI

After the electronic devices were involved so much in every day life, usual and

traditional habits about any discipline have been changed. Such a discipline

influenced so much from the new technological changes is music, of course. Through

the end of 60’s the electronic music appeared and spread out of the world [14]. The

electronic instruments started to be used by the musicians instead of the old

traditional ones that used to be played from centuries. Many manufacturers also

appeared to supply the demand. In addition, during the middle of 80’s, the use of

personal computers tremendeously increased [14]. Accordingly, the use and need for

software and multimedia applications rised, as well. Music was and still is one of the

supporting pillars of multimedia applications. In such case of frequent use and need,

there was a hole in that reproducibility, maintainability and exchange of any sort of

sound or musical pieces was nearly impossible or required professional equipment or

devices that synthesize musical audio information which requires both music theory

and audio signal processing knowledge at the same time.

In such an environment, a consortium of two associations
5
 came together and

declared a standard interface describing musical events digitally that serve to

exchange music. This standardized interface was MIDI which is the abbreviation of

Musical Instrument Digital Interface [15]. MIDI is not about signal, sound, music or

anything else. It imitates musical events and stores them in text-based manner in the

standard midi file format. The digital music or sound we hear is sythtesised by the

MIDI compatible sound card [16]. There are some application software that enables

to create and perform music encoded by midi at the background with a handy

graphical user interface that conceals the MIDI use at the back. These type of

5
 MIDI Manufacturers Association in Los Angeles from USA and Association of Musical Electronic

 Industry in Tokyo from Japan.

16

programs are called sequencer because they put in order the text-based MIDI

messages as a sequence of events. We used such a sequencer Anvil Studio
6
 for data

validation and virtualization.

For testing our algorithm presented in the Chapter 6, we needed some randomly

created wave file whose content can be manipulated in a programmatic approach by

using runtime parameters. For this reason, we have written a small scale sequencer

that can read and write midi events and also create an output MIDI file. We coded it

using C programming language. We can consider the whole application as a little

library constituted from 22 headers. In the rest of this chapter we will explain the

MIDI file structure and some important aspects of MIDI standard that we coded in

our program.

2.1 MIDI File Format

A MIDI file is a container for the text-based music events. With the players

supporting MIDI on personal computers and other devices e.g. synthesizer, we can

even play it and hear its content whenever we want. The file has a .mid extension.

MIDI files are written bytes after bytes. Every bytes’s content is an element of

Extended ASCII table [17]. Every data piece that a sequencer process are

manipulated in hexadecimal format while reading from and writing to a file. Every

MIDI file has two important partitions: Header and Track chunks [18]. There can be

only one header chunk in a MIDI file while the presence of numereous track chunks

is possible at the same time in the same file.

2.1.1 Header Chunk

This is the beginning of the file. All MIDI files first 14 bytes is this header. Header is

processed before all to provide information about how to process and execute the rest

of the file content. Its constant structure has 14 bytes sized. The header itself is

identified by a string marker which is “4D 54 68 64”. These four bytes can be

converted to a literal expression by using ASCII Table which produces “MThd” [19].

6
 http://www.anvilstudio.com/

17

This string is the same in all MIDI file as a standard. The next four bytes represent

the size of the rest of the header chunk. Again, it is the same for all MIDI files, and is

always designated by the literal expression “00 00 00 06”. Actually, this means that

after read this part, we will encounter new information sized 6 bytes along. These

new information are file format, number of tracks in file and the number of delta-

time ticks per quarter note. These are all represented by two bytes.

Firstly, the file format can be one of the three options: single-track, multiple

synchronous track or multiple asynchronous track. These are enumerated from 0 to 2.

In our program, we use the second format type (enumerated by 1). Secondly, The

number of tracks field is to warn MIDI sequencer that there will a job to define for a

number of tracks. Because each track is delimited by a beginning and ending event,

the number of tracks is very informative about how many delimiter will be

encountered while playing. Lastly, number of delta-time ticks is time-base for the

randomly created data. This number of ticks symbolize the duration of a quarter note

in any tempo. We will give detailed explanations about this topic in the next sections

of this chapter. See Figure 2.1 for a snapshot of our program.

Figure 2.1: The header part for the file generic-data.mid.

On the first line of the snapshot, we see the hexadecimal header information. A byte

of information can be represented by two characters at most. For instance, the two

bytes “ 3 CO” is an hexadecimal number read in the file. The most significant digit is

the left most character “3” which is written by using only a character.

Mathematically, we can express the red roman number three of figure by conversion

formula as following, �3C0���� � �960���� . This is a good example for the

purpose to show that some part of MIDI has fixed length recording structure and

some part has variable length recording structure. Header chunk is absolutely

structured a fixed length record. The red roman numbers I and II of figure can be

written as “1” and “2” in variable length recording because decimal numbers 1 and 2

are also hexadecimal numbers, either. In fact, with two bytes, we can create a largest

18

number in hexadecimal format as “FF FF”. However, in variable length recording, it

has no limit e.g. FF FF FF FF FF FF... FF 7F and so on [17, 19]. See the Section

2.1.3 for detailed explanation.

2.1.2 Track Chunk

Track chunk consists of every kind of information about musical events directly or

undirectly related. Its first eight bytes are constant and the rest may vary according to

data in use. It begins with a four bytes long delimeter expression “4D 54 72 6B”

whose translation is “MTrk”, literally [17, 18]. Moreover, next four bytes serves to

express the data size of current track in terms of bytes. The events of a track chunk

data can be separated into three main groups which are midi events, system exclusive

events and meta events. For example, one of them is a meta-event and is responsible

for finishing a track chunk. The finishing delimeter of a MIDI track which is fixed

for all every track and expressed by the four bytes string “0 FF 2F 0”. To ease the

understanding, see Figure 2.2 for the track chunk snapshot of our program.

Figure 2.2: Track chunk snapshot provided with 59 bytes data.

In Figure 2.2, the notion of event is introduced, basically. The figure’s first line

summarizes the fixed division of the track chunk. The second four bytes is the data

length represented in hexadecimally. The conversion can be shown as �3B���� �
�59���� . After the byte “3B”, the data is coming next and constituted from the

accumulation of numerous different events. The finishing event is fixed and appeared

as the last four ones out of 59 bytes. Finally, we use two track chunks: one is used to

provide some meta events which are not related about MIDI and another chunk

serves to make sequence of the midi events for the piece which is being created. This

19

second chunck can also contain meta events at the same time. Using two chunks was

a design of our program. In this way, we simplified the algorithm and divided the

event coding according to its context. In examples of the manuals we investigated,

the selection of using more than two track chunks is also available.

2.1.3 Variable Length Reading and Writing

In the standard of MIDI, some numbers are structured as they have the most

significant bit number seven as clear in their last byte while the rest of the byte series

having their most significant bit number seven set. An example can be more

explanatory using a single byte, we can write the largest number hexadecimally as

“7F” which is equal to 127 and �01111111� !" decimally and binarily, in given

order. If we would like to generate the decimal number 128 in this manner, we will

not use the hexadecimal equivalent as “80” [18]. In this way, this will cause a fault

because this is a single byte representation and so that the bit seven is set. Instead, we

will use two bytes in which the last byte will be “00” and the first byte will be “81”

hexadecimally [19, 20]. To understand how we got these two numbers, see the

Section 2.1.3.1. In Table 2.1, we provide some numbers generated as the variable

length quantities in order to get familiar with. The decimal and hexadecimal

equivalent are given before in order to explain clearly which number was trying to be

expressed. We have written two procedures in our program for both reading and

writing these types of numbers [17]. Their pseudocodes are provided in Appendix A.

The most important area of use is expressing the delta times preceding every type of

events in track chunk data. See the Section 2.2 for this.

Table 2.1: The variable length representation of some numbers.

Decimal Hexadecimal
Variable-Length

Representation

0 00 00
127 7F 7F
128 80 81 00
240 F0 81 70
480 01 E0 83 60
960 03 C0 87 40

8192 20 00 C0 00

20

2.1.3.1 Variable Length Writing

For a given integer number i.e. 960, we first make a bitwise AND operation with the

fixed operand “0x7F
7
” and save the result in an integer variable, say R. Even the

number is larger than 127, the bitwise AND operation yields an output whose bit

seven will always be clear. Such a R’s current value is 64(0x40) and this is the case.

Then, we will make a bitwise RIGHT-SHIFT operation for 960 seven times whose

meaning is dividing a number by 128. This operation comes up with a solution of 7

which is saved up in an integer variable say L. If L is greater than zero, a loop has

started and we will make a LEFT-SHIFT operation for R eight times whose meaning

is multiplicating a number by 256. This operation results in 16384(0X4000) for R

and will be saved up in an integer variable say K. Next, we will make another AND

operationd for L with the operand 0x7F and we get L again as a result. This

intermediate step is saved up in an integer variable say I. Then, I is bitwise OR’ed by

the operand 0x80 and this operation gives 0x87 as a result. Moreover, 0x87 is bitwise

OR’ed with K and we get 0x4087. This is the current value of the data to write. We

overwrite the value of L to the input number. We make a RIGHT-SHIFT operation

for the new value of input number seven times. The result is assigned to L, and then

L is checked with its new value as a condition of loop. The operation result yields

zeros, as intended.. The loop is broken because the result is not greater than zero. If

not, the same operations will be repeated. Before entering the loop, if the value of L

is not greater than zero, the value of data to write will be found by only making a

bitwise AND operation for the given input number by the operand 0x7F.

At the moment, we have only the data value to write in MIDI file. How can we write

it down ? In a loop again, we first write the value of the data to write as one byte

character inside a file by using putc() function of C programming language. This is

an interesting property that C programming language’s printing procedures can write

a large number as one-byte character in a file by mapping it to ASCII table. For

example, 0x4087(16519) will be written in one byte character representation as 0x87

in the file. Then, we make a bitwise AND operation for the data to write with the

operand 0x80. If the result is greater than zero, the value of data to write will be

7
 This is the representation of hexadecimal numbers in C programming language environment. The

 literal prefix can be written as 0x or 0X. Both are the same thing.

21

bitwise RIGHT-SHIFT’ed eight times. As a result, we get 0x80 and the value is

shifted by giving 64 as a result, decimally. 64 is also written in the file. By the way,

writing 64 or 0x40 is the same thing because both of them correspond to the same

element in ASCII table. Finally, 64 is bitwise AND’ed with the operand 0x80 and the

loop is now broken because this operation yields zero. All the variable length writing

is now completely accomplished. See Appendix A.1 for its pseudocode.

2.1.3.2 Variable Length Reading

First of all, we read an hexadecimal number in the file. We assign the value read to

the variable V. We check whether V’s bit seven is set or not by making a bitwise

AND operation with 0x80 and we assigned the result to the variable R. If R is greater

than one, we make following operations: First, we make bitwise AND operation for

R with 0x7F. The result is assigned to both R and V. Second, we multiplicate V by

128 and result is assigned to L. Then, we read a new hexadecimal number in the file.

The number is assigned to Y. We make bitwise AND operation for Y with 0x7F. The

result is saved in R, this time. R and L is added and the result is assigned to V.

Lastly, we make bitwise AND operation for Y with 0x80. If the result is greater than

one we return back to the beginning of the second step. Otherwise, we return V as an

output of the procedure. Before entering the first step, if R is not greater than one, we

make bitwise AND operation for V with 0x7F and the result is assigned to V itself.

Finally, we return V as an output of the procedure. See Appendix A.2 for its

pseudocode.

2.2 The Events in MIDI

Events make the real job in MIDI. They are responsible for data exchanging, device

controlling, time synchronizing, music events handling, and storing meta-event

information. They reside only in the track chunk that’s why we can call them as track

events, either. We can generalize the events under three main categories which were

mentioned in the Section 2.1.2. Before investigating these three event types

separately, we would like to introduce the structure of it. An event has two internal

subdivisions: the first one is delta-time and the second is event (any type). The first

22

subdivision can not be absent in any type of events because it is mandatory. However

second division can vary according to the context. We can formulate events as

 �#$�% &$'$ �(�#$�%)*
�'
+

,-.
 (2.1)

and where a track event can be shown as

 �#$�%)*
�' � ∆' 0 1�
� | 	3	'
1
4�56	�*
 | 1
'$7 87 (2.2)

where ∆' is delta-time and 0 1�
� | 	3	'
1
4�56	�*
 | 1
'$7 87 significates that after a

delta-time only one type of events occur [16, 17]. The delta-time is a variable length

quantity. It designates the amount of delta-time ticks for an event. On other words, it

is the duration of an event in terms of SMPTE times [17, 18]. In addition, we did not

implemented the system exclusive event type which was out of the context of our

program that is why we skip this event type and did not give any explanation about

it.

2.2.1 The Track Chunk MIDI Events

A midi event is a set of 4 pieces of information. These pieces are status byte, channel

byte, data byte 1 and data byte 2, respectively. Its size is three bytes because first two

bytes are merged into one byte. The status byte determines the MIDI message type.

Its size is one byte whose most significant bit is one. It takes values like 0x80, 0x90,

0xA0, 0xB0, 0xC0, 0xD0, and 0xE0, respectively [21]. It is noticeable that only first

most significant four bits are used in a status byte. In addition, the channel byte

determines which channel will be used to receive and send the midi messages to a

midi compatible device e.g sound card. There are 16 channels in MIDI. This amount

can be enumerated from 0 to 15 [21]. In contrast with the status byte, the least

significant four bytes are used in channel byte, this time. Thus, it clear that in both

status and channel bytes, there are a total number of eight bits that are not used. To

avoid redundacy, MIDI standard merged these two byte into one byte information.

