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ABSTRACT 

DESIGN OF REED-SOLOMON AND CONVOLUTIONAL CODED OFDM 

SYSTEM AND PERFORMANCE ANALYSIS 

Bal, Ufuk 

In this study, OFDM and error-correcting codes, which have an important 

place in digital communication systems, have been studied. Literature research has 

been made on OFDM and error-correcting codes like Reed-Solomon and 

convolutional codes. Reed-Solomon and convolutional coded OFDM system has 

been designed. Furthermore, system's performance analysis has been made. 

OFDM is a special case of multicarrier transmission. The basic principle of 

OFDM is to split a high-rate datastream into a number of lower rate streams that are 

transmitted similtuanesly over a number of subcarriers. One of the main reasons to 

use OFDM is to increase the robustness against frequency selective fading or 

narrowband interference. In a single carrier system, a single fade or interferer can 

cause the entire link to fail, but in a multicarrier system, only a small percentage of 

the subcarriers will be affected.Error correcting codes can then be used to correct 

the errors. 

In error correcting, combining convolutional and block codes in a 

concatenated code is particularly powerful technique. In this study Reed-Solomon 

codes are used as an outer code and convolutional codes are used as an inner code. 
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~ZET 

REED-SOLOMON VE KONVOL~SYONEL KODLU DiKGEN FREKANS 
B~LMELI (OGULLAMA(OFDM) SiSTEMi NiN TASARIMI VE 

PERFORMANS ANALiZi 

Bal, Ufuk 

Bu ~al1smada saysal haberlesme sistemlerinde ~nemli yeri olan OFDM ve 

hata d~zelten kodlar incelenmistir.OFDM ve hata d~zelten kodlama ~esitlerinden 

Reed-Solomon ve Konvol~syonel kodlara y~nelik bir literat~r arastrmas ile Reed­ 

Solomon ve Konvol~syonel kodlu OFDM sistem tasanm1 yap1lmstir.Aynca bu 

sistemin performans analizi yap1lmtIr. 

OFDM ~ok-tasrych iletimin ~zel bir durumudur. OFDM in temel prensibi 

y~ksek orandaki bilgi dizisini alttasryclar ~zerinden aymi anda iletilen daha d~s~k 

oranda bilgi dizilerine ayrmaktIr. OFDM kullanmann ~nemli nedenlerinden biri 

frekans segmeli bozulmaya veya darband girisimine kars dayam1khhg1 

arttrmas1di.Tek ta1y1ch bir sistemde, tek bir bozulma veya girisim b~t~n hatt1 

etkileyebilir, fakat ~ok tasrych bir sistemde, sadece k~~~k bir oran1 etkilenir.Daha 

sonrada hata d~zeltim kodlamas1, bu hatalan1 d~zeltmek i~in kullamlabilir. 

Hata d~zeltmede Konvol~syonel ve blok kodlamin birlikte kullan1m1 ~ok 

etkili bir y~ntemdir.Bu ~al1snmada dis kod olarak Reed-solomon ve i~ kod olarakta 

Konvol~syonel kodlan1 kullamlm1stir. 
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1 INTRODUCTION 

Multi-carrier modulation, in particular Orthagonal Frequency Division Multiplexing 

(OFDM), has been succesfully applied to a wide variety of digital communications 

applications over the past several years. 

In almost all applications of multi-carrier modulation, satisfactory 

performance cannot be achieved without the addition of some form of coding. In 

wireless systems subjected to fading, extremeley high signal-to-noise ratios are 

required to achieve reasonable error probality. In addition, interference from other 

wireless channels is frequently severe. On wireline systems, large consellation sizes 

are commonly employed to achieve high bit rates. Coding in this case is essential for 

achieving the highest possible rates in the presence of crosstalk and impulsive and 

other interference. 

So, here first the basics of OFDM are presented. In addition to basics of 

OFDM, the subsystems of an OFDM implementation are described, such as 

syncronization and coding. Then error correcting codes, specially Reed-Solomon 

codes, are described in detail. At last, RS and Convolutional coded OFDM system's 

simulation results are given. The system's details are given in the 7th chapter. 
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2 OFDM 

2.1 Evolution of OFDM 

The use of Frequency Division Multiplexing (FDM) goes back over a 

century, where more than one low rate signal, such as telegraph, was carried over a 

relatively wide bandwidth channel using a seperate carrier frequency for each signal. 

To facitilate separation of the signals at the receiver, the carrier frequencies were 

spaced sufficiently far apart so that the signal spectra did not overlap. Empty spectral 

regions between the signals assured that they could be separated with readily 

realizable filters. The resulting spectral efficiency was therefore quite low. 

Instead of carrying separate messages, the different frequency carriers can 

carry different bits of a single higher rate message. The source may be in such a 

parallel format, or a serial source can be presented to a serial-to-parallel converter 

whose output is fed to the multipple carriers. Such a parallel transmission scheme 

can be compared with a single higher rate serial scheme using the same channel. The 

parallel system, if built straightforwardly as several transmitters and receivers, will 

certainly be more costly to implement. Each of the parallel sub-channels can carry a 

low signalling rate, proportional to its bandwidth. The sum of these signalling rates is 

less than can be carried by a single serial channel of that combined bandwidth 

because of the unused guard space between the parallel subcarriers. On the other 

hand, the single channel will be far more susceptible to inter-symbol interference. 

This is because of the short duration of its signal elements and the higher distortion 

produced by its wider frequency band, as compared with the long duration signal 

elements and narrow bandwidth in sub-channels in the parallel system. Before the 

development equalization, the parallel technique was the preferred means of 

achieving high rates over a dispersive channel, in spite of its high cost and relative 

bandwidth inefficiency. An added benefit of the parallel technique is reduced 

susceptibility to most forms of impulse noise. 
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The first solution of the bandwidth efficiency problem of multi-tone 

transmission (not the complexity problem) was probably the "Kineplex" system. The 

Kineplex system was developed by Collins Radio Co. For data transmission over an 

H.F. radio channel subject to severe multi-path fading. In that system, each of 20 

tones is modulated by differential 4-PSK without filtering. The spectra therefore of 

the sin(k:f)/f shape and strongly overlap. However, similar to modem OFDM, the 

tones are spaced at frequency intervals almost equal to the signalling rate and are 

capable of seperation at the receiver. 

The reception technique is shown in Figure 2.1. Each tone is detected by a pair of 

tuned circuits. Alternate synbols are gated to one of the tuned circuits, whose signal 

is held for the duration of the next symbol. The signals in the two tuned circuits are 

then processed to determine their phase difference, and therefore the transmitted 

information. The older of the two signals is then quenched to allow input of the next 

symbol. The key to the succes of the technique is that the time response of each 

tuned circuit to all tones. Other than the one to which it is tuned, goes through zero at 

the end of the gating interval, at which point that interval is equal to the reciprocal of 

the frequency separation between tones. The gating time is made somewhat shorter 

than the symbol period to reduce inter-symbol interference, but efficiency of 70% 

percent of the Nyquist rate is achieved. High performance over actual long H.F. 

channels was obtained, although at a implementation cost. Although fully 

tranzistored, the system required two large bays of equipment 

Gate 

In 

Tuned Circuit 

p] Tuned Circuit 

Tuned Circuit 

Tuned Circuit 

Phase Detector 

Phase Detector 

Gate 

Figure 2.1 The Collins Kniplex receiver 
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A subsequent multi-tone system was proposed using 9-point QAM consellations on 

each carrier, with correlation detection employed in the receiver.Carrier spacing 

equal to the symbol rate provides optimum spectral efficiency. Simple coding in the 

frequency domain is another feature of this scheme. The above techniques do provide 

the orthagonality needed to seperate multi-tone signals spaced by the symbol rate. 

However the sin(kf)/f spectrum of each component has some undesirable properties. 

Mutual overlap of a large number of subchannel-spectra is pronounced. Also, 

spectrum for the entire system must allow space above and below the extreme tone 

frequencies to accomodate the slow decay of the sub-channel spectra. For these 

reasons, it is desirable for each of the signal components to be bandlimited so as to 

overlap only the immidiately adjacent sub-carriers, while remaining orthogonal to 

them. 

The major contribution to the OFDM complexity problem was the 

appliciation of the Fast Fourier Transform(FFT) to the modulation and demodulation 

processes. Fortunately, this occured at the same time digital signal processing 

techniques were being introduced into design of modems. The technique involved 

assembling the input information into blocks of N complex numbers, one for each 

sub-channel. An inverse FFT is performed on each block, and the resultant 

transmitted serially. At the receiver, the information is recovered by performing an 

FFT on the received block of signal samples. This form of OFDM is often referred to 

as Discrete Multi-Tone (DMT). The spectrum of the signal on the line is identical to 

that of N separate QAM signals, at N frequencies separated by the signalling rate. 

Each such QAM signal carries one of the original input complex numbers. The 

spectrum of each QAM signal is of the form sin(ld)/f, with nulls at the center of the 

other sub-carriers, as in the earlier OFDM systems. 

Overlap of consecutive transmitted blocks is a problem, we can solve by 

using cyclic prefix. Another issue is how to transmit the sequence of complex 

numbers from the output of the inverse FFT over the channel. 

The process is staraightforward if the signal is to be further modulated by a 

modulator with I and Q inputs. 
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Otherwise, it is necessary to transmit real quantities. This can be 

accomplished by first appending the complex conjugate to the original input block. A 

2N-point inverse FFT now yields 2N real numbers to be transmitted per block, which 

is equivalent to N complex numbers. 

The most significiant advantage of this DMT approach is the efficiency of the 

FFT algorithm. An N-point FFT requires only on the order of NlogN 

multiplications, rather than N as in a starightforward computation. The efficiency is 

particularly good when N is a power of 2, although that is not generally necessary. 

Because of the use of the FFT, a DMT system typically requires fewer computations 

per unit time than an equivalent single channel system with equalization. An overall 

cost comparison between the two systems is not as clear, but the costs should be 

approximately equal in most cases. 

Over the last 20 years or so, OFDM techniques and, in particular, the DMT 

implementation, has been used in a wide variety of applications. Several OFDM 

voiceband modems have been adopted as the standard for the Asymmetric Digital 

Subscriber Line(ADSL), which provides digital communication at several Mb/s from 

a telephone company central office to a subscriber, and a lower rate in the reverse 

direction, over a normal twisted pair of wires in the loop plant. 

OFDM has been particularly succesful in numerous wireless applications, where its 

superior performance in multi-path environments is desirable. Wireless receivers 

detect signals distorted by time and frequency selective fading. OFDM in 

conjunction with proper coding and interleaving is a powerful technique for 

combating the wireless channel impairments that a typical OFDM system might face. 

2.2 OFDM Basics 

The basic principle of OFDM is to split a high-rate datastream into a number 

of lower rate streams that are transmitted similtuanesly over a number of subcarriers. 

Because the symbol duration increases for the lower rate parallel subcarriers, the 

relative amount of dispersion in time caused by multipath delay spread is decreased. 
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An OFDM signal consists of a sum of subcarriers that are modulated by using 
phase shift keying (PSK) or quadrature amplitude modulation (QAM). If d are the 
complex QAM symbols N, is the number of subcarriers,T the symbol duration, and f 

the carrier frequency, then one OFDM symbol starting at t=t, can be written as 

i=N,/2-1 

{ , di+Ns12exp021t{fc-(i+0.5)/T)(t- ts)) } 
st)=Re L 

i=-N,/2 

(2.1) 
st)=0, t<t, A t>t,+T 

In the literature, often the complex baseband notation is used. The real and imaginary 
parts correspond to the in-phase and quadrature parts of the OFDM signal which 
have to be multiplied by a cosine and sine of the desired carrier frequency to produce 
the final OFDM signal. 

i=N,/2-1 

s o - )  dwex(2rG/Kt-t).t<1<+T 
i=-N,/2 

st)0, t<t, A P>t,T 

exp(-jrN,(t- t,/T) 

(2.2) 

Serial 
QAM data _] to 

parallel 

Figure 2.2 OFDM Modulator 
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As an example, Figure 2.3 shows four subcarriers from one OFDM signal. In this 

example, all subcarriers have the same phase and amplitude, but in practice the 

amplitudes and phases may be modulated differently for each subcarrier. Note that 

each subcarrier has exactly an integer number of cycles in the interval T, and the 

number of cycles between adjacent subcarriers differs by exactly one. This property 

accounts for the othogonality between the subcarriers. For instance, if the jth 

subcarrier from (2.2) is demodulated by downconverting the signal with a frequency 

of j/T and then integrating the signal over T seconds, the result is as written in (2.3). 

