

 CHAPTER 1

 INTRODUCTION

 1.1 Motivation

In the last decades there has been a considerable growth in the semiconductor

technology. With the advances in this field, the size of measuring devices are now

smaller and smaller and their prices are quite low when compared to the past.

Consequently these devices can now be deployed in various places where their

small form factor is a major advantage. This gave rise to a big interest to the

sensor networks and technology. Sensor networks have found application areas

both in military and civil environments. In multi-sensor networks, multiple

measurement devices, namely sensors, are employed in an area of interest to

collect data and share this data with a data fusion center directly or by forwarding

through their neighbors. Thus, we need to effectively control the sensors and

interpret the information they send us. Effective utilization of sensors brings some

other concepts into our consideration: Operational costs and sensor lifetime.

Operational costs include cost of bandwith, power and computation while sensor

lifetime is an issue directly related to the power consumption of the device. A

 1

powerful method for the effective utilization of sensors is to schedule them in a

smart way. Sensor scheduling is performed to save the resources and improve the

overall system performance.

 1.2 Problem Statement

In this thesis we focus on a target tracking application based on observations

received from multiple sensors. Our main objective is to estimate the position and

velocity of our target. While doing this we want to utilize our sensors in an

effective manner. The kinematics are defined with respect to a 2-dimensional

Cartesian coordinate system. To estimate the position and velocity of our target

we use Particle Filtering algorithm. For the sensor scheduling we propose a very

simple algorithm by first grouping the sensors in clusters under the leadership of a

master, and then comparing our position estimate with the position of each master

one by one. The slaves associated with the closest master to the position estimate

will be used to form the observation vector for the next time epoch.

 2

x

y

sensor

target

 Figure 1: Basic diagram of sensor distribution. Green points represent active
 sensors while red colored ones indicate sleeping sensors.

 1.3 Organisation

The thesis is organised as follows. In section 2 we will discuss Bayesian

estimation techniques and the Particle filtering algorithm in a detailed manner.

Our proposed algorithm for target tracking with sensor scheduling will be

presented in Chapter 3. Finally in Chapter 4 we will provide our concluding

remarks and future research plans.

 3

 CHAPTER 2

 BAYESIAN ESTIMATION TECHNIQUES

 2.1 State-Space Model

Many real world problems require estimation of the state of a system that is

changing in time, using the sequence of noisy measurements from the system. The

main goal of the Bayesian approach is to estimate the current state of the system

based on the observations until that time. Generally, the observations are received

sequentially in time. Thus, the current state estimate is also sequentially updated.

In the state-space model, the parameters to be estimated form a state vector

;{ k k }xx ∈= ` with dimension xe . Observation vector ;{ }k kyy ∈= ` with

dimension is the noisy measurement of this state vector. Both the current state

of the system and the estimate of this state evolves dynamically in time. In the

Bayesian framework, all the information about

ye

0, 1,,{ }kx x xx = can be

obtained from the joint a posteriori distribution,

 4

0, 1,, 1, 2,,|(k)kx x x y y yp . So our final goal is to recursively estimate this

joint a posteriori distribution or in some cases its marginals. We denote by

0 : 0, 1, ,(....)k kx x xx � and 1 : 1, 2, ,(....)k y y yky � the state sequence, and the

observations until time step k, respectively. Thus the joint a posteriori distribution

can be written as . 0 : 1 :(|k kp x y)

x0 x1 x2 x3 xk

y1 y2 y3 yk

Bayesian Estimator

P(x1| y1) P(x2| y1,y2) P(x3| y1,y2,y3) P(xk| y1,…yk)

P(y1| x1) P(y2| x2) P(y3| x3) P(yk| xk)

 Figure 2: General bayesian approach to the state estimation problem

 5

 2.2 System Dynamics

In order to make inference about the current state of the system we need two

models: System model and the observation model. These two models together

describe the dynamics of our system. System model defines the transition from

one state to the next in time and is described in [1] as

1(,k k k k 1)f x vx − −= (1)

where : x vk e e xef ℜ ×ℜ →ℜ is a non-linear function of the state 1kx − ,

 is an independent and identically distributed noise sequence, 1kv − xe and are

the dimensions of the state and noise vectors, respectively. Measurement model

defines the observation vector as the noisy measurements of states and is

described in [1] as

ve

(,)k k k kh x ny = (2)

where : x nk e eh ℜ ×ℜ →ℜ ye is a non-linear function of the state kx , is

an independent and identically distributed noise sequence, and are the

dimensions of the observation and noise vectors, respectively.

kn
ye ne

We want to obtain the filtered estimates of kx based on the set of all available

measurements 1 : 1, 2, ,(....)k y y yky = upto time k. Thus we need to construct the

pdf . We are assuming that we have the knowledge of initial state 1 :(|)kp x y k

0x , therefore, 0 0 0(|) ()p x y p x= . The distribution can be

obtained in two stages : prediction and update.