For instance, when we see an event like 0x93, we will easily understand that a note

on event occurs and it is transmitted over the fourth channel. Other two bytes content

can vary according to the status byte in use. However, in most cases, the first data

23

byte carries information about notes or we can say that it takes the number of midi

note. The second data byte carries information about the velocity of the related note

or we can say that it takes the volume intensity of the related note. We show the

types of midi events that we have implemented in Table 2.2.

Table 2.2: The midi event types implemented in our program.

Status | Channel Data Byte 1 Data Byte 2 Explanation

9x Note number Velocity Note on event

8x Note number Velocity Note off event

Cx Instrument number Not available Control change event

We can summarize all the midi event types that we implemented with an example of

our program. In Figure 2.3, we have all three mentioned midi event types. Program

change event is responsible for the selection of instrument that will be used in the

creation MIDI file. By default, our instrument is grand piano which is determined as

zero in MIDI and we provided it as the third zero in the little yellow rectangle. This

event has delta-time of zero which is shown as the first zero in the same rectangle.

Generally, all the zero valued event are related to specify the properties of file out of

the context of music events, directly. In addition, all such events are happenned and

processed synchronously at the same time because the MIDI standard makes it

possible.

Figure 2.3: Three types of midi events for the second track chunk

of the file generic-data.mid.

Note on and note off event are colored in red and green in the figure. Pay attention

that the note on event’s delta-time is zero for the midi note number 45 with the

intesity 127 which is maximum. This event tells the sequencer to play the midi note

45 instantly. This process was now executed and has just finished. But a note is being

24

played, right now. This event keeps going on until the note off event comes take

place after “83 60” delta-time ticks. The first two bytes are about the delta-time of

note off event which is written in variable length recording format. The midi note 45

is the same with the one in note on event, as expected. However, the intensity of

volume is zero that makes the note silent or totally terminated after the delta-time

duration finishes. To conclude, we can say that every note begins with a note on

event and finish with a note off event. This mechanism seems to the switch of an

electic circuit.

2.2.2 The Meta Events

The meta event type carries complementary information which is not related directly

to music or MIDI. There exist many meta events differing from each other but they

have a common property that all of them start with the pattern “FF” which serves to

distinguish that type of event from other two main types of events. Its structure can

be formulated as

 1
'$
*
�' � ∆' �99, �

�'���
#,
$'$ 5
�;'<,
$'$ � (2.3)

where identifier defines the unique types of meta event [18, 21]. All identifiers are

represented by one byte. The data length field serves to designate that there will be a

data for this meta event with the given specific size. The sequencer process the data

according to the given size. If it was not properly set, the track structure can be

collapsed. The data part of each different meta event varies accordingly the context

of it. We give detailed explanations about the meta events that we implemented
8
,

later. Table 2.3 recaps those events.

8
 There exist some other meta events that we implemented but not provided because we did not

 needed to use, later.

25

Table 2.3: The meta events type that we implemented.

Pattern Identifier Data Length Data Explanation
FF 0x03 N bytes Text Track name

FF 0x20 1 byte Channel number Channel prefix

FF 0x2F 0 bytes Not available End of track

FF 0x51 3 bytes Time code

(SMPTE or MIDI)
Tempo

FF 0x7F N bytes Text Sequencer

specific FF 0x59 2 bytes Scale information Key Signature

We can summarize all the meta event types that we implemented with an example of

our program (see Figure 2.4).

Figure 2.4: Track name, channel prefix and sequencer specific meta event

used in the second track chunk.

In Figure 2.4, we see a track name meta event color in red which give the name

“generic-data” to the second track chunk. Three sequencer specific meta events are

colored in green and enumerated with roman numbers. They carry the information

required for a midi file to be played in midi compatible players. For instance, the

third sequencer specific event describes for which standard the MIDI file was

prepared for. Its output is “General MIDI”. Lastly, channel prefix event provides the

information of which channel is in use. Its next event is a midi note on event that has

not a channel information. In this way, channel prefix event serves to cope with a

lack of information.

26

Chapter 3

Automatic Music Transcription

3.1 Getting Input Wav File

At the first spot, we have taken an acoustic music signal as an input which was

required to be a .wav file for our implementation. The content of it carries only the

information of one single instrument during the whole the record. The input wav file

was prepared in the aid of a midi-creator tool which was also written by me using C

programming language. In fact, this program codes a midi file content according to

the given runtime arguments and produces a .mid extended output file. Usually, we

create randomly generated 50 midi notes for testing purpose which come from the

variety of nine different octaves of the acoustic piano. So, we have 108 possible

notes every time we generate a note. The midi standard describes musical events in a

text-based manner to aid exchange of musical interpretation between different

musical instruments and different musicians. It provides a globally accepted interface

for the devices processing the midi codes. As a result, we have only a raw data at the

current phase of implementation. Indeed, we need to convert it into wave form via

using a tool named ‘winamp’ which is a popular program used by end-users to listen

to various audio music formats. We have pre-set this program not to play any audio

format; instead we arranged it to convert the given input file to the wave equivalent

by using an interior tool which is called ‘Nullsoft Disk Writer’. When the play is

over, it outputs a wav file into the destination folder. At last, after passed various

initial steps, the input of our main program is now ready to be tested. Before to

conclude this part, we would like to tell about a file that is created by our data creator

program concurrently it prepares the real test wave file. This text-based second

output file can be considered as a ground-truth data which is used in validation. It

carries all fully qualified note labels which belong to the notes created by the

program. This file is named with the name of the test data file in order to establish

27

direct access while calculating the accuracy of algorithm after the last step. For

instance, test-5-50-notes.wav emerges with test-5-50-notes.txt. The nomenclature is

used for this text file except the file extension which must be “.txt”, this time. Every

such a file has a common part except its content. Every file begins with a starting

label “scores: ” which indicates that music scores are saved in this file. Then, an

integer number which significates the number of music scores will be given after

itself. In our data files, this number is fifty. A fragment belonging to the very

beginnings of the file test-5-50-notes.txt. can be like that: “scores: 50 E2 G16 F16 D4

F8 G8 E4 D#2 C#16”.

3.2 Signal Information Retrieval

After picking the wav file, we invoke the wavread() function of MATLAB to get

some handy information from the wave form. We get several outputs as a result: the

discrete-time representation of musical signal (sampled data) �	=�>�, the sampling

frequency (in Hertz) ��?�, and the number of bits per sample which was used to

encode the data in the file ��@�'	�.

3.2.1 Getting ‘Times’

Clearly, we need the signal information to be expressed as a function of time but it is

absent. We can build the accompagnying time information manually. First, we get

the number of samples contained in the signal. Second, the sampling frequency

signifies the number of samples taken per second. Finally, from the division of

number of samples into the sampling frequency, we can maintain the signal’s

duration.

 &6#$'��� �� A�;�$5 � $55 	$1B5
	
	$1B5��; �#
C6
��3 , �� 	
���
	 (3.1)

For the given duration, we can now generate the linearly spaced (via the sampling

frequency) time vector, '=�>, which starts from second zero and ends at the total of

duration (in seconds).

28

3.2.2 Getting ‘Notes’ and ‘Octaves’

We work on 108 notes’ pitches which all represent fundamental frequencies on the

piano, scattered as the organization of octaves. For the rapid data manipulation, we

have stored them in a dynamically loaded matrix structure that MATLAB

environment provides as .mat extended file. This is called D�'$*
	 matrix that is

constituted of twelve rows and nine columns and designate the twelve half tones of

nine octaves starting from C to B each time (a complete octave) . The frequency

range used here is between 16,35 Hz and 7902,13 Hz. Here we see in Figure 3.1

some part of piano keys and their corresponding fundamental frequencies [22].

Figure 3.1: Pitches on the piano shown in the scientific notation.

3.3 Making Single Channel Signal

As an intermediate step, we have reduced the matrix 	=�> to a column vector by

eliminating the second column. If we call the matrix with two columns as a stereo

channel music wave, therefore we obtained a mono channel one since the

representation of music signal is by default stereo in MATLAB environment. We

assumed that the information in the second column of 	=�> is redundant to carry on

for the further steps and the first column’s information is sufficient to make

appropriate processing. We can see signal versus times in Figure 3.2.

29

Figure 3.2: The sound waveform carrying the information of 16 notes.

3.4 Construction of Amplitude Envelope of Signal

At the second step, we construct a magnitude envelope of the signal. All along it, we

traverse through the signal data a sliding window in which we search positive

maximum [23]. The peaks below this amount are just ignored while calculating the

envelope. Actually, the window represents just a proportion of the full data. Window

size can be adjusted before the runtime. Beside this, the behaviour of the window

traversal is quite worth of mentioning because it has an important role on the

detection of right peaks. Each successive window is next to the last one. For this

sake, we defined a jump amount which signifies the overlapping data number among

these windows. In other words, the commencement of the further window is assigned

by adding the jump amount to the previous windows’s beginning. And current

window’s end is calculated according to the size of window. Moreover, size of

window and jump amount can be represented (explained from this point further as

E	 and F$, respectively) by an unit of time or a number of indexes that a single

window covers along the signal data. As intended, we save the locations where we

30

find the maximum valued peak in any window. After traversing the whole signal, we

get a magnitude envelope)�* and an index array G)�*.

In our implementation, we deal with the percussive sounds which are not generally

periodic that’s why the selection of the window size is independent from the cyclic

structure of the periodic signals which repeats themselves in a definite period [24].

While working with periodic sounds, it is a wise choice to select a window which is

one period long. However, in our case, a sufficiently large window size must be

determined in order to satisfy both frequency and time resolution. If the window size

is too large, we may not catch the peaks having meaningful magnitude values which

can vary in a much smaller interval of time than the window can sense. Therefore,

onset detection will skip and fail some notes in the further steps of implementation

(i.e note segmentation) because time resolution is lost.

On the other hand, to cope with frequency resolution, the window size must be at

least equal or greater than the duration of the lowest frequency- �HI,J -pitched note

since the period of this note, �HI,J, is equal to

 �HI,J � 1
�HI,J seconds. (3.2)

In our case, the lowest possible �HI,J which is 16 Hz, scalarly, is the lowest audible

pitch (for a healthy ear) in the human audible threshold [25]. It will usually a good

choice to have E	 R �HI,J for tracing only the peaks [23]. This aids to get good

results in the case of the test song having notes generated from one or two octaves

with restricted note value types only allowed while the waveform has such a well-

drawn shape seen like on Figure 3.3.

Contradictorily, this approach did not work fine for most of our test cases which

were constituted randomly generated notes coming over nine octaves while all seven

main note durations allowed. Instead, we approached setting the window size a little

bit different that we made parameterized the window size as a scalar assigned to the

construction of amplitude envelope process. A good one which we always used, was

over at least four times greater than �HI,J with which we have gotten good results. At

31

the same time, we used an overlapping jump amount equal to the quarter of window

size, by default. In Section 5.14, we provide lot of information about the reason of

this selection regarding to the support of the experimental results that we obtained

espescially in the third experiment we conducted (see Table 5.4, 5.5, and 5.6 with

Figure 5.18 - 5.23). We have kept so rigid the overlapping amount in the sense of

repeating nearly most part of the previous window content. We iterate the window

one quarter at a time in our runs. We do not want to get only major peaks, beside,

also to maintain the ones which are relatively minor. They could be not easy to

notice at first sight. The relatively minor peaks must be caught in order to segment

notes with too small durations such 32nd’s or 64th’s in the further steps. Figure 3.3

shows the signal’s amplitude envelope-colored as red- which was constructed

according to the mentioned method. The signal is colored as blue.

Figure 3.3: The amplitude envelope drawn onto the original waveform.

32

We provide the pseudocode for amplitude envelope construction in Figure 3.4.

COSTRUCT-AMPLITUDE-ENVELOPE-ALGORITHM(S=T>, US, VW)

00

01 # If not assigned, initialize to default values (64 and 16)

02 E	 X 64

03 F$ X 16

04 # Otherwise

05 continue

06

07 # Initialization

08 starting X 1 and ending X E	

09 counter X 1

10)�* X array[1 Y ��6�'
#]

11 G)�* X array[1 Y ��6�'
#]

12

13 # Traversing a window through signal

14 while ending ≤ length(=�>)
15

16 # We try to find a maximum amplitude value in each window

17 E��
�EZI[H,J\ X 	(starting to ending)

18 maximum X max(E��
�EZI[H,J\)

19

20 # Find the index of maximum valued window element

21 index X find(maximum==E��
�EZI[H,J\)

22

23 # Save the value of maximum and its location in signal

24)�*(counter) X maximum

25 G)�*(counter) X starting + index – 1

26

27 # Iterating the window boundaries

28 starting=starting + F$

29 ending=starting + E	

30

31 # Check out the array out of boundaries

32 if ending] length(=�>) then

33 break

34 end if

35

36 # Increment counter by 1

37 counter X counter + 1

38 end while

39

40 # Return envelope and its indices

41 return)�* and G)�*

Figure 3.4: Pseudocode of the amplitude envelope construction.

33

Figure 3.5: The amplitude envelope of S=T> viewed alone.

3.5 Smoothing the Envelope Shape

In Figure 3.5, we see a massive amount of data that is quite far from being useful in

detecting the notes. We have to reduce or basically simplify it by using some pre-

processing methods like ‘smoothing’. It is possible to notice easily that both the

increase of the amplitude envelope and sudden change in the envelope probably

means the occurence of an onset, especially for the percussive music containing

strong percussive transients [26]. Here the onset detection function is an envelope

follower in terms of time in order to be able to detect where and when the abrupt

change occurs. This type of transient exhibits typical behaviour of percussive onset

which will rise and reach its locally maximal peak value in a very small interval of

time. Actually, we are dealing with one of the signal’s temporal features that concern

abrupt events happening in the signal.