By looking at the intermediate result, it can be seen that a complex carrier is 

integrated over T seconds. For the demodulated subcarrier j, this integaration gives 

the desired output dun (multiplied by a constant factor T), which is the QAM value 

for that particular subcarrier. For all other subcarriers, the integration is zero, because 

the frequency difference (i-j)/T produces an integer number of cycles within the 

integration intervai T, such that the integration result is always zero. 

t,+T 
0N,/2)-1 

Jep( 62r/De-0)2 ,ex( G2mi/D)- t) )t 
t, 

t+T 

i=(N,/2) 

(N,/2)-1 

- 2 a  Jes( 62rGi-i/DX-t)Mt= d.»T 
i=(N,/2) t, 

(2.3) 
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Figure 2.3 Example of four subcarriers in one OFDM symbol 

The orthagonality of the different OFDM subcarriers can also be 

demonstrated in another way. According to (2.1 ), each OFDM symbol contains 

subcarriers that are nonzero over a T-second interval. Hence, the spectrum of a single 

symbol is a convolution of a group Dirac pulses located at the subcarrtrier 

frequencies with the spectrum of a square pulse that is one for a T-second period and 

zero otherwise. The amplitude spectum of the square pulse is equal to sinc(nfT), 

which has zeros for all ferquencies f that are an integer multiple of 1/T. This effect is 

shown in Figure 2.4 which shows the overlapping sine spectra of individual 

subcarriers. At the maximum of each subcarrier spectrum, all other subcarrier spectra 

are zero. Because an OFDM receiver essentially calculates the spectrum values at 

those points that correspond to the maxima of individual subcarriers, it can 

demodulate each subcarrier free from any interference from the other subcarriers. 

Basically, Figure 2.4 shows that the OFDM spectrum fullfills Nyquist's criterium for 

an intersymbol interference free pulse shape.Notice that the pulse shape is present in 

the frequency domain and not in the time domain, for which the Nyquist criterium 

usually applied. Therefore, instead of intersymbol interference (ISi), it is intercarrier 
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interference (ICI) that is avoided by having the maximum of one subcarrier spectrum 

correspond to zero crossings of all the others. 

Figure 2.4 Spectra of the individual subcarriers 

The complex baseband OFDM signal as defined by (2.2) is in fact nothing more than 

the inverse Fourier transform of N, QAM input symbols. The time discrete 

equivalant is the inverse discrete Fourier transform (IDFT), which is given by (4), 

where the time t is replaced by a sample number n. In practice, this transform can be 

implemented very efficiently by the inverse fast Fourier transform (IFFT). An N 

point IDFT requires a total of N complex multiplications-which are actually only 

phase rotations. Of course, there are also additions necesssary to do an IDFT, but 

since the hardware complexity of an adder is significiantly lower than that of a 

multiplier or phase rotator, only the multiplications are used here for comprassion. 

The IFFT drastically reduces the amount of calculations by exploiting the regularity 

of the operations in the IFFT. Using the radix-2 algorithm, an N-point IFFT requires 

only (N/2).log@N) complex multiplications. For a 16-point transform , for instance, 

the difference is 256 multiplications for the IDFT versus 32 for the IFFT-a reduction 

by a factor of 8 ! . This difference grows for larger numbers of subcarriers, as the 

IDFT complexity grows quadratically with N, while the IFFT complexity only grows 

slightly faster than linear. 

s« ) - )  des(2+wN) 

i=O 

9 
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The number of multiplications in the IFFT can be reduced even further by using a 

radix-4 algorithm. This technique makes use of the fact that in a four-point IFFT, 

there are only multiplictions by (1,-1.j,-j), which actually do not need to be 

implemented by a full multiplier, but rather by a simple add or subtract and a switch 

of real and imaginary parts in the case of multiplications by j or -j. In the radix-4 

algorithm, the transform is split into a number of these trivial four-point transforms, 

and non trivial multiplications only have to be performed between stages of these 

four point transforms. In this way, an N-point FFT using the radix-4 algorithm 

requires only (3/8)N(logN-2) complex multiplications or phase rotations and 

Nlog»N complex additions. For a 64-point FFT, for example, this means 96 rotations 

and 384 additions or 2.5 and 6 rotations and additions per sample, respectively. 

Xo yo 
X y0 

X y1 
yl 

Xx2 
y2 

y2 

y3 
X y3 

+i 

Figure 2.5 The radix-4 butterfly 

Figure 2.5 shows the four-point IFFT, which is known as the radix-4 butterfly 

that forms the basis for constructing larger IFFT sizes. Four input values xo to x are 

transformed into output values yo to y3 by simple additions and trivial phase 

rotations. For instance, y is given by xotjx-x-jx, which can be calculated by doing 

four additions plus a few additional 1/Q swappings and inversions to account for the 

multiplications by j and --I. 

The radix-4 butterfly can be used to efficiently build an IFFT with a larger 

size. For instance, a 16-point IFFT is depicted in figure 2.5. The 16-point IFFT 

contains two stages with four radix-4 butterflies, seperated by an intermediate stage 

where the 16 intermediate results are phase rotated by the .twiddle factor c', which 
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defined as exp(2i/N).Notice that for N=16, rotation by the twiddle factor c' reduces 

to a trivial operation for i=0,4,8 and 12, where c' is lj,-1,-j, respectively.Taking this 

into account, the 16-point IFFT actually contains only eight non-trivial phase 

rotations, which is a factor of 32 smaller than the amount of phase rotations for the 

IDFT. These non-trivial phase rotations largely determine the implementation 

complexity, because the complexity of a phase rotation or complex mulitiplication is 

an order of magnitude larger than the complexity of an addition. 

As an example of how to generate an OFDM symbol, let us assume that we 

want to transmit eight binary values { 1 1 1 - 1  1  1 - 1  1}  on eight sub carriers. The 

IDFT or IFFT then has to calculate: 

1 1 1 1 1 1 1 1 1 

1 (/2)42 (1+j) j (1/2)42(-1+j) -1 (1/2) /2 (-1-3) J (1/2) /2 01-53) 1 

1 J -1 J 1 J -1 -J 1 

1 (/2)42(-1+j) -j (1/2)42 (1+j) -I (1/2)/2(1-5) J (1/2) 42(-1-3) -1 

1/8 
1 -1 1 -1 1 -1 1 -1 1 

1 (1/2)42 (-1-53) J (1/2) /2 01-3) -1 (1/2) /2 (1+5) J 1/2) 42(-1+j 1 

1 J -1 j 1 J -1 J -1 

1 (1/2)42(1-53) -J (1/2)/2 (-1-3) -1 (1/2)42 (-1+3) J (1/2)42 (1+) 1 

4 

42(+j/2-1)) 

2+2j 

1/8 
-/2 (1+5(/2+1)) 

0 

-/2 (1-j/2+1)) 

2-25j 

42(1-5(/2-1)) 
02.5) 
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The left-hand side of (2.5) contains the IDFT matrix, where every column 

corresponds to a complex subcarrier with a normalized frequency ranging from -4 to 

+3. The right-hand side of (2.5) gives the eight IFFT output samples that form one 

OFDM symbol. In practice, however, these samples are not enough to make a real 

OFDM signal. The reason is that there is no oversampling present, which would 

introduce intolerable aliasing if one would pass these samples though a digital-to­ 

analog converter. To introduce oversampling, a number of zeros can be added to the 

input data. For instance, eight zeros could be added to the eight input samples of the 

previous example, after which a 16-point IFFT can be performed to get 16 output 

samples of a twice-oversampled OFDM signal. Notice that in the complex IFFT as in 

(2.5), the first half of the rows correspond to positive frequencies while the last past 

correspond to negative frequencies. Hence, if oversampling is used, the zeros should 

be added in the middle of the data vector rather than appending them at the end. This 

ensures the zero data values are mapped onto frequencies close to plus and minus 

half the sampling rate, while the nonzero data values are mapped onto the subcarriers 

around O Hz. For the data of the previous example, the oversampled input vector 

would become { 1 1 1 - 1 0  0  0  0  0  0  0  0  1  1 - 1 1 } .  

2.3 Guard Time and Cyclic Extension 

One of the most important reasons to do OFDM is the efficient way it deals with 

multipath delay spread. By dividing the input datastream in N, subcarriers, the 

symbol duration is made N, times smaller, which also reduces the relative multipath 

delay spread, relative to the symbol time, by the same factor. To eliminate the 

intersymbol interference almost completely, a guard time is introduced for each 

OFDM symbol. The guard time is chosen larger than the expected delay spread, such 

that multipath components from one symbol cannot interfere with the next symbol. 

The guard time could consist of no signal at all. In that case, however, the problem of 

intercarrier interference (ICI) would arise. ICI is crosstalk between different 

subcarriers, which means they are no longer ortbagonal. 

To eliminate ICI, the OFDM symbol is cyclically extended in the guard time. 

This ensures that delayed replicas of the OFDM symbol always have an integer 
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number of cycles within the FFT interval, as long as the delay is smaller than the 

guard time. As a result, multipath signals with delays smaller than the guard time 

cannot cause ICI. 

Figure 2.6 Example of an OFDM symbol with three subcarriers in a two ray 

multipath channel. 

2.4 Windowing 

Looking at an example OFDM signal like in figure 2.6, sharp phase transitions 

caused by the modulation can be seen at the symbol boundaries. Essentially, an 

OFDM signal like the one depicted in Figure 2.6 consists of a number of unfiltered 

QAM subcarriers. As a result, the out-of-band spectrum decreases rather slowly, 

according to a sine function. As an example of this, the spectra for 16, 64, and 256 

subcarriers are plotted in Figure 2.7. For larger number of subcarriers, the spectrum 

goes down more rapidly in the beginnig, which is caused by fact that the sidelobes 

are closer together. However, even the spectrum for 256 subcarriers has a relativeley 

large -40d.B bandwidth that is almost four times the -3d.B bandwidth. 
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Figure 2.7 Power spectral density without windowing for 16, 64, and 256 subcarriers. 
To make the spectrum go down more rapidly, windowing can be applied to 

the individual OFDM symbols. Windowing an OFDM symbol makes the amplitude 
go smoothly to the zero at the symbol boundaries. A commonly used window type is 
the raised cosine window, which is defined as 

0.5+0.5 cos(7+t/(9T,)) 

{ 1.0 
w(t)= 

0.5+0.5 cost- T,)/(BT,)) T<t<(1+pT,) 
(2.6) 

Here, T, is the symbol interval, which is shorter than the total symbol 
duration because we allow adjacent symbols to partially overlap in the roll-off 
region. The time structure of the OFDM signal now looks like Figure 2.8. 
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In equation form, an OFDM symbol starting at time t=t =kT, is defined as 

(N,/2)-1 

s(b=Re{ we-r,) 2 d,aenn exp( (2rfc-(i+0.5)/T)Kt- t-T,0))} 
i=-0N,/2) 

2.7 

, t < t,  A  t>t,+T,(1+p) 

In practice, the OFDM signal is generated as follows: first, Ne input QAM values are 
padded with zeros to get N input samples that are used to calculate an IFFT. Then, 
the last T%rens samples of the IFFT output are inserted at the start of the OFDM 
symbol, and the first Toss»x samples are appended at the end.The OFDM symbol is 
then multiplied by a raised cosine window w(t) to more quickly reduce the power of 
out-of-band subcarriers. The OFDM symbol with a delay of T, such there is an 

overlap region of [T,, where is the rolloff factor of the raised cosine window. 

TT+T, 

X 

T 

X 
d b 

gT, 

Figure 2.8 OFDM cyclic extension and windowing. 

Figure 2.9 shows spectra for 64 subcarriers and different values of the rolloff 

factor f3. It can be seen that a rolloff factor of 0.0025--so the rolloff region is only 

2.5% of the spectrum interval-already makes a large improvement in the out-of­ 

band spectrum. For instance, the -40dB bandwidth is more than halved to about twice 

the -3dB bandwidth. Larger rolloff factors improve the spectrum further, at the cost, 

however, of a decreased delay spread tolerance. The latter effect is demonstrated in 

Figure 2.9, which shows the signal structure of an OFDM signal for a two-ray 

multipath channel. The receiver demodulates the subcarriers by taking an FFT over 
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the T-second interval between dotted lines. Although the relative delay between the 

two multipath signals is smaller than the guard time, ICI and ISi are introduced 

because of the amplitude modulation in the gray part of the delayed OFDM symbol. 

The orthagonality between subcarriers as proved by (2.3) only holds when amplitude 

and phase of the subcarriers are constant during the entire T-second interval. Hence, 

a rolloff factor of [ reduces the effective guard time by [T. 
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Figure 2.9 Spectra for raised cosine windowing with rolloff factors of 0,0.025,0.005, and 0.1. 

Instead of windowing, it is also possible to use conventional filtering techniques to 

reduce the out-of-band spectrum. Windowing and filtering are dual techniques; 

multiplying an OFDM symbol by a window means the spectrum is going to be a 

convolution of the spectrum of the window function with a set of impulses at the 

subcarrier frequencies. When filtering is applied, a convolution is done in the time 

domain and the OFDM spectrum is multiplied by the frequency response of the filter. 

When using filters, care has to be taken not to introduce rippling effects on the 

envolope of the OFDM symbols over a timespan that is larger than the rolloff region 

of the windowing approach. Too much rippling means the undistorted part of the 

OFDM envolope is smaller, and this directly translates into less delay spread 

tolerance. Notice that digital filtering techniques are complex to implement than 

windowing. A digital filter requires at least a few multiplications per sample, while 

windowing only requires a few multiplications per symbol, for those samples which 

fall into the rolloff region. Hence, because only a few percent of the samples are in 
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the rolloff region, windowing is an order of magnitude less complex than digital 

filtering. 

T 

M uipath delay 

Figure 2.10 OFDM symbol windows for a two ray multipath channel, 
showing ICI and ISi because in the gray part, the amplitude 
of the delayed subcarriers is not constant. 

2.5 Choice of OFDM Parameters 

The choice of various OFDM parameters is a tradeoff between various, often 

conflicting requirements. Usually, there are three main requirements to start with 

:bandwidth, bit rate, and delay spread. The delay spread directly dictates the guard 

time. As a rule, the guard time should be about two to four times the root-mean­ 

squared delay spread. This value depends on the type of coding and QAM 

modulation. Higher order QAM (like 64-QAM) is more sensitive to ICI and ISi than 

QPSK; while heavier coding obviously reduces the sensitivity to such interference. 

