ABSTRACT

DATA ACCESS LAYER CODE GENERATOR

GOKCE KUCUKEREN

Layering techniques are commonly used in order to supply the operational requirements of
today’s complex enterprise applications. The codes developed for the Data Access Layer
(DAL), which is the foundation of most layered applications, increases the time of projects’
development phases, and the bugs in these manually written codes makes the data access
unreliable. In this thesis, a tool is developed to generate the required codes for DAL. The
automatically generated codes using this tool, Data Access Layer Code Generator, decreases
the time wasted for DAL development and makes the data access reliable due to their uniform
structure. Data Access Layer Code Generator is able to build the foundation of the layered
architectures with its user-friendly interfaces integrated on the development platform and with

the functionalities provided to the developers.

OZET

VERI ERISIM KATMANI KOD URETICI

GOKCE KUCUKEREN

Gliniimiliziin kompleks uygulamalarinin operasyonel gereksinimlerini karsilamak iizere
katmanlama teknikleri yaygin olarak kullanilmaktadir. Katmansal yapilarin temelini olusturan
Veri Erisim Katmani1 (DAL) i¢in gelistirilen kodlar, projelerin gelistirme siirelerini uzatmakta
ve elle yazilan kodlar igerisindeki hatalar, veri erigsimini giivensiz kilmaktadir. Bu tezde, DAL
icin gereksinim duyulan kodlar iireten bir ara¢ gelistirilmistir. Bu Veri Erisim Katmani Kod
Uretici araci kullanilarak, otomatik olarak iiretilen kodlar, DAL gelistirilmesi i¢in harcanan
stireleri kisaltmakta ve tek bicimli yapilar1 sayesinde veri erisimini giivenilir kilmaktadir. Veri
Erisim Katman1 Kod Uretici, gelistirme platformuna entegre edilmis, kullanici dostu
araylzleri ve gelistiricilere sagladigi fonksiyonaliteler ile katmansal yapilarin temelini insa

edecek kabiliyete sahiptir.

II

ACKNOWLEDGEMENTS

I would like to express my thanks to Prof. Dr. Selahattin Kuru for his comments, help and
supervision on the topic; and also I would like to thank all people that support me by giving

intelligent ideas, and psychological support.

III

TABLE OF CONTENTS

ABSTRACT ...coiiinneiiiincrnniccsssnnicsssssssesssassssssssssssssssssssssssnans I
OZET a..oiiiiiiiinnrsnnnnsiicssssssssssnssssesssssssssssssssssesssanssssssssssens 11
ACKNOWLEDGEMENTS ...ccciiiiiiiimneniiiicissimmmsmssiiecsss 111
TABLE OF CONTENTS caueiiiiiiiiiiinnestttiicessssssssssssssesssssssssssssssssesssssssssasssssssssssssssssasssssasssss v
LIST OF FIGURES ...ouuutiiiiinniicnnnnniecsssnniesssssssessssssssesssssssssssssssssssssssssssssssssasssssasssssssssssssssss VI
LIST OF TABLESttiiiinniiinnnnnenicssssnssecsssssssesssass VIII
1 INTRODUCTION....cccoiiinnnnnnsiicccssscssssssssssscsssssssssssssssesssasssss 1
2 CODE GENERATION IN LAYERED DATABASE APPLICATION.ccccceceececcnnnee 3
2.1 APPlICAtioN LaYEIING......veiiiiiieiiieeiiieee ettt et e e e e eaeeenaeeas 3
2.2 (0104 [€ 1531 1S 15 o) s RS URRPRPRP 9
23 Code Generation For Database Layercccoceviiiiriiiniineniiinieiceicneceeeseenns 10

3 TECHNOLOGIES USED.....coiiiiiiininnnmmenssimcossasssssssssss 12
3.1 INEt FIamMEWOTK.......eoiuiiiiiiiieciiecie ettt ettt et e e e esbeeennes 12
3.1.1 Common Language RUNTIME.........ccccevciiriiieiiiiriieniesieete ettt e e esseesaessee s 12

3.1.2 The .Net Framework Class LiDIaryccccccvevierieiieiieeieerecieeieesresnesreeneesseesaesseens 14

3.2 OVEIVIEW OF CH oottt ettt e e et e e s e e e sabeeesnaeeesseeenens 15
32,1 ClASSES cuuiiiiiiieeiiieeieeeiieeeitee ettt e ev e e st e et e e sba e e tbeeaabee e tbeeasbteetbeeasbae e tbeeasbeeenraeessaeenraeenees 16
3.2.2 Attributes And RefleCtiONScccueieciiiiiiiiiiiieiieciee ettt eee e e eve e e 17

3.3 Visual Studio 2005c.ueiieiieeeeeeee e e 20
3.3.1 Extensibility And Automation in Visual Studio 2005..........cccccveriiniiniinieieeeeeeeene 20

34 ADO INCE ot e e e e et e e e e e ta e e e e aaaaeeeearaaaeaans 24

4 CODED WORK ...uueiiiiiinniicnssnniessssssesssssssssssssssssssssssssssssssasssssssssssssssssssssssssasssssssssssssssss 27
4.1 “DALCodeGeneratorLibrary” Library.........ccocccoeoienieniiienienieeeeceeee e 27
4.1.1 “CSClassGeNerator” ClaSScccvieriieiciieeiieesieeeireeesreeesteeeseeeesreeessseessseesssesessseesseeans 28
4.1.2 “CSPFCIasSGENerator” ClaSSccueeeeeiueeeeieirieeeeeiteeeeeeiteeeeeeireeeeeeitreeeeeiaaeeeeeteeeeeerreaeenns 30
4.1.3 “FieldDescription” Classccoueeuerrieereerieniieeie et eieesteesitesee st eeeesteeeeesaeesaeesanesaseenne 33
4.1.4 “ClassRelationShip” Classcceeeuerriierienieiie ettt ettt e s eeaeeeae e 34
4.1.5 “RelationshipFields” Classccoeoirriiiriierienieeie ettt e s 34

vV

4.1.6 “CSXMLCIasSGENErator” Class........ccueeiiieeiuiieiiieeiieeeireeeiteeeiteeesreeeereeesaseesaesessseesveeens 35
4.2 “DALHEIPEr” LIDIATY ..oocuiieiieeiiieiieciie ettt ettt ere et ebeeseeesveesaeesseesseeennas 35
421 “BaSEDAL” ClaSSceiuiiuieieiieiieie sttt ettt sttt sttt sttt b ettt 36
4.2.2 “DBCoNnectionHEIPer” Classcccecverierierieeieeiieieesieeseesresseeseesseesseesseessnessnesssesnns 37
4.2.3 “IDBSpecificHandler” INterface...........covveveerieiiieiieieeiesiere st 39
4.2.4 “DBFieldNameAttribute” Classccecieiererieieriieieie ettt 40
4.2.5 “DBRelationAtribute’ CIaSS......c.cceeierireieieeieieieetteee st eeeste st eee et e e seeeeseeeneeaeeees 40
EXAMPLE USE OF PROPOSED TOOLcuuiienviicssricssancssssrsssssssssssssssssssssssssssnsses 42
5.1 Presentation Of The Database Used In Demonstration.............cceceevieeriienieenneennens 42
5.2 Recommendations To Create DAL Packagescccccoevieriieniieniieniecieeieeieeien 49
53 Generation Of DAL Codes......couiiiuiiiiiiiieiiieiee e 50
54 Developing An ASP .Net AppliCationcceeveerieniriinieiienieneeeeeeeeete e 68
5.4.1 Creation Of An ASP INET Project......cccviiiiiiiiieeiie ettt evee e vee s ve e 68
5.4.2 Adding Components To A Web FOrm........ccccocviiviiiiiiiiiiiecic e 69
5.4.3 Preparing Applications FOr DAL USaZE.........cccuveriiieriieiiieeiieesiee e eee e e 70
544 USaZE OF DAL ClaSSESeeutiriiriieieriieiteiienitetesit ettt sttt sttt sbt ettt et st esteseeeaaenne 71
CONCLUSSION AND FUTURE RECOMENDATIONScccoveveeecsssnnreccssnssacssnnnes 78
REFERENCESuuuiiiiiiiniiinnniinnniinsticnsnsisssssisssssisssosssssssssssss 79

LIST OF FIGURES

Figure 2.1 General view of a layered applicationccceevueeriieriieniiieiieeie et 4
Figure 2.2 OSI 7 Layer MOAEccuviiiiiieeiieeeeeee ettt e 5
Figure 2.3 Three Layered Application ArchiteCtureccoceeviiiiiiiniiiiniieiieeieee e 6
Figure 3.1 .Net Frameworkcccooiiiiiiiiiiiiiieceee et 14
Figure 5.1 Northwind Database Diagramccccooeevirieiieniiiienieieeescee e 44
Figure 5.2 New Database USET..........cccciiieiiieiiiieeciieesieeeeteeeereeeiteeetteesveeesveeesveeesnneeesnseeens 45
Figure 5.3 New Login NAME........cocuiiiiiiiieiiieiieee ettt ettt ettt et 45
Figure 5.4 SQL Server Login Properties General Tab..........ccccoocveviiiiniiniininicnieenieeeee 46
Figure 5.5 SQL Server Login Properties Data Access Tab........ccccoecveevieiiieniencieenieeieeieeen. 46
Figure 5.6 Server Explorer Data Connection MenU...........cceevuirieriienienienieenieeieniceie e 47
Figure 5.7 Add Connection Wizardccoeeeiiiiiiiieiiie ettt evee e 48
Figure 5.8 Add Connection Wizard Advanced Properties...........ccoceeverueneereniicneeneneeneenen. 48
Figure 5.9 Visual Studio 2005 File MENU.......ccceriiriiiiiiiiniieiciiereeesecee e 51
Figure 5.10 New Project Wizard...........cccoooieiiiiiiiienieeceecee et 51
Figure 5.11 Solution EXplorer MEeNU.........cccueeeiiiiiiiiieiiie ettt e 52
Figure 5.12 Add New Project Wizard..........cooiuieiiiiiiiiiiiceece e 53
Figure 5.13 Solution EXplOrer MENU........ccccciiiiiiiiiniiiiiiisieeicetese e 53
Figure 5.14 Solution EXPIOTET.......ccuiiiiiiiieiieieceee e 54
Figure 5.15 Solution EXPIOTeT.......ccviiiiiiiiiiece ettt e e e 54
Figure 5.16 Visual Studio ToOIS MENUccccecuiriiriiiiiniiiiiiiiiciecieetcseee et 54
Figure 5.17 DAL Code Generation Wizardcoceeveriiniiniiiienieieniesieeeeeesieeee e 55
Figure 5.18 Connection Test Result FOr SUCCESS.......coouiiiiiieiiiiiirieieeieeeeeseee e 55
Figure 5.19 Connection Test Result FOr Error..........coooviiiiiiiiiiieiic e 56
Figure 5.20 DAL Code Generation Wizard Schema EI1rorcocooviviiniiiinicniinciicnceee 56
Figure 5.21 DAL Code Generation Wizard With Loaded Schema..........c..ccccoecveniinininennen. 57
Figure 5.22 DAL Code Generation Wizard Before Generation Processccccevevieneennen. 60
Figure 5.23 Solution Explorer After Generation............cccccveeeeveeeiieeeiieeecieeciee e eevee e 61
Figure 5.24 Code Editor After Generation.............ccoeevuerierieiiciienieeneeneeeeeesie et 61
Figure 5.25 Solution Explorer After All Generation Processccccevcveveenenieneeneniencenene 62
Figure 5.26 Initial View Of Relation Configurator..........c.eeeeruieienienieniieneeieeesceieeee e 62
Figure 5.27 Relation Configurator For New Relation Definitioncccceeveviveeciienciieennene 63

VI

Figure 5.28 Method To Call Selection Part ©..........cccoeoeiiiiieiiiiinieieeeeeeeee e 64

Figure 5.29 Method To Call Selection Part 2............coocuiiiiiieeiiieiiie et 65
Figure 5.30 Method To Call Selection Parameter Number Errorccocoeveiiiniininincenen. 65
Figure 5.31 Relation Configurator For Update Existent Relations..........ccccecevveneincnieneennene 66
Figure 5.32 Visual Studio 2005 Add New Web Site Wizard...........cccoovevirerienciienieeieeieeee. 69
Figure 5.33 Visual Studio 2005 TOOIDOXccccuiiiiiiieiiie ettt ettt e 70
Figure 5.34 Solution Explorer When the Preparation Completedccccoceeieniincniineenen. 71
Figure 5.35 Query Section Of Default.aspX........ccccvevieiiiiiieiiieieeie e 72
Figure 5.36 Products Listed On Default.aspXccccovveriierieiiieniieniieieecie et eve e eve e 74
Figure 5.37 The components For Loading The Productccccceevviiiiiiiiniiiiceeeie e 74
Figure 5.38 The Form State After Loading The Product..........c.cccoceeviniiniiiiniiniiniiiccee 75
Figure 5.39 The Form State After “Edit Product” Button Pressedcocovevieniencniennenen. 75
Figure 5.40 The Form State FOr An INSertion............cceccveerieriienieniiciie e 76

VII

LIST OF TABLES

Table 3.1 Add-in Installation LOCAtioNS.c.c.coviiiiiiiiiiiieieeeeee e 24
Table 3.2 Data Provider INterfaces..........cccuvieiiieeiiiieciie et e 26
Table 5.1 Categories TabIe.......cc.occiiiiiiiiiieeee ettt st beesae s 42
Table 5.2 SUPPIET TaDIEccueeiiieiiiiieeeeee ettt e ereessreennee s 43
Table 5.3 Products Table.........couiiiiiiiiiiieeeee ettt 44

VIII

1 INTRODUCTION

Today’s enteprise applications compose of a large number of components, which makes the
systems too complex to comprehend in their entirety. The high complexity of the applications
possibly causes serious problems on supporting such operational requirements as
maintainability, reusability, scalability, robustness, and security. To deal with these issues, the
seperation of the components into layers can be the solution. The term, layer, refers to a
collection of application components, that focuses on a specific aspect of the application and

builds upon the facilities of other layers.