The content of the signal can be differentiated as onset events and other abrupt

events. This distinction is fully dependent to the ability of classification and internal

34

organization of the detection function. We have to focus more intensively on how the

detection function chooses identifiable features to detect right onset events. One of

these features is local maximum. However not all local maxima must to yield a

musical note. Local maxima can vary in size and shape but not tremendously. Some

local maximum is affected from noise, or the other kind of musical events like

vibrato, tremolo, etc...[26] This type of amplitude modulation causes non-related

peaks with the concurrent presence of event-related peaks. For all the reasons we

have told above, the implementation requires a filtering of non-related peaks by

smoothing the amplitude envelope. General convention is based on low-pass

filtering. By applying this filter, we tend to make possible a simple and

computationally efficient temporal method which lets clearly to pick the right peaks

from the smoothed envelope for highly percussive onsets-transients or events.

What is a filter? Generally, a filter is a sytem that is designed to remove some

component or modify some characteristics of a signal. Among these characteristics,

we are interested especially in frequency, hence the filter that we will design has to

be specialized on frequency. Among several options, there are three ‘frequency

selective’ filters: Lowpass, Highpass, and Bandpass Filters.

All the listed filter types have a common feature that all of them may well remove

certain frequencies while letting others pass through the system relatively

unmodified [27]. For example, a highpass filter allows to be passed for high

frequency components of a signal without changing them at the same time by killing

all low frequencies [27]. Oppositely, low frequency components of a signal will pass

through the filter unmodified while high frequencies will be completely eliminated if

a lowpass filter is used [27]. Beside these, bandpass filter seems to be more selective

than other two because a band of frequencies which are now allowed to be passed

may possibly be pertained to some part of low and high frequency regions at the

same time. All frequency components of a signal that fall into the range of the given

band are passed unchanged through the filter while all other frequencies stayed out

the range will be completely removed [27].

35

Let’s have a look at the organization of lowpass filter. We can separate the frequency

response of LPF into two regions or strictly saying two bands. These bands are

passband and stopband, respectively. The response of the filter inside the boundaries

of passband is one. Outside the boundaries, so it means in stopband region, its

response is simply zero. The passband boundaries are determinated by a ‘cutoff

frequency’. All the stuff we mentioned about LPF until here is legitimate in the sense

of a theoretical and ideal LPF. To ease the understanding, Figure 3.6 shows the

behaviour of the ideal LPF.

Figure 3.6: Frequency response of an ideal LPF with its cutoff at ^Z[,I__ .

An ideal lowpass filter is defined as

 `abc�F^� � d 1 |E| e ^Z[,I__ 0 |E|] ^Z[,I__ 7 (3.3)

where ^Z[,I__ is the cutoff frequency and `abc�F^� is the response of the filter [28].

We have used a Butterworth IIR filter as a low-pass filter [27]. In MATLAB

environment, we create a low-pass filter design with five arguments which are

passband frequency,stopband frequency, passband ripple, stopband attenuation and

sampling frequency. Then, the filter returned an output for the given input which was

the amplitude envelope. The output is the smoothed version of the envelope. See

Figure 3.5 and then Figure 3.6. The effect is apparent.

f^Z[,I__ ^Z[,I__

1

0

Frequency ^

Frequency Response HLPF(j ^)

36

Figure 3.7: Smoothed envelope suitable for note segmentation.

In Figure 3.7, attacks are seen very clearly. This data is more convenient for

segmentation than the previous one in Figure 3.5.

3.6 Slope Detector

At the previous step, we have smoothed the amplitude envelope and we obtained its

smoothed version, A)�*. In this step, we use a slope detector. It is applied to the data

of A)�* by computing a linear regression over its several data points. The slope

detector traverses through every data point of A)�* one by one. It is proposed to use

a number of points-say % points- at a time while approximating. These % points get

the name “approximation points”. In the literature, the proposed number of

approximating must be at least four or eight at most [23]. The slope detector creates a

sequence of overlapping line segments that float over the data. The slope of each line

segment is saved up and forms a piece of the slope array Ag�h. This array is very

crucial and will be used in the few next phases of our implementation.

37

Basically, the idea of regression is to fit a curve to the data. Actually, we would like

to approximate the output by using a model. In our case, linear regression is our

model and we try to fit a line to our data which is A)�*. It must be considered the

data as a separate data points distributed over the cartesian plane. Moreover, our data

has a smoothed wave form of amplitude envelope containing percussive peaks.

Actually, every smoothed envelope value can be identified as a function of time. So,

the plane’s horizontal axis is the array '=�> and the vertical axis is the array A)�*.

The demonstration of this data set in machine learning convention is X � g4,, #,h.+

where 4, is '=�> and #, is A)�*.

In the machine learning literature, the model is structured as a discriminant function

;�j� which is considered as the best representative of the general trend or data set

[29]. If the model in use fits the data very well, its approximation will be quite good

and the model error will be very low. This is so called empirical error. We can define

it for a given training set Χ as

)�;|Χ� � 1
kl=#, f ;�j,�>m

+

,-.
 (3.4)

Here, the least square error function is used because we try to minize the empirical

error [23]. The discriminant function must satisfy this constraint. The # and ;�j�
have numeric values. For a good slope detector, best choice of discriminant function

is a line equation which can be demostrated with the generalized equation

 ;�j� � E.4. nonEp4p n E� �lEq4q n E�
p

q-.
 (3.5)

where
 is the number of features. In our case,
 is one because we try to estimate

only the value of A)�*. So, we can rewrite it as a linear equation as

 ;�j� � E.j n E� (3.6)

where E. $�
 E� are the parameters that we learn form the data.

38

Thus, the linear model parameters E. $�
 E� should minimize the empirical error

which can be shown as

)�E., E�|Χ� �l=#, f �E.4 n E��>m
+

,-.
 (3.7)

The minimum value of the given empirical error above can be calculated by taking

the partial derivatives of E with respect to E. $�
 E�then setting them equal to zero

and solving for the two unknowns

 E. � ∑ 4,#,+,-. f 4#sssk
∑ �4,�m+, f k4tm (3.8)

 E� � #t f E.4t (3.9)

where

 4t � ∑ 4,+,-.k and #t � ∑ #,+,-.k (3.10)

While running slope detector, we minimized the amount of data that linear regression

used to get once when it is executed. Normally, linear regression or any kind of

regression gets a complete data set like Χ. However this time, we separate our data

set into pieces where each piece can contain only % approximation points. For these

set of points, we try to find a line segment which best fits to the small data of %

approximating points. The slope we want to find is E., actually.

In the machine learning literature, j is written in bold for the purpose of significating

that j is a set of data. During the traversal of slope detector, we calculate a slope

value for a set of data points j starting from the actual data point and ending with the

data point which is % index further from the actual data point. For example, if % is

eight and the current data index is �, we will calculate a slope of line approximated

for these eight points denoted with the pair of indices ��, � n % f 1�. After computing

the intercept value, E�, we can even draw the line for the given set of % points over

39

the main data in order to see if ;�j� does really follow the trend and fits to the data,

too.

The more the index � incremented, the more the new lines will appear which are

overlapped since the new approximation will be proceeeded between the data points

indexes expressed as �� n 1, � n 1 n % f 1�. This shows that nearly most of the two

successive set of % points ultimately overlaps each other. Therefore, the lines derived

from the two or more successive set of % are overlapped each other, as well. Now, it

is possible to see that those lines are very good follower of the waveform of A)�*

(see Figure 3.8).

In Figure 3.8, The result of slope detector is shown. Firstly, the top part of the plot

shows an excerpt of two peaks from the data of A)ku in a time interval between

4,325th second and 4,37th second. At the bottom part, it is seen the zoomed version

inside the squared area. The lines computed during slope detection are drawn in

black and fit very well to the data. Data points pertaining to A)ku are shown in red

asteriks.

To conclude this part, we can add the point that during the traversal, linear regression

calculation is repeated each time for a new set of approximation points. Even though

each separate calculation made in each linear regression iteration for a set of % points

can be assumed as they are executed in a constant time, the number of repetition can

affect the performance especially for a long music piece. This case happens because

we linearly traverse the data and at each index we repeat the same number of

operations. For an amplitude envelope length v in terms of indexes that it consists of,

the runtime of this algorithm is Ο�v�, asymptotically. The pseudocode of the

algorithm is given in Figure 3.9.

40

Figure 3.8: Slope detection’s result seen. The top part of the plot shows the squared

area of A)ku. At the bottom part, the squared area is zoomed.

41

RUN-NOVEL-SLOPE-DETECTOR-ALGORITHM(A)�*, '=G)�*>, %)

01

02 # Check 4 ≤ % ≤ 8. Otherwise % is assigned to default as 4

03 if condition fails then

04 % X 4

05

06 # Initialization slopes array

07 counter X 1 and index X 1

08 Agh X array[1 Y ��6�'
#]

09 G�'
#�
B'	 X array[1 Y ��6�'
#]

10

11 # Calculating linear regression for a data set with % points of A)�*

12 while index ≤ length(') and index + % ≤ length(')
13

14 # y is a %-points data set piece and x is time correspondent

15 x X array '(index to index + % - 1)

16 y X array A)�* (index to index + % - 1)

17

18 # xy is a vector whose elements are the result of the

19 # the elementwise multiplication of x and y

20 xy X x.*y

21

22 # x2 and y2 are arrays created in the same manner

23 x2 X x.*x

24 y2 X y.*y

25

26 # The series of some scalar values which is found by summation

27 sumx X sum(x)

28 sumy X sum(y)

29 sumxy X sum(xy)

30 sumx2 X sum(x2)

31 sumy2 X sum(y2)

32

33 # squares of the scalar values sumx and sumy are computed

34 squaresumx X sumx * sumx

35 squaresumy X sumy * sumy

36

37 # a slope is calculated

38 m X [(% * sumxy) - (sumx * sumy)] / [(% * sumx2) - squaresumx]

39 Ag ��6�'
h X m

40

41 # an intercept is calculated

42 intercept X [sumy - (m * sumx)] / %

43 G�'
#�
B'	(counter) X intercept

44

45 # increment the values of counter and index

46 counter X counter + 1

47 index X index + 1

48 end while

49

50 # Slope array is returned

51 return Ag�h

Figure 3.9: Pseudocode of the slope detection.

42

3.7 The Model ‘Rise-Time’

With a smoothed envelope as in Figure 3.7, we can easily concentrate on the attacks

events. When an attack happens, energy change per unit time change [24, 26]. Also,

the slope of the rising peaks change, either [24]. This case generally occurs at the

onset for the percussive music. Remember that a note onset is a place that intensity

of amplitude is very low. Suddenly, the intensity tremendously starts to increase. We

call this time as ‘rise-time’ [24]. Piano is an instrument that has very quick attack

near its onset [24]. We can model this behaviour. The model will have two

parameters: the ‘rise-time’ and the ‘rise-slope’. When a ‘rise-time’ occurs, we could

find some attacks that their intensities are always higher than a threshold value [24].

Usually, this threshold can be tuned according to the need. In such a case, the attack

or the peak gets its maximum value. This is called ‘time-of-max’. We pick these

peaks when they reach their time-of-max. In addition, we can use the ‘rise-slope’

parameter. We have seen how the slopes are obtained with a slope detector in Section

3.6. At the time a percussive attack occurs, the amount of change in the slope mean

ultimately increased, too. If we can find such a point that a sudden change occurs in

the slope mean we can identify the note onset. This point is called ‘rise-slope’. When

a rise time has just started, the slope value gets a very big value. However, as well as

the intensity of the attack increases, slopes begin to loose its intensity. Just after the

time-of-max, the slope changes its sign. The attack intensity begins to decrease after

this point.

Because we have all the data, we can search and find for the slopes values which are

greater than a given threshold i.e. 0,016. In fact, these slopes values correspond to the

attacks (see Figure 3.10).

43

Figure 3.10: All rise-slope values above 0,016 seen and colored as

red and green, alternatively.

In Figure 3.10, all rise-slopes are shown. To differentiate them from each other, they

are colored in an alternative modulation of red and green. It is clearly seen that some

slopes values above the threshold can not be related to attacks.. They have very little

values when comparing other major slope peaks. However, we collect all the attacks.

When we draw all these attacks over the waveform of the smoothed envelope we got

in Section 3.5, we notice that they are perfectly placed between the onset and time-

of-max (see Figure 3.11).

44

Figure 3.11: Slopes placed between rise-slope and time-of-max.

There must be much more attacks than the number of notes that we would like to

detect. In Figure 3.11, we see three long attack covered by slopes values. These are

suitable for detection. However, the very short one must be cleaned. They can cause

in false detection. In the figure, red asteriks symbolize the slopes data points.

3.7.1 Progressing the Model

To avoid the false detection, most of these short attacks will be eliminated by a

simple approach. We will compute arithmetic means for all slope blocks in Figure

3.10. Then, we find the maximum valued mean among them. We normalize all of

them with this maximum value. By using a mean threshold this time, we get rid of all

slopes blocks whose values are less than the threshold. Probably, a threshold of 0,1

may be sufficient for this kind of elimination. Afterward, the short slope blocks are

eliminated. This means that only related attacks remain (see Figure 3.12). This

improvement is our contribution to the model. We denote these remaining attacks by

a n-by-2 matrix, w5��%	. First column of this matrix carries the starting index

information of an attack and second column carries the ending index information of

that same attack. All indices information correspond to the position of attacks in the

slope array Ag�h.