Now that the guard time has been set, the symbol duration can be fixed. To 

minimize the signal-to-noise ratio(SNR) loss caused by the guard time, it is desirable 

to have the symbol duration much larger than the guard time. It cannot be arbitrarily 

large, however, because a larger symbol duration means more subcarriers with a 

smaller subcarrier spacing, a larger implementation complexity, and more sensitivity 

to phase noise and frequency offset, as well as an increased peak-to-average power 

ratio. Hence, a practical design choice is to make the symbol duration at least five 

times the guard time, which implies a ldB SNR loss because of the guard time. 

After the symbol duration and guard time are fixed, the number of subcarriers 

follows directly as the required -3dB bandwidth divided by the subcarrier spacing, 

which is the inverse of the symbol duration less the guard time. Alternatively, the 
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number of subcarriers may be determined by the required bit rate divided by the bit 

rate per subcarrier. The bit rate per subcarrier is defined by the modulation type, 

coding rate, and symbol rate. 

2.6 Need For Coding 

In almost all applications of multi-carrier modulation, satisfactory 

performance cannot be achieved without the addition of some form of coding. In 

wireless systems subjected to fading, extremeley high signal-to-noise ratios are 

required to achieve reasonable error probality. In addition, interference from other 

wireless channels is frequently severe. On wireline systems, large consellation sizes 

are commonly employed to achieve high bit rates. Coding in this case is essential for 

achieving the highest possible rates in the presence of crosstalk and impulsive and 

other interference. 

Proper coding design is extremely important for a digital communication link. 

A designer should take several design factors into account. Those include required 

coding gain for intended link budget, channel characteristics, source coding 

requirements, modulation, etc. Coding in OFDM systems has an additional 

dimension. It can be implemented in time and frequency domain such that both 

dimensions are utilised to achieve better immunity against frequency and time 

selective fading. 

2.6.1 Block Coding in OFDM 

In classical block coding, input data are blocked into groups of k bits, and 

each block is mapped into an output block of n bits, where n>k. In the canonical 

form, n-k parity checks are computed among the input bits according to some 

algeabric procedure, and then appended to the original block. This requires an 

increase in bandwidth by a factor of n/k. The reciprocal of this factor is the 

efficiency, or rate, of the code. 
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Only 2 of the possible 2" output blocks are legitimate code words. The code 

choosen such that the minimum "Hamming distance", which is the number of bits in 

which code words differ, is maximized. The code is described by the set of numbers 

[n,k,d], where dis the minimum Hamming distance. 

At the receiver, the n-bit block is recovered, possibly with errors, by 

demodulation and framing. The decoder finds the permissible code word that is 

closest Hamming distance to this received block. The n-k check bits may then be 

deleted and the result output as a replica of the orginal input. If d=2t+1, then any set 

oft or fewer errors in the block can be corrected. 

2.6.2 Convolutional Coding 

Another very important form of coding is convolutional. Instead of operating 

on symbols arranged as blocks, the coding operates continuously on streams of 

symbols. At the encoder, the input is fed continually through a shift register of length 

m. The memory of the code is the "constraint length (m+ 1 ), the number of output 

symbols affected by an input symbol. Each time a bit is read into the register, several 

modulo-2 sums of the present and past bits are formed. The choice of which bits are 

operated on is designated as a polynomial P(z) with binary coefficients. n such 

modulo-2 sums are formed and multiplexed to form the output of the "mother code". 

Since n bits are generated for each input bit, the rate of the code is 1/n. 

2.6.3 Concatenated Coding 

Combining convolutional and block codes in a concatenated code is particularly 

powerful technique. The block code is the outer code, that is it is applied first at the 

transmitter and last at the receiver. The inner convolutional code is very effective at 

reducing the error probability. However when a convolutional code does make an 

error, it appears as a large burst. This occurs when the Viterbi algorithm chooses a 

wrong sequence. The outer block code, especially an interleaved Reed-Solomon code 

is very effective in correcting that burst error. 
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2.7 Syncronization 

One of the arguments against OFDM is that it is highly sensitive to 

syncronization errors, in particular, to :frequency errors. 

2.7.1 Symbol syncronization 

2.7.1.1 Timing errors 

A great deal of attention is given to symbol syncronization in OFDM 

systems. However, by using a cyclik prefix, the timing requirements are relaxed 

somewhat. The objective is to know when the symbol starts. A timing offset gives 

rise to a phase rotation of subcarriers. 'Ibis phase rotation is the largest on the edges 

of the frequency band. If a timing error is small enough to keep the channel impulse 

response within the cyclic prefix, the orthogonality is maintained. In this case a 

symbol timing delay can be viewed as a phase shift introduced by the channel, and 

the phase rotations can be estimated by a channel estimator. If a time shift is larger 

than the cyclic prefix, ISi will occur. 

There are two main methods for timing syncronizations: based on pilots or on 

the cyclic prefix. An algorithm of the former kind was suggested by Warner and 

Leung. They use a scheme where the OFDM signal is transmitted by frequency 

modulation(FM). The transmitter encodes a number of reserved subchannels with 

known phases and amplitudes. The syncronization technique, with modifications, is 

applicable to OFDM signals transmitted by amplitude modulation. Their algorithm 

consists of 3 phases: power detection, coarse syncronization and fine syncronization. 

The first phase(power detection) detects whether or not an OFDM signal is 

present by measuring the received power and compare it to a thereshold. The second 

phase( coarse syncronization) is used to acquire syncronization alignment to within 

±0.5 samples. 'Ibis performance is not acceptable, but this phase serves to simplify 

the tracking algorithm(wbich can assume that the timing error is small). The coarse 

syncronization is done by correlating the received signal to a copy of the transmitted 
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syncronization signal. To find the peak of this correlation with enough accurarcy, a 

digital filter is used to provide interpolated data values at four times the original data 

rate. In the last phase(fine syncronization) of the syncronization, the subchannels 

with pilots are equalized with the estimated channel obtained from pilots. Since the 

coarse syncronization guarantees that the timing error is less than ±0.5, the channel 

impulse response is within the cyclic prefix. The remaining phase errors on the pilot 

subchannels are due to timing error and can be estimated by linear regresion. 

2.7.1.2 Carrier phase noise 

Carrier phase noise is caused by imperfections in the transmitter and receiver 

oscillators. For a frequency-selective channel, no distinction can be made between 

the phase rotation introduced by a timing error and a carrier phase offset. Carrier 

phase noise can be modeled as a Wiener process 0(t) with E{0(t)}=O and E{(0(to + 

t)- 0(ta) }= 4n.~(t), where [in Hz) denotes the one-sided 3dB linewidth of the 

Lorentzian power density spectrum of the free-running carrier generator. The 

degredation in SNR, i.e., the increase in SNR need to be compensate for the error, 

can be aproximated by 

D(dB) = (11/6ln10)(47Ng/W)(E,/No), 

(2.8) 

where W is the bandwidth and E/No is the per-symbol SNR. Note that the 

degredation increases with the number of subcarriers. Due to the rapid variations of 

the phase noise, it may cause large problems. 

2.7.2 Sampling-frequency syncronization 

The received continuous-time signal is sampled at instants determined by the 

receiver clock. There two types of methods of dealing with the mismatch in sampling 

frequency. In syncronized-sampling systems a timing algorithm controls a voltage 

controlled crystal oscillator in order to allign the receiver clock with the transmitter 
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clock. The other method is non-syncronized sampling where the sampling rate 

remains fixed, which requires post-processing in the digital domain. The effect of a 

clock ferquency offset is twofold: the useful signal component is rotated and 

attenuated and, in addition, ICI is introduced. Non-syncronized sampling systems are 

much more sensitive to a frequency offset, compared with a syncronized sampling 

system. 

2.7.3 Carrier Frequency Syncronization 

2.7.3.1 Frequency Errors 

Frequency offsets are created by differences in oscillators in transmitter and 

receiver, Doppler shifts, or phase noise introduced by non-linear channels. There are 

two destructive effects caused by a carrier frequency offset in OFDM systems. One 

is the reduction of signal amplitude (the sine functions are shifted and no longer 

sampled at the peak) and the other is the introduction of ICI from the other carriers. 

The latter is caused by the loss of orthagonality between subchannels. Denote the 

relative frequency offset, normalized by the subcarrier spacing, by Af=AF/(WIN) 

where AF is the frequency offset and N the number of subcarriers. The degredation D 

in SNR (in dB) can then be approximated by 

D(dB) = (10/31n10)(7Af'(E/Na,)=(10/31n10)( 7NAF/W(E/No). 

(2.9) 

Note that the degradation (in dB) increases with the square of the number of 

subcarriers, if AF and W are fixed. 

2.7.3.2 Frequency Estimators 

Several carrier syncronization schemes have been suggested in literature. As with 

symbol syncronization, they can be divided into two categories: based on pilots or 

cyclic prefix. 
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In pilot-aided algorithms some subcarriers are used for the transmission of 

pilots (usually a pseudo-noise (PN) sequence). Using these known symbols, the 

phase rotations caused by the frequency offset can be estimated. Under the 

assumption that the frequency offset is less than half the subcarrier spacing, there is a 

one-to-one correspondence between the phase rotations and the frequency offset. To 

assure this, an acquisition algorithm must be applied. 

A related technique is to use cyclic prefix. The redundancy of the cyclic 

prefix can be used in several ways: e.g., by creating a function that peaks at zero 

offset and finding its maximizing value or by doing maximum likelihood estimation. 

2.8 Detection 

In an OFDM link, the data bits are modulated on the subcarriers by some 

form of phase shift keying (PSK) or quadrature amplitude modulation (QAM). To 

estimate the bits at the receiver, knowledge is required about the reference phase and 

amplitude of the consellation on each subcarrier. In general, the consellation of each 

subcarrier shows a random phase shift and amplitude change, caused by carrier 

frequency offset, timing offset, and frequency selective fading. To cope with these 

unknown phase and amplitude variations, two different approaches exist. The first 

one is coherent detection, which uses estimates of the reference amplitudes and 

phases to determine the best possible decesion boundaries for the consellation of 

each subcarrier.The main issue with coherent detection is how to find the reference 

values without introducing too much training overhead. The second approach is 

differantial detection, which does not use absolute reference values, but only looks at 

the phase and/or amplitude differences between two consecutive symbols. 

Differantial detection can be done both in the time domain or in the frequency 

domain. 

2.8.1 Coherent Detection 

Figure 2.11 shows a block diagram of a coherent OFDM receiver. After 

downconversion and analog-to-digital conversion, the FFT is used to demodulate the 
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N subcarriers of the OFDM signal. For ech symbol, the FFT output contains N 

values. However, these values contain random phase shifts and amplitude variations 

caused by the channel response, local oscillator drift, and timing offset. It is the task 

of the channel estimation block to learn the reference phases and amplitudes for all 

subcarriers. 

ADC FFT Coherent 
Detection 

De­ 

interleaving 
Decoding Binary 

Output 
data 

h] Channel 
Estimation 

Figure 2.11 Block diagram of an OFDM receiver with coherent detection 

In general, radio channels are fading both in time and in frequency. Hence a 

channel estimator has to estimate time-varying amplitudes and phases of all 

subcarriers. One way to do this is to use a two-dimensional channel estimator that 

estimates the reference values based on a few known pilot values. Based on these 

pilots, all other reference values can be estimated by performing a two dimensional 

interpolation. 

To be able to interpolate the channel estimates both in time and in frequency 

from the available pilots, the pilot spacing has to fulfill the Nyquist sampling 

theorem, which states that the sampling interval must be smaller than the inverse of 

the double-sided bandwidth of the sampled signal. For the case of OFDM, this means 

that there exist both a minimum subcarrier spacing and a minimum symbol spacing 

between pilots. By choosing the pilot spacing much smaller than these minimum 

requirements, a good channel estimation can be made with a relatively easy 

algorithm. The more pilots are used, however, the smaller the effective SNR 

becomes that is available for data symbols. Hence, the pilot density is a tradeoff 

between channel eatimation performance and SNR loss. 
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2.9 Applications of OFDM 

2.9.1 Digital Audio Broadcasting 

DAB is the successor of current analog audio broadcasting based on AM and FM. 

DAB offers improved sound quality, comparable to that of a compact disc, new data 

services, and a higher spectrum efficiency. DAB was standardized in 1995 by the 

European Telecomminications Standarts Insttitute (ETSI) as the first standart to use 

OFDM. The basis for this standart was the specification developed by the European 

Eureka 147 DAB project, which started in 1988. 

DAB has four transmission modes using different sets of OFDM parameters 

which are listed in Table. The parameters for modes I to ill are optimized for use in 

specific frequency bands, while mode IV was introduced to provide a better coverage 

range at the cost of an increased vulnerability to Doppler shift. 