1 :(|)kp x y k

 6

If we assume that the posterior distribution at time step k-1 is

available, prediction stage can be formulated by use of Chapman-Kolmogorov

equation as follows

1 1 : 1(|k kp x y−)−

1 : 1 1 1 1 : 1 1(|) (|) (|)k k k k k k kp x y p x x p x y dx− − − −= ∫ − (3)

Stochastic model of the state transition, , is defined by the system

equation (1) .

1(|)k kp x x −

At time step k, a new measurement becomes available and this new

information is used to update our prediction by use of Bayes’ rule.

ky

1 : 1
1 :

1 : 1

(|) (|)(|)
(|)

k k k k
k k

k k

p y x p x yp x y
p y y

−

−
= (4)

where

1 : 1 1 : 1(|) (|) (|)k k k k k k kp y y p y x p x y dx− = ∫ − (5)

is the normalizing constant, and depends on the likelihood function defined by the

measurement model (2).

By the equation (3) we are creating a prior density , namely the prediction, and by

the equation (4) updating it with the likelihood function and normalizing with a

constant. Recursive estimation of posterior density with this method is

analytically possible only for some special cases of kf , , and . Two

restrictions for the immediate analytic solution are the linearity of the models

kh kn 1kv −

kf

and , and the gaussainity of the process and observation noises, and . kh 1kv − kn

 7

 2.3 Kalman Filter

Assuming that the restriction of linearity holds for both the system and

observation models we can write them as

1 1

(0,)
(0,)

k k k k

k
k k

F

k

x v

Q
R

x

v
n

− −= +

∼
∼
N
N

 (6)

k k k kH x ny = + (7)

Furthermore, if the process and observation noises are gaussian, Kalman Filter is

the optimal recursive solution for the Bayesian estimation problem.

Considering the case when 1kv − and are zero mean and statistically

independent, Kalman Filter algorithm is described by the following relationships:

kn

1 1 : 1 1 1 | 1, 1 | 1;(|) (k k k k k k kPp x y x m− − − − − −=)−N (8)

1 : 1 | 1, | 1;(|) ()k k k k k k kPp x y x m− −= −N (9)

1 : | , |;(|) ()k k k k k kPp x y x m k=N (10)

where

| 1 1 |k k k k kFm m− −= 1− (11)

 8

| 1 1 1 | 1
T

k k k k k k kP Q F P− − − −= + F

1)

 (12)

| | 1 |(k k k k k k k k kK y Hm m m−= + − −

1

 (13)

| | 1 |k k k k k k k kP P K H P− −= − (14)

where ,;(P)x mN is Gaussian density with argument x , mean and

covariance . We also assume

m

P (0,)k kQv ∼N and (0,)k kRn ∼N .

| 1
T

k k k k kS H P H R−= k+ (15)

is the covariance of the innovation term and

1

| 1
T

k k k k kK P H S −
−= (16)

is the Kalman gain.

Kalman Filter [2] is optimal in the sense that it minimizes the estimated error

covariance under the following conditions:

• Evolution of the state is according to a known linear equation.

• Observation model is a linear function of the state with an additive zero

 mean WGN with known covariance.

• Initial state is assumed to be a random variable with known mean and

 covariance.

• Process and observation noise sequences are mutually uncorrelated.

 9

2.4 Grid Based Methods

If the state is discrete and finite, grid-based methods can provide a good solution

as an optimal way to update the filtering density . Suppose the

discrete state

1 :(|)kp x y k

x consists of a finite number of distinct discrete states

{1,2,.........., }xN . For the state 1kx − , let 1 | 1
i
k kω − − denote the conditional

probability of each given the measurements upto time k-1. That is,

. Then the posterior pdf at k-1 can be

written as

1k
ix −

1 1 1 : 1 1 |Pr(|) i
k k k k k

ix x y ω− − − −= = 1−

)−−

k

k−

1 1 : 1 1 | 1 1 1

1

(|) (
Nx

i
k k k k k k

i

ip x y x xω δ− − − − −

=

=∑ (17)

Then, prediction and filtering equations are derived by substituting (17) into (3)

and (4), respectively.

1 : 1 | 1

1

(|) ()
Nx

i
k k k k k

i

ip x y x xω δ− −

=

= −∑ (18)

1 : |

1

(|) ()
Nx

i
k k k k k

i

ip x y x xω δ
=

=∑ (19)

where

 10

| 1 1 | 1 1

1
(|)i

k k k k k k

Nx
j i

j
p x xω ω− − −

=
∑� j

− (20)

| 1
|

| 1

1

(|)

(|)

i
k k k ki

k k

k k k k

i

Nx
j j

j

p y x

p y x

ωω
ω

−

−

=
∑

� (21)

If the state space is continuous the approximate-grid based method can be

similarly derived by discretizing the state space into Nx discrete cell states.