45

Figure 3.12: The real attacks after progressing the model.

3.8 CUSUM Algorithm

To segment the notes from the smoothed envelope, we will need cumulative sums of

slopes. We search a point whereas a sudden change in the slope occurs. In statistics,

this problem is described as the problem of a change in mean or described as the

detection of jumps in mean [30, 31]. One of the important algorithms offered to solve

this problem is Hinkley’s cumulative sum [30].

The algorithm searches for jumps in the mean. It tries to find deviations with respect

of the cumulative sum [30]. Hinkley offered two detectors: One is responsible for

downward jumps and other one is the responsible for upward jumps. We are

interested in the second one because we are in quest of a sudden increase of slopes.

The detector formula can be given by

 xy �lz3{ f |� f *y2 }
+

{-.
 (3.11)

46

where xy is cumulative sums and 3{ is current data and *y is the jump magnitude

and |� is the mean of the current data [30]. For i=0, |� is equal to zero. The jump

magnitude can be shown as *y � |{~. f |{.

In order to find the point where an abrupt change (increase or upward jump) occurs,

we have to apply Page-Hinkley stoping rule [31]. This rule checks for every xy that

the susbstraction of this value from the minimum cumulative sum is whether greater

than a threshold value or not. Usually, such a threshold is given as ` and gets a value

like 0.00001. If this case holds, the index which denotes the current value of

cumulative sum is saved to locate where the abrupt change once occurred. We can

recap the test we apply by a formula as follows

 test the case for xH f kH R ` (3.12)

where kH � min� � � � H x� .

3.9 Note Segmentation

So far, we obtained a smoothed envelope, a slope array for this envelope, cumulative

sums, and attacks gotten from the ‘Rise-Times’ Model. Segmentation uses all the

information mentioned above. We apply a procedure which has three partitions. They

are proceeded in order for each note. The first partition is about to find abrupt change

in the slope array with the aid of cumulative sums. The second partition aims to find

local maxima values for every attack. And the third step, we would like to find local

minima values. Overview of three note segmentation phases is seen in Figure 3.13.

Figure 3.13: Three phases of single note segmentation process.

47

To find abrupt change in the slope array, we test the Hinkley’s stopping rule for a

given attack and a treshold value [26, 23]. For the attack detected from the step

described in Section 3.7, we try to find a jump point. If the test holds for an index 6

located in the cumulative sums, we save this location in the array D�	
' as the onset

index of the note segmenting. In fact, this D�	
' value is obtained by the expression

of the amplitude envelope indices array as a function of the index 6. We can

formulate the case as follows

 D�	
'{ � G)ku�6� (3.13)

where � symbolizes the currently segmenting note.

Then, we try to find time-of-max for the segmenting attack. From the index 6, we

begin to search in the slope array a location where the slope change its sign. We test

the current slope data for a given epsilon value e.g. 0.00001. We can show the test as

follows

 AH�.] � $�
 AH � f� (3.14)

where AH�. and AH are the slope value [23]. In fact, the local maximum value is the

most mature part of the attack transient. From this point, it begins to loose its

intensity [26]. We save the index location * for the slope array whereas the test

holds. By putting the index * inside the array G)ku, we express the index position in

terms of amplitude envelope indices. We store all these expressions for all

segmenting notes inside the array �$4. We can formulate the case as follows

 �$4{ � G)ku�*� (3.15)

Finally, we try to find a local minimum that the note segmenting starts to fade out.

Before detecting the next onset, we absolutely need this information for the

appropriate onset estimation. From the index *, we begin to search in the slope array

a location where the slope change its sign. This time, we make the same test for the

current slope data but the sign of slope will be positive [23]. We can show the test as

follows

48

 AH�. � f� $�
 AH] � (3.16)

We save the index location E for the slope array whereas the test holds. The

expression of E in terms of amplitude envelope indices is stored in an array ��� for

all segmenting notes. We can formulate the case as follows

 ���{ � G)ku�E� (3.17)

Therefore, an iteration of the note segmentation phase was completed. We repeat

these three steps until all attacks detected by using the model Rise-Times are

segmented. See Figure 3.14 for the segmented notes.

Figure 3.14: Notes segmented for the file generic-data-modified.wav.

In Figure 3.14, we see the segmented notes. Their onsets are colored in red. The local

maxima are colored as green and the local minima are colored as yellow. Each set of

three asteriks forms a note segmented. We can consider each three components as the

note’s starting, attack value, and finishing.

49

3.10 Spurious Attack Elimination

After note segmentation process, we have a number of notes detected. Among them,

some are the real ones that we would like to keep but some are not. The nature of

percussive music causes these types of undesirable attacks just before or after the

major attacks that we want to detect [24, 26]. These attacks are significantly tinier

both in durations and amplitudes when compared with the genuine and major attacks

(see Figure 3.15).

Figure 3.15: Two spurious attacks enclosed in red squares.

In Figure 3.15, two spurious attack fragments which were taken from Figure 3.14 are

viewed and enclosed in red squares. The left one is an example for a spurious attack

before a major attack. The right spurious attack is an example for an spurious attack

just after the major attack.

By using this property, we can distinguish these spurious attacks from the set of

detected notes in Section 3.9. These redundant notes must be eliminated in order to

make a proper transcription [32]. Otherwise, accuracy of the method will be

tremendously decreased [26]. Elimination method consists of three steps: Firstly, we

compute the length of each attack. Then, we find a median of these lengths and

calculate a threshold value by multiplying the median with a specific constant.

Lastly, we get rid of the lengths which is smaller than the threshold value.

50

First of all, all attacks are shown in Figure 3.14 as data points whose compositions

are a 3-tuple set. In the cartesian plane, each note has three values in both x and y

axes. When we put the onset, local maximum, and local minimum indices’ values

inside the time array ', we get the corresponding time components for each note as a

result. To obtain the y axis values, we use three index vectors �, �, and U which are

formed during the note segmentation process. When we put them as index inside the

smoothed envelope array A)ku, we get all y axis values for each tree components of

all segmented notes. We can formulate the case as follows

 D�	
'u$5 � A)ku���,�$4u$5 � A)ku��� and ���u$5 � A)ku�U� (3.18)

respectively. Two of these y axis values are used in the calculation of an attack

length. For all the segmented notes, we compute an attack length by substracting the

onset value from local maximum value. As a result, the substraction yields a scalar

value 5{. We can formulate the substraction as follows

 5{ � �$4u$5{ f D�	
'u$5{ (3.19)

where � denotes the corresponding note. Figure 3.16 summarizes a generic step of

attack length computation.

Figure 3.16: Note components and the length of attack �.

In Figure 3.16, onset, local maximum, local minimum values and their correspon-

ding time components for a note are seen. The length of a generic attack is also

provided.

51

After obtaining all attack lengths, we would like to calculate the threshold <. Firstly,

we find the median of attack lengths. We denote it as 1. Then, we multiply this

value with a specific constant � in order to produce the elimination threshold. We can

formulate the case as follows

 < � 1� (3.20)

The value of the coefficient is so vital for both the achievement of elimination and

the accuracy of entire transcription process. We determine its value according to the

results of the first experiment explained in Section 5.14 (see Table 5.2 and Figure

5.15).

Therefore, we finish the preparation steps for the core elimination phase. All we only

do next is to check whether an attack length is greater than the threshold < or not. If

that condition is satisfied, we add the currently testing attack length’s index to a new

set of non-spurious attacks’ indices. We denote this newly formed set as k
EG�

which is used to update the content of the arrays D�	
', D�	
'u$5,�$4,�$4u$5,
��� and ���u$5. Hence, this update operation purges the spurious attacks’ indices

from these arrays by only inserting the clean ones this time. Consequently, we

prevent detecting the spurious notes. After elimination, the clean case of all

segmented notes is shown in Figure 3.17.

52

Figure 3.17: All remaining notes seen after spurious attack elimination.

In Figure 3.17, all remaining notes are shown after spurious attack elimination. The

red asterisks denote the note onsets. The green asteriks denote the time-of-max of

every attack. Lastly, the yellow asteriks represent the end of the note.

After the elimination process is completed, the difference between Figure 3.14 and

Figure 3.17 is apparent. Some spurious attacks which are relatively shorter in lengths

and smaller in amplitudes are eliminated. When two figures are compared, it can be

easily noticed that some local maxima values are absent in the second one, especially

around the envelope value 0.08. The segmented notes are ready for the pitch

detection phase.

3.11 Pitch Detection between Successive Note Onsets

In Section 1.2.4.1, we explain that pitch describes the fundamental frequency of a

music note. This fundamental frequency serves to place the musical note in the

musical staff as mentioned in 1.2.4.2. Staff representation also indicates the note’s

place as a function of time [10]. Moreover, note pitches of piano instrument are well-

53

known for a number of octaves [22, 33]. By estimating the pitch of the note, we aim

to detect the note name from where it falls to an appropriate octave location. Pitch

detection proceeds in three steps: Firstly, we prepare the frames of the signal 	
between all successive note onsets. Then, we obtain the frequency components for

each frame by taking � fpoint FFT. We pick the most powerful frequency

component as a candidate pitch. Lastly, we look-up the most nearest piano pitch for

this candidate. From its place in the look-up table, we can reach the name of the note

we try to detect.

To be able to detect note pitches, we assume that there should probably exist a

leading frequency component between the interval of two successive note onsets. In

fact, this interval constitutes a frame of the signal which is denoted as �
E_	{. Every

such frame �
E_	{ has a different size because the starting and ending positions vary

according to the currently employed successive onsets. In addition, we make another

assumption is that the instant that the note occurs can be estimated by calculating the

median of the simultaneously evaluating frame in terms of time. For that reason, a

time frame �
E_'{ which corresponds to �
E_	{ is required to approximate the pitch

time. In birief, the estimated pitch time is the median of �
E_'{. Figure 3.18 shows

the successive frames for the segmented second, third and fourth notes of Figure

3.17.

54

Figure 3.18: Three successive frames. We try to find a pitch value for each.

Frequency components of each frame are calculated via the Fast Fourier Transform.

This operation requires two inputs: a signal frame �
E_	{ and a number k99�

which indicates the length of the transform. Because every frame may have different

frame length, k99� is computed in every iteration according to the frame size. In

order to run FFT algorithm efficiently, it is a wise choice to select a k99� value

which is power of two [33]. Hence, we can formulate the computation of k99� as

follows

 k99� � 2HJ�,�I�m� �HJ����� (3.21)

where |�
E_	{| is the length of the �th frame and �
4'B�E2 is the operator which

returns the smallest exponent that makes the value of k99� greater than or equal to

the length of the frame. As a result of the transform, we obtain the frequency

components of the signal frame �
E_	{. We denote the transform as � which is

expressed as a function of frequencies.

 � � ��'��
E�{, k99�� (3.22)

55

The power spectrum of the signal frame �
E_	{ is the elements of array |�|m k99�⁄

[34]. It is well known that the square of the signal represents its power. We measure

the energy distribution at various frequencies. We mention that a frequency leads for

each frame. Its power should be ultimately greater than other frequencies. Therefore,

the pitch candidate that we seek is the most powerful frequency of the frame (see

Figure 3.19). The range of frequencies varies from 0 to the half of the human

audible threshold [25]. The values greater than this range may well be spare because

we utilize nine octaves with frequencies of 8 kHz at maximum [35].

Figure 3.19: The most powerful frequency and its strength, holding for the musical

note A from the middle octave.

In Figure 3.19, the value of the strongest frequency �� is 439,9 Hz. Mathematically,

we can express the case as follows

 max��� � ����� (3.23)

where ��� ′� is equal to 0,01341. Other frequencies are relatively weak in

comparison with � ′. Thus, we find the measured frequency of the second segmented

56

note in Figure 3.17. In addition, it exactly matches with the first frame’s pitch of

Figure 3.18.

After obtaining the most powerful frequency � ′, we seek the nearest value inside the

look-up table of D�'$*
	. The look-up table frequency 5'� will be the pitch value

(��'�<q) that we would like to detect. The row and column information of 5'� stands

for two different concepts: Its column index points to the octave number i.e. the note

middle A resides in the fourth octave. In addition, the row index corresponds to the

note number inside the look-up table k�'
	. With this number, we obtain the name

of the note (kk$1
q) from k�'
	 i.e. the note middle A is located inside the tenth

row of D�'$*
	. Because there are twelve semitones in the western music, the tenth

one refers to an A note when sorted from the note C to the note B. To conclude, we

obtain the pitch values and note names of segmented notes. In addition, we store

them in ��'�< and kk$1
 arrays, respectively. For instance, the three successive

frames in Figure 3.18 get the pitch values as 440Hz, 493.88Hz, and 293.66Hz and

the note names as A, B and D, respectively. By using the pitch time information, we

can demonstrate all detected pitches as a function of time for all segmented notes

(see Figure 3.20).

Figure 3.20: Pitch values drawn according to their pitch times.

57

There may be some time shift while representing the note pitches because we take

the median values of each time frame as our assumption illustrates. This approach

does not cause any severe problem because all notes’ pitches are shifted a bit

relatively to their genuine locations in the time axis.

3.12 Note Durations Calculation

In order to find note value types, we need note durations. Because we already know

the note onsets, we can estimate all note durations from their corresponding time

values. From this point of view, a note duration can be described as the amount of

time passed from one onset to its right sibling. We assume that the successive onsets

can be used as note offsets interchangeably because we only deal with the musical

notes as music events. For example, there is no rest between the notes in our data.