Table2.1 DAB OFDM Paramaters 

Model Mode II Mode III Mode IV 

Number of subcarriers 1,536 384 192 768 

Subcarrier spacing 1 kHz 4 kHz  8 kHz  2 kHz  

Symbol time l .246ms 311 .5  us 155.8 us 623 us 

Guard time 246 s 61.5 s 30.8 us 123 us 

Carrier frequency <375 MHz <l.5GHz <3GHz <1.5 GHz 

Transmitter seperation <96km <24km < 12km <48km 

One important reason to use OFDM for DAB is the possibility to use a single 

frequency network, which greatly enhances the spectrum efficiency. In a single 

frequency network, a user receives the same signal from the transmitters 

simultaneously. Because of the propogation differences among transmitters, there is 

some delay between the arrival of the signals. This is illutrated in Figure 2.12, where 

two DAB signals arrive at the user with a delay difference that is equal to the 

distance difference (dr-d) divided by the speed of light. Basically, to the user this 

situation is equavilant to a two-ray multipath channel.Hence as long as the 

propagation differences between the two signals are smaller than the guard time of 
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the OFDM symbols, no ISi or ICI will occur. The addition of the two time-shifted 

signals creats a diversity advantage for the user; the probability that the sum of both 

signals has an unacceptably low power because of shadowing or flat fading is much 

lower than the probability that one of the individual signals is too weak. 

The DAB transmitted data consists of a number of audio signals, sampled at 

48 kHz with an input resolution up to 22 bits. The digital audio signal is compressed 

to a rate in the range of 32 to 384 kbps, depending on the desired quality. The signal 

is divided into frames of 24 ms. The start of a frame is indicated by a null symbol, 

which is a silence period that is slightly larger than the duration of a normal OFDM 

symbol. Then, a reference OFDM symbol is sent which serves as the starting point 

for the differential decoding of the QPSK-modulated subcarriers. Differential 

encoding is applied in the time domain, so in the receiver, the phase of each 

subcarrier is compared with the phase of the same subcarriers from the previous 

OFDM symbol. 

The digital input data is encoded by a rate ¼ convolutional code with 

constraint length 7 to provide protection against fading subcarriers. The coding rate 

can be increased up to 8/9 puncturing. This gives a maximum total data rate of 

1,53628/91/1.246.10, which is approximately 2.2 Mbps. The coded data are 

interleaved to seperate coded bits in the frequency domain as much as possible, 

which avoids large error bursts in case of a deep fade affecting a group of 

subcarriers. 

DAB 

Transmitter I 

DAB 

Transmitter 2 

Figure 2.12 User receiving two DAB transmitters 
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2.9.2 Terrestial Digital Video Broadcasting 

Research on a digital system for television broadcasting has been carried out since 

the late 1980s. In 1993, a pan-broadcasting-industry group started the Digital Video 

Broadcasting (DVB) project. Within this project, a set of specifications was 

developed for the delivery of digital television over satellites, cable, and through 

terrestial transmitters. 

Terrestial DVB uses OFDM with two possible modes, using 1,705 and 6,817 

subcarriers, respectively. These modes are referred to as 2k and 8k modes, 

respectively, as these are the sizes of the FFT/IFFT needed to generate and 

demodulate all subcarriers. The main reason to have two modes were doubts about 

the implementability of the 8k subcarrier system. Basically, the 2k system is a 

simplified version which requires an FFT/IFFT that is only a quarter of the size that 

is needed for the 8k system. Because the guard time is also four times smaller, the 2k 

system can handle less delay spread and less propogation delay differences among 

transmitters within a single-frequency network. The FFT interval duration for the 8k 

system is 896 µs, while the guard time can have four different values from 28 to 224 

µs. The corresponding values for the 2k system are four times smaller. 
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Figure 2.13 Block diagram of a DVB-T transmitter 

Figure 2.13 shows a block diagram of a DVB-T transmitter. The input data are 

divide into groups of 188 bytes, which are scrambled code by an outer shortened 

Reed-Solomon code (204, l 88,t=8). This can correct up eight erroneous bytes in a 

frame of 204 bytes. The coded bits are interleaved by a convolutional interleaver that 
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interleaves byte-wise with a depth of 12 bytes and then again coded by a rate ½ 

constraint length 7 convolutional code with generator polynomials (171,133 octal). 

The rate of this latter code can be increased by puncturing to 2/3, ¾, 5/6, or 7 /8. The 

convolutionally encoded bits are interleaved by an inner interleaver and then mapped 

onto QPSK, 16-QAM, or 64-QAM symbols. 

For 16-QAM and 64-QAM, optional hierarchical coding can be applied. In 

this case, the consellation points are moved farther away from the origin so the 

quadrants can be detected more reliably than the position within each quadrant. This 

is illustrated in Figure 2.14 for a hierarchical 16-QAM consellation. For this 

consellation, the minimum distance between points from different quadrants is 

double the distance of a normal 16-QAM consellarion, where the consellation points 

would have values of 1 and 3 instead of 2 and 4. Corrected for the increased power 

of the consellation, the detection of the quadrants has a 3-dB SNR advantage over 

the detection of points in anonnal 16-QAM consellation. The advantage of this 

hierarchical coding is that users for which the SNR is just too low to decode all bits 

can at least decode the two most significiant bits that determine the quadrant. These 

bits give them the same video signal, but a lower resolution. 

To obtain reference amplitudes and phases to perform coherent QAM 

demodulation, pilot subcarriers are transmitted. For the 8k mode, in each symbol 

there are 768 pilots, so 6,048 subcarriers remain for data. The 2k mode has 192 pilots 

and 1,512 data subcarriers. The position of the pilot varies from symbol to symbol 

with a pattern that repeats after four OFDM symbols. The pilots allow a receiver to 

estimate the channel both in frequency as well as in time, which is important as for 

mobile receivers there can be significiant channel changes within a few OFDM 

symbols. 
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Figure 2.14 Hierarchical 16-QAM 
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3CODING 

3.1 Introduction 

In recent years, there has been an increasing demand for efficient and reliable digital 

data transmission and storage systems. This demand has been accelerated by the 

emergence of large-scale, high speed data networks for the exchange, processing, 

and storage of digital information in the military, governmental, and private spheres. 

A merging of communications and computer technology is required in the design of 

these systems. A major concern of the designer is the control of errors so that the 

reliable reproduction of data can be obtained. 

In 1948, Shannon demonstrated in a landmark paper that, by proper encoding of the 

information, errors induced by a noisy channel or storage medium can be reduced to 

any desired level without sacrificing the rate of information transmission or storage. 
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Figure 3.1 A typical transmission system 
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A typical transmission system may be represented by the block diagram 

shown in Figure 3.1. The information source can be either a person or a machine. 

The source output, which is communicated to the destination, can be either a 

continuous waveform or a sequence of discrete symbols. 

The source encoder transforms the source output into a sequence of binary 

digits called the information sequence u. 

The channel encoder transforms the information sequence u into a dicrete 

encoded sequence v called a code word. 

Discrete symbols are not suitable for transmission over a physical channel or 

recording on a digital storage medium. The modulator transforms each output 

symbol of the channel encoder into a waveform of duration T seconds which is 

suitable for transmission. This waveform enters the channel and corrupted by noise. 

Typical transmission channels include telephone lines, high-frequency radio links, 

telemetry links, microwave links, satellite links and so on. The demodulator 

processes each received waveform of duration T and produces an output that may be 

discrete(quantized) or continious(unquantized). 

The channel decoder transforms the received sequence r into a binary 

sequence ~ called the estimated sequence. The decoding strategy is based on the 

rules of channel encoding and the noise characteristics of the channel. Ideally, ~ will 

be a replica of the information sequence u, although the noise may cause some 

decoding errors. 

The source decoder transforms the estimated sequence ~ into an estimate of 

the source output and delivers this estimate to the destination. 

3.2 Types of Errors 

On memoryless channels, the noise affects each transmitted symbol 

independently. Hence transmission errors occur randomly in the received sequence, 
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and memoryless channels are called random-error channels. Good examples of 

random-error channels are the deep-space channel and many sattelite channels. The 

codes devised for correcting random errors are called random-error-correcting codes. 

On channels with memory, the noise not independent from transmission to 

transmission. 
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Figure 3.2 Simplified model of a channel with memory 

The above model contains two states, a "good state" in which transmission 

errors occur infrequently, and a "bad state" in which transmission errors are highly 

probable. The channel is good state most of the time, but on occasion shifts to the 

bad state due to a change in the transmission characteristics of the channel. As a 

consequence, transmission errors occur in clusters or bursts because of the high 

transition probability in the bad state, and channels with memory are called burst­ 

error channels. The codes devised for correcting burst errors are called burst-error­ 

correcting codes. 
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Finally, some channels contain a combination of both random and burst 

errors. These are called compound channels, and codes devised for correcting errors 

on these channels are caled burst-and-random-error-correcting codes. 

3.3 Error Control Strategies 

If the transmission is strictly in one direction, from transmitter to receiver, we 

call this one-way system. Error control for a one way sytem must be accomplished 

using forward error correction (FEC), that is, by employing error correcting codes 

that automatically correct errors detected at the receiver. 

In some cases, like telephone channels and some sattelite communication 

systems, a transmission system can be two way. Error control for a two-way system 

can be accomplished using error detection and retransmission, called automatic 

repeat request(ARQ). In an ARQ system, when errors are detected at the receiver, a 

request is sent for the transmitter to repeat the message, and this continues until the 

message is received correctly. 

There are two types of ARQ systems: stop-and-wait ARQ and continuous 

ARQ. With stop-and-wait ARQ, the transmitter sends a code word to the receiver 

and waits for a positive(ACK) or negative(NAK) acknowledgement from the 

receiver. If ACK is received(no errors are detected), the transmitter sends the next 

code word. If NAK is recived( errors detected), it resends the preceding code word. 

When the noise is persistent, the same code word may be retransmitted several times 

before it is correctly received and acknowledged. 

With continuous ARQ, the transmitter sends code words to the receiver 

continuously and receives acknowledgements continuously. When a NAK is 

received, the transmitter begins a retransmission. It may back up to the code word in 

error and resend that word plus the words follow it. This is called go-back-N ARQ. 

Alternatively, the transmitter may simply resend only those code words that are 

acknowledged negatively. This is known as selective-repeat ARQ. Selective-repeat 

ARQ is more efficient than go-back-N ARQ, but requires more logic and buffering. 
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Continuous ARQ is more efficient than stop- and-wait ARQ, but it is also 

more expensive. Stop-and-wait ARQ is designed for use on half-duplex channels, 

whereas continuous ARQ is designed for use on full-duplex channels. 

The major advantage of ARQ over FEC is that error detection requires much 

simpler decoding equipment than does error correction. Also, ARQ is adaptive in the 

sense that information is retransmitted only when error occur. On the other hand, 

when the channel rate is high, retransmissions must be sent too :frequently, and the 

system throughput, the rate at which newly generated messages are correctly 

received, is lowered by ARQ. In this situation, a combination of FEC for the most 

frequent error patterns, together with error detection and retransmission for the less 

likely error patterns, is more efficient than ARQ alone. 

3.4 Types of Codes 

CODES 

DETECTION CORRECTION 

PARITY 

CHECK BLOCK 
CONVOLUTIONAL 

REED 

SOLOMON 

Figure 3.3 Taxonomy of some code classes 

There are two diffrent types of codes in common use today, block codes and 

convolutional codes. 
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Block codes are the most popular type of error correction codes, and a rich 

selection falls under this classification. The codes get their name because the encoder 

takes in a message block of finite length, adds redundancy, and sends out a code 

word that is also a block of longer length than the message. The most widely used 

type of block codes is Linear Block codes. 

Convolutional codes use a completely different approach to coding. Instead 

of breaking the message into blocks, the entire message stream is converted into a 

single code word. Convolutional codes get their name because the encoding process 

can be viewed as convolving the message stream with the impulse response of the 

code. 
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, 4LINEAR BLOCK CODES 

We assume that the output of an information source is a sequence of binary 

digits 0 or "l ". In block coding, this binary information sequence is segmented into 

message blocks of fixed length; each message block, denoted by u, consists of k 

information digits. There are a total of 2 distinct messages. The encoder, according 

to certain rules, transforms each input message u into a binary n-tuple v with n>k. 

This binary n-tuple v is referred to as the code word of the message u. Therefore, 

corresponding to the 2 possible messages, there are 2 code words. This set of 2 

code words is called a block code. 

Definition A block code of length n and 2 code words is called a linear (n,k) code if 

and if only its 2 code words form a k-dimensional subspace of the vector space of 

all the n-tuples over the field GF(2). 

In fact, a binary block code is linear if and only if the modulo-2 sum of two 

code word is also a code word.Since an (n,k) linear code C is a k-dimensional 

subspace of the vector space V n of all the binary n-tuples, it is possible to find k 

linearly independent code words, go»g1,---·»gar in C such that every code word v in C 

is a linear combination of these k code words. 

u,=0 or 1, for O0<i<k. 

v=u.G= (lo, W,...-...., lh.1)• 

g-1 

(4.1) 
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The rows of G generate the (n,k) linear code C.For this reason the matrix G is called 

a generator matrix for C. 