A common practice of layering is dividing the application into three layers, that are the
presentation layer, the business layer and the data access layer (DAL). The presentation layer
contains elements responsible for providing some form of communication with a human
being, such as an element in the user interface. On the other hand, the business layer contains
elements responsible for performing some kind of business processing and the application of
business rules. Lastly, the data access layer contains elements responsible for providing

access to an information source, such as a relational database.

While each layer is responsible of its duty, the communication between the layers is to be
provided with the business entities (BE). Business entities are data containers, that carry the
necessary data between layers. Each layer accepts an entity, which contains the required data
to be processed, and passes the same entity or a new entity to the other, after its process has
been completed. For instance, data access components will often return business entities
instead of database-specific structures. This helps significantly in isolating database-specific

details to the data layer.

In this thesis, we develop and present a tool that helps the developers by building the data
access layer in their layered applications. The tool, Data Access Layer Code Generator, is
designed to save the time, wasted by developing data access codes, with a generation process
provided within a simple wizard. The usage of the tool produces all the required data access

functionalities and the business entities of the layer.

A brief description is given below for each achieved work done during the development phase

of Data Access Layer Code Generator;

e The DAL and BE codes generation
The codes developed for data access purposes may reach thousands of lines, but the
tool makes their development process available with a few entries on a wizard.

e Microsoft Visual Studio 2005 integration
Data Access Layer Code Generator is a tool integrated on the development platform,
Visual Studio 2005. It behaves as a part of the platform, and does not executed
externally.

e DB2 and Miscrosoft SQL Server support
The data access support is provided for the two most popular database management
systems. The tool’s structure is also designed to support more systems with a little
modification requirement.

e Database schemas
The developers are also able to store the database schemas, which are the attributes of
the generated codes. This function decreases the time of the regenaration of the codes,
when the database structure is changed.

e Relationships between generated codes
Through the tool, the developers are able to relate generated codes to simulate the

relationships between databases.

The following chapters will give a detailed information about the key technologies used in

development phase, about the builded libraries, and about the usage of the tool.

2 CODE GENERATION IN LAYERED DATABASE APPLICATION

The chapter is prepared to give an overview about the three main concept related to this
thesis. The first section informs you about the layering an application and the advantages
gained by layering. The second section is an overview of code generation and lists the
advantages of the code generation approach. And the last section, Code Generation in

Database Application, explains why the database layer is suitable for using code generators.

2.1 Application Layering

Layering is one of the most common techniques that software designers use to break apart a
complicated software system. You see it in machine architectures, where layers descend from
a programming language with operating system calls into device drivers and CPU instruction
sets, and into logic gates inside chips. Networking has FTP layered on top of TCP, which is

on top of IP, which is on top of ethernet.

When thinking of a system in terms of layers, you imagine the principal subsystems in the
software arranged in some form of layer cake, where each layer rests on a lower layer. In this
scheme the higher layer uses various services defined by the lower layer, but the lower layer
is unaware of the higher layer. Furthermore, each layer usually hides its lower layers from the
layers above, so layer 4 uses the services of layer 3, which uses the services of layer 2, but

layer 4 is unaware of layer 2.

Breaking down a system into layers has a number of important benefits.

e You can understand a single layer as a coherent whole without knowing much about
the other layers. You can understand how to build an FTP service on top of TCP
without knowing the details of how ethernet works.

e You can substitute layers with alternative implementations of the same basic services.
An FTP service can run without change over ethernet, PPP, etc..

¢ You minimize dependencies between layers. If the cable company changes its physical
transmission system, providing they make IP work, we don’t have to alter our FTP
service.

e Layers make good places for standardization. TCP and IP are standards because they

define how their layers should operate.

e Once you have a layer built, you can use it for many higher-level services. Thus,
TCP/IP is used by FTP, telnet, SSH, and HTTP. Otherwise, all of these higher-level

protocols would have to write their own lower-level protocols.

Layering is an important technique, but there are downsides.

e Layers encapsulate some, but not all, things well. As a result you sometimes get
cascading changes. The classic example of this in a layered enterprise application is
adding a field that needs to display on the UI, must be in the database, and thus must
be added to every layer in between.

e Extra layers can harm performance. At every layer things typically need to be
transformed from one representation to another. However, the encapsulation of an
underlying function often gives you efficiency gains that more than compensate. A

layer that controls transactions can be optimized and will then make everything faster.

The number of layers in an application may vary according to the system. A general view of

the layer architecture is displayed in Figure 2.1

Layer N

Layer.)
Layer J-1

Layer 1

Figure 2.1 General view of a layered application

One of the most familiar models for layering is the OSI 7 Layer Model, defined by the

International Organization for Standardization (ISO).

Lmpar ¥ | Application Pooviias ppliciien Incilles Tach &t am ll FTP

Lapar 9 Sirusisas informatisn 2x repalsel

lamagor s coasrorslan

Layar 4 Crasbes padcals of daks

Lpar 3 Reuler padosls of data

Luypar 2 Dabesls mad sarsesls arsoes ot 2 low bara

Layer 1 Teaasmits bis

Figure 2.2 OSI 7 Layer Model

Although there is no limit for layering, a common pattern for the enterprise applications has
three principle layers.
e Presentation Layer :
The presentation layer contains elements responsible for providing some form of
communication with a human being, such as an element in the user interface.
e Business Layer :
The business layer contains elements responsible for performing some kind of
business processing and the application of business rules.
e Data Access Layer :
The data access layer contains elements responsible for providing access to an

information source, such as a relational database.

The following figure explaines dividing an application into three layers. The presentaion layer
showed with yellow boxes interacts with the user and the layer below that, which is business
layer. Business layer with blue colored boxes is the middle layer of the application and
contains the business parts, Business Workflow and Business Component, where the business
logic is implemented. One more blue box exists in this layer to hold the components, which
carries data from data access layer, Business Entities. The green layer, Data Access Layer, is
the base of the application that is responsible to collect the data from data sources ans

services.

Users

X

.

9] o wn
3 2 g @ Ul Components
@
2 || & || 3
E_" > @ LI Process Components
o o
3 || &
= Service Interfaces (Eu y
[i¥] o i .
% \E)Businegs 4 Business 8 Business
s Workflows Components Entities
7 5 .
Cata Access Logic Service Agents
Components
©) ' vy
Data Sources ' services

Figure 2.3 Three Layered Application Architecture

The description of the numbered components included in the layers are listed below. Some

components may not be exist in every application, but most applications needs these kind of

component.

1.

User interface (Ul) components :

Most solutions need to provide a way for users to interact with the application. In the
retail application example, a Web site lets customers view products and submit orders,
and an application based on the Microsoft Windows operating system lets sales
representatives enter order data for customers who have telephoned the company. User
interfaces are implemented using Windows Forms, Microsoft ASP.NET pages,
controls, or any other technology you use to render and format data for users and to
acquire and validate data coming in from them.

User process components :

In many cases, a user interaction with the system follows a predictable process. For
example, in the retail application you could implement a procedure for viewing

product data that has the user select a category from a list of available product

categories and then select an individual product in the chosen category to view its
details. Similarly, when the user makes a purchase, the interaction follows a
predictable process of gathering data from the user, in which the user first supplies
details of the products to be purchased, then provides payment details, and then enters
delivery details. To help synchronize and orchestrate these user interactions, it can be
useful to drive the process using separate user process components. This way the
process flow and state management logic is not hard-coded in the user interface
elements themselves, and the same basic user interaction “engine” can be reused by
multiple user interfaces.

Business workflows :

After the required data is collected by a user process, the data can be used to perform a
business process. For example, after the product, payment, and delivery details are
submitted to the retail application, the process of taking payment and arranging
delivery can begin. Many business processes involve multiple steps that must be
performed in the correct order and orchestrated. For example, the retail system would
need to calculate the total value of the order, validate the credit card details, process
the credit card payment, and arrange delivery of the goods.

Business components :

Regardless of whether a business process consists of a single step or an orchestrated
workflow, your application will probably require components that implement business
rules and perform business tasks. For example, in the retail application, you would
need to implement the functionality that calculates the total price of the goods ordered
and adds the appropriate delivery charge. Business components implement the
business logic of the application.

Service agents :

When a business component needs to use functionality provided in an external service,
you may need to provide some code to manage the semantics of communicating with
that particular service. For example, the business components of the retail application
described earlier could use a service agent to manage communication with the credit
card authorization service, and use a second service agent to handle conversations with
the courier service. Service agents isolate the idiosyncrasies of calling diverse services
from your application, and can provide additional services, such as basic mapping
between the format of the data exposed by the service and the format your application

requires.

6. Service interfaces :
To expose business logic as a service, you must create service interfaces that support
the communication contracts (message-based communication, formats, protocols,
security, exceptions, and so on) its different consumers require. For example, the
credit card authorization service must expose a service interface that describes the
functionality offered by the service and the required communication semantics for
calling it.

7. Data access logic components :
Most applications and services will need to access a data store at some point during a
business process. For example, the retail application needs to retrieve product data
from a database to display product details to the user, and it needs to insert order
details into the database when a user places an order. It makes sense to abstract the
logic necessary to access data in a separate layer of data access logic components.
Doing so centralizes data access functionality and makes it easier to configure and
maintain.

8. Business entity components :
Most applications require data to be passed between components. For example, in the
retail application a list of products must be passed from the data access logic
components to the user interface components so that the product list can be displayed
to the users. The data is used to represent real-world business entities, such as products
or orders. The business entities that are used internally in the application are usually
data structures, such as DataSets, DataReaders, or Extensible Markup Language
(XML) streams, but they can also be implemented using custom object-oriented
classes that represent the real-world entities your application has to work with, such as
a product or an order.

9. Components for security, operational management, and communication :
The application will probably also use components to perform exception management,
to authorize users to perform certain tasks, and to communicate with other services

and applications.

2.2 Code Generation

Code generation is the use of a program, a code generator, to write your programs for you.

There is nothing magical about the code generator itself. Just like any program it takes some

input and creates something new as output that is high level code (e.g. C, C++, C#, Java, Perl,

Python, Ruby, etc.). These tools range in size and complexity from simple code parsers to

fully featured class and layer builders.

Code generation has four key advantages;

Quality :

The code created is of uniform quality across the entire output code base. The higher
the quality of the templates the better the resultant code. So investments in the
templates are rewarded quickly. In addition, when the templates are changed to fix a
bug that fix is propagated by design across all of the maintained code. Because of this,
code eneration does not suffer from the maintainability problem of copy and paste
coding.

Consistency :

The use of a code generator to build the code means that the design of the interfaces
and classes that are produced are completely uniform. This makes writing client code
much easier.

Productivity :

Having a generator produce code is undeniably faster than handcoding, but that is not
where the productivity gain really lies. Gains become immediately apparent when you
can alter your design input and easily generate new code to match the new
requirements.

Abstraction :

Perhaps the most important benefit is the abstraction provided by some generator
models. When the design of the database access layer is abstracted into an external
form e.g. templates, you have extracted the core portion of your business logic the
implementation. This means that you are not bound to any particular technology

decisions, such as language or platform. This is a tangible portability benefit.

Code generation is often considered just a speed-up tool. It is important to think beyond the
speed and about the advantages for all aspects of software design and implementation. With

all of these advantages it is hard to imagine the downsides.

2.3 Code Generation For Database Layer

The foundation of most applications is the database access layer, which bundles the queries
and other operations performed upon the database. The business objects and the user interface
use the database access layer to read and write the database. As with any structure, the
strength of an application lies within the strength of its foundation. The more solid and robust

the database access layer, the foundation, the stronger the application built on top of it will be.

The database access layer takes responsibility for:
e Marshalling database types and application types
e Wrapping SELECT queries
e Wrapping the INSERT, UPDATE and DELETE operations
e Wrapping any stored procedures, if those are being used
e Doing validations of the arguments being passed to the queries and operations

e Handling errors coming from the database

Most of this code in the database access layer is fairly simple and repetitive. A query method,
for example, follows this process: It accepts and validates the parameters for the query. It then
establishes the database connection and executes the query. As a final step it places the

resultant data in a memory structure.