 11

 2.5 Extended Kalman Filter

Kalman Filter provides an exact solution for linear Gaussian prediction and

filtering problem. But in practice it is limited by the non-linearity and the non-

gaussianity of the physical world. If the functions (.)kf and in equations

(1) and (2) are non-linear then we need to use another method called Extended

Kalman Filter (EKF). Method depends on the local linearization of the functions

(.)kh

(.)kf and . Our previous assumption of gaussian and uncorrelated process

and observation noise sequences still holds. EKF is based on the following

approximations :

(.)kh

1 1 : 1 1 1 | 1, 1 | 1;(|) (k k k k k k kPp x y x m− − − − − −≈)−N (22)

1 : 1 | 1, | 1;(|) ()k k k k k k kPp x y x m− −≈ −N (23)

1 : | , |;(|) ()k k k k k kPp x y x m k≈N (24)

where

| 1 1 | 1(k k k k km)f m− −= −

ˆ

 (25)

| 1 1 1 | 1ˆ Tk k k k k k kP Q F P F− − − −= + (26)

| | 1 |((k k k k k k k k kK ym m h m−= + − 1))− (27)

 12

| | 1 |ˆk k k k k k k kP P K H P−= − 1− (28)

where and ˆkF ˆkH are local linearizations of (.)kf and . (.)kh

1| 1

ˆ ()k

x mk k

kF df x
dx = − −

= (29)

| 1

ˆ ()k

x mk k

kH dh x
dx = −

= (30)

| 1ˆ ˆ Tk k k k kS H P H R−= k+ (31)

1| 1 ˆ Tk k k kK P Hk S −
−= (32)

 2.6 Particle Filter

With the background knowledge of Stochastic filtering and Bayesian estimation

we now focus our attention on the Particle Filtering for sequential state

estimation. Particle Filtering is a kind of recursive Bayesian filter based on Monte

Carlo simulation. Main idea is to represent the required posterior density function

by a set of random samples with associated weights and to compute estimates

 13

based on these samples and weights. As the number of particles approaches

infinity Monte Carlo characterization converges to the true posterior pdf. Higher

the probability at a specific point, denser the particles concentrated around that

point. The particles evolve along the time according to the state equation. By

randomly sampling the state space we get a number of particles representing the

evolving pdf. However, since the posterior density model is unknown we choose

another distribution for the simplicity and call it as importance density.

 Figure 3 : Particle Filter illustration with importance sampling and resampling

If 0 : , 1}{ i i
k k ix Nsω = denotes a random measure characterizing the posterior pdf

 where 0 : 1 :(|kp x y)k 0 : , 1,...... }{ s
i

k ix = N is the set of support points with

associated weights , 1,...... }{ k s
i i Nω = and 0 : , 0,...... }{k j j kx x= = is the set

 14

of all states upto time k. The weights are normalized such that . Then,

the posterior density at k can be approximated as

1i
k

i
ω =∑

0 : 1 : 0 : 0 :

1

(|) (
Ns

i
k k k k

i

p x y x xω δ
=

≈ −∑)i
k

)k

 (33)

Validity of this approximation is guaranteed by the strong law of large numbers

(SLLN), which states that the average of many independent random variables with

common mean and finite variance converges to their common mean [8].

 Thus, we have a discrete weighted approximation to the true posterior,

. Weights are chosen by use of importance density. If the samples 0 : 1 :(|kp x y

0 :
i

kx were drawn from an importance density then the weights

in (33) are defined to be

0 : 1 :(|kq x y)k

0 : 1 :

0 : 1 :

(|
(|

i
k ki

k i
k k

p x y
q x y

ω ∝
)
)

 (34)

Where tells us that there is a proportionality rather than the exact equality. The

constant coefficient in order to turn (34) into a equation can be found by the fact

that

∝

1i
k

i
ω =∑ .

Main idea behind this equation can be summarized as follows: If the weight of a

sample at a specific suppport point is smaller than it should be, this means at that

point, the importance density that we proposed have a smaller value than the (.)q

 15

real density . Considering the fact that initially we have assigned equal

weights to all samples this results in an increase in the weight.