TABLE 4.1: Linear Block Code with k =  4, n=7 

Messages 

(0 0 0 0 )  
(1 0 0 0) 
(0 1 0 0 )  
(I  1 0 0 )  
( 0 0 1  0) 

(1 0 1 0) 

(0 1 1 0) 
( 1 1 1  0) 
(0 0 0 I) 
(1 0 0 1)  
(0 1 0 1 )  

(1 1 0 1 )  
(0 0 1 I) 

( 1 0 1  1) 
(0 1 1 I) 

(1 1 1 1) 

Codewords 

(0 0 0 0 0 0 0) 
(1 1 0 1 0 0  0) 
(0 1 1 0 1 0 0 )  
(I O  1  1  1  0  0) 
(1 1 1 0 0 1 0) 

(0 0 1 1 0 1  0) 
(1 0 0  O  1  1  0) 
(0 1 0 1 1 1 0) 
(1 0 1 0 0 0 1)  
(0 1 1 1 0 0  1) 
(I 1 0 0 1 0 1) 
(0 0 0 1 1 0 1 )  

(0 1 0 0  0  1  1) 
(1 0 0 1 0 1  1) 
(0 0 1 0 1  1  1) 
(I 1 1 1 1 1 1 )  

As an example the generator matrix of the block code given in Table 4.1 is as 

follows: 

go 

g 

G =lg 

g 

1 1 0 1 0 0 0 

1 1 0 1 0 0 0 

1 1 0 1 0 0 0 

1 1 0 1 0 0 0 

(4.2) 

A desirable property for a linear block code posses is the systematic structure 

of the code words. 
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Redundant 
checking part 

n-k digits- l 

Message 
part 

k digits ] 
Systematic format of a code word. 

The message part consists of k unaltered information ( or message) digits and the 

redundant checking part consists of n-k parity-check digits, which are linear sums of 

the information digits. A linear block code with this structure is referred to as a linear 

systematic block code. 

A linear systematic (n,k) code is completely specified by a k x  n  matrix G of 

the following form: 

go Poo Po1 Po,n--1 I 1 0 0 0 0 

g Po Pn PI,a-k-1 l o  1  0  0  0  

G=  g  =  Po PI P2,a-k-1 l o  0  1  0  0  
I  

.  

I  

I  

.  I  

g-1 Pe-1,0 Pe-1,1 . . .  Pe-1.n-1! 0 0 0 0 1 (4.3) 

d 
Pmatrix 

p d  
kxk  identity matrix 

-J 

v =  (V0, 1%........., Ve-1) 

= (uo, W,........., 14a.1).G 

From the above equations: 

Vair = u; 

,uo po + u p . . . +  a  P-1j 

for 0<i<k 

for 0<<n-k 

(4.4) 

(4.5) 

The n-k equations given above are called parity-check equations of the code. 
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For any k x  n  matrix  G  with k linearly independent rows, there exists an (n-k) x n 

matrix H with n-k linearly independent rows such that any vector in the row space of 

G is orthogonal to the rows of H and any vector that is orthogonal to the rows of H is 

in the row space of G.Hence, we can describe the (n,k) linear code generated by G in  

an  alternate way as follows: An n-tuple v is a code word in the code generated by G 

if and only if v.H' = 0.This matrix H is called a parity-check matrix of the code. 

1 0 0 

0 1 0 

0 0 I 

0 poo 

0 po1 

0 po2 

po1 

Pu 

p1 

Pe-1,0 

Pe-1,1 

Pe-1,2 

0 0 0 • • • 1 Do, n-k-1 PI, n--1 • • •  p-1,a-k-1 

(4.6) 

Let u=(uo, 1u1,.........» a.) be the message to be encoded.In systematic form the 

corresponding code word would be: v = (0, 1,......... h-1, lo, W1,........., 14.1). 

Using the fact that v.H'= 0, we obtain 

+uo po + u p j . . . +  a  Pe 1 = 0  for0<<n-k 

Rearranging the equations we obtain the same parity-check equations. 

(4.7 

Consider an (n,k) linear code with generator matrix G and parity-check 

matrix H. Let v =  (Vo, 1,--...., .) be a code code word that was transmitted over 

a noisy channel. Let r = (ro, r1%........» r.) be the received vector at the output of 

the channel. Because of the channel noise, r may be different from v. The vector sum 

e=r+v=(€0 ,e 1 , . . . ,  €a-1) 

39 

(4.8) 



This n-tuple is called the error vector. It follows from the above equation that the 

received vector r is the vector sum of the transmitted code word and the error and the 

error vector, that is, 

r = v + e  

When r is received, the decoder computes the following (n-k)-tuple: 

s=r .H'= (s o ,s , . . · , Sn-1 )  

which is called the syndrome of r. Then s=O if and only if r is a code word. 

The syndrome s depends only on the error pattern e: 

The relationship between the syndrome digits and the error digits is like below: 

so=eo+expo+ p o + . . . +  e,1p1,0 

s=e+expo +  p + . . . +  e,1p1,1 

Si.1=€1 €Pon±-1 + Ci+1P1pk-1+. . .+ €1p-1,a-k-1 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

The syndrome digits are simply linear combinations of the error digits. The above 

equations have 2 solutions. In other words, there are 2 error patterns that result in 

the same syndrome, and the true error pattern e is just one of them. To minimize the 

probability of a decoding error, the most probable error pattern that satisfies the 

equations is choosen as the true error vector. If the channel is BSC, the most 

probable error pattern is the one that has the smallest number of nonzero digits. In 

other words which has the minimum Hamming weight. 
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The Hamming weight of v denoted by w(v), is defined as the number of 

nonzero components of v. The Hamming distance between v and w, denoted by 

d(v,w), is defined as the number of places where by differ. The Hamming distance is 

a metric function that satisfies the triangle inequality. Let v, w, and x be three n­ 

tuples. Then 

d(v,w) + d(w,x) > d(v,) (4.13) 

It follows from the definition of Hamming distance and the definition of modulo-2 

addition that the Hamming distance between two n-tuples, v and w, is equal to the 

sum of v and w, that is, 

d(v,w) = w(v + w) (4.14) 

Given a block code C, one can compute the Hamming distance between any two 

distinct code words. The minimum distance of C, denoted by dmm is defined as 

dmt min{d(v,w):v,w eC, v#w} (4.15) 

Theorem The minimum distance of a linear block code is equal to the minimum 

weight of its nonzero code words. 

The random-error-detecting capability of a block code with minimum distance dat is 

dam-1. There are 2-1 undetectable, 2"-2 detectable error patterns. The parameter t = 

L( dmm - I )/2 J is called the random-error-correcting capability of the code where 

L(daa - 1)/2 ]denotes the largest integer no greater than (da - 1)/2. The code is 

referred to as t-error-correcting code. 

4.1 Hamming Codes 

Hamming codes are the first class of linear codes devised for error correction. These 

codes and their variations have been widely used for error control in digital 

communication and data storage systems. 
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For any positive integer m3, there exists a Hamming code with the 

following parameters: 

Code length: 

Number of information symbols: 

Number of parity-check symbols: 

Error-correcting capability: 

4.2 BCH Codes 

n-k=m 

t=1(dam»=3) 

First we must give the definition of cyclic code:An (n,k) linear code C is called 

cyclic code if every shift of a code vector in C is also a code vector in C. 

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of 

powerful random error-correcting cyclic codes. For any positive integers m3 and 

t(t<2"-1) there exists a binary BCH code with the following parameters: 

Block length: 

Number of parity-check digits: 

Minimum distance: 

n-k < mt 

dam 2t + 1 

This code is capable of correcting any combination of t or fewer errors. The 

generator polynomials of this code is specified in terms of its roots from the Galois 

field GF(2"). 

The generator polynomial g(x) of the t-error-correcting BCH code of length 2"-1 is 

the lowest-degree polynomial over GF(2) which has a, a
2 

, a
3 

, • • •  a  as  is roots 

[g(a')=0 for 1<i<2t]. Let 0(x) be the minimal polynomial of a'. Then gx) must be 

the least common multiple of pi(x), (92(x), • • •  (2(x), that is, 

gx) = LCM{((), (92(9).. .  (92(9)} 
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If i is an even integer, it can be expressed as a product of the following form: i=i2' 
• +, l e  ·  

(i' is an odd number and b>1). Then a' =(a') is a conjugate of a' and therefore a' 

and a' have the same minimal polynomial, that is: ((x) = (x).As a result g(x) can 

be reduced to: 

gx) = LCM{q,(x), (0360), . - ·  (9219)}. (4.16) 

Example 1:Let a be a primitive element of the GF(2) given by Table2 such that 

1+a+a=0. From Table2 the minimal polynomials of a, a, a are: 

qr(x)= 1+X+X' 

903()= 1+X +X+8+x° 

(s(x)= 1+X + X  

The double-error-correcting BCH code of length n=2-1=15 is generated by gx)= 

LCM{9,(9), 093(9)}. 

g(x) = (1(9)093(9) 

=(1+X+X')(1+X+X+X +X' 

=1+ X'+X°+x'+x° 

For the triple-error-correcting BCH code: 

g?) = LCM{((9), (360),4s(x)} 

=(+X+X)(1+X+X+X +X(1+X+x) 

=1+X+X+X'+X+x+x!" 
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TABLE 4.2: Minimal polynomials of the elements 
in GF(2) generated by p(x)=1+x+x 

Conjugate roots 

0 

1 

a. a a' " ' ' ' 
a' a° a° a 

' ' ' 
a' a!" 

' 
a'.a' .a"?  e' 

' ' ' 

TABLE 4.3: Three represantations for the 
elements of GF(2) generated by 

Minimal polynomials 

X 

X+l 
'+X+1 

X'+X+ X+x+1 
X+x+1 

X'+X+X+1 

Power 
representation 

0 
1 

0 

a2 

° a' 

a°' 

a° 

a 
a" 

a? 

a"° 

a! 

a' 

a"° 
a! 

Polynomial 
represantation 

0 
1 

0 

a 
a° 

1+a 
a. +a? 

a +a?° 

1 +a +  a° 

1 +  a  
a. +  a? 

1+a + a 
a++ a? 

1+a + a  +  a° 

1+ a+ a? 

1+ a° 
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4-Tuple 
represantation 

(0 0 0 0) 
(1 0 0  0) 

(0 1 0 0 )  
(1 1 0 0 )  
( 0 0 1  0) 

( 1 0 1  0) 

(0 1 1  0) 

( 1 1 1 0 )  

(0 0 0 1) 
(1 0 0  1) 
(0 1 0 1 )  

(1 1 0 1 )  

(0 0 1 1 )  
( 1 0 1 1 )  

( 0 1 1 1 )  
(1 1  1 1 )  



4.2.1 Decoding of BCH Codes 

For decoding at-error-correcting primitive BCH code, the syndrome is 2t-tuple, 

H =  

1  

1  

1  

0  a a' 

a) ? «?)? 

a") a" (a'? 

for 1<i<2t 

Dividing r(X) by the minimal polynomial qp(x) of a' we obtain: 

Since (a') = 0,we have : 

Example2: Consider the double-error-correcting (15, 7) BCH code given in 

Examplel. Suppose that the vector r = ( 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0) is received.The 

corresponding polynomial is: 

r(X= 1+X° 

The syndrome consists of 4 components, 
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The minimal polynomials of a, a2 and a are identical and 

(1(x) = (92(x)= 0,(x) = 1+X+X' 

The minimal of polynomial of a' is 

0(x)=I+X +X+X? +x' 

Dividing rX) by q(x) the remainder is: bi(X) = X  

Dividing r) by (3(x) the remainder is: b g CX) = 1  +X? 

Substituting a, a and a into by(X) we obtain: 

Substituting a' into b»(X) we obtain: 

S r = 1 + a ? = 1 + a + a ' = a '  

Thus: 

Since a', a , . . . , a  are roots of each code polynomial, v(a') = 0 for 1<i<2t. 

We obtain the following relationship between the syndrome components and the 

error pattern: 
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Suppose that the error pattern eX) has v errors at locations X', X,. . .X" ,  

that is: 

(4.18) 

From ( 4.17) and ( 4.18) we obtain the following set of equations: 

S r = a ' + a ' + . . . + "  

s ,=a'+a'?+ . . . + (a"? 

s ,=a'?+'?+ . . . +a"y (4.19) 

Any method for solving these equations is a decoding algorithm for the BCH 

codes. Once a,a, . . . , a "  have been found J, J, . . . J ,  tell us the error locations 

in e(X). In general, the equations have many possible solutions. The solution that 

yields an error pattern with the smallest number of errors is the right solution. For 

large t, solving equations directly is di:ffucult and ineffective. There are methods to 

avoid this di:ffuculty. Two of them are:Peterson's algorithm and Berlekamp's 

iterative algorithm. 

4.2.1.1 PETERSON'S ALGORITHM 

Substituting p = a(4.19), we obtain: 

S r = g + p + . . . + 3, "  

s,=3 + 8 + . . . + 8  

s , = 3 + 9 + . . . + 3  
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We define the following polynomial: 

(4.21) 

The roots 0(X) are 3 ' + 3 5 ' + . . . + 3 ' ,  which are the inverses of the error location 

numbers.For this reason, cr(X) is called error-location polynomial. 

O o = 1  

o r = p + 9 + . . . + 3  

c , = B p + 0 + . . . + BN ~,  (4.22) 

The o;'s are known as elemantary symetric functions of p's.0;'s are related to the 

syndrome components by the following Newton's identities: 

S + o ; = 0  

S  +0Sr+20=0 

S3 + 0S + 0»S +30%=0 

S + 0 S I + . . . + 0 N S  +vo,=0 

Sr + 0 S + . . . +  0NS+0,S=0 

Error correction procedure consists of three major steps: 

(4.23) 

1. Compute the syndrome S = (Si, S2. • ., Sa») from the received polynomial 

r(X). 
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2. Determine the error-location polynomial a'(X) from the syndrome 

components Si, S2,.. . ,  S2. 