The types of bugs associated with this type of method are usually argument ordering
mismatches and inadequate error handling. Other more disturbing sources of error are copy
and paste errors, where fixes are applied inconsistently across a number of methods where the
source was literally copied and pasted as an implementation technique. Database access code
is particularly vulnerable to these issues because of the volume of critical work required to
implement the code. As a result, we would like it to contain zero bugs with uniformly high

quality code throughout. The layer should have an interface with predictable naming and

10

consistent argument ordering. In addition the methods should not contain any surprising

behavior.

As a conclusion, due to the crittical importance of the codes included in data access layer, and
due to their repetitive structure, it is necessary and suitable to create data access layer codes
through a code generator, so the resulted codes will be reliable, much more readable and

uniform.

This thesis offers a code generator to automatically generate the codes of data access layer,

which prevents the bugs produced by developers.

11

3

TECHNOLOGIES USED

This chapter covers the key technologies used in the development phase of Data Access Layer

Code Generator tool. In the following pages, these technologies will be discussed just with

their important functionalities that have an important role in building this project.

3.1

Net Framework

The .NET Framework is an integral Windows component that supports building and running

the next generation of applications and XML Web services. The .NET Framework is designed

to fulfill the following objectives: [1]

To provide a consistent object-oriented programming environment whether object
code is stored and executed locally, executed locally but Internet-distributed, or
executed remotely.

To provide a code-execution environment that minimizes software deployment and
versioning conflicts.

To provide a code-execution environment that promotes safe execution of code,
including code created by an unknown or semi-trusted third party.

To provide a code-execution environment that eliminates the performance problems of
scripted or interpreted environments.

To make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

To build all communication on industry standards to ensure that code based on the

NET Framework can integrate with any other code.

The .NET Framework has two main components:

The common language runtime

The .NET Framework class library

3.1.1 Common Language Runtime

The common language runtime is the foundation of the .NET Framework. You can think of

the runtime as an agent that manages code at execution time, providing core services such as

memory management, thread management, and remoting, while also enforcing strict type

safety and other forms of code accuracy that promote security and robustness. In fact, the

concept of code management is a fundamental principle of the runtime. Code that targets the

12

runtime is known as managed code, while code that does not target the runtime is known as

unmanaged code.

With regards to security, managed components are awarded varying degrees of trust,
depending on a number of factors that include their origin (such as the Internet, enterprise
network, or local computer). This means that a managed component might or might not be
able to perform file-access operations, registry-access operations, or other sensitive functions,

even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable
embedded in a Web page can play an animation on screen or sing a song, but cannot access
their personal data, file system, or network. The security features of the runtime thus enable

legitimate Internet-deployed software to be exceptionally feature rich.

In addition, the managed environment of the runtime eliminates many common software
issues. For example, the runtime automatically handles object layout and manages references
to objects, releasing them when they are no longer being used. This automatic memory
management resolves the two most common application errors, memory leaks and invalid

memory references.

The runtime also accelerates developer productivity. For example, programmers can write
applications in their development language of choice, yet take full advantage of the runtime,
the class library, and components written in other languages by other developers. Any
compiler vendor who chooses to target the runtime can do so. Language compilers that target
the NET Framework make the features of the .NET Framework available to existing code
written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today
and yesterday. Interoperability between managed and unmanaged code enables developers to
continue to use necessary common object model (COM) components and dynamic link

libraries (DLL).

The runtime is designed to enhance performance. Although the common language runtime
provides many standard runtime services, managed code is never interpreted. A feature called

just-in-time (JIT) compiling enables all managed code to run in the native machine language

13

of the system on which it is executing. Meanwhile, the memory manager removes the
possibilities of fragmented memory and increases memory locality-of-reference to further

increase performance. [2]

Managed C++ C# VB.NET || IScript Third Party
Languages

Compiler

MSIL Code
(Assembly)

Just In Time
Compiler

Machine Code ¢
Manages

Common Language
Runtime (CLR)

Figure 3.1 .Net Framework
3.1.2 The .Net Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with
the common language runtime. The class library is object oriented, providing types from
which your own managed code can derive functionality. This not only makes the .NET
Framework types easy to use, but also reduces the time associated with learning new features
of the .NET Framework. In addition, third-party components can integrate seamlessly with

classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you
can use to develop your own collection classes. Your collection classes will blend seamlessly

with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable
you to accomplish a range of common programming tasks, including tasks such as string
management, data collection, database connectivity, and file access. In addition to these

common tasks, the class library includes types that support a variety of specialized

14

development scenarios. For example, you can use the .NET Framework to develop the
following types of applications and services:

e (Console applications.

e Windows GUI applications (Windows Forms).

e ASP.NET applications.

e XML Web services.

e Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable types that
vastly simplify Windows Graphical User Interface (GUI) development. If you write an
ASP.NET Web Form application, you can use the Web Forms classes.

3.2 Overview of C#

For the past two decades, C and C++ have been the most widely used languages for
developing commercial and business software. While both languages provide the programmer
with a tremendous amount of fine-grained control, this flexibility comes at a cost to
productivity. Compared with a language such as Microsoft Visual Basic, equivalent C and
C++ applications often take longer to develop. Due to the complexity and long cycle times
associated with these languages, many C and C++ programmers have been searching for a

language offering better balance between power and productivity.

The ideal solution for C and C++ programmers would be rapid development combined with
the power to access all the functionality of the underlying platform. They want an
environment that is completely in sync with emerging Web standards and one that provides
easy integration with existing applications. Additionally, C and C++ developers would like

the ability to code at a low level when and if the need arises.

The Microsoft solution to this problem is a language called C#. C# is a modern, object-
oriented language that enables programmers to quickly build a wide range of applications for
the new Microsoft .NET platform, which provides tools and services that fully exploit both

computing and communications.

15

Because of its elegant object-oriented design, C# is a great choice for architecting a wide
range of components - from high-level business objects to system-level applications. Using
simple C# language constructs, these components can be converted into XML Web services,
allowing them to be invoked across the Internet, from any language running on any operating

system.

More than anything else, C# is designed to bring rapid development to the C++ programmer
without sacrificing the power and control that have been a hallmark of C and C++. Because of
this heritage, C# has a high degree of fidelity with C and C++. Developers familiar with these

languages can quickly become productive in C#. [3]

3.2.1 Classes

Classes are types, but are far more powerful than the simple types like int and float. Not only
you can customize your data storage using classes, but you can also add methods to classes.
That kind of compartmentalization, where data and methods are rolled up into a single class,
is the entire reason that object oriented programming (OOP) was introduced in the first place.
It enables the programmers to deal with larger programs. The process of wrapping related data
and methods into a class (and so preventing them from cluttering up the rest of the program)

to create a single entity is called encapsulation.

Classes enable you to develop applications using OOP techniques . Classes are templates that
define objects.When you create a new form in a C# project, you are actually creating a class
that defines a form; forms instantiated at runtime are derived from the class. Using objects
derived from predefined classes, such as a C# Form class, is just the start of enjoying the
benefits of object-oriented programming—to truly realize the benefits of OOP, you must

create your own classes.

The philosophy of programming with classes is considerably different from that of traditional
programming. Proper class-programming techniques can make your programs better, both in
structure and in reliability. Class programming forces you to consider the logistics of your
code and data more thoroughly, causing you to create more reusable and extensible object-

based code.

16

Classes consist of members. Everything defined within the class is considered to be a member
of that class. The list of the various types, that can be defined as members of a C# class,
comes next.
e Fields:
A field is a member variable used to hold a value.
e Methods :
A method is the actual code that acts on the objects’s data (or field value).
e Properties :
A property is actually a method, that looks like a field to the class’s clients. The
properties allows the client a greater degree of abstraction, because the client does not
know whether it is accessing the field directly of whether an accessor method is being
called.
e Constants :

As the name suggests, a constant is a field with a value that can not be changed.

3.2.2 Attributes And Reflections

Attributes provide a powerful method of associating declarative information with C# code
(types, methods, properties, and so forth). Once associated with a program entity, the attribute

can be queried at run time using a technique called Reflection. [4]

The attributes can be used to define design-time information (such as documentation), run-
time information (such as the name of a database column for a field), or even run-time
behavioral characteristics. The possibilities are endless, which is the point. In as sense, this
association of information follows the same principles used in the development of extensible
markup language (XML). Because you can create an attribute based on any information you
want, a standard mechanism exists for defining the attributes themselves and for querying the

member or type at run time about its attached attributes.
Attributes exist in two forms: attributes that are defined in the Common Language Runtime's

base class library and custom attributes, that you can create, to add extra information to your

code. This information can later be retrieved programmatically. [5]

17

An example will better illustrate how to use this powerfull feature. Let assume that we have a
class, whose fields hold the values of a record in a database table, and we need to keep the
features of these columns for some reason. One pratical way to deal with this requirement is

attaching an attribute to each field in the class.

The following code is the illustration of an attribute attachment.

[DBFieldName(“ProductlID”, true, false, true, DbType.Int32)]
private int productlD;

The field, “productID”, has an attribute which holds its corresponding column features.
Below, you can see the attribute class, “DBFieldName”, that explaines which features are

kept as metadata of the field.

public class DBFieldNameAttribute : Attribute
{

private string fieldName;
public string FieldName

{
get

{

}
}

private bool isKey;
public bool IsKey

{
get

{

}
}

private bool isDecimal;
public bool IsDecimal

{
get

{

}
}

private bool isAutolncrement;
public bool IsAutolncrement

{
get

{

}
bs

return fieldName;

return isKey;

return isDecimal;

return isAutolncrement;

18

private DbType fieldDBType;
public DbType FieldDBType

{
get
{

}
}

public DBFieldNameAttribute(string p_FieldName, bool p_IsKey, bool
p_IsDecimal, bool p_IsAutolncrement, DbType p_DBType)
{
this.fieldName = p_FieldName;
this.isKey = p_lIsKey;
this.isDecimal = p_IsDecimal;
this.isAutolncrement = p_lsAutolncrement;
this.fieldDBType = p_DBType;

return fieldDBType;

The code above is the content of DBFieldNameAttribute class. The properties of this class are
explained below.
e FieldName stands for the corresponding column’s name.
¢ IsKey indicates whether the column is a key of the database table or not.
e IsDecimal holds the metadata indicating whether the column’s type is decimal or not.
e [sAutolncrement holds the metadata indicating whether the column is an identity
column or not.

e FieldDBType holds the type of the column.

Until now, we only see how to define an attribute by deriving it from System.Attribute, and
how to attach it to a type or member. The answer of the question, how we can use attributes in

code, is Reflections.

Reflection is the process by which a program can read its own metadata. A program is said to
reflect on itself, extracting metadata from its assembly and using that metadata either to
inform the user or to modify its own behavior. In other words, it is the way to query a type or

member about its attached attributes. [5]
In the previous example, we defined the DBFieldNameAttribute attribute. Now we will see,

how these attributes can be reached with an simple rutine. The following lines of code gets the

type of an object and finds the fields defined in this type. After that, it gets the custom

19

attributes of each field and checks, if the attribute is DBFieldNameAttribute. Finally, if any
attribute is found in our type, then the place comes to execute any operation using the

metadata.

Type t = myObject.GetType();
foreach (FieldInfo fi in t.GetFields(BindingFlags.NonPublic |
BindingFlags. Instance))

foreach (Object ca in Fi.GetCustomAttributes(false))
it (myAttribute is DBFieldNameAttribute)

//Here is the place, where the metadata of a field is reached.
}
}
}

3.3 Visual Studio 2005

Microsoft Visual Studio is a complete set of development tools for building ASP.NET Web
applications, XML Web services, desktop applications, and mobile applications. Visual Basic,
Visual C++, Visual C#, and Visual J# all use the same integrated development environment
(IDE), which allows them to share tools and facilitates in the creation of mixed-language

solutions.

3.3.1 Extensibility And Automation in Visual Studio 2005

Visual Studio features a number of targeted, programmable object models. By using these
models, you can access the underlying components and events inside the Visual Studio
integrated development environment (IDE) and its projects. Each model contains types and
members that represent solutions, projects, tool windows, code editors, debuggers, code
objects, documents, events, and more. Consequently, you can extend the functionality of the
IDE, automate repetitive tasks, and integrate other applications into the IDE. The object
models can be accessed through any of four methods: macros, add-ins, wizards, and the

Visual Studio Industry Partner (VSIP) program.

This is an important part of Visual Studio because it lets developers easily tailor the tool to
their personal working style and enables them to accommodate team practices. You can

simply capture several steps in a regular process (for example, for check-ins, creating new

20

projects or forms, or updating code) and make that process available as a single command to
invoke. Independent software vendors can implement entirely new features (including
groupware, profiling tools, work flow, or life-cycle tools) that fit into Visual Studio 2005 as

seamlessly as if they were built into the shipping Visual Studio product. [6]

With this automation model, you can do the following:

e Intercept commands when they are invoked, and either provide preprocessing or
implement the command yourself.

e Control the solution, projects, and project items by adding or removing them.

e Control the build configurations mechanisms and hook various build events.

e Control a large portion of the text editor.

e Implement commands that help you debug with the debugger objects.

e Control the Windows Forms Designer.

e Create tool windows that behave just like the built-in tool windows for docking and
floating.

e Provide content to the Property Browser when items are selected in tool windows.

e Control several of the built-in tool windows (including Task List, Toolbox, Command

Window, and Output Window).