(.)p

As stated in [1], if we choose the importance density such that

0 : 1 : 0 : 1 1 : 0 : 1 1 : 1(|) (| ,) (|k k k k k k kq x y q x x y q x y− −=)−

)k

 (35)

we can obtain samples 0 : 0 : 1 :(|i
k kx q x y∼ by augmenting each of the

existing samples 10 : 0 : 1 1 : 1(|i
k kx q x)ky− − −∼ with the new state

0 : 1 1 :(| ,)k k k
i

kx q x x y−∼ . That is, once we have decided the samples for the

initial state we can update those samples in time by the state evolution equation

(we are going to define these steps in the SIS algorithm). If we express

0 : 1 :(|kp x y)k k kp x y− − (|)k kp y x
)

 in terms of , and

0 : 1 1 : 1(|)

1(|k kp x x −

0 : 1 : 1 0 : 1 : 1
0 : 1 :

1 : 1

(| ,) (|)(|)
(|)

k k k k k
k k

k k

p y x y p x yp x y
p y y

− −

−
=

0 : 1 : 1 0 : 1 1 : 1
0 : 1 1 : 1

1 : 1

(| ,) (| ,) (|
(|)

k k k k k k
k k

k k

p y x y p x x y p x y
p y y

− − −
− −

−
= ×)

 16

1

0 : 1 1 : 1
1 : 1

(|) (|) (|
(|)

k k k k
k k

k k

p y x p x x p x y
p y y

−
−

−
= ×)−

1)−

 (36)

1 0 : 1 1 :(|) (|) (|k k k k k kp y x p x x p x y− −∝ (37)

The weight update equation is obtained by substituting (35) and (37) into (34) as

1 0 : 1 1 :

0 : 1 1 : 0 : 1 1 :

(|) (|) (|)
(| ,) (|)

i i i i
k k k k k ki

k i i i
k k k k k

p y x p x x p x y
q x x y q x y

ω − −

− −
∝

1−

1

1
0 : 1 1 :

(|) (|)
(| ,)

i i i
k k k ki

k i i
k k k

p y x p x x
q x x y

ω −
−

−
= (38)

If moreover 0 : 1 1 : 1(| ,) (| ,)k k k k kq x x y q x x y− k−= , which is generaly true

because of the first order markovian characteristics of the system model plus the

observation model itself , importance density becomes only dependent on

previous state 1kx − and the latest observation . The weight update equation

is then

ky

1
1

1

(|) (|)
(| ,)

i i i
k k k ki i

k k i i
k k k

p y x p x x
q x x y

ω ω −
−

−
∝ (39)

And the posterior filtered density is approximated as

 17

1 :

1

(|) ()
Ns

i
k k k k

i

p x y x xω δ
=

≈ −∑ i
k (40)

As , the approximation in (40) approaches the true posterior. sN →∞
SIS algorithm consists of recursive propagation of the weights and support points

as each measurement is received sequentially.

1 11 1

1
 i=1:Ns

 - Draw

END

(| ,)
 - Calculate according to (39)

] [,]

Algorithm 1: Sequential Importance Sampling

[{ , } { , }

.

.
i

i

Ns Nsk k k k k

k k k k
k

i i i i

FOR

FOR

q y

SIS

x x x

x x y

ω

ω ω− −

−

=

∼

 Figure 4: Sequential Importance Sampling Algorithm

Altough we now have a viable statistical approach for approximating a recursive

Bayesian filter, the SIS algorithm has a significant practical shortcoming. After a

few iterations all but one particle will have negligible weight. This situation is

called degeneracy phenomenon and causes to devote large computational effort to

update the particles whose contribution to the approximation to is

almost zero. It has been shown [3] that the variance of the importance weights

can only increase over time and thus it is impossible to avoid degeneracy.

1 :(|)k kp x y

Effects of degeneracy can be reduced by the method of resampling. Resampling

step is aimed to eliminate the samples with small importance weights and

 18

duplicate the samples with large weights. Resampling usually occurs between two

sampling steps. In resampling step particles and associated importance weights

{ , }k k
i ix ω are replaced by the new samples with equal importance weights

(
1i

sN
ω =) where sN is the total number of samples that we have drawn.

Resampling schedule can be deterministic or dynamic. In deterministic framework

resampling is taken at every time step after running the sampling algorithm. In a

dynamic schedule, a sequence of thresholds are set up and the variance of the

importance weights are monitored; resampling is taken only if the variance

exceeds the threshold.

Although the resampling step solves the problem of degeneracy, it introduces

some other practical problems. It limits the opportunity to parallelize since all the

particles must be combined. Also since the particles with high weight are

statistically multiplexed this results in a loss of diversity. This second problem is

known as sample impoverishment [4] and is severe especially in the case of small

process noise.

 19

1
s

i i-1

*
1 1] [

Initialize the CDF:c =0
 i=2:N

 - Construct CDF: c =c +
END
Start at the bottom of the CDF:i=1

Algorithm 2: Resampling

[

Draw a starting poin

]{ , } { , },

..