3. Determine the error-location numbers p p2, • • •  ,3 by finding the roots of 

0X) and correct the errors in r(X). 

4.2.1.2 BERLEKAMPS ALGORITHM 

The first step of Berlekamp' s iterative algorithm is to find a minimum degree 

polynomial o'(X) whose coefficients satisfy the first Newton's identity. The next 

step is to test whether the coefficients of o'(X) also satisfy the second Newton's 

identity. If the coefficients of o'(X) do satisfy the second Newtons identity, we set 

6() = o'(X). If, the coefficients of o(X) do not satisfy the second Newton's 

identity, a correction term is added to o(X) to form o() such that o(X) has 

minimum degree and its coefficients satisfy the first two Newton's identities. The 

third step of iteration is to find a minimum-degree polynomial o() from o'(X) 

such that the coefficients of o(X) satisfy the first three Newton's identities. Again, 

we test whether the coefficients of o'(X) also satisfy the third Newton's identity. If 

they do, we set o(X) = 0(X).If they do not, a correction term is added to o(X) 

to form o(). Iteration continues until 6(X) is obtained. Then 0(X) is taken 

to be error location polynomial 0(X), that is, 0(X) = 0(X). 

This cr(X) will yield an error pattern e(X) of minimum weight that satisfies 

the equations of (4.8). If the number of errors in the r(X) is t or less, then a(X) 

produces the true error pattern. 

Let o (X) = 1  +  ox + ox + . . . +  o,,(x? be the minimum-degree 

polynomial determined at the th step of iteration whose coefficients satisfy the first 

Newton's identities. To determine o(X) we compute the following quantity: 
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(4.24) 

The quantity d,, is called the th discrepancy. If d = 0, the coefficients of o'(X) 

satisfy (+1th Newton's identity. In this event, we set o((y) = 0'(X). If d, + 0, 

the coefficients of o'() do not satisfy the (+1)th Newton's identity and a 

correction term must be added to o(X) to obtain o y) .  To accomplish this 

correction, we go back to the steps prior to the th step and determine a polynomial 

0(X) such that the pth discrepancy d, + 0 and p-l, [l, is the degree of the o(X)] 

has the largest value. Then 

(4.25) 

which is the minimum-degree polynomial whose coefficients satisfy the first (+1) 

Newton's identities. 

TABLE 4.4 Berlekamp's iterative algorithm 

µ 66o d Iµ - l  

-1 1 1 0 -1 

0 1 s, 0 0 

1 

2 

2t 
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To find error location polynomial, fill out the Table 4.4.Ifthe polynomial has 

degree greater than t, there are more than terrors in r(X), and generally it is. not 

possible to locate them. 

The last step in decoding BCH codes is to find the error-location numbers 

that are the reciprocals of the roots of cr(X). The roots of cr(X) can be found simply 

b b . . 1 2 n-1( -2m 1) . (X) s· n - 1 -1 - n-1 y substituting 0, 0 , . . . ,  01"  n= - into ot ·. iince a" = , O = O ' .  

Therefore, if a' is a root of 0(X), a" is an error-location number and the received 

digit rat is erroneous digit. 

The substituion method described above for finding the roots of the error 

location polynomial was first used by Peterson in his algorithm for decoding BCH 

codes. Later, Chien formulated a procedure to carry out the substitution and error 

correction. The received vector 

(X) - X xi xn-1 
r' =ro+r .  +r2 · . . + r, I  

is decoded on a bit-by-bit basis. The high-order bits are decoded first. To decode rk.1, 

the decoder tests whether a"' is an error-location number; this is equavilant to 

testing whether its inverse a is a root of 0(X). If a is a root, then: 

Therefore, a"' is an error location number and r, is an erroneous digit. 

To decode r n-1 the decoder tests the sum 

1 
l 21 vi 

+00' +0' . . . + c 0 .  

If  the sum is zero, then a"' is an error location number and r, is an erroneous digit. 

Error can be corrected by adding 1 to erroneous digit (use modulo-2 addition). 
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5 REED SOLOMON CODES 

5.1 Historical Overview 

Claude Shannon in 1948 had proven the existence of error-correcting codes that 

under suitable conditions and at rates less than channel capacity, would transmit 

error-free information for all practical applications. 

The evoluoion of algebraic coding theory in the 1950's and 1960's was 

driven by the development of simplified encoders and less complex decoders by a 

host of researchers. The theory of Reed-Solomon codes is inextricably entwined with 

the history of block and more particularly algeabric coding theory. With the 

introduction of increasingly complex mathematical structures, broader classes of 

machine-encodable block codes emerged along with the algeabric means of 

decoding. 

It is the early 1950s, Richard Hamming had already produced the first 

practical binary codes using the tecniques of linear algebra. In fact, he had both 

introduced and completed the theory of optimal single-error-correcting binary codes. 

At almost the same time, Marcel Golay gave us the perfect triple-error-correcting 

code of length 23 and dimension 12. Golay's results opened up a Pandora's box for 

mathematical theorists searching for perfect optimal binary codes. David Muller, 

trained as a theoritical physicist, had invented a class of codes in a language of his 

own called "Boolean net functions". Shortly thereafter, a Caltech Ph.D. in 

mathematics with a minor in physics, Irving Reed, recognized an inherent algeabric 

structure in Muller's codes. They were multinomials over the Galois field of two 

elements. 
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Using the notion of multinomials over the primitive field GF(2) and 

constraining the maximum product degree, Reed constructed an error-correcting 

code that was equivalent to Muller's codes. The algebraic structure Reed imposed led 

to a decoding algorithm, the Reed algorithm, the first example of what is now called 

majority logic decoding.Reed and Muller's codes were demonstrated to be group 

codes, or vector spaces over GF(2).Now called Reed-Muller codes, the codes were 

introduced in September 1954 at the first International Symposium on Information 

Theory in Cambridge, Masacchusetts. The Grassmann algebra people later 

recognized this structure as belonging to them and extended Reed-Muller codes to 

algebraic number fields and other structures.With the work of Neal Zierler, Solomon 

Golomb and Eugene Prange, these codes were soon generated by linear shift registers 

( with parity added) and thus became endowed with a cyclic structure. 

In the mid- l 950s, Reed spent much of his time developing automatic 

processors for use in radar applications. This work cultminated in 1957-1958 in the 

design of the first all-solid-state(transistor) computer, then called CG-24. This led to 

many firsts: the first machine to be designed and developed using the RTL language, 

the first machine to be emulated on another computer, and the first all-purpose 

machine to have a rudimentary interrupt structure. At this time, Reed became 

enamored of Galois theory and thought of using nonbinary finite field symbols in 

byte-level operations as opposed to the traditional focus on bit-oriented algorithms. 

This thought process ultimately led to Reed-Solomon codes. 

In the late 1950s, Gustave Solomon, a young MIT Ph.D. mathematician 

specializing in algebra, was brought into the field by Reed. Reed introduced him to 

the world of coding theory and applied algebra through his ideas and conjectures. On 

January 21, 1959, Irving Reed and Gustave Solomon submitted a paper to the 

JSIAM. In june of 1960 the paper was published: five pages under the rather 

unpretentious title "Polynomial Codes over Certain Finite Fields". This paper 

described a new class of error-correcting codes that are now called Reed-Solomon 

codes. 
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5.2 Definition 

Reed-Solomon codes form a subclass of the nonbinary BCH codes. Reed­ 

Solomon codes are cyclic codes. Although they are a subclass of the nonbinary BCH 

codes, Reed-Solomon codes offer better error control performance and more efficient 

practical implementation because they have the largest minimum Hamming distance 

for fixed values of k and n. 

Let a be an element of GFq) and let t be the designed error-correcting 

power of a BCH code. For some positive integers s and b1, a BCH code of length n 

and minimum Hamming distance 2t¢+ 1 can be generated by the generator 

polynomial gX) over GF(g) with a, , . ..'- as  the roots of g(x). Let a', a 

nonzero element in GF(q"), be root of the minimal polynomial (p(X) over GF(g) and 

n, be the order of a' for i= b, b+1, . . . ,  b+2t4¢-1. The generator polynomial of a BCH 

code can be expressed in the form 

The length of the code is 

n=LCM{n», n+1, - . ·  It+2t-1}. 

The degree of ,(X) is s or less, and then the degree of g) is, therefore, any 

most equal to 2st4. 

Reed-Solomon codes can be obtained by settings= 1 , b =  1  and q = p" where 

p is some prime. Let a be a primitive element in GF(p"). A primitive Reed-Solomon 

code with symbols from GF(p"): 

Block length: 

Number of check digits: 

n = p " - 1  

c=(n-k)=2t 
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Minimum distance: 

An important property of any Reed-Solomon codes is that the true minimum 

Hamming distance t is always equal to the designed distance ta. This tell us that for a 

fixed (n,k), no code can have a larger minimum distance than a Reed-Solomon code. 

A Reed-Solomon code is therefore a maximum distance code. 

Let a' be a root of the ((X) and n; be the order of a', for i =  1, 2 , . . .  ,2t. The 

generator polynomial of a primitive Reed-Solomon code is 

g€9)=(X-a)0X-0)...(X-a") 

=  X Y x! xx' - g o ' g  + g  + . . . + g .  +  

5.3 Encoding 

The code generated by g(X) is an (n,n-2t) cyclic code. Let 

be the message to be encoded where k=n-2t. In systematic form 2t parity-check digits 

are the coefficients of the remainder bX) = bo + bX + bx + . . . +  bx 

resulting from dividing the message polynomial Xa(X) by the generator polynomial 

g(X). 

b(X) = Xa(X) modgC) 

v(9) =Xa(9) + b(X) 
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This is accomplished by using a division circuit like below: 

• •  E Parity 
Digits 

' ', 

Xa(o) 
Ro (utput 

Message 

Figure 5.1 Division circuit for encoding 

5.4 Decoding 

Decoding of Reed-Solomon codes contains the following steps: 

1. Compute the syndrome S = ( S ,  S,. .  ., S») from the received polynomial 

r(X). 

2. Determine the error-location polynomial cr(X) from the syndrome 

components Si, S2,-.., S2. 

3. Determine the error-location numbers from the roots of cr(X). 

4. Determine the error values. 

5. Correct the error words. 

Syndrome computation: 

Let 
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be the transmitted code vector and let 

be the corresponding received vector. Then the error pattern added by the channel is 

efX) =vX) + rX) =  eo  + e X + eX + . . . + e, Xx ' .  

Suppose that the eX) contains v errors at location x', x ' , . . . ,X' where0<j<j2 

.... <j<n-1.  Then 

To determine eX), we need to know the error locations X"s and the error values 

e's. As with BCH codes we define for l =  1 , 2 , . . . , v  

as  error location numbers. Syndrome components can be obtained like below 

Si =r(a)=e,~+ e,p2+. . .+e,~ 

S,=r)=e~ +e,0 +. . . +e.~ 

S ,=ra' )=e~+e~+ . . .+e,~ 

If  there are terrors in received word (5.1) equations can be given like below: 
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t 

s»-)e.0' 
i=l (5.2) 

The aim of the decoding is to find the error vector with maximum t errors which 

produces the syndromes at (5.2). 

5.4.1 Peterson's Algorithm 

With a few differences we can use this method at RS codes like binary BCH codes. 

Newton's identities: 

(5.3) 

o's are the coefficients of 0(X). 

(X) Xt xt-1 
0l = +0, + . . . + o  

(5.4) 

In the first step of decoding 2t syndromes S1, S, . . . ,  S  are computed. Then t 

equalities are obtained from (5.4) for 1<j<t. The solution of the equalities gives us 

the coefficients of the error location polynomial o(X). As an example consider a 

triple-error-correcting RS code: 

(5.5) 

We must solve the (5.5) equalities to find the coefficients of the error location 

polynomial. The number of the equalities are equal to the number of errors at the 

received word. Writing (5.5) equalities in matrix form, we obtain: 
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(5.6) 

(5.6) takes a simple case for one and two errors. 

(5.7 

(5.8) 

To find the coefficients of the error location polynomial from (5.6), (5.7) and (5.8) 

the determinant of the coefficient matrix must be different from zero. Taking D the 

determinant of the (5.8)'s coefficient matrix and D» the determinant of the (5.6)s 

coefficient matrix: 

(5.9) 

(5.10) 

D and D are computed to determine how many errors are in the received word. This 

two expressions are equal to zero at one error case. For double erroneous words D» 

is equal to zero. After determining o's, the roots of the error location polynomial, the 

error locations, are computed. Error values are computed by substituting error 

locations into syndrome equation (5.2) and decoding is finished. 

Let use Peterson's directly solution method at triple-error-correcting (15,9) RS code 

over GF(2'). 
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1.  Syndromes S are computed by using (5.1) equations, for 1<k<6. 

If S = 0 ,  for 1<k<6, the received word is a code word and we assume no errors are 

occured in transmission. 

2. Determining the number of errors in the received word: 

a. If D»=SS3Ss + S,° +S,S? + S,'S, ± 0 we assume there exist three errors. 

b. If D»=0and D=SS +S,/ ± 0 we assume there exist two errors. 

e. If D4=D)=0and S 0 we assume there exists one error. 