Add-in Creation in Visual Studio 2005

An add-in is a tool that you create programmatically by using objects, methods, properties,
collections in .NET's extensibility model. This compiled application enables you to automate
the difficult and tedious tasks within the visual studio integrated development environment
(IDE). These tasks can be accomplished in response to an event, such as the mouse being
clicked, forms being added to the project or control being added to the form. The actions may
not be visible to the developer. An add-in extends the functionality of the Visual Studio IDE.
Extensibility is the mechanism exposed to the developer that provides the ability to enhance
and extend the functionality of the IDE. It basically exposed IDE's internal functions to add-in
developer. [7]

Add-in's can be invoked in many ways, such as
e Through Add-in Manager

e Toolbars command or buttons

21

e Development environment (devenv) Command Line

e Events such as IDE start-up

An add-in is a compiled DLL that runs inside the Visual Studio integrated development
environment (IDE). The fact that it is compiled protects your intellectual property and
improves performance. While you can create add-ins manually, it is far easier to use the Add-
In Wizard. The Add-In Wizard creates an add-in with a fully functional but basic framework
that you can run immediately after you create it. After the Add-In Wizard generates the basic

framework, you can add code to it and customize it. [8]

The Add-In Wizard can be started by completing the following steps.
e Open new project and select Other Projects - Extensibility Projects in Project Types
and select Visual-Studio .Net add-in in templates.
e Enter Name of the Add-in Project and select the location where you want you add-in
to be placed using “Browse” button.

e After clicking ok, you will get Add-in Welcome wizard.

The Add-In Wizard lets you supply a display name and description for the add-in, both of
which appear in the Add-In Manager dialog box. Optionally, you can choose to have the
wizard generate code that adds a command to the Tools menu to load and invoke the add-in.
You can also choose to display a custom About Box for your add-in. When the wizard
completes, you have a new project with a single class named “Connect” that implements the
add-in. The project includes also a file with the “.AddIn” extension to be used in Add-in

registration.

The “Connect” class created by the wizard has methods that are used in the project and briefly
explained below.
e ““Connect()” constructor :
The constructor of the class, that is called first when the class is initialized.
e ““OnConnection()”” method :
OnConnection method is the method that is first called by the IDE when it starts the
add-in. It is the obvious point to place your UI (menus,toolbars, tool buttons) through

which the user will communicate to the add-in. This method is also the place to put

22

your validation code if you are licensing the add-in. You would normally do this
before putting up the UI. If the user is not a valid user, you would not want to put the
Ul into the IDE.

e ““OnDisconnection()”” method :
This event occurs when the add-in is unloaded.

o “QueryStatus()”” method :
When the user clicks a command (menu or tool button), the QueryStatus event is fired.
The QueryStatus event returns the current status of the specified named command,
whether it is enabled, disabled, or hidden in the vsCommandStatus parameter, which is
passed to the event by reference.

e “Exec()” method :
The Exec event is fired after the QueryStatus event is fired, assuming that the return to
the statusOption parameter of QueryStatus is supported and enabled. This is the event
where you place the actual code for handling the response to the user click on the

command.

Add-in Registration in Visual Studio 2005

After an add-in is created, you must register it with Visual Studio before it becomes available
for activation in the Add-In Manager. This was done in previous versions of Visual Studio by
using registry keys, but this is now accomplished by using an XML file, that is created by the
Add-In Wizard with an extention “.AddIn”.

You no longer need to register the .NET assemblies with Windows. Instead, you simply place
the assembly .DLL file into a specific directory along with an XML file that has an .Addin file
extension. This XML file describes the information that Visual Studio requires to display the
add-in in the Add-In Manager. When Visual Studio starts, it looks in the .Addin File location
for any available .Addin files. If it finds any, it reads the XML file and provides the Add-In

Manager with the information needed to start the add-in when it is clicked.

23

The locations, where the .AddIn XML file should be located to be processed by Visiual
Studio 2005, is listed below.

Table 3.1 Add-in Installation Locations

.Addin File Location .DLL File Location Description

Add-in folder Project debug folder Used for running the

(for example, \Documents (for example, \My add-in in the debugging

and Settings\All Users\My Documents\Visual Studio environment. Should

Documents\Visual Studio Projects\MyAddin1\MyAddin1\bin) | always point to the

2005\Addins) output path of the
current build

-or- configuration.

(\Documents and
Settings\<user name>\My
Documents\Visual Studio

2005\Addins)

Root project folder Local path (MyAddinl.dll) Used for deployment of

(for example, \My the add-in project. It is

Documents\Visual included in the project

Studio\Projects\MyAddin1) for ease of editing and is
set up with the local
path for XCopy-style
deployment.

3.4 ADO .Net

ADO.NET is the data access model for .NET-based applications, that is an object-oriented set
of libraries that allows you to interact with data sources. Commonly, the data source is a data

base, but it could also be a text file, an Excel spread sheet, or an XML file.

Although ADO.NET allows us to interact with different types of data sources and different
types of data bases, there is not a single set of classes that allow you to accomplish this
universally. Since different data sources expose different protocols, we need a way to
communicate with the right data source using the right protocol. Some older data sources use
the Open Database Connectivity (ODBC) protocol, many newer data sources use the Object
Linking and Embedding Database (OLE DB) protocol, and there are more data sources every
day that allow you to communicate with them directly through .NET ADO.NET class
libraries. [9]

24

ADO.NET provides a relatively common way to interact with data sources, but comes in
different sets of libraries for each way you can talk to a data source. These libraries are called
Data Providers and are usually named for the protocol or data source type they allow you to
interact with. Currently, ADO.NET ships with two categories of providers: bridge providers
and native providers. Bridge providers, such as those supplied for OLE DB and ODBC, allow
you to use data libraries designed for earlier data access technologies. Native providers, such
as the SQL Server and Oracle providers, typically offer performance improvements due, in
part, to the fact that there is one less layer of abstraction. [10] The available data providers in
ADO.NET are listed below.
e The SQL Server .NET Data Provider :
This is a provider for Microsoft SQL Server 7.0 and later databases. It is optimized for
accessing SQL Server, and it communicates directly with SQL Server by using the
native data transfer protocol of SQL Server.
e The Oracle .NET Data Provider :
The .NET Framework Data Provider for Oracle enables data access to Oracle data
sources through Oracle client connectivity software. The data provider supports Oracle
client software version 8.1.7 and later.
e The OLE DB .NET Data Provider :
This is a managed provider for OLE DB data sources. It is slightly less efficient than
the SQL Server .NET Data Provider, because it calls through the OLE DB layer when
communicating with the database.
e The ODBC .NET Data Provider :
The .NET Framework Data Provider for ODBC uses native ODBC Driver Manager
(DM) to enable data access by means of COM interoperability.

All the data providers listed above implement the interfaces provided by the System.Data

namespace. These interfaces makes it possible to program provider independent data access

layer codes. Next table shows the interfaces implemented by the providers. [11]

25

Table 3.2 Data Provider Interfaces

Interface Description

IDbConnection | Represents a connection to the database.

IDbDataAdapter | Represents a set of command related properties that are used to work
with a DataSet.

IDbCommand Represents a SQL statement (or command) to be executed against a
data source.

[DataParameter | Represents a parameter to the command object.

[DataReader Represents one or more result sets which can be accessed in read only,
forward only manner.

[DbTransaction | Represents a transaction to be performed against a data source.

26

4 CODED WORK

During the development phase of Data Access Layer Code Generator, some code libraries
have been build for different purposes. While writing each line of code, it has been taken cake
of their readablities. In other words, an effort has been given to make the codes as clear as a
developer can easily understand, when he/she goes into it. To increase the readability of the
code, most of the properties, the methods and the classes have been also commented. Despite
of the clarity of the codes, this section was perpared to explain the functionalities of the

classes and the relationships between these classes, that has been developed for this project.

DAL Code Generator libraries can be divided into two parts according to their service levels.
The first and the main function of the tool is to provide an interface, that accepts the attribute
entry of the generated classes, and that generates these classes. The second service level
contains the functions, that helps the first level, the generated classes and the developer by
accessing the desired data. These parts are listed below respectively.

e DALCodeGeneratorLibrary

e DALHelper

On the rest of this chapter, these code libraries will be discusses deeply.

4.1 “DALCodeGeneratorLibrary” Library

This library is used by the DAL Code Generator add-in project, that provides an user interface
for the generation process. Although this library is allmost loose coupled, it also uses
DALHelper library for database accesses. The main responsibilities of this class collection is
listed below.

e Getting and holding the schema of the specified database table. A schema is the
collection of the properties of the table. For example, colums of the table, types of its
colums, corresponding type of the columns in C#, etc. are included in as schema.

e Provide methods to modify the fields of the schema, each of which is correspond to a
column of the table.

e Provide classes and methods to define relationships between generated classes.

e Loading the schema back from XML files, that are stored by the add-in.

e Includes the templates of the DAL classes, that are used during the generation proces.

27

e Generation of the DAL class and BE class.

The library has 6 main classes to provide these functionalities, that are to be known.
“CSClassGenerator” class.

e “CSPFClassGenerator” class.

e “FieldDescription” class.
e “ClassRelationships” class.
e “RelationshipsFields” class.

e “CSXMLClassGenerator” class.

4.1.1 “CSClassGenerator” Class

As its name explaines, this class is responsible to generate classes. Actually, the class is the
base class of the other class generators, that expand and customize its content by inheriting
CSClassGenerator. In the scope of this project, just one inherited generator class is developed,
CSPFClassGenerator, but CSClassGenerator has been designed as basic as posible for future
developments. It only contains main properties, that a generator class should have, and it

includes virtual methods, that an inherited class has to implement.

Moreover, this is the class, whose instance holds the schema info of the related table and the
relationship definitions. The variables, properties and methods, that are necessary to be known
are explained below.
e ““CSClassGenerator()” constructor :
The constructor of the class. Although it does not contain any code, all inherited
classes should call it for future modifications.
o “fields” variable :
The protected variable is an arraylist, that holds the fields of the schema as
FieldDescription objects.
e ““UpdateField()”” method :
The method enables the modification on the attributes of fields.
e “DeleteField()”” method :
The method deletes a field from the field list.

e “‘huffer” variable :

28

The private variable, that holds the generated code.

“Relations” property :

The property that holds all the relation definitions. This hashtable contains
ClassRelationship objects with the key of the names of the relations.

“AddRelation()”” method :

The method adds a new relation definition to the relation list.

“RemoveRelation()”” method :

The method deletes an existent relation from the relation list.

“ClassNamespace™ property :

The public variable holds the namespace of the generated class.

“ClassName™ property :

The public variable holds the name of the generated class.

“CreateClass()”” method :

The method fills the buffer with the code of the generated class by calling the virtual
methods, that may be implemented by the inherited generator classes. After the
creation of the DAL class is completed, the code in the buffer is returned by this
method.

“WriteUsingLines()” virtual method :

The virtual method adds the “using” statements to the buffer.

“WriteFields()”” virtual method :

The virtual method adds the property codes, each of which is to hold the values of the
database columns (fields).

“WriteRelations()” virtual method :

The virtual method adds the property codes, each of which is to hold an object of the
child class of the relation.

“WriteConstructors()”” virtual method :

The virtual method adds the contructors’ code of the generated class. The number of
constructors may vary, so these codes should also implemented by the inherited
generator classes.

“WriteOtherMethods™ virtual methods :

The virtual method generates the methods’ code blocks, that are special to the

generator classes.

29

4.1.2

“CSPFClassGenerator” Class

This class is derived from CSClassGenerator, so it includes the content of CSClassGenerator

and extends the capabilities to generate classes from a given physical file in a database to

manage the data access to this file. This generator class prepares two types of class. First type

is the Data Access Layer class, and the Business Entity class is generated as the second type,

that is derived from the DAL class.

The generetion process starts by calling “CreateClass()” method of the base class,

CSClassGenerator, and it ends after calling the implemented virtual methods. In the following

lines, these implemented methods and their results will be discussed.

“CSPFClassGenerator()”” constructor :

The constructor takes two arguments. First argument indicates on which database the
physical file locates. The name of the file is taken as the second argument. After
assigning its arguments to the related properties, it calls LoadSchema() method.
“Database’ property :

The property holds the database definition, which is assigned by the constructor.
“FileName” property :

The property holds the name of the pysical file, which is assigned by the constructor.
“ClassBECode™ property :

The property, that is initially empty, contains the code generated for the business
entity class.

“LoadSchema()”” method :

The method is responsible to get the column info of the file. It queries the specified
database, and fills the “fields” list with the result set that comes from the execution of
the query. As you remember, “fields” is the protected variable on the base class. If the
method does not find the specified file on the database, it throws
PossibleFileNotFoundException().