...

ik

j j Ns i i Ns
j i

jk k k kRESAMPLE

FOR

FOR

x xi

ω

ω ω= ==

-1
j= 1+ s

j > i

 *

*

-1
s

-11 s
s

N
c

N

 - Move along the CDF:

[0, N]
 j=1:N

(1)
 - WHILE

i=i+1
 - END WHILE
 - Assign sample :
 - Assign weight :

- Assign parent :
END

t:

.

.

j i
k k

j
k

j

x x

FOR
j

i i
ω

=

−

=
=

∼

u u
u

u U

FOR

 Figure 5: Resampling Algorithm

One of the critical point in the sequential importance sampling algorithm is the

choice of proposal density. SLLN guarantees the convergence to the true posterior

as . However, to obtain satisfactory performance for finite sN →∞ sN , more

care is required when choosing . 0 : 1 :(|k kq x y)

Theorem :

To reduce the effects of degeneracy in the SIS algorithm a reasonable choice of

 is the distribution that minimizes the conditional variance of the 1(| ,)k k kq x x y−

 20

importance weights. This proposal distribution that minimizes

1var | ,[]i i
q k k kx yω − is

1| , | ,() (iopt k k k k k kq x x y p x x y− = 1)i
− (41)

Proof [3]:

Beginning with (39), we have

1
1

1

(|) (|)
(| ,)

i i i
k k k ki i

k k i i
opt k k k

p y x p x x
q x x y

ω ω −
−

−
= (42)

1

1
1

(, |)
(| ,

i i
k k ki

k i i
k k k

p x y x
p x x y

ω −
−

−
=

)

1
i

−

 (43)

 (44) 1 (|)i
k k kp y xω −=

where we used the conditional independence of given ky kx to go from (42) to

(43). Thus for the proposal distribution suggested in (41), the weight i
kω is

conditionally independent of the actual draw of the current state i
kx , or

, as stated. There are two problems with the optimal

proposal distribution. First, it requires the ability to sample from

, a distribution that may be nonstandard. Second, calculation

of

1var | ,[opt
i i

q k k kx yω − =] 0

)1| ,(ik k kp x x y−

i
kω as specified in (44) requires the evaluation of the integral

1(|) (|) (|)i
k k k k k k d1

i
kp y x p y x p x x x− = ∫ − (45)

 21

which may be analytically intractable. There are two cases where the use of

is possible. The first is when

optq
kx is from a discrete finite state space. In that case,

the integral in (45) becomes a sum and sampling from is

possible. The second case occurs for dynamic models with additive Gaussian

noise processes and linear measurement equations. With this model, equation (45)

can be solved analytically because both terms in the integrand are Gaussian.

Furthermore, because the measurement process is linear, is

also Gaussian and can be sampled.

1| ,()ik k kp x x y−

1| ,()ik k kp x x y−

There is one more possibility for the proposal distribution. Although it may be far

from optimal, a popular and easy-to-implement choice is the so called prior

distribution.

1| , |() (ik k k k kq x x y p x x− = 1)i
−

1

 (46)

Sampling from the prior is often straightforward. For instance, in the case of

additive noise model , 1()k k k kf x vx − −= + , sampling from

amounts to sampling from the noise distribution

1(|)i
k kp x x −

1(k)p v − . Furthermore, the

weight update equation assumes even a simpler form,

1 (|i i i
k k kp y xω ω −=)k (47)

Although the prior density as proposal distribution does not take the current

measurement into account and thus is suboptimal in that sense, we are going

to use it in our simulations in this thesis.

ky

 22

Advanced and more efficient particle filtering techniques like the Auxiliary

Particle Filtering [9], Marginalized Particle Filtering [10], Unscented Particle

Filtering [11], [12] and the Rao-Blackwellized Particle Filtering [13] over the

generic method described above exist but they are not going to be discussed in

this thesis.

 23

 CHAPTER 3

 PARTICLE FILTER BASED TARGET TRACKING

3.1 Description of Tracking Scenario

Because it provides the ability of a broad spatial coverage and multiplicity in

sensing aspect, Sensor Networks are ideally suited for target tracking applications.

Our problem of sensor scheduling for target tracking in sensor networks is

illustrated in Figure 3. We don’t have a road constraint and therefore no prior

knowledge of possible vehicle trajectories can be exploited.

 24

Region of Interest

Slave
sensor

Master
sensor

Target
Data
Fusion
Center

Active
Cluster

 Figure 6: Tracking scneario. A vehicle moves through the sensor field.
 Active cluster is shown in red color.