3. Determining the coefficients of the error location polynomial: 

a. The state of existing three errors: 

o, =[S»S5S, + S,$,$, + S,S. + S,SS, + S,S? +SS]/D,  

o,=[SS,S +S,S, + S,S,S. + S,S,S, + S,S, + S,S]/D%, 

o,=[S,$S% + S,S,? + S,S. + S,']/D, 

b. The state of existing two errors: 

o,=[SS, + S,S]/D, 

o,=[SSS +S,]/D, 

c. The state of existing one error: 
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4. Determinig the error locations: 

a. The state of existing three errors: 

b. The state of existing two errors: 

The roots of the polynomials are computed.In the state of existing one error, error 

location polynomial oX) = X + o, and the root of the error location polynomial o, = 

S , /  S. There is an uncorrectable mistake if we cant find the true number of error 

location. 

5. After determinig error locations, error values are computed by solving syndrome 

equations. 

a. The state of existing three errors: 

(5.12) 

b. The state of existing two errors: 

e=[S~,+ $,)/[B,+ 3,] 

e,=[S3, +$,/[3,0,+ 8,] 
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b. The state of existing one error: 

6. Error correction is made by adding the symbols at the erroneous locations of the 

received word to the computed error values. 

7. Syndrome is computed for the corrected word. If the syndrome is not equal to zero 

corrected word is erroneous, in fact error is not corrected. 

Consider a (15,9) RS code, with the generator polynomial a° + ?Xx + ax +ax? + 

ex + a!y' + x, the transmitted code vector v = (000000000000000), and the 

received code vector r = (000a'00a'0000000).The polynomial represantation of 

the received word be rX) = a'x? + «'x+ ax'The syndromes are obtained from 

(5.1), 

Because of the computing D% =a' 0 from (5.7)We assume there exists three errors. 

From (5.8) equalities, we obtain, 

O' -a1 -a4 cr -a6 1  , 0 2 =  '3 =  

Substituting the all elements of the GF(2) into oX), we obtain, 

oa)=o@)=o(a!)=0. 

Here we can see 3th,6th and 12th symbols are erroneous.We can compute the error 

locations from (5.12) equations. 
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X) =  r(X)  +  e(X) = 0 

is obtained.It is clear that the syndromes of the corrected word is equal to zero.Errors 

are corrected for the code word which is transmitted erroneous at three locations. 

5.4.2 Berlekamp's Algorithm 

It is easy that, the decoding the codes which corrects low number of erreneous 

symbols, with Peterson's method. Like binary BCH codes, in RS codes we use the 

Berlekamp's method because of the complexity while computing the coefficients of 

oX) at the codes which has more then six erreneous symbols. Unlikely from the 

decoding of binary BCH codes, in the decoding of RS codes, we must compute the 

error values. After determining the error locations, error values are computed by 

determining the error evaluator polynomial ro(X). The releation with ro(X) and o(X) 

are defined with (5.13). 

CX) = 0X)[S(X) + 1]mod x (5.13) 

This equation knowns as key-equation which is used in decoding of the BCH codes 

with the Berlekamp's method. In this equation S(X) knowns as syndrome polynomial 

and given by, 

Furthermore, the definition of the error location polynomial oX) in the key-equation 

is different from Peterson's method. Now oX) is defined like below, where ps are 

error location and i = 1,2, • • •  t,  
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That is to say the inverse of the roots of oX) gives us the error locations. 

Berlekamp' s algorithm is an iterative algorithm which is developed for determining 

oX). After finding the error location polynomial the inverse of the roots of the 

polynomial gives us the error locations. Error evaluator polynomial ro(X) is fined by 

substituting error location polynomial into (5.13). Error value e,, corresponding to 

error location pis computed from (5.14) where o'X) denotes the derivative of oX). 

(5.14) 

Using (5.13) error polynomial e(X) is found and error correction is made by 

substituting it into vX)= r(X) + e(X). 

Consider a (15,9) RS code, with the generator polynomial a + ax + x + ax? + 

ex" + !y? + x, the transmitted code vector v = (000000000000000), and the 

received code vector r = (000a'00a'00000a00). The polynomial represantation of 

the received word be rX) = ax? + 'x+ «'x. The syndromes are obtained from 

(5.1), 

Berlekamp's algorithm is applied by filling out the Table 5.1. 
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TABLE 5.1 Application ofBerlekamp's iterative algorithm 

µ 64c d, h - l  

-1 1 1 0 -1 

0 1 S, =a" 0 0 

1 1 +!x «? 1  0  take p = -1 

2 1 +a'x 1 1 1 takep= 0  

3  1  +x+ex «' 2 1 take p = 0 

4 1 +ax+y «" 2 2 tak e p =  2  

5  1  +'x+'x+ex? 0 3 2 take p = 3 

6 1 +'x+«'x+x? . 

At the 5th step, the polynomial is the error location polynomial which has minimum 

distance equal to d, = 0. 

Error evaluator polynomial is computed from the key equation given by (5.13). 

a(X) = 0(X)[S(X) + 11mox 

€X) = [ex+ax"+X +x + X  +x+ 1] modx 

(X) =  ax+X +x+1 

a3, a9 and a12 is found as the roots of the oX) by substituting the all elements of the 

GF(2) into 0(X). The inverse of the roots a', a° and a are error locations. That is to 

say 3th, 6th, and 12th symbols are received erroneous. Using (5.14) to compute the 

error values; 
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= ?  

are obtained. Error polynomial is found like below: 

The result is same as the preceding result which is found by using Peterson's method. 

We can see from X) =  r(X)  +  e(X) = 0 that the error is corrected. 

5.4.3 Euclid's Algorithm 

We can use the Euclid's method when decoding RS codes. Euclid's algorithm, gives 

us the GCD C of the any two integers or polynomials A and B. Furthermore, it finds 

the integers or polynomials S and T which satisfies the equality C = SA + TB. If we 

give the key equation like (5.15), we can find the polynomials o(X) and ro(X) by 

using Euclid's algorithm. 

cCX= 0X[S(X) + 1] + (0x (5.15) 

While appliying the algorithm if we choose the polynomials A = y',B =S(X) + 1, 

we can find the oX) and ro(X). First we will define the Euclid's algorithm for 

integers and polynomials and we will give an example. 

If A and B are integers take AB, if they are polynomials take deg(A)deg(B). If we 

choose the initial conditions like r., =A and r, = B, then we obtain, at the nth step of 

the algorithm, the remainder r, which is found from the division of r, to rr (r%%= 

Hr+- + r,). For integers r,r, and for polynomials deg(r)deg(r). We find r, at the 

nth step using the below equation: 

r, =Ina- rn-1. 
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Furthermore, we can find the s, and t, which satisfies the equality r, = s,A + t,B.For 

Sn and t, following equations are given: 

Sn =Sn2 nSn-1 

t, =ta- »t-1 (5.17 

Because of being r., =A =(1)A + (0)B and r,=B=(0)A + (1)B we tak e s = 1 ,  t ,=  

I, s , = 0 ,  t, =  1  for the initial conditions. As an example we will use the Euclid's 

algorithm to find the GCD(42,24). At first step the remainder r, = 18 quotient q, = 1 

which is obtained from the division of 42 to 24. 

If we continue while the remainder obtained from division be zero then we find 

GCD(42,24) = 6. The remainders at the every step can be given like below by the 

kind of s, and t,: 

42 = (1 ).42 + ( 0).24 

24 = (0).42 + ( 1 ).24 

18  = (1).42 +(-1).24 

6 =(-1).42 + (2).24 

0 = (4). 42 +(-7).24 

The easiest way to use Euclid's algorithm to make a table for r,, % s, ve t,. Table 5.2 

is given at the below for the example: 

TABLE 5.2 Application of Euclid's algorithm for integers 

n r, % S, = Sa a -  ±Sn-1 t, =  t%a- al­ 

-1 42 1 0 

0 24 0 1 

1 18 1 1 -1 

2 6 1 -1 2 

3 0 3 4 -7 
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By using Euclid's algorithm at the key-equation 

CX) = 0(X)[S(X) + 1] + ()x 

if we apply it to the x" ve [S(X) + 1], we find the equality 

r.CO=s.(XX +t(9 [S(9) + 1] 

at a certain step in condition that not exceeding the code's capacity. Here n is the first 

value which satisfies the condition deg(r,)<t. From here we obtain 

o(X) =t,(X) 

CX) = 1.(X). 

Now we know the error location and error evaluater polynomial. So using (5.14), we 

find error values and decoding finishes. 

Let us use the Euclid's algorithm to the preceding RS code. Consider a (15,9) RS 

code, with the transmitted code vector v = (000000000000000), and the received 

code vector r = (000a'00a00000a00). The polynomial represantation of the 

received word be rX) = a'x' + a'x°+ 'x'.The syndromes are obtained from (5.1), 

s(X) =a"x° +"x' +x°+X +ax. 

Fill out the table to apply the Euclid's algorithm. 
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TABLE 5.3 Application of Euclid's algorithm 

n r%, qn t,=ta-st­ 

-1 x' 0 

0 S(X) + 1 1 

1 "x" +x'+'x + x  +'x ex 'x 

2 "x' +'x+ax + x + 1  'x+a x +x+ 1  

3  'x +ax+'x+ a 'x +a? 'x +'x+'x+ a 

Because of deg(r3) =3<t = 3 at the third step, we obtain, 

cX) ='x +ax +a'x + a  

0(X) ='x? +'x + ' x + a.  

Notice that the obtained polynomials are a times of the polynomials which are 

obtained by using the Berlekamp's method. This condition does not change the result 

because it does not change the roots of the error location polynomial. If we look the 

(5.14) which is using for determining the error values we see a division operation 

between c:o(X) and o'(X). In this operation a simplifies. Error values are obtained 

like below: 

((a")') 
es«" a'y'5j 

o((a'y') 
( 12)-l----....--.- 

en= 6@ey'j 

Error polynomial is obtained like: 

=a  

= ?  

=a' 

e(X) =a'x +ex° +'x". 

We can see from v(X) = r(X) + e(X) = 0 that the error is corrected. 
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6 CONVOLUTIONAL CODING 

The encoding process of convolutional codes is significantly different to that of 

block encoding. Block codes are developed through the use of algebraic techniques. 

Block encoders group information bits into length k blocks. These blocks are then 

mapped into codewords of length n. A convolutional encoder converts the entire 

input stream into length n codewords independent of the length k. The development 

of convolutional codes is based mostly on physical construction techniques. The 

evaluation and the nature of the design of convolutional codes depends less on an 

algebraic manipulation and more on construction of the encoder. 

Convolutional codes were first introduced by Elias in 1955. He proved that 

redundancy could be added to an information stream through the use of linear shift 

registers. In 1961, Wozencraft and Reiffen described the first practical decoding 

algorithm for convolutional codes. The algorithm was based on sequential decoding, 

however sub-optimal for decoding convolutional codes. Several other algorithms 

were developed off of Wozencraft and Reiff en initial work. In 1967, Viterbi 

proposed a maximum likelihood-decoding scheme for decoding convolutional codes. 

The importance of the Viterbi algorithm is that it proved to be relatively easy to 

implement given the encoder has a small number of memory elements. It is the work 

by Viterbi that promotes the motivation here to apply his algorithm for the decoding 

of this error correction scheme. 

Figure 6.1 is a binary rate 1/2 linear convolutional encoder. The rate of the encoder is 

determined by the fact that the encoder outputs two bits for every one bit at the input. 

In general, an encoder with k input bits and n output bits is said to have a rate kin. 

The rate kin is defined as the code rate (Re) of the system. 
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Figure 6.1 Binary rate 1/2 linear convolutional 
encoder 

In Fig. 6.1 a binary stream of data x(x0,x1,82,...) is fed into a series of memory 

elements. The bits travel through the shift register, the values of the individual 

memory elements are tapped off and added modulo-2 according to a fixed pattern. 

This creates a pair of output coded data streams y=(y,",y," y",...) and 

y=(y%\,y",y-'...) .These output streams are multiplexed to create a single 

encoded data stream y=( y%", y%,y,",y"," y4,...). The data stream y is the 

convolutional code word. Each element in the interleaved output stream y is a linear 

combination of the elements in the input stream x " , 8 , . . . . s" ?  assuming that 

the shift register contents are initialized to zero before the encoding process. The 

linearity of the codes words shows that if y and y are code words corresponding to 

inputs x and x , then (y1+y») is the code word that corresponds to the input of 

(x1+x). The linear structure of these codes allows for use of powerful techniques 

from linear algebra theory. 

There is a way to characterize the encoder structure of convolutional codes called 

generator sequences. Generator sequences are obtained by applying an impulse 

response g" where the ith output of the encoder is obtained by applying a Dirac delta 

function ~=(1000...) data stream at the jth input. The impulse responses for Fig. 6.1 

are 

g""=1 

g"=(1o1 
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The generators have been terminated at a point where the following output values are 

all zeros. It should now be evident that the generators sequences can be determined 

by "counting" the number of taps off the shift register that connect to the j generator 

sequence. Since there are two memory elements each incoming bit can affect at most 

3 bits, hence the length of the generator sequence. The constraint length K of a 

convolutional code in its simplest terms can be defined as the maximum number of 

taps off the shift registers in the encoder. 

K=I+1, 

where l is the number of memory elements of the encoder structure. The memory of 

the encoder has a direct impact to the complexity of the decoder, specifically the 

Viterbi algorithm that is used here. In practical implementations of the Viterbi 

algorithm the complexity is exponential in the constraint length and the number of 

input bits k. 