“WriteUsingLines()”” override method :

The method adds the first lines of the generated class, that are “using” statements.
“WriteFields™ override method :

The method adds a variable, a property and attributes for each field of the schema. The
example given below shows the code generated for a field, that corresponds to the

ProductID field in the database.

30

[DBFieldName(**ProductlID™, true, false, true, DbType.Ilnt32)]
private int productlD;

private FieldRunTimelnfo _productlD;

public int ProductlD

{
get

{
}

set

return productlD;

UpdateState(ref _productlD);
productlD = value;

}

e “WriteConstructors()”” override method :
The method adds the contructors’ code of the generated class. It adds five constructors
for a DAL class for different usages, whose templates are given below with an
example of a file with two key fields. Let assume that the class name is “Classname”

and the names of the keyfiels are “Keynamel” and “Keyname2”.

public ClassnameDAL(Q) {---}

public ClassnameDAL(IDataReader p_Reader) {...}

public ClassnameDAL(keyltype p_Keynamel, key2type p_Keyname2) {...}
public ClassnameDAL(IDbConnection p_Connection, keyltype p_Keynamel,
key2type p_Keyname2) {...}

public ClassnameDAL(IDbTransaction p_Transaction, keyltype p_Keynamel,
key2type p_Keyname2) {...}

e “WriteOtherMethods()”” override method :

The method that calls the methods, that are specific to this class. These called methods
are listed below in the call order, each of which adds different code blocks to the
generated class.

= CreateArraylListMethods()

= CreateStaticArrayListAllRecordsMethod()

= CreateStaticArrayListAllRecordsWithWhereMethod()

= CreateStaticArrayListAllRecordsWithWhereMethodAndConnection()

= CreateSearchMethods()

31

e CreateArrayListMethods() method :
The method adds some functions to the generated class, that runs a SELECT query on
the database and returns the results in an arraylist, which contains generated BE
objects. The condition of the query is determined inside the methods using the given
parameters. It adds N-1 methods to the class, where N is the number of the key fields

in the schema. For a schema having three key fields, two methods will be generated.

public ArrayList LoadAll_Keyl(int p_Keyl){...}

public ArrayList LoadAll Keyl Key2(int p _Keyl, string p_ Key2){...}

e “CreateStaticArrayListAllRecordsMethod()”” method:
The methods adds a single method, Load(), to the generated code, which returns an

arraylist including all the records of the related table.

public override ArrayList LoadAllIOQ{...}

e “CreateStaticArrayListAllIRecordsWithWhereMethod()”” method:
The method adds a method to the code, which takes a condition and queries the
database using this where clause. The obtained result is returned by the generated

method in an arraylist.

public override ArrayList LoadAll(string p_Where, int p_MaxRecord){...}

e “CreateStaticArrayListAllIRecordsWithWhereAndConnectionMethod()”” method:
This method adds a very similar code to the method above, except that its generated

rutine accept an database connection and queries the database over this connection.

public ArrayList LoadAll(IDbConnection p_Connection, string p_Where, int
p_MaxRecord){...}

e ““CreateSearchMethods()”” method :
The method adds two FindFirst() methods to the generated code. The added methods
queries the database as the LoadAll() methods do, but FindFirst() methods returns just

the first found record in the database.

32

public BEObject FindFirst(string p_Where){...}
public BEObject FindFirst(IDbConnection p_Connection, string p_Where){...}

4.1.3

“FieldDescription” Class

This class is designed to hold all the necessary data about a field of a database column. The

instances of this class are initialized in the LoadSchema() method of CSPFClassGenerator,

because they are the main elements of the table schemas. Although it is basically the container

of column attributes, the decision about the .Net type of the field is taken here. This type will

also be the types of the related local variable and the related property in the generated class.

The important parts of the class structure are listed below.

“FieldDescription()”” constructor :

The constructor assignes the variables of the class.

“FieldDbType™ property:

The property holds the type of the column on the database.

“FieldType” property:

The property holds the converted .Net type of the field.

“Name” property :

The property holds the column name in the database file.

“FieldName” property :

The property holds the name of the field, which will be the name of a property in the
generated class.

“IsKey” property :

The property indicates whether the field is a key of the database table.
“IsAutolncrement” property :

The property indicates whether the field is an autoincrement column, in other words
identity column, or not.

“IsDecimal’ property :

The property indicates whether the corresponding column is decimal or not.

33

4.1.4 “ClassRelationship” Class

DALCodeGeneratorLibrary provides a class to define a relationship between the generated
class and the class, that is already generated. Basically, a relation means that the parent class
has a property, that returns an intance or a list of instances of the child class by calling a
method of the child class. If the relation type is 1 to 1, than the property returns just one

instance of the child class, but in a 1 to N relationship, the property returns an arraylist.

The following list describes the necessary structure to define a relationship.

e “ClassRelationship()” constructor :
The constructor initializes the object, by the way, assigns the local variables.

e ““Name” property :
The name of the relationship, that is also the name of the discussed property in the
main class.

e ““ChildClassName™ property :
The name of the child class.

e “Relationship’ property :
The property holds the type of the relation. It can be 1 tol or 1 to N.

e “MethodToCall” property :
The method name of the child class, which is called in the main’s property to realize
the relationship.

e ““MethodParameters™ property :
The property holds the RelationshipFields objects, that are basically the mapping of
which variable of the main class is passed to MethodToCall as which method

argument.

4.1.5 “RelationshipFields” Class

As dicussed above, a child’s method is called by the parent class to realize a relationship. If
the method has any arguments, that are to be passed by calling it, we should also specify
which variables in the parent class are used for each argument. The specification is made by
RelationshipFields objects.
e ‘“‘RelationshipFields’ constructor :
The constructor of the RelationshipFields class.

e ‘“‘ParentField” property :

34

The property holds the parent field name, that located in the parent class.
e ““ChildField property :
The property holds the name of the method parameter.

4.1.6 “CSXMLClassGenerator” Class

This class is a derivation of CSPFClassGenerator. It expands its base class with a single

method, LoadFieldsFromXML(), that provides to load its attributes from a XML file.

4.2 “DALHelper” Library

This library is designed to help the data access, so it is used by the elements of data access
layer. DALHelper contains a collection of classes, each of which provides methods to manage
the interactions with the databases. The main responsibilities of this class collection is listed
below.

e Contains the base class of the generated DAL classes.

e Contains the definitions for the production databases, that are permitted to access.

e Contains the definitions for the test databases, that are permitted to access.

¢ Handling the behaviors, that are specific to the database providers.

e Managing database connections and transactions.

e Managing the Create, Read, Update and Delete (CRUD) operation for the generated

DAL classes.

The list of the classes, included in this library, to implement the responsibilities is as the
following.
e BaseDAL class.
e DBConnectionHelper class.
e The classes, that implements IDBSpecificHandler interface.
0 SQLClientHandler class.
0 OLEDBHandler class.
o0 MSDB2Handler class.
e DBFieldNameAttribute class.

e DBRelationAttribute class.

35

These classes will be discusses deeply in the following pages.

4.2.1

“BaseDAL” Class

This class is the base of the generated classes. Its main responsibility is to contain the

methods, that every DAL class should have. Of course, these mandotory methods is about

dealing with the CRUD operations. As a result of being inherited BaseDAL by DAL classes,

the critical operations are centralized, and it is provided, that the management of the code is

made in one place. The variables, properties and methods, that are necessary to be known are

explained below.

“Load()”” methods :

The library has four overloaded methods, each of which is responsible to query the
database and to assign the fields with the related column values of the found records.
“Insert()”” methods :

Eight overloaded methods are to insert a new record to the database. Each overload
applies different insertion operations.

“Update()”” methods :

The methods are to update an existent record on the database. Four overloaded
methods are provided.

“Delete()”” methods :

An existent record can be deleted using on of the three overloaded Delete() methods.
“Save()”” methods :

The methods insert or update a record. The decision, whether the record is inserted or
updated, is taken in the methods according to the state of BaseDAL object.
“CurrentState™ property :

The property holds the state of the BaseDAL object. An object can be in Empty,
Loaded, Inserted or Modified state.

“IsAutolncrementFieldExists™ property :

The property is the flag indicating whether the database file has an identity column or

not.

36

4.2.2

“AutoRefreshDataAfterinsert™ property :

The property is the flag indicating whether the object should be loaded after an
insertion. If it value is true, a select query will be executed after the insertion, so it
effects the performance.

“InternalVersion” property :

The property holds the version of the DAL class.

“DBFileName™ property :

The property holds the name of the database file, on which CRUD operations occur.

“DBConnectionHelper” Class

This class is designed to help the generated classes and the developer by writing their custom

DAL classes. The main purpose of DBConnectionHelper is to provide the methods, that

contains the rutines to establish a database connection, to get the result sets and to close the

connection. The definitions for each permitted database are also located here. The properties

and the methods to accomplish the functionalities are listed in the following.

“DBConnectionHelper()’ constructor :

The constructor of the class takes the destination database as parameter. The passed
argument is assigned to ConnectionType property.

“ConnectionType™ property :

The property holds the index of the database definition list. During the operations, this
index will be used to get the appropriate connection provider, connection string, etc.
“Connections™ variable :

The variable holds the array of providers defined for each database.
“ConnectionStrings™ variable :

The variable holds the array of connection strings defined for each production
database.

“TestConnectionStrings™ variable :

The variable holds the array of connection strings defined for each test database.
“DBConnectionHandlers™ variable :

The variable holds the array of specific handlers.

“DBHandler” variable :

The variable holds the appropriate specific handler for the destination database.

37

“Test™ property :

This property holds whether the connection will be established with the test database
or with the production database.

“productionWebServers™ variable :

The variable holds the list of the production server names. The list is for the web
applications. If the web server is in the list, Test property will be set to false
automatically.

“GetConnection()”” method :

The method opens a connection with the destination database using the appropriate
connection string and database provider. It check Test property and decides whether
the connection will be established with the production database or with the test
database.

“BeginTransaction()”” method :

The method begins a transaction with the destination database.

“GetCommand()”” method :

The method creates a IDbCommand object and returns it.
“CreateCommandParameter()”” method :

The methods adds the specified parameter to the specified command object.
“GetReader()”” method :

The methods returns an IDataReader object, which is obtained after creating a
command and executing the command.

“CloseConnection()”” method :

The method closes and disposes the specified connection object. Before these actions,
the object is also checked if it is null or not.

“CloseReader()”” method :

The method closes and disposes the specified reader object. Before these actions, the
object is also checked if it is null or not.

“CloseAll()”” method :

The method does the operations of both CloseReader() and CloseConnection().
“Commit()” method :

The method commits the specified transaction. After the commit operation, the

connection of the transaction is terminated.

38

4.2.3

“Rollback()”” method :
The method rollbacks the specified transaction. After the rollback operation, the

connection of the transaction is terminated.

“IDBSpecificHandler” Interface

The database providers used during database operations may have different implementations

from each other. If it is needed to make use of a variaty of providers, these differences should

be handled separately. For this reason, IDBSpecificHandler interface is added to DALHelper

library. For each used provider, a class is created, that implement this interface, such as

SQLClientHanler, OLEDbHandler and MSDB2Handler. The following methods belongs to

the interface, that are to be implemented.

“GetParameterPlaceHolder()”” method :

The place holder used in queries for command parameter may differ provider by
provider. This method returns the appropriate place holder. Two query examples are
given below to show the place holders of SQLClient provider and OLEDb provider

respectively.

SELECT * FROM DbFile WHERE (@ParameterName = 10
SELECT * FROM DbFile WHERE ? =10

“InsertAndGetldentityValue()" method :

If a database file has an identity column, the methods of getting the value of this
column after an insetion can differ. Each handler should implement its own way in this
method.

“GetDbTypeFromProviderType()”” method :

While getting the schema from the database, a provider returns a column type as
integer values. The mapping between these integers and .Net DBType should be done
in this method. For example, SQLClient provider returns 8 for Int32 type, on the other
hand, OLEDb provider returns 3.

“GetLargeTextFieldSelectStatementConversion()”” method :

If a column is AnsiString, the select query to read its value may differ between the
providers. For example, the column should be cast to character type, if you are

accessing a DB2 database.

39

SELECT CHAR(ColumnName, 256) FROM DatabaseFile

e “LockTable()”” method :
To lock a database table, also different implementation may be needed. This method

separates these implementations.

4.2.4 “DBFieldNameAttribute” Class

This class is designed to hold the attributes of each database column on the generated classes.
The fields on the generated classes holds the values of the corresponding column. Moreover,
each of fields has alos an DBFieldNameAttribute attribute to keep the metadata of its column.
These attributes are needed during CRUD oparetions. In the following lines of code, you can

see an example of DBFieldNameAttribute usage.

[DBFieldName(*'CategorylID", true, false, true, DbType.Int32)]
private int categorylD;

The attribute indicates that the name of the corresponding column of “categorylD” field is
“CategorylD”. Moreover,

» this column is a key of the table (first true),

» the type of the column is not Decimal (false),

» this column is an autoincrement column (second true),

» the type of the colunm is DBType.Int32.