We consider the task of tracking a moving vehicle through our two dimensional

stationary sensor field under surveillance while conserving power by minimizing

the number of active sensors. Before we run our tracking algorithm there is a set-

up procedure which works as follows : First, we randomly distribute all the

sensors into our region of interest. Then we again randomly decide which of the

sensors will be masters. Master sensors are basically responsible for

communicating with the data fusion center. Remaining sensors will be called

slaves. Slave sensors report the position of target to their master periodically or if

there is no target detected, they report this situation as well . After randomly

distributing both type of sensors, we associate each slave with a master by runing

 25

our master-slave association algorithm. Basic criteria for this process is the

Cartesian distance between the master and the slave sensors. Each slave is

associated with the closest master. Another practical real world constraint that we

take into account at this point is the service capacity of a master node. Maximum

number of slaves that we can associate with each master is defined. If this limit is

exceeded for any of the master during the set-up process than the remaining slaves

are associated with another master. If we summarize our assumptions :

• We track a single target.

• We know the initial position of this target.

• Target state to be tracked consists of its two dimensional position and

velocity.

• There are randomly distributed M stationary master sensors.

• There are randomly distributed S stationary slave sensors.

• Each slave sensor is associated with a master.

• Maximum number of slaves that can be associated with a master is C.

• At each time step there is only one active master communicating with the sink.

• All masters can communicate with each other.

• Slaves can communicate with their associated master sensor only.

 26

Algorithm 3 : Master-Slave Association

max
max

max

Number of Slave Sensors
Number of Master Sensors
Max Number of slaves that can be

 associated with a master

Master sensors
Slave sensors

Calcula

S
M
C

�
�
�

�
�B

A

max
max

max

te Distance from all slaves to all masters:
FOR i=1:M

FOR j=1:S

END FOR
END FOR

Assign each slave to the most close master:
FOR j=1:S

 - || ||

-

. .
..

.

D[i : j] Bj

[

i= A -

min
IF capacity of ith master <= Cmax

Assign slave j to master i
END IF

END FOR

 =

.

..

d ,i] (D[:, j])

 Figure 7: Master-Slave association algorithm

The driving force behind this scenario is the limiting conditions of the physical

world. Above scenario for instance, can be exactly achieved by throwing the

sensors away from a plane. Since the average communication time and the power

consumption of the master sensors will be much more than the slaves, they can be

equipped with longer life batteries and higher output transmit power RF

communication ICs. That means we can differentiate master and slave sensors

before the setup process and distribute both type of sensors in a completely

 27

random fashion. Number of master sensors and the number of slaves that each

master can give service is a matter of optimization.

Another advantage of this scenario is the efficient use of bandwith when

compared with the case each sensor sends the target position individually to the

sink. By limiting the output transmission power of the slave sensors we can

overcome the possible interference problem between the neighboring clusters as

well. The reader may refer to [5] and [7] for a detailed description of different real

world scenarios.

As mentioned before, our main objective is to accurately track the target while

minimizing the number of active sensors. Only the active sensors provide

observation about target position, otherwise they are configured to remain in sleep

mode to reduce the power consumption. Thus, activation of sensors within a

specified distance from the current target position estimate is quite important.

Several different formulations of this problem are possible as target of interest

moves through our randomly distributed sensors. Our approach at this point is

simply to compare the current position estimate of the target with the position of

each master sensor at every time step and to activate the associated slaves of the

closest master for the next epoch. Here we are using the assumption that master

sensors are always active and thus leadership can be immediately transferred from

one master to another. Every master can activate its own slaves whenever needed.

More sophisticated algorithms for this procedure can be implemented [7] such as

the adaptive sensor activation regions. This problem will not be addressed in this

thesis.

 28

 3.2 Models

We are now going to define system and obsevation models given in (1) and (2) in

a detailed manner. For the 2-dimensional case state vector kx contains four

elements: positions in the x and y directions and velocities in the x and y

directions.

1

2

1

2

k

k
k

k

k

x
x
x
x

x
⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

= �
�

⎥ (48)

where 1kx and 2kx are the position in the x and y directions, respectively and

1kx� and 2kx� are the velocities in x and y directions, respectively. Kinematics

for the target can be written as

2
1 1 1 1 1 1 1 1 1

1 1
2 3

k k k k kt tx x x x x− − − −
3t+ Δ + Δ + Δ= � �� ��� (49)