For all onsets, we first obtain the matching time values. Then, we substract the

current onset time from the right sibling’s one except the last onset time which is

substracted from the total playing time of the data. This is because the last onset does

not have any right sibling onset. We can generalize the case with the formula as

follows

 k&6#�F� � '�D�	
'q~.� f '=D�	
'q> (3.24)

where k&6#�F� is a note duration computed for the Fth note and '=D�	
'q> is the

instant when the Fth note onset occurs. Figure 3.21 summarizes the whole process.

58

Figure 3.21: Note duration calculation made for all successive note onsets.

3.13 Note Value Types Detection

In Section 1.2.4.3, we introduced five different note value types that are unknown in

our test data and we would like to detect and offer a value type for each note we

segment. We assume an algorithm to solve this problem. The task is constituted from

two rounds. In the first round, we try to classify the note durations estimated in

Section 3.12 according to the five known classes. As intended, they are all five

rhythmic note value types mentioned in Section 1.2.4.3. We denote the number of

distinct note value types as
�	�3B
. We try to find groups of note durations which

are gathered very close to each other. For each distinct group, we calculate an

arithmetic mean that symbolizes the average note duration. In the second round, we

assign each group’s average to all note durations falling into that group.

At the beginning of the first round, we have note durations and distinct types of note

values known. First of all, we find the longest note duration 5�
. We collect all note

durations standing in the range of peripheral boundaries. They are scalar values to

limit a group’s circumference. There exist one left (5
�'w) and one right (#�;<'w)

boundaries at total. In this case, the right boundary is 5�
 itself and the left boundary

is calculated by the multiplication of 5�
 and a constant denoted as B
#��
#. This

59

constant describes a percentage. Then, we add all note durations that are greater than

or equal to 5
�'w and smaller than or equal to #�;<'w to the current group whose

name is ‘notes-around’ (k�#�6�
). We call as the centroid (��) for the arithmetic

mean of this group. Next, we compute a pseudo centroid ('
1B�) of the next group

in order to calculate this group’s centroid at the next iteration. For this purpose, we

only divide �� by two. This is the special step of this algorithm. In a generic step, we

compute the peripheral boundaries according to '
1B�. In this case, the left

boundary is calculated by the multiplication of '
1B� and a constant denoted as

B
#��
and the right boundary is calculated by the multiplication of '
1B� and the

result of �1 f B
#��
#�. To cope with the risk of the failure of the boundary

condition checking, we assign '
1B� as the centroid value because we do not have

any suitable note durations to calculate a mean. This round finishes by obtaining all

centroid values (see Figure 3.22).

Figure 3.22: Mechanism of centroid calculation and its representaion in the plane.

In the second round, we map the centroid values to all given note durations. For this

sake, we find the most nearest centroid value �� for any note duration k&6#�F� and

60

then we assign �� to k&6#�F�. After this round completed, we have the same note

duration for all data points of the same group. The mapped note durations are

denoted with �$B&6#. Obligatorily, all members of a rhythmic note value type

must have the same note durations as the music rules imply. In the next phases, we

use these generalized note durations. Figure 3.23 summarizes the result of the second

round. See Appendix B.1 and B.2 for the pseudocodes of both two rounds.

Figure 3.23: The centroids and their surrounding data points seen.

In Figure 3.23, we encounter three calculated centroids and two pseudo centroids

which does not have any data points at their surroundings. When zoomed, the note

durations residing in an environment of a centroid, usually differ from each other.

The underlaying reason for this deviation is that we calculate note durations from the

temporal distances of two successive onsets. This distance can be varied (very close

or just close) for a group of durations because the onset position is dependent on the

percussive music waveform. We do not expect that abrupt changes in the waveform

have regularities for a data file completely created in a random fashion in terms of

note value types.

61

3.14 Note Labels Assignment

To complete the transcription, we need to give labels to the segmented notes. In the

music theory, rhythmic note value types are described as even numbers from two to

sixty four except the whole note [10]. In Section 1.2.4.3, we explain the relationships

between rhythmic notes. Whole note gets the number one, half note gets the number

two, quarter note gets the number four, eighth note gets the number 8 and so on. We

provide another algorithm which combines the note names with the labeling numbers

mentioned above in order to provide fully qualified note names such as

�1, �#2, w8, &4, �16, etc... This matching operation is made via the mapped

centroid durations. We assume that largest centroid should get the label of whole

note. In the same manner, second largest centroid should be matched with the label

of half note. In fact, we match the labels of five different note value types to the

provided centroids durations in ascending order. In addition, the centroids are

automatically sorted due to the nature of the detection method (see Section 3.13). We

assume that this algorithm works appropriately when the randomly created data

content is constituted by all five value types. A counter example can explain easily

how procedure works. If we have a set of notes whose value types are quarter, eighth

and sixteenth, the procedure combines the labeling numbers one, two and four with

the corresponding note names of this set. In this case, the algorithm assigns these

labeling numbers to this set because the decision is made according to the provided

centroid values. Figure 3.23 is an example of this situation. See Appendix C for the

pseudocode of the note label assignment algorithm.

62

Chapter 4

Proposed Transcription Algorithm

In this section, we propose an algorithm which is used for detecting notes of a

musical signal. We have explained the components in the third chapter. The

algorithm’s intermediate values are fully dependent to the previous outcomes since

they are required to be inputs in the next components executions. So, we can define

this situation as a linear dependency of algorithm’s contents. In software architecture

literature, this structure is named as Pipe Line or just Pipes [36]. Here we have the

pseudocode for the algorithm:

PROPOSED-TRANSCRIPTION-ALGORITHM(=�>, '=�>, �?, k�'
	, D�'$*
)

01 # 1. Construction of amplitude envelope of signal

02 =)�*, G)�*> X constructMagnitudeEnvelope (=�>, E	, F$)

03

04 # 2. Smoothing the envelope waveform

05 A)�* X smoothEnvelope()�*, �?)

06

07 # 3. Run slope detector

08 Ag�h X runNovelSlopeDetector(A)�*, '=G)�*>, %)

09

10 # 4. Launch ‘Rise-Times’ Model

11 w5��%	 X runModel(Ag�h,1�

5�<#
	<�5
)

12

13 # 5. Progress the model

14 w5��%	 X progressModel(Ag�h, w5��%	,1
$��<#
	<�5
)

15

16 # 6. Run Hinkley’s CUSUM algorithm

17 xy X runCusum(Ag�h,

'
�'�#�3B
)

18

19 # 7. Segment the notes

20 =D�	
', D�	
'u$5,�$4,�$4u$5,���,���u$5> X

21 segmentAllNotes�A)�*, Ag�h, G)�*,x�, w5��%	, `, ��
22

23 # 8. Spurious attacks elimination

24 k
EG�
 X clearSpuriousAttacks�D�	
'u$5,�$4u$5, ��
25

26 # 9. Reassignment of new indices

27 D�	
' X D�	
'�k
EG�
� and D�	
'u$5 X D�	
'u$5�k
EG�
�
28 �$4 X �$4�k
EG�
� and �$4u$5 X �$4u$5�k
EG�
�
29 ��� X ����k
EG�
� and ���u$5 X ���u$5�k
EG�
�

Figure 4.1: Pseudocode of proposed transcription algorithm (continued).

63

30 # 10. Pitch detection between successive note onsets

31 =��'�<, kk$1
> X detectPitch(k�'
	, D�'$*
	, D�	
', '=�>, 	=�>, �?�
32

33 # 11. Note durations calculation
34 k&6# X calculateNoteDurations ('=�>, D�	
')
35

36 # 12. Note Value Types Detection

37 =�,�$B&6#> X findNoteValueTypes(k&6#, B
#��
#,
�	�3B
)

38

39 # 13. Notes Labels Assignment

40 k�'
v$@
5	 X assignNoteLabels(�$B&6#, kk$1
)

Figure 4.1: Pseudocode of proposed transcription algorithm (continued).

In Figure 4.1, we present our proposed transcription algorithm. It can be considered

as a final summary of all we talked about in Chapter 3. The input arguments of the

algorithm are the audio signal (=�>), its corresponding time vector ('=�>), the

sampling frequency (�?), the look-up tables k�'
	 and D�'$*
	, respectively. By

using these arguments, our aim is to transcribe fully qualified note names at the end

as it is stated as k�'
v$@
5	 in line 40 of the figure. There are 13 phases to achieve

the transcription task.

In the first phase, we construct an amplitude envelope of the audio signal (=�>)
because the percussive music pieces that we work on allow to segment note onset

easily (line 02). This situation facilitates the entire segmentation process (see Section

3.4). In order to obtain the envelope, we used a windowing system that results in

picking the maximum valued signal element from the window. Every window has a

size denoted by E	. Windows slide through the signal according to a jump amount

(F$). At the end of this phase, we obtain an envelope array)�* and its corresponding

index array G)�*.

As it is seen in Figure 3.5, the envelope is not suitable for note segmentation. We

apply a Butterworth IIR lowpass filter to the envelope ()�*). As a result, we obtain

the smoothed envelope (A)�*) (see Figure 3.7). Beside the usual parameters of

lowpass filter (see Section 3.5), we also used sampling frequency (�?) as a parameter

(line 05).

64

In the third phase, we built overlapping lines over the waveform of smoothed

envelope (A)�*) by employing the linear regression (line 08). We utilize %

approximation points of A)�* each time in order to get a line from the regression.

Each line’s slope is stored as an element of the slope array Ag�h. Abrupt changes in

the slope can be considered as an onset of a musical note.

To select significant slope values, we employ the ‘Rise-Times’ Model. This model

eliminates the slope values below a certain threshold value (1�

5�<#
	<�5
) (line

11). We expect to detect a note event from slope changes (see Figure 3.10). Such a

slope change first makes a sudden rise in magnitude and then reaches a peak point.

From that point, it begins to decay below the threshold value. Every such slope

motion is called “block”. We collect the starting and ending indices of all blocks into

the first and second columns of the matrix of w5��%	, as an output.

With respect to the nature of percussive onsets, the slope blocks correspond to the

attacks of the smoothed envelope (see Figure 3.11). They are placed between rise-

slope and time-of-max. However, not all attacks can be note events. Some of the

attacks have significantly smaller amplitudes. We can process the model by

eliminating the blocks whose arithmetic means are less than the mean threshold

value (1
$��<#
	<�5
). Thus, some blocks are eliminated from the matrix w5��%	
which is returned at the end (line 14).

In the sixth phase, Hinkley’s CUSUM calculates the cumulative sums (xy) of the

slopes (line 17). Because we look for sudden changes or increases in slope, the

detector type (

'
�'�#�3B
) must be assigned to ‘increase’.

In note segmentation phase, our target is to retrive the note event as a union of three

components: physical note onsets (D�	
'), time-of-max or in other words local

maxima (�$4), and local minima (���). These are all index arrays. Beside these,

there are also corresponding smoothed envelope (A)�*) values for all of them:

D�	
'u$5, �$4u$5, and ���u$5. The last three are representative of y-ordinate in

the plane while the former ones represent x-axis values (see Figure 3.16). For each

block of w5��%	, we segment a single note (line 20 and 21). First, we obtain note

65

onset by applying the Page-Hinkley stopping rule over the data of cumulative sums

(xy). A threshold (`) is employed to determine the occurence of an abrupt change.

Moreover, to get the local maxima and minima values, we try to detect where the

absolute value of slope (Ag�h) falls below (�) or (f�) (3.14 and 3.16).

During the execution of the previous phase, some unrelated attacks are also detected

as music events. We have to eliminate these spurious attacks (line 24). We compute

the length of every attack by substracting onset value from time-of-max value (3.19).

We discard the attacks whose lengths are lower than the elimination threshold (<).

This threshold is calculated from the multiplication (3.20) of the median of all

attacks with the given coefficient (�). Exclusion includes all three components of a

segmented note. Finally, we return a set of remaining attacks as k
EG�
.

In the ninth phase, an obligatory update operation is made in order to reflect the

absence of eliminated attacks. From line 27 to 29 of the figure, six arrays are affected

since they are redefined with the new set of attacks (k
EG�
). Therefore,

elimination is accomplished in system wide. Accuracy of the subsequent phases

strongly depends on this phase. Otherwise, it can decrease drastically.

For every segmented note, we aim to get a pair of pitch and note name (��'�<,
kk$1
) in the pitch detection phase (line 31). This operation is proceeded between

the successive physical onsets (D�	
'). For given time vector ('=�>), signal (=�>),
and sampling frequency (�?), we split two frames of first two parameters each time

we investigate successive note onsets. These two frames are used in a FFT to find the

main frequency component. By comparing to a look-up table of frequencies

(D�'$*
), we learn the closest equivalent piano pitch of our estimated frequency.

From the column number where we get the pitch value, we retrieve the note name by

inserting it as an index inside the look-up table of note names (k�'
).

In order to calculate note durations, we first obtain the temporal equivalent of the

physical onsets (D�	
') by using the time vector '=�>. Next, we substract every

successive onsets’ temporal equivalents from each other. Every temporal difference

66

we get signifies an estimated note duration. We store them in a note duration array

k&6# (line 34).

In the twelfth phase, we consider that estimated note durations (k&6#) are

distributed according to a clustered and hierarchical order (line 37). We illustrate this

distribution as in Figure 3.23. Every cluster corresponds to a generalized note

duration. Our aim is to find these generalized note durations. In addition, we have a

constraint that the number of note duration clusters (
�	�3B
) that an audio file can

possibly yield is fixed and known i.e: 5. We use a two-round algorithm to estimate

clustered note durations (Section 3.13). At the first round, we match data points to

their related clusters which are formed according to the calculation of scalar

boundaries for a given peripheral percentage amount (B
#��
#). Every cluster’s

mean value gives the centroid of this cluster. Distinct note type values refer to the

centroid values (�). At the second round, every note duration is associated with its

distinct note value type. As an output, a mapped note duration array (�$B&6#) is

obtained.