4.2.5 “DBRelationAttribute” Class

The attribute class to indicate the relationship metadata of a parent field. As you remember,
the generator adds an extra property for the child object to the generated class. The methods,
that provide the relation integrity, need the metadata which relates the variable and the

property of the parent field with the child property. An example is given below.

40

[DBRelation('categorie’™, "CategorylD™)]
private int categorylD;

public int CategorylD
{

get{...}

set{...}
}

private Categories categorie;

Where “categorie” is the name of the property name for the child object, and “CategoryID” is

the name of the parent property.

41

5 EXAMPLE USE OF PROPOSED TOOL

Data Access Layer Code Generator tool gives the developers the ability of building the layer,
that is responsible of accessing data on the defined databases, without giving huge effort. In
other words, instead of wasting time to deal with data access, the developer will concentrate

much more on the business part of his/her projects.

This chapter aims to view the earnings by using Data Access Layer Code Generator. The best
way to show the usage of the generator is developing a simple application, so an ASP .Net

program has been prepared, whose development phases you will see in the following pages.

5.1 Presentation Of The Database Used In Demonstration

During the demontration of Data Access Layer Code Generator tool, Misrosoft SQL Server
2000 will be used as DBMS, that is running on the same machine with the development
environment. While installing the server, the sample database — Northwind — has been also
installed, so I had the chance to test developed codes on that database. As the same, it is
planned that the application developed in the following pages also will try to access this

database.

Northwind database is a sample database that comes with the setup of Misrosoft SQL Server
2000. It has many tables that have relations with eachother and have columns with variaty of
types, so Northwind is suitable to realize a database that is build in any project. In our
application, three Northwind tables are choosen to demonstrate the DAL Generator Tool.
e (ategories Table :
The table with four colums to define a category has records each of which logically

corresponds to a group of products.

Table 5.1 Categories Table

Column Name Data Type Is Nullable Desciption

CategorylD int False Category key.
CategoryName nvarchar False Name of category.
Description ntext True Description of category.
Picture image true Picture of category.

42

e Supplier Table :

The table contains data about product suppliers.

Column Name
SupplierID
CompanyName
ContactName
ContactTitle
Address

City

Region
PostalCode
Country

Phone

Fax

HomePage

Table 5.2 Supplier Table

Data Type
int
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar

ntext

Is Nullable
False
False
True
True
True
True
True
True
True
True
True

True

Desciption

Supplier key.

Company name of supplier.

Contact name of supplier.
Contact title of supplier.
Address of supplier.

City of supplier.

Region of supplier.
Postal Code of supplier.
Country of supplier.
Phone of supplier.

Fax of supplier.

HomePage of supplier.

43

e Products Table :
The table holds the information about the products. It has two relations with the
Categories table and the Suppliers table on CategorylD, SupplierID colums
respectively. In other words, a product record can be included just in one category and

can have just one supplier. On the other hand, a category can include and a supplier

can supply more than one product.

Table 5.3 Products Table
Column Name Data Type Is Nullable Desciption
ProductID int False Product key.
ProductName nvarchar False Name of product.
SupplierID int True Supplier’s key of product.
CategorylD int True Category’s key of product.
QuantityPerUnit nvarchar True Quantity per unit of product.
UnitPrice money True Unit price of product.
UnitsInStock smallint True Units in stock of product.
UnitsOnOrder smallint True Units on order of product.
ReorderLevel smallint True Reorder level of product.
Discontinued bit True Discontinue status of product.
Suppliers
Products @ |5upplieriD
i ProductID ComparryMame
— Producthlame " | ContactMame
| {SupplierID N || contactTite
— ézfaengtiotTPIErUnit FK_Products_Suppliers || Ezjress
__|umitprice T Region
___|UnitsInStock ~ |postalCode
Categories | |UnitsOnCrder | Country
@ | CateqoryID ___|ReorderLevel " |Phane
CategoryMame] Discontinued ~Fax
Drescription ﬁ " |HomePage
Picture —

FK_Products_iCateqories

Figure 5.1 Northwind Database Diagram

44

Before we develop our application, we should prepare the database to establish a connection.
The first step is to define a user on the database which will be used during data access. The
procedure listed below is adequate for this example.

e Open Enterprise Manager of MSSQL 2000.

e Expand Northwind database and right-click on “Users”. Select “New Database

User...” menu item.

4 Morthwind
El'g' Diagrarns
Tables
&g Wiews

#5 Stored Procedures

Mew Database User, ..

I RY view ’
(=] e Mew Window From Here

e
7 Us Refresh

4 pubs Expork List. ..
Daka Tran:
Managems

Help

Figure 5.2 New Database User

e Select “<new>" item for Login name on the up coming window.

General l
Login name: || ﬂ
U) < e
=T (U=l BUILTIM Adminiztrators
Figure 5.3 New Login Name

e Enter the login properties as...
General Tab
Name : webuser
Authetication : SQL Server Authentication
Password : webuser
Database : Northwind
Database Access Tab

*Select Northwind on the database list to permit the user access.

45

SOL Server Login Properties - Mew Login E

General l Server Fh:-lesl [atabase Access]

&) (o)

Authentication

™ Windows Suthentication

f* SOL Server Authentication

samERRR

Password:

Defaults
Specify the default language and database for this login.

(E-)atabase: |Northwind ﬂ]

Language: | <Default j

QK | Cancel | Help |

Figure 5.4 SQL Server Login Properties General Tab

SOL Server Login Properties - Mew Login

General] Server Foles Database Access

Specify which databases can be accessed by this login.

Permit |Database |User | Fs
O0f Gd
O @ Insuran...
Logaing
{ i Morthwind webuser
8 master
OF model

L [V]

O
=
I

D atabase roles for 'Morthwind';

Permit in Database Role |
£ public

16 db_owner

[} ﬁ db_accessadmin

] ﬁ db_zecurityadmin

1€ db ddadmin v

L eeeties |
ok | Cancel | Help |

:

Figure 5.5 SQL Server Login Properties Data Access Tab

Until now a user is defined that has right to access Northwind database. On the next step, we
will test the connection to the database using MS Visual Studio 2005 and obtain a basic
connection string. The work to be done for this step comes...

e Open VS 2005.

e View the Server Explorer pain of VS 2005.

e Select “Add Connection...” item on the appeared menu by right-clicked on Server

Explorer.

Server Explorer - 0 X

EIEE
| || Data Connections

= 24 Servers
A PAPATYA

| Refresh

X

Delete

| Add Connection. .

Create Mew SQL Server Database, .,

=) Properties

Figure 5.6 Server Explorer Data Connection Menu

47

Enter the connection paramters and test it. If test is successful, get the connection

string from the Advanced window.

Add Connection

Enter information to connect to the selected data source o click
"Change" ta choose a different data source andfor provider,

Data source:

Wicrosoft SGL Server {SqlClient)

Server name:

Log on to the server

() Use windows Authentication
@Usa SGL Server Authentication

User name: | webuser

Password: ssssess

Save my password
Connect ko a database

(%) Select or enter a database name:

Morthwind -

() Attach a database file:

Figure 5.7 Add Connection Wizard

Advanced Properties

EE |

Inteqgrated Security False ~
Password Tl

Persist Security Info True

TrustServerCertificate False

User ID webuser
E Source

AttachDbFilename

Context Connection False

Daka Source PAPATYA

Dafa SDI.II‘.CE
Indicates the name of the data source to connect to.

orthwind; Persist Security Info=True; User ID=webuset|

=N

Copy

Figure 5.8 Add Connection Wizard Advanced Properties

48

The obtained connection string is one of the parameters used by DAL Generator to establish
database connections, so it has to be defined in DALHelper.DBConnectionHelper class. As
explained in earlier chapters, the connection string value should be added to
ConnectionStrings and TestConnectionStrings arrays. A brief list of actions to define a new
database for DAL Generator is listed below.
¢ Add an explanatory name for the connection to the DBConnectionType enum on
DALHelper.DBConnectionHelper.
e Add the connection string to ConnectionStrings and TestConnectionStrings arrays on
DALHelper.DBConnectionHelper.
e Add the SqlConnection type to the Connections array on
DALHelper.DBConnectionHelper.
e Add SQLClientHandler type to the DBSpecificHandlers array on
DALHelper.DBConnectionHelper.
e Build and ditribute the DAL Generator to the developers, who will need to use the
newly defined connection.
After these procedures were completed successfully, we are ready to build the data access

layer of the applications that works on Northwind database’s records.

5.2 Recommendations To Create DAL Packages

A DAL package is the class library project in which a group of DAL class reside. This part
contains some recommandations that can be useful for developers when they generate DAL
packages. Usage of this written experience is not a mandotory rule of DAL Generator, but it

gives some clue about basic decisions.

Before generating any DAL code, the first thing to do should be creating a blank solution
which will contain all the DAL packages and the DALHelper project. After having a solution
for DAL codes, any generated class should be added to this solution. With this decision, a
developer will know where the data access layer classes locates, and whether any needed
class has already been generated or not. If the searched DAL class is found, it can be reused
without generating new one. In other words, management of data access layer gets easier and

reusability of classes increases.

49

The DALHelper project is the class library that is using by all of the DAL classes. Although
this library has static attributes, some needs may arise to add extra properties and
functionalities to this library. In such a case, compiling the DAL classes with new
functionalities against undetermined errors will be useful. Instead of determining the locations

of each DAL code, collecting all classes in the same solution makes the life easier.

Another point, that the developer should think about it, is how he/she will group the DAL
classes, because using one well grouped package can be enough for an application. On the
other hand, using more than one DAL package for a purpose can make progamming difficult.
For example, the DAL classes related to accounting of a company can be put in the same
package. The grouping criterias differ developer by developer or according to the
requirements of the applications. Possible package decisions;

e Grouping DAL classes according on which database they access.

e Grouping DAL classes according to the application they used in.

e Grouping DAL classes according to the usage frequencies of the classes.
While grouping the classes, the package names should also be as clear as every developer can

understand/guess the content of it.

DAL Code Generator tool provides to save the schema of the generated classes as XML files.
With this ability, the developer can regenerate the classes after some modifications with a
little effort. It is important to locate the schemas on the same project with the related DAL

class, so it can be found easily by the developer.

5.3 Generation Of DAL Codes

Until this step, we prepared the connectivity to the database and set the connection parameters
of the DAL Code Generator tool. The following pages will explain the usage of the tool and

its capabilities.

As written in previous part, a solution will be created, into which a DAL package will be

added to be used in the example application, before generating any class.

50

In the following lines, the creation of a solution will be described.
e After opening VS 2005, select “Project...” item under File-New menu. This begins
new project dialog.

W Microsoft Visual Studio

File | Edit Migw Tools Window Commuonity Help
| Hew y m 1 Project.., Chrl-+Shift-H
open b @ Web Site..,
Close] File... ChrlHM
Close Solution Projeck From Existing Code. ..

Figure 5.9 Visual Studio 2005 File Menu

e The entered parameters on the New Project dialog are listed below.
Project Type : Visual Studio Solutions under Other Project Types tree node
Visual Studio Installed Templates : Blank Solution

Name : DALSoln
Location : C:\Projects\Packages
Hew Project
Project bypes: Templates: EI EI
| @ visual C# ! ¥isual Studio installed templates |
(=) Other Project Types
Setup and Deployment A Blank Solution
Database
Extensibility My Templates
Visual Studio Solutions
i 5earch Online Templates. .,
Create an empty solution containing no projects
Marne: DALScin
Location: | C:\Projects\Packages| |vr
[[]add to Source Corttrol
[QK] [Cancel

Figure 5.10 New Project Wizard

e The dialog creates and opens a blank solution with the given paramaters.

51

DALSoln is the solution where all the dal packages are included, so the class library for the

Northwind database will be genared on it.
e When rigth-clicked over the DALSoln on the Solution Explorer, “New Project...” item
should be selected under “Add” menu. As the result, “Add New Project” dialog will

appear.

|Su:u|utiu:un Explorer - 0 X

=

Solution ‘DALSoin' (0 projects)

Mew Project, .. m Add /
Existing Project. .. L_? Add Solution ko Source Control...
Mew WWeb Site... 4l Paste
Existing ‘Weh Site. .. Rename

2i:| | Mew Ikem... Properties

i3] Ewisting Ikem...

"1 Mew Solution Folder

Figure 5.11 Solution Explorer Menu

e The entered parameters on the dialog are listed below.
Project Type : Windows under Visual C# tree node
Visual Studio Installed Templates : Class Library
Name : Northwind DAL
Location : C:\Projects\Packages\DALSoln

52

Add New Project 23

Project bypes; Templates: iE”
=) Wisual C# ¥isual Studio installed templates
o Windoves
& Smart Device [windows Application [AClass Library
- Database @Windows Control Library @Web Conkrol Library
: " Starter Kits ,:—g(hnsole Application I@'\v‘m'inclm-\:s Service
[Other Project Types [EF Empty Project E]Crvstal Reports Application

My Templates

i Search Online Templates. ..