2
2 2 1 2 1 2 1 2 1

1 1
2 3

k k k k kt tx x x x x− − − −
3t+ Δ + Δ + Δ= � �� ��� (50)

tΔ is the time difference between state transitions or simply the sampling

frequency of us. The parameters 1kx�� and 2kx�� represents the acceleration in the

x and y directions, respectively. Finally, 1kx��� and 2kx��� are to represent the

variations in the acceleration in two directions again. We model the acceleration

components using random noise. Using (49) and (50), the state equation can be

written as

 29

3 2
1 1 1

3 2
2 2 1

21 1 1

2 2 1

 3 0 2 0 1 0 0
0 1 0 0 3 0 2
0 0 1 0 2
0 0 0 1

k k

k k

k k

k k

t tt
t t tq t

x x
x x
x x
x x

−

−

−

−

Δ ΔΔ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ Δ Δ⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥ Δ
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

=� �
� �

1 2 1
1

2
1

3
1

2 4
1

0 0
0 2 0

k

k

k

k

v
v

t v
t t

−

−

−

−v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦

(51)

where is used to control the intensity of the process noise. This equation can

be expressed as

q

1 2

1k k kF Q 1x x v−= + − (52)

where is the state error covariance matrix. The matrix Q models the

acceleration terms in the x and y directions. The vector is a Gaussian random

vector of zero mean, unit variance and independent components. The observation

vector can simply be linearly related to the satate vector as

Q
kv

k k Ry knx= + (53)

where R denotes the measurement error covariance matrix. The noise component

 is an m x 1 vector whose elements are generated by a Gaussian random

variable of zero mean and unit variance, where m is the number of slave sensors

used to generate observations at time step k.

kn

We want to emphasize that the reason behind our choice of this linear observation

model instead of nonlinear range and bearing model is our application itself.

 30

Based on this model we use the particle filtering method to estimate the state of

the system. As mentioned earlier, we use the prior distribution as the importance

density. At time step k, having the samples ikx with associated weights i
kω ,

the estimate of the state is given by

1

ˆ
Ns

i i
k k

i

kx xω
=

=∑ (54)

If we assume each i
kω as the discrete probability masses at corresponding

support points, then equation (54) can be thought of as an MMSE Estimator

which is optimum only for Gaussian densities.

And the estimation error covariance matrix is given by

1

()(ˆ ˆ
Ns

i i i
k k k k k k

i

P)Tx x x xω
=

= − −∑ (55)

We resample the particles at each time step instead of using dynamic resampling.

After resampling, the weights are all initialized to 1 Ns to overcome the

degeneracy.

3.3 Sensor Scheduling

In sensor scheduling tasks, we first need to define a cost function. This cost

function should consider the combination of the following criteria depending on

the physical situations and the specific problem at hand.

 31

• Cost of bandwith

• Cost of sensor usage

• Cost of power

• Cost of accuracy of measurement

There may be several different costs for different applications. But the ones that

we mentioned above are the most common ones. In this thesis when scheduling

our sensors we only considered the cost of power assuming that power

consumption is the most important constraint in sensor network applications.

Defining

�M Number of master sensors

�S Number of slave sensors

�A {Ai; i = 1,....,M } set of master sensors in our region of interest

�B {Bi; i = 1,....,S } set of slave sensors in our region of interest

We can define the cost function at time step k for a master sensor as the cartesian

distance between the position estimate of target and the position of that master

ˆ|| ||ik kC x −� Ai (56)

and finally our scheduling decision is that we choose the master sensor for which

the cost function is minimized.

opt =A
i

minarg iC k (57)

 32

Then, the corresponding master sensor takes the leadership and activates its

associated slaves immediately. For the next time step we use the observation

vector obtained by this new sensor set.

Proposed tehnique is quite novel and applicable for only a single target.

Sophisticated methods for tracking multiple maneuvering targets like Probability

Hypothesis Density Filter [14] , [15] can be also examined.

3.4 Simulations and Results

In this section, we will discuss an example of target tracking using our proposed

sensor scheduling algorithm. For the simulations the trajectory for a target is

generated in a 2-dimensional cartesian coordinate system. Observations are made

using sensor scheduling and the particle filtering algorithm is used for target

tracking. Throughout the simulations Matlab 7.0 was used.

Initially 64 master sensors and 256 slave sensors are distributed randomly in the

area x = (-8000,8000) and y = (-8000,8000). Then, our simple clustering

algorithm is applied. Maximum number of slave that a master can give service is

assumed to be 7.

Sampling period, , was choosen to be 2 seconds. The process noise intensity

factor in (51) was taken as 0.01 and the initial position of target was taken to

tΔ
q

be (x,y) = (10,0). The measurement error covariance matrix in (53) was assumed

to be 4 by 4 identity matrix noting that the accuracy of position measurements

actually defines it. The state covariance matrix in (51) is defined as

 33

2.67 0 2 0
0 2.67 0 2
2 0 2 0
0 0 0 2

Q
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥ (58)

The last one directly comes from tΔ = 2. For the particle filter algorithm we used

a total of 200 particles and 1000 time steps.