In the final phase, we try to estimate the fully qualified note labels in conjunction

with the rhythmical representation of mapped note durations (�$B&6#) and note

names (kk$1
). For the mapped duration of every note, we infer a label number

from the ordered list of labels (“1, 2, 4, 8, 16”). The highest and lowest marks are “1”

and “16”, respectively. Lastly, this mark is appended to a note name. The result is a

fully qualified note label like �#8 (line 40). All note labels are stored in the array

k�'
v$@
5	 which is the only output of the entire algorithm.

67

Chapter 5

Results

5.1 Data

In our experiments, we have used a data of wave file each time. I used a software

which was completely written by me and serves to generate these wave files as it was

mentioned in Section 3.1 . Each file consists of 50 randomly generated notes. These

randomly generated notes may be one of the notes coming from the octave where

middle C(C4) is located as the beginning note and C5 is the finishing note. We can

say that there are possibly 12 notes when generating a note. The midi note numbers’

equivalents are the interval of integers from 60 to 72 for this octave. Moreover, we

have another constraint that these randomly generated notes may have five different

note values types which were pre-set as whole, half, quarter, eighth, and sixteenth.

This setting is configurable in our data creator program.

A wave file created under these circumstances i.e. test-5-50-notes.wav plays for 33

seconds. It is prepared by using Pulse Code Modulation and was sampled with

44.100 Hz where each sample is encoded with 16 bits.

Every data file like test-5-50-notes.wav comes with an another text file which gives

the music scores as mentioned in Section 3.1. Here we have test-5-50-notes.txt for

the test file provided above (see Figure 5.1).

Figure 5.1: The content of the file test-5-50-notes.txt.

68

In Figure 5.1, there are 50 music scores preceded by a starting label “scores:”. This

label is followed by an integer number to indicate the number of notes inserted in this

file. Then, fifty fully qualified note names are appeared.

A fragment of randomly generated notes inside this mentioned file above is exhibited

in Figure 5.2 as following:

Figure 5.2: 28 notes out of 50 placed in the music staff.

5.2 Envelope

As stated in Section 3.2 and its sub sections, we retrieved the signal and its related

accompanying set of information e.g t[n]. Now, the signal retrieved is just a column

vector whose size is [730384x1]. This size holds for the column vector t[n] which

was prepared with the rationale explained in Section 3.2.1 and its size is equal to the

size of the signal. We constructed an amplitude envelope for this signal with a

window size of 64 and a jump amount of 16. These are specific scalar values and can

be tuned according to the subjected data. In addition, we determine these parameters’

values in the light of the resuls of the second and third experiments that we

conducted (see Table from 5.3 to 5.6 and Figure from 5.17 to 5.23). Detailed

information about the reason of the selection of the assigned values i.e: E	=64 is

provided in Section 5.14. As a result, we obtained an array)�* whose size is

[1x45645] (see the Figure 5.3).

69

Figure 5.3: The amplitude envelope drawn onto the original waveform.

5.3 Smoothing

For the sake of good note segmentation, we have smoothed the envelope data by

using a low-pass filter which was designed as a Butterworth filter whose passband

frequency is 150Hz, stopband frequency is 450Hz, stopband attenuation is 60, and

passband ripple is 1. As a result, we obtained an array A)�* whose size is equal to

the one of the array)�* as intended. As a result, we have a better waveform without

such a very quick and instantaneous vibrations. We benefit from its reduced

waveform in the next step. To ease the understanding, see Figure 5.4 and Figure 5.5.

When we compare them, Figure 5.4 carries lot of information which may be

redundant, affects the algorithm performance and must be further smoothed before

the filter was applied. However, the filter smooths the envelope and then, we deal

with less amount of information which is more useful for the sake of implementation.

70

Figure 5.4: Amplitude envelope before smoothing.

Figure 5.5: Amplitude envelope after smoothing.

71

5.4 Slope Detection

The smoothed version of amplitude envelope is used in slope detection by

calculating linear regression for a given small data set of % approximation points. We

have discussed the internal organization of this method in Section 3.6 . By using

eight approximation points each time for one step of the detection, we get an array

Slopes filled with slopes of each line created during the process. The size of this

array is equal to the size of the smoothed envelope minus eight because. Actually,

when the number of approximation points is eight, from the last eighth data point of

the smoothed envelope, there did note remain any more eight points to approximate

and never will be present because the data is finished. So, the last slope value

belongs to the line which was derived from the eight last points. See Figure 5.6 and

its zoomed close-up version of Figure 5.7.

Figure 5.6: Slope detection result for the file test-5-50-notes.wav.

In Figure 5.6, the black lines created by the slope detector’s execution are seen. They

perfectly fit the waveform of A)ku. The red asteriks are data points of A)ku.

72

Figure 5.7: Close-up of the slope detection result.

In Figure 5.7, a close-up of Figure 5.6 is viewed. The top part of the figure shows an

excerpt of two peaks from the data of A)ku in a time interval between 17th second

73

and 18th second. At the bottom part, it is seen the zoomed version inside the squared

area. The lines computed during slope detection are drawn and fit very well to the

data. Data point are shown in red asteriks.

5.5 'Rise-Time' Model

With the slopes calculated, we can now concentrate on the attack rise times in the

data. One way is discussed in Section 3.7 that the slopes values being over a selected

threshold can be considered as valuable material and we would like to focus such

areas where we can pick some candidates to detect a music note. We configured the

model threshold to the real value of 0,016. The slope values over this threshold are

related to possible attack time of a note. When we launch this model, we get all

attacks having slope values over the threshold. Some of them are related attaks and

some of them, unfortunately not. We save every attacks’ starting and ending

locations as a function of time and indices. For test-5-50-notes.wav, by using this

model, we get 145 attacks. We have a prior knowledge that data consists of 50 notes.

There are lot of attacks to be eliminated. We can even make this elimination by

making just a little trick. In Section 3.7.1, we discussed how we can improve our

model. This makes a significant improvement that there remain only 55 attack

blocks. This amount is very close to the real number of notes. We can show this

elimination effect with the close-up views in a before-and-after manner (see Figure

5.8). Onto the waveform of smoothed envelope(drawn in blue), we draw the attack

derived from the model in red. Actually, the attack represent the slope values

corresponding to a musical event. This is true mostly for the related attacks. For

instance, the slopes values perfectly reside on the percussive onset startings and get

through along the transient and finally it reaches to the top of the peak which is a

local maximum. This case is exhibited apparently on Figure 5.8. The slope values fit

to the smoothed envelope perfectly while floating over its surface. After the

elimination, we understand that the redundant attack components were disappeared

from where they were black-squared, previously.

74

Figure 5.8: The ‘Rise-Times’ Model and its progression viewed.

75

In Figure 5.8, we see the application of the Rise-Times Model and its progression’s

result. The top sketch shows the redundant attacks found by the model enclosed in

the black squares. By progressing the model, we leave these attacks and we get more

cleanier and redundant attacks isolated model state. The top graph is before case and

the bottom graph is after case. In both cases, a little excerpt of the complete data was

zoomed for the convenience reason.

5.6 CUSUM Algorithm

To find out where the abrupt increase happens when a percussive music event

occurs, we are in quest of getting cumulative sums of the slope array. The CUSUM

algorithm was configured to detect sudden increase because the detector type is set to

‘increase’. The reason of the selection of the detector type was explained in Section

3.8. As a result of the execution of this algorithm, we obtained cumulative sums of

the slope array. The cumulative sums are stored in an array data structure with the

size equal to the one of slope array. We will use this information while we segment

the notes.

5.7 Note Segmentation

We call the segmentation procedure with all information obtained from the previous

steps of our implementation as it was denoted in Section 3.9 earlier. In addition, we

add two segmentation threshold variables which are used in calculating the ‘end-of-

attack’ part of the ‘Rise-Times’ model and at the local minimum computation. These

two variables which are named as threshold and epsilon may well be tuned according

to the data tested.Their default values are 0,00001 for both. As a result, we obtained

the values of physical onsets, the values of local maxima, and the values of local

minima with their corresponding locations as a function of index. To ease of

understanding, we show them in Figure 5.9.

76

Figure 5.9: Segmented notes drawn with three temporal components.

In Figure 5.9, physical note onsets are drawn in red asteriks. Having being percussive

onset, the note starting location in the time may well be designated with the pointing

of onset. This is a legitimate statement also for the yellow asteriks which remark the

finish of the notes. The green ones are the attack most mature part signifying the

peak value. As a result, we got all these values for the previously detected 55 attacks

and stored them in the three different representative arrays whose names are

D�	
'u$5, �$4u$5 and ���u$5, respectively. In addition, we saved the locations of

all these values in a function of time and indices, in three different arrays again as

natural. All these six arrays size are [1x55]. This size alarms us about the excess

attack value determined in a redundant fashion.

77

5.8 Spurious Attack Elimination

As stated in Section 5.10, the elimination of the spurious attacks maintains the

accuracy of the implementation. We obligatorily apply this process because the

nature of percussive onset is wide open to introduce kind of spurious attack with the

genuine attack. When we run this procedure, we found out the last case of attacks

totally purged from the spurious ones. Therefore, number of the candidate attacks to

be assessed as a music note in a while was reduced to fifty. This is the number that

we would like to get however it is too early to smile. Did we appropriately get rid of

the right attacks from our attack set? We will learn this in a few steps further. Figure

5.10 shows the situation of segmented notes after the elimination spurious attacks for

the test file test-5-50-notes.wav.

Figure 5.10: Segmented notes seen after the elimination.

Via the figure, we can identify easily which five attacks are eliminated. Pay attention

to notice the difference between this figure and the previous one. If we focus on the

78

center of graph, we will notice that five green asteriks present in Figure 5.9, are now

absent near the amplitude value of 0,08. This helps seeing that some of the real

attacks were eliminated. Of course, other two component of these eliminated five

attacks are also eliminated from the set of detected onsets and local minima.

5.9 Pitch Detection

At the moment, we have segmented fifty notes whose pitches are unknown. We will

learn the note pitches by making a number of Fast Fourier Transform operations

between the successive physical onsets remained after the spurious attack elimination

phase by applying the criteria stated in Section 3.11. These pitches are the frequency

values of the notes which are originated from the middle octave of grand piano

instrument. As a result, we got pitches and corresponding names of notes for these

pitches. We have found fifty pitches and fifty note names. We provide a figure for

the display of the pitches found as a function of time in Figure 5.11. In the figure,

every red asterisk actually shows a detected note and is placed into the cartesian

plane according to its pitch value and its corresponding pitch time derived as

mentioned in the section 3.11. We summarize the pitches and the note names that we

found in Table 5.1’s second and third columns.

Table 5.1 summarizes all the results obtained in various steps of implementations for

fifty notes. The column names are very obvious. At the leftmost column, the

abbreviation of number is used and signifies the note index in the order of detection.

The fourth colum represents the note duration calculated in Section 3.12. Then, all

notes are mapped to their corresponding centroid durations in Section 3.13. Finally,

the last colum is the output of the label assignment process of Section 3.14. The

numbers used in the note label signify the note value type in a rhytmic metric.

79

Figure 5.11: Pitches found for the fifty segmented notes.

Table 5.1: Results obtained in various steps of implementation.

Pitch

(Hertz)
Note

Duration

(seconds)

Mapped

Duration

(seconds)

Label #
Pitch

(Hertz)
Note

Duration

(seconds)

Mapped

Duration

(seconds)

Label

1 329.6300 E 1.5012 1.4935 E2 26 440.0000 A 0.1981 0.1964 A16

2 392.0000 G 0.1968 0.1964 G16 27 392.0000 G 0.7390 0.7405 G4

3 349.2300 F 0.1903 0.1964 F16 28 261.6300 C 0.3802 0.3773 C8

4 293.6600 D 0.7382 0.7405 D4 29 369.9900 F# 2.9927 2.9960 F#1

5 349.2300 F 0.3800 0.3773 F8 30 277.1800 C# 0.3940 0.3773 C#8

6 392.0000 G 0.3805 0.3773 G8 31 293.6600 D 0.1842 0.1964 D16

7 329.6300 E 0.7395 0.7405 E4 32 392.0000 G 0.1840 0.1964 G16

8 311.1300 D# 1.4996 1.4935 D#2 33 293.6600 D 0.2050 0.1964 D16

9 277.1800 C# 0.2108 0.1964 C#16 34 293.6600 D 0.7207 0.7405 D4

10 329.6300 E 0.1847 0.1964 E16 35 349.2300 F 0.7557 0.7405 F4

11 349.2300 F 0.7312 0.7405 F4 36 349.2300 F 0.3708 0.3773 F8

12 329.6300 E 0.7507 0.7405 E4 37 329.6300 E 0.2011 0.1964 E16

13 392.0000 G 0.7480 0.7405 G4 38 293.6600 D 0.3782 0.3773 D8

14 349.2300 F 0.3783 0.3773 F8 39 293.6600 D 1.4790 1.4935 D2

15 311.1300 D# 0.3844 0.3773 D#8 40 349.2300 F 0.2059 0.1964 F16

16 261.6300 C 1.4875 1.4935 C2 41 440.0000 A 0.1872 0.1964 A16

17 349.2300 F 1.5016 1.4935 F2 42 293.6600 D 0.1949 0.1964 D16

18 293.6600 D 1.4969 1.4935 D2 43 329.6300 E 0.1795 0.1964 E16

19 329.6300 E 0.2089 0.1964 E16 44 261.6300 C 0.3689 0.3773 C8

20 415.3000 G# 0.3677 0.3773 G#8 45 440.0000 A 1.4888 1.4935 A2

21 261.6300 C 0.1990 0.1964 C16 46 392.0000 G 0.7529 0.7405 G4

22 440.0000 A 0.7271 0.7405 A4 47 311.1300 D# 0.2075 0.1964 D#16

23 293.6600 D 0.2048 0.1964 D16 48 415.3000 G# 0.3669 0.3773 G#8

24 392.0000 G 0.7325 0.7405 G4 49 369.9900 F# 0.1927 0.1964 F#16

25 369.9900 F# 0.7504 0.7405 F#4 50 349.2300 F 2.9993 2.9960 F1

80

5.10 Calculation of Note Durations

We calculated note durations of fifty notes by substracting the corresponding time

locations of the two successive notes’ physical onsets as stated in Section 3.12. We

obtained fifty note durations which will be used in the note value types detection. We

also provide these values in Table 5.1.