[it project%or creating a C# classulil.srary (.cill)

Mame: MorthwindDal

Location: Z:\ProjectsiPackages\DALSoln |vl [Erowse, ..]

[[4][Cancel]

Figure 5.12 Add New Project Wizard

e This dialog creates a class library that contains an empty class, Classl. It should be

deleted, because no code will be written on that.

As written before, all the generated classes use the DALHelper library. Due to that reason, the
library has to be added to the solution by selecting “Existing Project...” appearing when rigth-
clicked over the DALSoln.

Solution Explorer - 0 X
4.

I
'_; Solution Tl Saln' M1 nrniect

= 1] Nort Build Solution
i‘ E Rebuild Solution
Clean Solution
Batch Build. ..
Configuration Managet. ..
| Mew Project... | Add b
| Existing Project... | Set Startlp Projects. ..
News Web Site. ., 23 add Salution to Source Contral,.,
Existing Web Site..,) Paste
= W Rename
[:25]| Existing Item... Froperties

4| Mew Solution Folder

Figure 5.13 Solution Explorer Menu

53

Solution Explorer - DALHelper

= | 7]
[Solution 'DALSaIN' (2 projects)
= _E CLHelper
+ =d| Properties
wd| References
] BaseDAL.cs
Eﬁ CEConneckionHelper.cs
] DBSpecificHandler.cs
] DBTools.cs
=] NorthwindDAL
+ =d| Properties
+- [+3] References

Figure 5.14 Solution Explorer

We are now ready to execute the DAL Code Generator tool and to generate our first class.
The generator decides, on which project it generates code, by getting the selected project on
the solution explorer, so firstly, the project (DAL Package) or a member of the project is to
be selected on the solution explorer. After the project selection, it can be run by clicking on

“Generate DAL Code” item under “Tools” menu of Visual Studio.

Solution Explorer - MorthwindDaL

= | 7]
(o Solution 'DALSIn' (2 projects)
= 5 DALHelper
+- =d| Properties
¥ [+3] References
] BaseDAL.cs
'3*__-’| CEConneckionHelper .cs
] DBSpecificHandler.cs
] DETools.cs
= @ NorthwindDAL |
+- =d| Properties
¥ [+3] References

Figure 5.15 Solution Explorer

Tools | “Window Community Help

| =% Generate DAL Code

_-‘j attach to Process, .. Chrl+al+P

.E.]; Caonneck to Device, ..

Figure 5.16 Visual Studio Tools Menu

54

The generator wizard comes to the screen.

@' DAL Code Generation Wizard
Data Source | NORTHWIND| v
Table Schema
Table Name [Get Schema ” Load Schema l
Project MorthuindDal
Class Name Create BE Class @[_] Generate DAL Code l

Figure 5.17 DAL Code Generation Wizard

The tool has three main parts. On the top of the wizard, the first part exists for the data source
selection. The data sources listed on a combobox component are the defined sources on
DALHelper.DBConnectionHelper class. The developer should choose the right one according
to the table he/she wants to access. This wizard also contains a button to test the connection to
the selected data source. As the connection test result, the developer is informed with a
messagebox which indicates a succeccfully established connection or the exception thrown

during connection attempt.

Connection Successful ﬁ

L]
\!}) Connection ko the selected data source is successfully established.

Figure 5.18 Connection Test Result For Success

55

Connection Error

Connection Failed,

Failure Reason

& TCPIP socket error has occured (100600 & connection attempt Failed because the connected party did nok properly
respond after a period of kime, or established connection Failed because connected host has Failed to respond,

SOLSTATE: 03501, SOLCODE: 10060

Figure 5.19 Connection Test Result For Error

The second part of the wizard is the area where the table selection is made and where the
attributes of the DAL class is set. On this part, the developer should enter the table name,
whose DAL code will be generated. After that, pressing to the “Get Schema” button fills the
Gridview component with the schema of the table by accessing the data source. If the table

name is miss written or the database can not be accessed, the wizard will warn the developer.

o
Data Source NDHTHWIND v
Table Schema |
Table Name | Supplier [Get Schema J[Load Schema l
=]
Schema Error

Probably the specified table is not Found,
Errar &

The file can not be loaded, Please check the file narne.
Error Detail:
Invvalid object name "Supplier',

)
Project MorthwindDAL
Class Name Create BE Class @[_] Generate DAL Code l

Figure 5.20 DAL Code Generation Wizard Schema Error

56

o5 DAL Code Generation Wizard W

Data Source |NORTHWIND v
Table Schema
Table Hame | Suppliers [Get Schema][Load Schema]
NORTHWIND. Suppliers
Marie FigldType FigldW arme Ky b
SupplierdD int SupplierD
ComparyH ame zhing Comparnyt ame F
ContactM ame zhiing ContactMame F
ContactTitle zhiing ContactTitle F
Address zhring Address F
City shing City F
Region ztring Region L
-
< >
Project MorthwindDAl
Clazs Hame Create BE Class @[_] Generate DAL Code]

Figure 5.21 DAL Code Generation Wizard With Loaded Schema

The main schema of the table is loaded to the grid. Now, the developer can modify the fields

of the schema, if any changes is needed. The grid columns and the circumtances where the

changes is needed is explained below.

Name Column :

The names listed under this column is the column names of the database table. This
values should not be changed, otherwise an exception will be thrown when accessing
that column using the generated class.

FieldType Column :

The generated class will have properties for each table column. FieldTypes indicates
the .Net types of these properties. The values listed under this column can be modified
by the developer under such circumtances;

» The generator decides the appropriate .Net type according to an algoritm, but it
does not always choose the prefered data type by the developer. Mostly, the
reason is that not all the database types have the exact match to a .Net type. For
example, DB2 database does not have the boolean type, so SHORT INT type is
generally is used to hold true/false values. In this case, the developer can
modify FieldTypes value with “bool” string. As a result, the property will be in
boolean type, on the other hand it sets its value into a SHORT INT database

column. As an another example, the database column can be double, but the

57

programmer can prefer to access its values through a decimal property, so

he/she should change the FieldTypes from double to decimal.
FieldName Column :
As it is explained, the generator will create properties on the generated class for each
database column. The name of these properties will the values of FieldName column.
The developer can edit these value, but he/she should watch out the uniqueness of the
names in the schema.
Key Column :
For the key fields of the table, the corresponding checkboxes will be checked by the
generator while getting the schema from the database. Some tables may have a key
column, which does not have a logical meaning. For example, a student table can have
an autoincrement column as key, but it can also include a column that holds the
student numbers, which is known as unique for every student record. In this case, the
programmer may prefer to set student number as key, because it is much more
logically useful in applications than an identity column.
Decimal Column :
If a database column is decimal, and the generator decides to use non-decimal .Net
type for this column, the checkbox is checked while getting the schema. A checked
checkbox indicates that the value on the database should be covered as decimal. If the
developer prefered to use double type, the value on the database is to be cast to double
during a read operation, and for an update operation, the object’s value is to cast to
decimal.
AutoIncrement Column :
An autoincrement (or identity) column is the column whose value is given by the
database during insertion the record. If any identity column is found while loading the
schema, the corresponding checkbox will be checked automatically. The developer
should be aware of that reading an identity column decreases the performance, so if
such a column is not needed, it should be deleted from the loaded schema, or its
Autolncrement checkbox should be unchecked.
DbType Column :
This column specifies the type of the corresponding field on the database. The value is

not to be changed.

58

Moreover, the wizard has buttons to change the order of the schema’s rows and to delete a

row from the schema. A deleted row is not reflected to the generated schema.

This part contains buttons to load previously saved schemas and to define relationships, but

these functionalities will be covered after our first DAL class will be generated.

The last section of the wizard is the last step before the class generation. Here, the developer

enters for the final parameters of the wizard that are explained below.

Project Information :

The project label shows on which project the generated class will be created, so the
developer can be sure that he/she did not select the wrong project on the solution
explorer of Visual Studio.

Class Name :

The name written on this textbox will be the name of the generated DAL classes. For
the class that accesses to the database, the generator appends “DAL” extension to the
name specified on the textbox. By the way, for the business entity class, that inherits
the DAL class, will have the same name as specified.

“Create BE Class” Checkbox :

The generator creates also a business entity class, if this checkbox is checked. Because
the business entities may contain custom properties and methods, that are added by the
developer, he/she may not want to create a new business entity and lose these
modifications when a regeration is in process.

“Save Schema” Button :

The DAL Code Generator gives the ability to save the loaded and modified schema in
an XML file. At this point, the developer can press this button and save the schema
after a save dialog. The location of the saved xml file may be critical for the future
regenation needs. It is recommended, that the schema should be kept in the project
folder and, also, should be included in the project, so it can be easily found by other
developers.

“Generate DAL Code” Button :

This button is the last action of the wizard. The generation process begins by pressing

this button.

59

Until now, the main functions of the tool are explained. At this point, we can resume to build

the data access layer of our demonstration application.

Lastly, the generator is excuted, and the schema of the Supplier table is loaded to the

generator. The last view is shown below, after the class name was specified the same name as

the table, Suppliers.

o5 DAL Code Generation Wizard

Data Source |MORTHWIND

Table Schema

Table Hame | Suppliers
HORTHWIND Suppliers

| | Test Connection

[Get Schema][Load Schema]

M ame FieldT ype FieldM ame (=] i

» SupplierD int Supplier D

ComparyM ame zhring CompanyM ame F

Contact ame ztring ContactM ame Fl

ContactTitle ztring ContactTitle F

Address zhring Address F

City string City Fl

Region ztring Reqgion FI po
< »

Project M arthwindD AL

Clazs Name (Suppliers

] Create BE Class @[) Generate DAL Code |

Figure 5.22 DAL Code Generation Wizard Before Generation Process

After the “Generate DAL Code” button is pressed, the generator creates two files and opens

them on the Visual Studio. The created files for the Suppliers table are;

Suppliers.cs :

SuppliersDAL.cs :

Business entity class file, that is open for the developer’s modifications.

The class that is actually responsible of the data access to the Suppliers table.

60

Solution Explorer - MorthwindDAL

= | @ [Pl EL S
(oA Solution 'DALSoln' (2 projects)
= _E DaLHelper
=d| Properties
«d| References
] BaseDal.cs
Eﬁ CEConnectionHelper .cs
] DBSpecificHandler.cs
] DBTools.cs
=] NorthwindDAL
+- =d| Properties
= References
= [DAL
] SuppliersDal.cs
w#] Suppliers.cs

Figure 5.23 Solution Explorer After Generation

{Suppliers.cs | SuppliersDAL.cs)
”13 b

[Cusing 3ystem:
Lusing Jystew.Datar

i

2

3

47 natrespace NorthwindDAL

5/ <swmarys

& J4F Buginess Entity class that uses <=se ol
-
=]
=

A < summar v
= public class Suppliers @ DAL.SuppliersDAL -
E A7 cauranarve

10 A44 Default constructor
114 A0 4 sumar v

1299 public 3uppliersi(){
1534 H

Figure 5.24 Code Editor After Generation

As a result, hundreds of lines of codes are generated with a little effort in a very short time.
Now, the same generation process will be repeated for the Categories table of Northwind
database. After the generation process is completed, the server explorer will have a view

displayed below.

61

Figure 5.25 Solution Explorer After All Generation Process

Solution Explorer - MorthwindDal

=Nl

j Solution ‘DALSoIn' (2 projects)
= _E DaLHelper
=d| Properties
wd| References
fﬂ BaseDal.cs
fﬂ CEConnectionHelper.cs
#] DBSpecificHandler.cs
#] DBETools.cs
=] NorthwindDAL
+-- =d| Properties
wd| References
= [5r DAL
f*_:’] CategaoriesDal.cs
f*_:’] SuppliersDal, cs
fﬂ Cateqaries.cs
fﬂ Suppliers.cs

There is one more table left to generate its DAL class on which the demonstration application

aims to work. This table is the Products table, that has relations with Suppliers and Categories

tables. The steps taken to generate ProductsDAL file will show how a relationship can be

defined using the DAL Code Generator tool.

e As it is done on the previous generation procedures, the NorthwindDAL project

should be selected on the solution explorer, and the generator wizard should be

executed by pressing “Generate DAL Code” item on Visual Studio’s tools menu.

e After loading the schema from the database using “Get Schema” button, as described

carlier, the relation button should be clicked. (=2) As a result, the Relation

Configurator will appear on the center of the screen.

Relation Configurator

Existent Felations

Marme Space

Figure 5.26 Initial View Of Relation Configurator

=

-

bl

62

The Relation Configurator has two main parts. The first part, located on the left side of
the form, is to display defined relations. Because the schema does not have any
existent relation yet, the list is empty. Moreover, this part contains two buttons to add
a new relation and to delete an existent one, that is selected on the list. The second
part, “Relation Details”, makes the developer to be able to enter the attributes of a new
relation or to modify an existent relation. To add our first relation, the button, “Add
New Relation”, should be pressed.