-6000 -5000 -4000 -3000 -2000 -1000 0 1000
-12000

-10000

-8000

-6000

-4000

-2000

0

2000

X-axis

Y
-a

xi
s

True Trajectory
PF Estimate

 Figure 8 : True trajectory and the estimated trajectory

 34

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
Slave Positions

 Figure 9 : Slave Positions

 35

-8000 -6000 -4000 -2000 0 2000 4000 6000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

Used Sensor Positions

 Figure 10: Activated sensors throughout the track. Each color indicates a
 cluster.

 36

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

Time

rm
s

po
si

tio
n

er
ro

r i
n

x
di

re
ct

io
n

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Time

rm
s

po
si

tio
n

er
ro

r i
n

y
di

re
ct

io
n

 Figure 11 : rms position errors

 37

 CHAPTER 4

 CONCLUSION AND REMARKS

In this thesis we have presented a recursive Bayesian formulation for target

tracking and proposed a simple sensor scheduling technique in order to reduce

power consumption of the system. We discussed in detail the Bayesian approach

to target tracking. In particular, we have formulated the target tracking problem

using state-space equations. Tracking was considered as a sequential estimation

problem and particle filtering algorithm was implemented. In order to schedule

the sensors in our region of interest we have compared the position estimate of our

target and the master sensors. Approach can be named “Closest Master Activate”

since the closest master takes the leadership and its associated slaves were used to

obtain observations for the next time step. We observed that our scheduling

results are quite satisfactory. Over all power consumption of the system is

extremely low when compared to the case where no scheduling is done.

 38

References

[1] M.S. Arulampalam, S. Maskell, N.Gordon, T. Clapp “A tutorial on Particle

Filters for Online Nonlinear/non-Gaussian Bayesian Tracking” IEEE Trans on

Signal Processing, vol 50, pp 174-188, February 2002.

[2] R.E. Kalman “A new approach to linear filtering and prediction problem”,

Trans. ASME, Ser. D, J Basic Eng., vol.82, pp. 34-45, 1960

[3] A. Doucet, S.Godsill, C.Andrieu, “On Sequential Monte Carlo Sampling

Methods for Bayesian Filtering” , Statist. Comput., 10, 197-208, 2000

[4] J. Carpenter, P.Clifford, P. Fearnhead, “An Improved Particle Filter for Non-

linear Problems”, IEEE proc. Radar, Sonar and Navigation , vol. 146, pp. 2-7,

February 1999

[5] N. Xiong, P. Svensson, “Multi-sensor management for information fusion:

issues and approaches,” Information fusion 3, (2002), 163-186

[6] X. R. Li, V.P.Jilkov, “Survey of maneuvering Target Tracking”, IEEE Trans.

On Aerospace and electronics systems,” vol. 39, No.4, October 2003

[7] S. Ghiasi, A.Srivastava, X. Yang, M. Sarrafzadeh “Optimal Energy Aware

Clustering in Sensor Networks,” Sensors 2002, 2, 258-269, July 2002

[8] D. Crisan, A.Doucet,“A Survey of Convergence Results on Particle Filtering

Methods for Practitioners,” IEEE Trans. On Signal Processing, Vol 50, No 3,

March 2002

 39

[9] M.K. Pitt, N.Shephard, “Filtering via Simulation: Auxilary Particle Filters,”

Journal of the American Statistical Association, Vol 94, No 446, 1999

[10] T. Schön, R. Karlsson, F. Gustafsson, “The Marginalized Particle Filter in

Practice,” Proceedings 2006 IEEE Aerospace conference, 2006

[11] R. Merwe, A. Doucet, N. Freitas, and E. Wan, "The unscented particle filter,"

Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering

Department, 2000.

[12] Y. Rui and Y. Chen, "Better Proposal Distributions: Object Tracking Using

Unscented Particle Filter," Proc. IEEE Conf. Computer Vision and Pattern

Recognition, vol. II, pp. 786-793, 2001.

[13] E. Arnaud, E. Memin, “An Efficient Rao Blackwellized Particle Filter for

Object Tracking, ” IEEE International Conference on Image Processing 2005.

ICIP 2005., vol 2, pp 426-9, September 2005.

[14] B. Vo, S. Singh, A. Doucet “Sequential Monte Carlo Implementation of the

PHD Filter for Multi Target Tracking,”, Proceedings of the Sixth International

Conference of, Information Fusion 2003, vol 2, Issue 2003, pp 792-799, 2003.

[15] R. P. S. Mahler, “Multitarget Bayes Filtering via First-Order Multitarget

Moments”, IEEE Trans. On Aerospace and electronics systems,” vol 39,

No 4, pp 1152-1178, May 2003

 40