5.11 Note Value Types Detection

Until this step, we do not have any prior knowledge about the note value types of the

notes segmented. We discussed how we try to approximate the note type values from

the data of note durations in Section 3.13. In the detailed explanation of this

approximation, we introduced a variable named B
#��
whose default value is 0,8.

This value is used while seeking the possible note durations in the entourage of a

note centroid. This algorithm seems to resemble K-Means algorithm (although the

contexts are different) in the sense that both require to be given the number of means

to be detected, as an input [29]. Here we deal with the distinct note types and our £

is five, apparently. As a result, we got two important new information which are

distinct note value types and mapped note durations, respectively. The note value

types detected for the file test-5-50-notes.wav are 2.9960, 1.4935, 0.7405, 0.3773,

0.1964, 0.0982, and 0.0491 seconds, in descending order. One important thing is that

these are the generalized note types that we would like to map to the note durations

found in the previous step instead of their values obtained from the measurement

conducted between the successive onsets’ time locations. Thus, the meaning of the

mapped note durations are now revealed. At the moment, all note durations can be

one of the five generalized and distinct note type values. Finally, we will use the

mapped note durations in the final step of our implementation while we try to give a

complete descriptive label to the notes segmented. See Figure 5.13 in order to

investigate the five distinct note value types. Each note value type is exactly the half

of the one previous note type. In the figure, red asteriks show the centroids calculated

by taking the mean of the data points in its entourage. Blue asteriks show our current

data points which are indeed the note durations calculated at the previous step. They

are distributed in the plane as if they are coming from the different clusters. The case

81

of the centroid and its entourage data points can be seen better with a close-up plot

(see Figure 5.12).

Figure 5.12: Second largest centroid zoomed.very near to 1,5 seconds.

Figure 5.13: Distinct note value types-centroids seen with data points.

82

5.12 Note Labels Assignment

In Section 1.2.4.3, we have investigated different note value types that are the basis

for our test data. In Section 1.2.7.2, we explained the rationale of the relative change

of these note value types under the circumstances that tempo gets slower or faster. In

Section 3.14, we have introduced the proposed approximation method of mapped

note durations to absolute note value types in a given tempo. So, we give the

assignment routine that map note durations and the names of notes found. It returns

the fully qualified note name labeled with its note value type likewise the examples

of E2, F16, D4, G8, F#1 which are all given for a different value type. We got fifty

note labels in this format. All note labels can be seen in Table 5.1. We will use these

note labels in calculating the accuracy of the algorithm that is validated for a given

data test-5-50-notes.wav.

5.13 Performance Measurement

Performance measure of our proposed algorithm is its accuracy. We calculated the

percentage of correctly identified notes. The accuracy can be given as the following

 ���6#$�3 � �61@
�� $��6#$'
53 	
;1
�'

 ��'
	'�'$5 �61@
�� ��'
	 (5.1)

where ���6#$�3 ¤ ¥ $�
 0 e ���6#$�3 e 100 . We obtained an accuracy value

of 100% for the data file test-5-50-notes.wav. We have found fifty accurately

segmented notes in our test data.

We tested the algorithm in an experiment of thousand randomly created wave files

which contain the notes from middle octave and with first five note value types. As a

result, our proposed transcription algorithm has an average accuracy of 97,6 with the

tuned parameters (see Section 5.14). In this experiment, we successfully transcribed

the music scores of 960 test files with one hundered per cent accuracy.

For 12 files, we got partial accuracies varying from 40% to 80%. The decrease in the

accuracy is caused by the validation method of transcribed scores with the ground-

truth data. If the segmentation of one note is skipped or one exces note could not be

83

eliminated during the spurious attack elimination, this situation affects linearly the

validation of all subsequent transcribed scores. In this experiment, such a case occurs

for the file '
	' f 0404.E$* for which the algorithm yields an accuracy of 41,2. We

show a fragment of the comparison process of ground-truth data with transcripted

scores in Figure 5.14.

Figure 5.14: A fragment of the comparison matrix for the test file test-0404.wav.

Figure 5.14 explains the cases which decrease the accuracy. We first see that the note

916 was transcribed as 98. The correct note duration may not be properly mapped to

the right centroid. All in all, this is a false transcription example even though the note

name and its pitch were detected appropriately. Secondly, the algorithm skipped to

detect �16 after 916 and that’s why we add a padding zero to the end of the testing

scores. This error causes a series of failures in the validation of testing data despite

the rest was transcribed successfully (follow the red arrows). This massive decrease

in the accuracy is due to the subsequent dependence of the algorithm pieces. If one

fails, the subsequent pieces fail.

Beside these, we got zero acccuracy for 28 test files. One of the main reason for this

bad result is randomness. Notes and their durations were created in a random fashion.

This approach does not fit with the general music composition style [10]. In general,

harmony, consonance and tonality are the main goal to reach for composers [11].

However, we discarded these aesthetic elements while we create our synthetic test

data in order to force our algorithm. Another reason for the fall of accuracy is that the

absence of one of more value types in note value type detection process. Lastly, for

84

some files, our algorithm parameters may be re-tuned even the majority of the test

files we got 100% accuracy. For example, spurious attack elimination is a good

example of the requirement for parameter tuning. If the threshold is not selected well,

elimination fails to remove excess attacks which directly affects the performance.

We explain the determination of parameters values in Section 5.14.

Another criterion to evaluate the performance of our algorithm is its squared error

sum. This is computed for each test file used in an experiment. In Section 3.9, we

segment £ notes from a test file. Then, we eliminate the spurious notes in Section

3.10. The number of remaining notes is denoted by £�. For each detected note �, we

calculate an experimental error
{ by substracting the look-up table frequency value

(5'�) from the most powerful frequency value (� ′) obtained by the power spectrum

analysis (see Section 3.11). For all remaining notes for a test file, we can formulate

the squared error sum @¦,H as follows

@¦,H �l
{m
§¨

{
�l���{ f 5'�{�m

§¨

{
 (5.2)

where 1 is the number of current test file and � is the window size (see Table 5.3)

and the jump amount (see Tables 5.4, 5.5 and 5.6) in the second and third

experiments, respectively.

5.14 Experimental Determination of Parameters

The performance of the transcription algorithm is affected from the value of

parameters used in various steps. We made some experiments to determine the

crucial parameter values. One of these parameters is the coefficient value used to

compute the threshold in the spurious attack elimination phase. The other one is the

window size utilized during the construction of amplitude envelope. Thirdly, the

jump amount affects the performance of the algorithm. We conducted an experiment

to show how we calibrated the proportional ratio of window size and jump amount.

85

In our first experiment, we try to improve the performance of spurious attack

elimination process. This process depends on to the value of a coefficient given

during the runtime because we separately calculate a treshold value for each data file

in order to eliminate the redundant attacks (see Section 3.10). The threshold is

calculated via the formula < � 1� where < is threshold, 1 is the median of attacks

lengths, and � is the coefficient. For randomly created 50 files (each consisting of 50

notes), we tested 10 different values of the coefficient which vary from 0.1 to 1.0 by

an increment of 0.1. We got the best average accuracy of 98% while the coefficient

value is 0.3 (see Table 5.2). After the coefficient value continues to increase, the

average accuracy begins to decrease (see Figure 5.15). That’s why we decided to use

the coefficient value as 0,3 in the experiement where we got an accuracy of 97,6 for

thousand files.

Table 5.2: Coefficient values and corresponding average accuracies.

86

Figure 5.15: Average accuracies of 50 test files for 1
st
 experiment.

In the second experiment, we try to understand how window size influences the

average accuracy and squared error sum. We deal with the window size while we

construct the amplitude envelope of the signal (see Section 3.4). In this phase, we

take the frames of signal and we get the maximum signal value for each frame. We

would like to know if the size of frame(in terms of samples) matters of not. We

conducted the experiment with 18 different window sizes. They vary from 32 to 100

in an increment amount of four. We got the optimum result when the window size is

equal to 56. For this value, we obtained an average accuracy of 98 for 50 randomly

created test files. Concurrently, the average squared error sum must get the smallest

value while the average accuracy must take the largest value. Error rate decreases in

parallel with the increase of window size (see Figure 5.17). Approximately, the

average squared error sum is 26,73 when window size is equal to 56 (see Table 5.3).

After window size has once reached the value of 48, the accuracy did not decrease

under the value of 93 (see Figure 5.16).

87

Figure 5.16: Average accuracies of 50 test files for 2
nd

 experiment.

Table 5.3: Average accuracies and squared error sums for varying window sizes.

88

We decided to use a window size value as 64 in the experiement where we got an

accuracy of 97,6 for thousand files because the average accuracy still stands for 98%

while the average squared error sum is very close to the value in the optimum case

(see Figure 5.17). Computationally, algorithm may work relatively faster while

window size is equal to 64 instead of 56.

Figure 5.17: Average squared error sums of 50 test files for 2
nd

 experiment.

In the third experiment, we investigated the relationship between the window size

and jump amount. Both parameters are used in the construction of the amplitude

envelope (see Section 3.4). We want to infer for which value of jump amount we can

get the best result. For the three different window sizes including the optimum

window size value of the previous experiment, we conducted twenty different jump

amounts for fifty different randomly created test files. The window sizes are 50, 56,

and 100, respectively. Jump amout vales vary from 5 to 100 by increments of five.

For the window sizes 50 and 56, we tested the maximum jump amount values 50 and

55, respectively. The size of jump amount should not exceed the size of the window

89

size. For three different window sizes, we got three different best results which are

provided in Tables 5.4, 5.5, and 5.6.

When window size is equal to 50, we got the optimum result while the size of jump

amount is 20. In this case, the average accuracy for 50 files is 94,88 and the average

squared error sums is 35, 25 (see Table 5.4). The secondary best result was obtained

when the jump amount is equal to 15. In this case, we got an average accuracy of

94,08 which is lesser than the optimum result’s one.

Table 5.4: Average accuracies and squared error sums for

varying jump amount values when window size is 50.

For this value of the window size, we can use the second optimum result whose

average accuracy is equal to the most optimum solution’s one. In addition, the

average squared error sums is relatively smaller than the optimum solution. So, they

can be used interchangeably. Thus, the ratio of the window size over jump amount is

equal to 3,33 which is close to 4.

90

When window size is equal to 56, we got the optimum result while the size of jump

amount is 15. In this case, the average accuracy for 50 files is 98 and the average

squared error sums is 27, 1 (see Table 5.5). The secondary best result was obtained

when the jump amount is equal to 20. In this case, we got an average accuracy of

95,582 which is lesser than the optimum result’s one.

Table 5.5: Average accuracies and squared error sums for

varying jump amount values when window size is 56.

For this value of the window size, the ratio of the window size over jump amount is

equal to 3,73 which is also close to 4.

When window size is equal to 100, we got the optimum result while the size of jump

amount is 25. In this case, the average accuracy for 50 files is 98 and the average

squared error sums is 32,3 (see Table 5.6). The secondary best result was obtained

when the jump amount is equal to 20. In this case, we got an average accuracy of

96,68 which is lesser than the optimum result’s one.

91

Table 5.6: Average accuracies and squared error sums for

varying jump amount values when window size is 100.

For this value of the window size, the ratio of the window size over jump amount is

equal to 4, exactly. Therefore, we can claim that when the ratio of the window size

over jump amount approximates to 4, we get an average accuracy of 98 and an

average square error sum of 29,7 ([27,1 + 32,3]/2). That’s why we decided to use

this ratio in the experiment we got an accuracy of 97,6 for thousand files by using a

window size of 64 and a jump amount of 16. To conclude, we provide six figures to

explain the situation of average accuracies and squared error sums in terms of the

change in jump amount for three different window sizes (see Figures 5.18, 5.19,

5.20, 5.21, 5.22, and 5.23).

92

Figure 5.18: Average accuracies for 3
rd

 experiment when window size is 50.

Figure 5.19: Average accuracies for 3
rd

 experiment when window size is 56.

93

Figure 5.20: Average accuracies for 3

rd
 experiment when window size is 100.

Figure 5.21: Average squared error sums for 3

rd
 experiment when

window size is 50.

94

Figure 5.22: Average squared error sums for 3
rd

 experiment when

window size is 56.

Figure 5.23: Average squared error sums for 3
rd

 experiment when

window size is 100.

95

Chapter 6

Conclusion

In this thesis, we have discussed automatic music transcription of music notes for an

audio signal. We attempted to transcript percussive note onsets for the instrument

piano. For this purpose, we used our data creator program in order to provide random

data to our implementation. To transcript notes, we have used both temporal and

frequency domain features.