There are two popular ways to describe a convolutional encoder. One way is 

graphically like Fig. 6.1;  the other is by a generator matrix (6.2). A generator matrix 

is formed by interleaving the generator sequences g" and g'where m the number of 

generator sequences. 

to) 01) to) I1) to) (1) 
g, " m  0  g, g%, g g, g, g. m! ¢>g 

(o) (1) to) (1) (o) (t) (0) it) 
0 g, g%, 9 g g 92 8, 9» 

G =  

"%." 
to) (1) to) (1) () () 

tp g gr g 9, &, 8, 0 

0 . 

. 

. 2."±." . « 

(6.2) 

The action of the convolutional encoder can be described as a discrete convolutional 

operation, which leads for an appropriate transform that will provide a simpler 

multiplicative representation for encoding. The D-transform, called the delay 

transform can be interpreted as a delay operator, with the exponent denoting the 

number of time delay with respect to the D term. 
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to _ ( ~ @  o  , @ o ),  (p)- p. "p 
x' =in  • •  . . . < K'  .  =X, +x +x, +... 

( ~ . ~ . . ) e  Y " ( p ) = $ . " + $, D + , D ? + .. .  ·  t o  · . 1  · . 2  ·  '  ' 0  · 1  2  

(6.3) 

The encoding operation of a single input encoder can be represented as follows. 

Y(D)= N(D),"(D) 
J  

c."to) 
c,"p) 

G ," ( )  

c,""(o) 
1  »  

G , " )  
(6.4) 

The matrix G(D) is called the transfer-function matrix. The number of rows 

represents the k input streams and the number of columns represents the n output 

streams. If the input stream to Fig. 6.1 is x=(101) the corresponding D-transform is 

X=1+D. 

The transfer-function matrix for Fig. 6.1 is 

(6.5) 

The D-transform of the output coded bits are 
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Y(D)= X ( D ) G ( D ) = [1 + D ] · [1 + D + D  1 + D ]  

Y ( ) = [I + D + D  + D + D ' + D '  1 + D + D  + D ]  

Y ( D ) = [ I + D + D '  +D'  1 + D ' ]  

(6.6) 

since the arithmetic here is based on Galois fields of size p, the addition and 

multiplication are modulo p, in this case p is two. Given 

(6.7 

Inverting the transform yields 

=(11010) 

y"=(10001) 

Thus, the output code word for y = { 01 , 10 , 00 , 10 , 1 1  ). 

6.1 Structural Properties of Convolutional Codes 

The techniques used to analyze and compare block codes does not work so well 

when it comes to convolutional codes. A considerable amount of the analysis of 

block codes resides in obtaining a fixed length codeword to determine the minimum 

distance. Convolutional codes are somewhat different in that the encoder can 

generate code words of arbitrary length. There are three popular methods to 

describing the performance of convolutional codes: the tree diagram, the trellis 

diagram, and the state diagram. 

The convolutional encoder is a state machine. It contains memory elements whose 

contents determine the mapping between the next set of input and output bits. Fig. 

6.2 below is the state diagram for the encoder in Fig. 6.1. 
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00.0 

Input 0: solid line 

Input 1 :  dashed line 

Figure 6.2 State diagram for the encoder in Figure 6.1 

As with most finite-state machines, the encoder only can move between states in a 

limited manner. Each branch in the state diagram has a label of the form XX/Y, 

where XX is the output pair corresponding to the input bit Y. The distance properties 

and the error rate performance of a convolutional code can be obtained from its state 

diagram. 

Another benefit of the state diagram is that it gives performance measures that are 

considered key in comparing convolutional codes: the minimum free distance, 

denoted by dress. Convolutional code words are linear, therefore, there exists a 

subspace C={CC,...Ca) in which any two code words Ci and Cy added together 

produce another code word that exists in the subspace C. The number of places in 

which two code words differ is referred to as the Hamming distance between the two 

codewords. 

The minimum free distance, denoted dee, is the minimum Hamming distance 

between all pairs of code words. In relation to the state diagram, dfee is the minimum 

Hamming distance between any two different paths of any length L, where the paths 

begin in the same state! and end in the same state! where i need not equal j. The 

minimum distance is an important metric because it inherently gives the error 

correcting power of the codeword. As stated previously, in order to correct errors 

within a codeword the received code word must not land on another code word. The 

value of dnee gives a measure of how many bits can be "flipped" in order for the 
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received code word not to be a given code word in the subspace C. It is important to 

note that the value of dree increases as the constraint length increases. Daut derived a 

simple upper bound the minimum free distance of a rate 1/n convolutional code. It is 

given by 

l 
--,r-1 J 

«de -min, ·(K + r -- I n  
rat 2' - I  

(6.8) 

where L J x denotes the largest integer contained in r, K is the constraint length, r is 

the number of input bits, and n is the number of encoded output bits. It should be 

evident by (6.8) that dfee increases if either the constraint length increases or the code 

rate Re decreases. These factors must be carefully examined on a system level 

because they affect the overall system performance and the implementation 

complexity of the Viterbi decoder. 

6.2 Viterbi Algorithm 

In 1967 Andrew Viterbi proposed an algorithm as an approach to the decoding of 

convolutional codes. Shortly after, Forney showed that the Viterbi algorithm is a 

maximum-likelihood (ML) decoding algorithm for convolutional codes. In 1979, 

Cain, Clark, and Geist showed that the complexity of the Viterbi algorithm could be 

greatly simplified through puncturing. The Viterbi algorithm makes for an efficient 

implementation of the maximum likelihood sequence detection algorithm. 

Fundamentally the algorithm determines the most likely path taken given a received 

sequence. 

This example used here is for hard decision decoding because it simplifies the 

decoding to minimum Hamming distance decoding, thus simplifying the explanation. 

Let the length of a given path be B=L/k branches, where L is the length of the 

information sequence and k the number of input bits into the decoder. Also, let n be 

the number of coded bits per branch. Define the Hamming distance 
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(6.9) 

as the metric between the received sequence y and a candidate sequence C", 

i=1,2,2' on the jth branch. The Hamming path metric between the received 

sequence y and a candidate sequence C"is, 

, g t,  n  

t) ' F F'  tn 
d" = 2 / 2 2 % . @ e " »  

j=l j=l m=l 

(6.10) 

The value d! can be considered as the Hamming distance between the received 

vector and the candidate sequence. Consider computing the path metric on a branch­ 

by-branch basis for a candidate path c: 

" - _ ,  i  4 i  J  

j=l j=l j=1+1 

' , ', l' 
Total Pah 

Metric 

Left of 
J 

Right of 
J 

(6.11) 

At any arbitrary time J, the path metric can be broken into two equations, the partial 

path metric to the left of time J and the partial path metric to the right of J. Suppose 

two candidate paths C" and c" merge at time J and share a common path for j > 

j+1. If C has a smaller path metric than c" fr j<J then c will always have a 

smaller path metric than c.Thus, c is called the survivor path and c') ;s 

excluded as a candidate path. For each of the 2D states at time J, store the list of 

transistions in survivor path and the partial path metric of each survivor path. After a 

predetermined amount of time, go back through the trellis along the survivor path 

until the all-zero state is reached. This is the optimal path and the input bit sequence 

corresponding is the maximum likelihood decoded sequence. 
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6.3 Punctured Convolutional Codes 

Since the complexity of Viterbi decoding is exponential in the number of input 

symbols as k gets large implementation complexity becomes difficult. Classes of 

codes called punctured convolutional codes were introduced by Cain and Clark in 

1979. By periodically deleting bits via a puncturing matrix these codes allow for 

higher rate codes, which give a higher coding gain while not suffering the 

implementation penalty from a large value of k. If the encoder structure is a lower 

rate code 1/n, then there are only 2k computations for each node at the decoding 

trellis, which is suitable for practical implementations. 

78 



7 SIMULATION 
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Figure 7.1 Simulated system model 

First random integers(n=4096*3=12288 symbols) are generated as input data. 

Then using (7,3) Reed-Solomon encoding, input data is encoded. This code is double 

error correcting code. By encoding 4 redundant symbols are added to each 3 

symbols. Then converting decimal integers to binary, convolutional coding is used. 

In convolutional coding the code rate is equal to Rc=k/n=l/2. The rate of the encoder 

is determined by the fact that the encoder outputs two bits for every one bit at the 

input. Then the bits are mapped onto QPSK symbols. Now we have 86016 symbols. 

The symbols are grouped to blocks. Every block has 1024 symbols. For every block 

channel and noise affect is like below: 

30 

1,-2oe+2+0NT9 

i=I 
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R(k,n)=H(k)A(k,n)+N(k.n) k=0,1, ,1023 (7.2) 

The dispersive channel is choosen as a multipath Rayleigh model which is 

suitable for wireless systems operating at the outdoor dispersive environment. We 

assume that the channel response is only slowly time-varying with respect to the 

symbol period. That is, it is assumed that the channel is quasi-stationary and its 

impulse response stay constant throughout all of the symbols. 

The following multipath model was employed for the channel impulse 

response for the duration of Lo frames. 

ht)= 

K, 

2 «1. 
i=l (7.3) 

where p and 0 are the amplitude and phase of the path associated with the delay ; 

and K, is the number of paths. The random variables {A} are zero-mean complex­ 

valued Gaussian and are mutually independent. The random independent delays {} 

are generated so as to provide an exponentional power delay profile with an average 

delay r, and a maximum delay ma.Parameters' values are: K,=30,ta,Ss and 

Tma20s.The values of {},{0} and {p} for the channel are listed in Table. In our 

simulation, information bits are mapped onto QPSK symbols. The symbol interval is 

chosen to be T,=0.167s. 

Only for the first block, 512(or 256) of 1024 symbols are assumed known 
symbols (pilot symbols). Then the channel estimation is made as below: 

R(k,n)=H(k)A(k,n)+N(k.n) 

H,()=R(k,n)/A() (7.4) 

For 512(or 256) symbols, H,(k) is computed. Then using an interpolarion technique, 

channel is estimated for all 1024 symbols. For all blocks estimated channel 

parameters are used. 
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A(k,n)=R(k,n)/ H,(k) (7.5) 

After demapping convolutional decoding is used. Then using RS decoding the 

output data is obtained.· In RS decoding Berlekamp-Massey algorithm is used. For 

different symbol to noise ratios(SNR), symbol error rates(SER) are shown in Figures. 
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Table 7.1: Parameters of the Channel Model 

1 Delay s Amplitude Phase 0 

(s) Pi (rad) 

1 0.0120 0.4213 5.9010 

2 0.2892 0.1543 0.2147 

3 0.5593 0.4401 3.9968 

4 0.6919 0.4380 4.6862 

5 1.0266 0.1864 4.4331 

6 1.2347 0.0669 1.1484 

7 1.3056 0.0809 4.0282 

8 1.9643 0.1647 3.3214 

9 2.0906 0.1503 4.0649 

10 2.3076 0.1714 3.8432 

11 2.3907 0.1289 2.8815 

12 2.8962 0.2123 2.8152 

13 3.7334 0.3531 5.0859 

14 3.7415 0.0982 6.2326 

15 3.7630 0.0808 0.7662 

16 4.0452 0.1157 5.6671 

17 5.4348 0.2199 2.3719 

18 5.5246 0.2016 6.0266 

19 5.9653 0.1288 5.1854 

20 6.6460 0.2004 1.1537 

21 6.8295 0.2102 1.3142 

22 7.5086 0.2630 4.4436 

23 7.9602 0.1199 6.0964 

24 8.2400 0.3210 5.0876 

25 8.8824 0.1907 1.4835 

26 9.7827 0.2379 4.7438 

27 10.1142 0.1800 0.1396 

28 11.1587 0.2539 1.8221 

29 17.6513 0.2767 1.7052 

30 18.3765 0.1208 5.3582 
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Figure 7.2 Simulation results of RS and convolutional coded 
system for pilot rates: 1/4, 1/2, 1/1 
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Figure 7.3 Simulation results of RS coded system 

for pilot rates: 1/4, 1/2, 1/1 
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Figure 7.4 Simulation results of RS and convolutional coded 
system for pilot rate: 1/1 
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8 CONCLUSION 

In almost all applications of multi-carrier modulation, satisfactory 

performance cannot be achieved without the addition of some form of coding. In this 

thesis, Reed-Solomon and Convolutional coded OFDM system is designed. First RS 

coded system is simulated. The results are shown in Figure 7.3. 

Combining convolutional and block codes in a concatenated code is 

. particularly powerful technique. The block code is the outer code, that is it is applied 

first at the transmitter and last at the receiver. The inner convolutional code is very 

effective at reducing the error probability. However when a convolutional code does 

make an error, it appears as a large burst. This occurs when the Viterbi algorithm 

chooses a wrong sequence. The outer block code, especially Reed-Solomon code is 

very effective in correcting that burst error. So, then both convolutional coding and 

RS coding are used. Simulation results are given in Figure 7 .2. RS coded system is 

compared with RS+convolutional coded system. It can be seen that from Figure 7.4, 

concatenated system has better performance. 

Channel affect changes amplitudes and phases of the symbols.So channel 

estimator has to estimate this differences. One way to do this is to use a channel 

estimator that estimates the reference values based on known pilot values. Based on 

these pilots, all other reference values can be estimated by performing an 

interpolation technique.In simulations only for the first block 1/4,1/2 and 1/1 of the 

1024 symbols are assumed known symbols (pilot symbols).lt can be seen that from 

Figure 7.2 and Figure 7.3, to use more pilot symbol gives better performance. 
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