Our aim was to detect music notes and estimate their physical attributes like onset

and attack times, durations, labels, value types and their pitches. We have applied a

series of techniques to obtain all the mentioned attributes. We believed that abrupt

changes in the amplitude envelope could be a guide to find out the note events.

Because the envelope had so much unrelated peaks, we needed to smooth it to get

more comfortable data to work on. We benefitted from the sudden increase in the

mean of slopes data. We detected these increases by calculating cumulative sums. By

using the data obtained until this step, we segmented notes in audio signal. Some of

them were truely related to music events but some were not. We eliminated these

spurious ones from our data. Until right now, these were our temporal features. In

order to obtain notes pitches, we made a frequency domain operation like FFT.

Beside this, we got note names by only mapping their pitches into a look-up table of

nine octaves frequencies for piano instrument. We estimated note durations from the

differences of two successive onsets. Then, we have splitted note durations in some

clusters. We used the mean of each cluster as a generalized note value type.

Moreover, the mapped durations were assigned to the segmented notes. Each note

got a label according to its mapped duration, e.g. F#4. As a result, we had a series of

labeled notes like F#4.

96

Our proposed transcription algorithm has an average accuracy of 97,6 for randomly

created thousand synthetic data with the tuned parameters. The performance of the

algorithm is affected from the values of parameters in various steps. We provide

experimental results to illustrate the tuning of parameters. Especially, the values of

window size and jump amount in construction of amplitude envelope and the

threshold used in spurious attack elimination have direct influence on the rate of

accuracy. As a future work, the algorithm can be improved to detect 32
nd

 and 64
th

notes in the middle octave, as well as the other octaves. Moreover, the algorithm can

be tested on the real data in the future. This may well be more chanllenging for our

algorithm.

97

References

[1] Poliner G. E. and Ellis D. P. W., “A Discriminative Model for Polyphonic Piano

Transcription”, EURASIP Journal on Advances in Signal Processing, 2007.

[2] Plumbley M. D., Abdallah S. A., Bello J. P., Davies M. E., Monti G. and Sandler

M. B., “Automatic Music Transcription and Audio Source Separation”,

Cybernetics and Systems, vol. 33, no. 6, pp. 603-627, 2002.

[3] Klapuri Anssi P., “Automatic Music Transcription as We Know it Today”,

Journal of New Music Research, vol. 33, no. 3, pp. 269-282, 2004.

[4] Bello J. P., Monti G., and Sandler M. B., “Techniques for Automatic Music

Transcription”, Proceedings of the International Symposium on Music

Information Retrieval, 2000.

[5] Brown J. C. and Zhang B., "Musical Frequency Tracking Using the Methods of

Conventional and Narrowed Autocorrelation", Journal of the Acoustical Society

of America, vol. 89, no. 5, pp. 2346-2354, 1991.

[6] de Cheveigné A. and Kawahara H., “YIN, A Fundamental Frequency Estimator

for Speech and Music”, Journal of Acoustical Society of America, vol. 111, no.

4, pp. 1917-1930, 2002.

[7] Klapuri A. P., “Multiple Fundamental Frequency Estimation Based on

Harmonicity and Spectral Smoothness”, Speech and Audio Processing, vol. 11,

no. 6, pp. 804-816, 2004.

[8] Lahat M., Niederjohn R, and Krubsack D, “A Spectral Autocorrelation Method

for Measurement of the Fundamental Frequency of Noise-Corrupted Speech”,

Acoustics, Speech and Signal Processing, vol. 35, no. 6, pp. 741-750, 1987.

[9] Kunieda N., Shimamura T., and Suzuki J., "Robust Method of Measurement of

Fundamental Frequency by ACLOS – Autocorrelation of log Spectrum", In

Proceedings of the Acoustics, Speech, and Signal Processing, pp. 232–235,

1996.

[10] Dorrell P., What Is Music? Solving A Scientific Mystery, Philip Dorrell, 2005.

[11] Miller M., The Complete Idiot's Guide to Music Theory, Second Edition, Alpha

Books, 2005.

98

[12] Benson D., Music: A Mathematical Offering, pp. 17, Cambridge University

Press, 2006.

[13] Zhu Y., Kankanhalli M., and Gao S., “A Method for Solmization of Melody”,

IEEE International Conference on Multimedia and Expo, 2004.

[14] Electronic Musical Instrument, http://en.wikipedia.org/ wiki/Electronic_music

al_instrument, 2010.

[15] Musical Instrument Digital Interface, http://en.wikipedia.org/wiki/MIDI, 2010.

[16] Learn About MIDI, http://www.midi.org/aboutmidi/index.php, 2010.

[17] Standard MIDI File Format Specification 1.1, International MIDI Association,

http://duskblue.org/proj/toymidi/midiformat.pdf, 2010.

[18] Standard MIDI Files, http://www.omega-art.com/midi/mfiles.html, 2010.

[19] MIDI File Format, http://cs.fit.edu/~ryan/cse4051/projects/midi/midi.html,2010.

[20] A Crash Course on the Standard MIDI Specification, http://www.skytopia.com/

project/articles/midi.html, 2010.

[21] Richard S., “MIDI Programming”, A Complete Study, http://www.petesqbsite.

com/sections/express/issue18/midifilespart1.html, 2010.

[22] Irvine, T., "An Introduction to Music Theory", Piano Page, http://www.vibration

data.com/piano.htm, 2010.

[23] Schloss, W. A., On the Acoustic Transcription of Percussive Music From

Acoustic Signal to High-Level Analysis, Ph. D. Dissertation, Center for

Computer Research in Music and Acoustics, Stanford University, 1985.

[24] Gordon, J. W., “The Perceptual Attack Time of Musical Tones”, Journal of

Acoustical Society of America, vol. 82(1), pp. 88-105, 1987.

[25] Young, R. W., "Terminology for Logarithmic Frequency Units", Journal of the

Acoustical Society of America, vol. 11, pp. 134–139, 1939.

[26] Bello J. P., Daudet L., Abdallah S., Duxbury C., Davies M., and Sandler M. B.,

“A Tutorial on Onset Detection in Music Signals”, Speech and Audio

Processing, vol. 13, no. 5, pp. 1035-1047, 2005.

[27] McClellan J. H., Schafer R. W., and Yoder M. A., Signal Processing First,

Pearson Prentice Hall, 2003.

[28] Oppenheim A. V., Willsky A. S., and Nawab S. H., Signals and Systems, Second

Edition, pp. 321-322, and 384, 1997.

[29] Alpaydın E., Introduction to Machine Learning, MIT Press, pp. 29-31, 2004.

99

[30] Basseville M., “Detection of Jumps in Mean and Adaptive Filtering”, Acoustics,

Speech, and Signal Processing, vol. 7, pp. 1092–1095, 1982

[31] Basseville M, “Detecting Changes in Signals and System – A Survey”,

Automatica, vol. 24, no. 3, pp. 309-326, 1988.

[32] Klapuri A., “Sound Onset Detection by Applying Psychoacoustic Knowledge”,

Speech and Signal Processing, in Proc. IEEE Int. Conf. Acoustics, pp. 115–118,

1999.

[33] Cooley, J. W. and Tukey J. W., "An Algorithm for the Machine Computation of

the Complex Fourier Series", Mathematics of Computation, vol. 19, pp. 297-301.

[34] Biran A. and Breiner M., Matlab 6 for Engineers, Third Edition, pp. 634-638,

Prentice Hall, 2002.

[35] Maddage N. C., "Automatic Structure Detection for Popular Music," IEEE Multi

Media, vol. 13, no. 1, pp. 65-77, 2006.

[36] Garlan D. and Shaw M., An Introduction to Software Architecture, CMU

Software Engineering Institute Technical Report, CMU-CS-94-166, 1994.

100

Appendix A Variable Length Writing and Reading

A.1 Pseudocode of Variable Length Writing

WRITE-VARIABLE-LENGTH(value, file)
00 # initialize and define an integer R by making bitwise AND with 0x7F

01 R X value & 0x7F

02

03 # bitwise RIGHT-SHIFT operation: division by 128

04 L X value >> 7

05

06 # Check L > 0

07 if L > 0 then

08 do

09 # bitwise LEFT-SHIFT: multiplication by 256

10 K X R << 8

11

12 # bitwise AND operation for L with 0x7F

13 I X L & 0x7F

14

15 # bitwise OR operation for I with 0x80

16 temp X I | 0x80

17

18 # bitwise OR operation for K with temp

19 data X K | temp

20

21 # L is assigned to value

22 value X L

23

24 # loop condition will be tested with the value of L

25 L X value >> 7

26 while L > 0

27 else

28 # bitwise AND operation for value with 0x7F

29 data X value & 0x7F

30

31 # writing data into the file

32 while TRUE

33 # writing data as one-byte character inside a file

34 write(data, file)

35

36 # if data’s seven bit is set
37 if (data & 0x80)

38 # divide data by 256 and assign the result to itself

39 data X data >> 8

40 else

41 break

42 end while

Figure A.1: Algorithm of variable length writing.

101

A.2 Pseudocode of Variable Length Reading

READ-VARIABLE-LENGTH(value, file)

00 # we read an hexadecimal number from the file

01 VX read(file)

02

03 # bitwise AND operation with 0x80

04 R X V & 0x80

05

06 # check R >= 1

07 if R >= 1 then

08

09 # bitwise AND operation with 0x7F

10 R X V & 0x7F

11 V X R

12

13 do

14 # V is multiplied by 128

15 L X V << 7

16

17 # a new value is read from file

18 Y X read(file)

19

20 # bitwise AND for Y with 0x7F

21 RX Y & 0x7F

22

23 # V is assigned to the addition of L and R

24 V X L + R

25

26 # loop condition will be tested with the value of temp

27 temp X Y & 0x80

28

29 while temp > 0

30

31 else

32 # bitwise AND operation for V with 0x7F

33 R X V & 0x7F

34 V X R

35

36 return V

Figure A.2: Algorithm of variable length reading.

102

Appendix B Note Value Types Detection

B.1 Pseudocode of Round#1: Finding Centroids

FIND-CENTROIDS(k&6#, B
#��
#,
�	�3B
)

00

01 # Initialization of groupCount and centroids array �

02 groupCount X 1

03 � X array[1 Y
�	�3B
]

04

05 # Iteration to calculate note value types

06 for q X 1 to
�	�3B

07

08 # If current iteration is 1

09 if q==1 then

10 #�;<'w X max(k&6#)

11 5
�'w X #�;<'w Y B
#��

12 else

13 5
�'w X '
1B� Y B
#��

14 #�;<'w X '
1B� n '
1B� Y �1 f B
#��
#�
15

16 # Notes around participates a mutual group

17 k�#�6�
 X k&6#(k&6# R 5
�'w & k&6# e #�;<'w)

18

19 # Check number of elements if it is zero or not

20 if 	�k�#�6�
� == 0 then

21

22 # No notes were found at this ªth iteration

23 �«\I[�¬I[H, X '
1B�

24

25 # Pseudo centroid is calculated to advance

26 '
1B� X �«\I[�¬I[H, / 2

27 groupCount X groupCount + 1

28

29 else

30 # There are some notes around

31 �«\I[�¬I[H, X mean(k�#�6�
)

32

33 # Pseudo centroid is calculated to advance

34 '
1B� X �«\I[�¬I[H, / 2

35 groupCount X groupCount + 1

36 end for

37

38 # Return centroids

39 return �

Figure B.1: Algorithm of finding centroids.

103

B.2 Pseudocode of Round#2: Mapping Note Durations

MAP-NOTE-DURATIONS(k
6#, �)

00

01 # Initialization mapped note durations

02 �$B&6# X array[1 Y 5
�;'<�k&6#�]
03

04 # Assignment of generalized durations to real durations

05 for counter X 1 to length(k&6#)

06

07 # Finding most nearest centroid value to Fth note duration

08 [row, column] X MNV(�, k&6#q)
09

10 # Assign the centroid value as note value type to this note duration

11 �$B&6#(counter) X ����561��
12

13 end for

14

15 # Return mapped note durations

16 return �$B&6#

Figure B.2: Algorithm of mapping note durations.

104

Appendix C Pseudocode of Note Label Assignment

ASSIGN-NOTE-LABELS(�$B&6#, kk$1
)

00

01 # Initialization

02 Extensions X {‘1’, ‘2’, ‘4’, ‘8’, ‘16’}

03 Labels X array[1 Y 5
�;'<�kk$1
�]
04

05 # Loop produces note labels according to its mapped durations

06 for j X 1 to length(kk$1
)

07

08 # If mapped durations is one of the descendingly ordered note value type

09 switch(�$B&6#q)
10

11 # Case corresponds to whole note

12 case �.

13 # suffix to append is ‘ 1 ’

14 Labels(F) X cat(kk$1
q , Extensions(F))
15

16 # Case corresponds to half note

17 case �m

18 # suffix to append is ‘ 2 ’

19 Labels(F) X cat(kk$1
q , Extensions(F))
20

21 # Case corresponds to quarter note

22 case �®

23 # suffix to append is ‘ 4 ’

24 Labels(F) X cat(kk$1
q , Extensions(F))
25

26 # Case corresponds to eighth note

27 case �¯

28 # suffix to append is ‘ 8 ’

29 Labels(F) X cat(kk$1
q , Extensions(F))
30

31 # Case corresponds to sixteenth note

32 case �°

33 # suffix to append is ‘ 16 ’

34 Labels(F) X cat(kk$1
q , Extensions(F))
35 end switch

36 end for

37

38 # Return fully qualified note labels i.e: G#16

39 return Labels

Figure C.1: Algorithm of note label assignment.

105

Curriculum Vitae