This action enables “Relation Details” part. As written on the top of the part, the status
became “Define a new relation”, so the developer is aware of the action, that he/she is
doing. Moreover, it is also seen, that there is a tree, Project Classes, which is
displaying the classes in the project and the classes in the references of the project.
The treenode, we intrested in, is the NorthwindDAL project. This treenode has two
subnodes, that are familiar for us, because Categories and Suppliers are the classes,
that have been generated earlier. Next action should be double-clicking on the

Categories subnode to begin defining a relation with Categories class.

Relation Configurator
Exiztent Relations
Define a new relation. Project Classes
= Child Clazs (Crouble click to zat a child class)

=1 MaorthwindDaL

Relation Mame Categories
Suppliers
; +- b5

Relation Type - Microsoft
@1l O 1N +- System
tdethod to Call

Parameters

Mame Space

i Save | [XCancel |

Figure 5.27 Relation Configurator For New Relation Definition

By default, “Relation Name” entry has the same name with the relation class. In our
case, it will be “Categories”. The developer can change it to a more explanatory name
for him/her, because the generated class will have a property with this name. In

general, I rename it with a singular word, if the relation is 1 to 1. If not, a plural word

63

is choosen by me. For this relation, the name, “Category”, is used, because each
product can have at most one category, that means the relation type is 1 to 1.

The relation between Products and Categories classes is provided with calling a
method of Categories by Products, so the right method should be specified.
Additionally, the parameters, that is to be passes to the method, should be choosen in
the property list of Products. To start these selections, “Method to Call” button should
be use.

The first dialog lists the constructors of Catogories. The developer selects one of them
on single selection listbox. We choose the construnctor, that takes just the category id
as parameter.

The second dialog of “Method To Call Selection” gives a multi selection list of
Product’s properties. As mentioned in previous step, the method to call takes just one
argument, so the developer has to select as many properties as the number of the
selected method’s arguments, 1. The “CategoryID” property is the one, that is to be
passes to the constructor. If the developer select wrong number of items on the list,

he/she will be warned.

Method To Call Selection

The zelected method will be called to provide the relation.
Pleaze zelect the method and click the button.

Categones| |

Categones(p_Reader |

Categones{ p_Connection, p_CategorglD |
Categones(p_Tranzaction, p_CategomlD]
Categonies(p_CategomlD]

Select

Figure 5.28 Method To Call Selection Part 1

64

Method To Call Selection

Select which values will be used to call the method
az Ite parameters.
of parameters : 1

ProductD
Productt ame
Supplier D
Categon(D
CluantityPerlJnit
IIritPrice
UnikzlnStock
Unitz0nOrder
ReorderLewvel
Dizcontinued

Select

Figure 5.29 Method To Call Selection Part 2

Select which walues will be uzed to call the method
az itz parameters.

of parameters

ProductiD
ProductM ame
SupplierlD
CategomlD
CluantityPerUnit
[InitPrice
[InitzlnStock
[Initz0n0rder
Reorderlevel
Dizzontinued

—

1

e

Parameter Selection

@ The selected function takes 1 parameters, buk 2 selecked items is detected.

Select |

Figure 5.30 Method To Call Selection Parameter Number Error

65

e This relation definition ends with saving the relation. The same steps will be repeated

for the relation with Suppliers. The last screen is as shown below.

Relation Configurator E
E siztent Felations Felation Detailz
Category Update an existent relation.
Supplier Child Class
-

Relation Mame

Supplier

Felation Type

® 1l O 1N

fdethod to Call

Parameters
e SupplierD=5upplierlD

[L'ﬂ Save l [}(Eancel]

Figure 5.31 Relation Configurator For Update Existent Relations

With closing the relation configurator, the wizard form appears again. The first thing, that the
developer should do after defining the relations, is to save the schema changes. The XML file,
produced with save operation, will also contain the relation definitions, so if a regeneration of

the Products DAL class is needed, the relations info can also be obtained.

<ClassRelations>
<Name>Category</Name>
<ChildClassName>Categories</ChildClassName>
<Type>0</Type>
<MethodToCal I>Categories</MethodToCal I>
</ClassRelations>

<ClassRelations>
<Name>Supplier</Name>
<ChildClassName>Suppliers</ChildClassName>
<Type>0</Type>
<MethodToCal I1>Suppliers</MethodToCal >
</ClassRelations>

<Parameters>
<Name>Category</Name>
<MethodToCal I>Categories</MethodToCal I>
<ParamName>Category ID=CategorylD</ParamName>
</Parameters>

66

<Parameters>
<Name>Supplier</Name>
<MethodToCal 1>Suppliers</MethodToCal I>
<ParamName>Supplier1D=SupplierID</ParamName>
</Parameters>

After the generation process of Products class, we will observe two more files added to the
NorthwindDAL project like previous generation processes did. On the other hand, when we
take a close look in ProductsDAL.cs, which is one of the produced files, we will see that the

properties, Supplier and Category, was added to provide relationships.

private Suppliers supplier;
public Suppliers Supplier

{
get

{
it (supplier == null)

try
{

supplier = new Suppliers(SupplierlD);

catch (RecordNotFoundException)
{

supplier = null;

}

return supplier;

set
{
supplier = value;
UpdateRelationBackwards(*'supplier”™, supplier);
}
b

private Categories category;
public Categories Category

{
get

{
if (category == null)
{
try

{

category = new Categories(CategorylD);

}
catch (RecordNotFoundException)
{

}
}

return category;

}

set

category = null;

67

{
category = value;
UpdateRelationBackwards(*‘category", category);

}

}

5.4 Developing An ASP .Net Application

Before developing an application, the developer generally decides the data sources, which the
application will access, according to the requirements. After the determination of the sources,
the DAL Code Generator tool helps to building data access layer just in minutes, so the
developer can quickly begin to focus on the presentation and the business layers. Similarly,

we can start to develop our demonstration application.

This section will mostly focus on the usage of the generated classes, but the basic steps of
creating an ASP.Net application and the main attributes of the used component will be also

explained.

5.4.1 Creation Of An ASP .NET Project

Visual Studio .Net has a very basic wizard to create an ASP.Net Application. The “Add New
Web Site” wizard can be viewed by using “File — New — Web Site” menu item of Visual
Studio 2005. On the opened form, the developer have the choices to select the template of the
site, the location, where the project will reside, and the language, in which the application will

be written. The selection made for this example is listed below.

Visual Studio installed templates : ASP.Net Web Site
Location Type : File System
Location

“C:\Projects\WebProjects\DALUsageDemonstrationSoln\DALUsageDemonstration”
Language : Visual C#

68

Add New Web Site
Templates: HE =

¥isual Studio installed templates

(23 ASPNET Web Site 8, ASPLNET Web Service (=% Personal Weh Site Starter Kit
2 Empty Weh Site -'GQASF‘.NET Crystal Reports Web Site

My Templates

4 5earch Online Templates. ..

A blank ASP.MET Web site

Location: File Swsten s+ | | bProjects\DaLUsageDemonstrationsoln| SALUsagebemonstration | Browse, ..
Language: Wisual C# |
| oK |[Cancel]

Figure 5.32 Visual Studio 2005 Add New Web Site Wizard

This wizard creates an ASP.Net project according to the given parameters and adds it to a
solution. The project contains a default web form, Default.aspx , but the developer can add
more items to the project using “Add New Item” wizard, that pops up by right clicking on the
project and selecting “Add New Item” item. This wizard shows the available items on Visual
Studio. In the project developed in the following pages, we will need to add one more Web

Form using this wizard.

5.4.2 Adding Components To A Web Form

Visual Studio includes lots of component for each kind of projects, that can be easily added
with drag and drop, and whose attribute can be set in the code behind of the form or in the

property pain of Visual Studio.

For the ASP.Net web forms, the available components are also listed on the Toolbox pain,

and they can be moved onto the form.

69

Taoalbax + & X || Default.aspx*

Standard

Elk[):t'at ID Product Name Category Name Supplier Name

oincer

| T3 Gridview | Databound Databound Dratab ound Databound

() Datalist Databound Databound Databound Databound

~—' DEta'lsfu'EW Databound Databound Databound Databound

'_.——I Forrmbiew

] pepeater Databound Databound Databound Databound

L] SqiDataSource Databound Databound Databound Databound

Figure 5.33 Visual Studio 2005 Toolbox
5.4.3 Preparing Applications For DAL Usage

After these informations, we will begin to build our example project, but we should first to

complete the requirements of DAL Classes’ usage.

In the previous pages, a class library is created, which includes data access codes of
Northwind database. Firstly, the class library should be referenced by the project, that will use
it. There is two ways to reference a DAL library generated by our tool.

e The reference can be defined by targetting the DLL file of the DAL library. The
developer should build the DAL library, so he/she obtains the DLL file.

e The second method is defining the reference from the list of the solution’s projects. To
practice this method, the developer is to add the related DAL library project to the
same solution as the application that will use it.

While the second way is choosen to apply, the NorthwindDAL project is added to the

demontration solution.

The second requirement of DAL usage preparation is adding the reference of DALHelper
library to the solution as well, because DALHelper is the library, that is used by every
generated DAL class. Moreover, it also contains helper functions, that can be used to access
the data sources without using DAL classes, or to obtain parameters to call a DAL class. If
DALHelper will be used in the project, it is also to be added to the references of the project.

After these requirements are completed, the view of the solution explorer looks like as the

following. The developer is now ready to continue developing his/her application.

70

Solution Explorer - i, \DaLUsagelemonstr akion),

Eﬂl.ng!I|éa'|Eﬁ b

_: Saolution 'DALUsagelemanstrationSaln' (3 projecks)
= _P C:.. 5 DALUs ageDemonstration’,
4 hpp Daka
= 7 Bin
|%| DaLHelper.dll
DaLHelper. pdb
|%] MorthwindDal . di
MarthwindDAL . pdb
+- | Defadl, aspx
i3 Web, Config

£ [ZF DALHelper]

£ [MNorthwindDaL

Figure 5.34 Solution Explorer When the Preparation Completed
5.4.4 Usage Of DAL Classes

The first web form of the demonstration application will list the Products’ records. It will
contain a grid view component which shows the product id, the product name, the category
name and the supplier name for each product record.

To deal with this approach, the generated Products class provides the first two data, but it has
only the ids of the related category and supplier records, not their name info. What the
developer is going to do is to code the properties for them in Products.cs of Northwind DAL
library. The added code should be like this.

#region Custom Properties
public string CategoryName

{
get
{
if (this.Category = null)
{
return this.Category.CategoryName;
}
else
{
return null;
}
}
}
public string SupplierName
{
get
{
if (this.Supplier = null)
{
return this.Supplier.CompanyName;
}
else

71

{
return null;
b
b
b

#endregion

As a result, Products class become able to provide the needed data over its properties.

After we complete the missing data, we can continue to design our first form, Default.aspx.

It is planned to have a form, over which some queries can be executed and the result are
displayed on the same form. Due to these requirements, some components are added onto
Default.aspx to let the users to enter the query conditions. The designed query section of the

form has a view as the following.

Product Id Froduct Mame
Supplier Mame | Exotic Liguids k4

[Load Products]

Figure 5.35 Query Section Of Default.aspx

As you see, the form has two textboxes for “Product Id”, “Product Name” inputs, and it has
two dropdown lists to let the user to select “Supplier Name” and “Category Name”, which
have been filled with the existent records on the database. The codes to fill the dropdown lists

are given below.

private void LoadSupplierList()
{
Suppliers supplierLoader = new Suppliers(Q);
ArrayList supplierList = supplierLoader.LoadAll();

supplierDropDownList. ltems.Clear();
supplierDropDownList. Items.Add(new Listltem());
foreach (Suppliers supplier in supplierList)
{
Listltem listltem = new Listltem(supplier.CompanyName,
supplier.SupplierlID.ToString());
supplierDropDownList. Items.Add(listltem);
3
3

private void LoadCategoryList()
{

Categories categorylLoader = new Categories();
ArrayList categorylList = categorylLoader.LoadAll();

72

categoryDropDownList. ltems.Clear();
categoryDropDownList. ltems_Add(new Listltem());
foreach (Categories category in categoryList)
{
Listltem listltem = new Listltem(category.CategoryName,
category.CategorylID.ToString());
categoryDropDownList. Items_Add(listltem);

}
}

The marked lines shows, how the lists of suppliers and categories are retrived from the
database. As you see, just two lines of code for each are sufficient to access the database

records using generated DAL classes.

The query section of the form has also a button, “Load Products”, that is resposible to get the
condition inputs, to query database and to bind the resulted query result to a gridview

component, that is also be added next to this section.

Because the document focus on the usage of DAL classes more than the usage of form
components, the only code block is included, that is responsible with data access of Products

results.

//p_Condition Examples:

//"SupplierlD = 1 AND CategorylD = 2"

//"ProductName LIKE "%Chai%""

//"Productld = 5"

private ArrayList LoadProducts(string p_Condition)

{
Products productLoader = new Products();
ArrayList products = productlLoader.LoadAll(p_Condition, 0);
return products;

}

An example screenshot of Default.aspx has been taken, which list the products, whose

Supplier is “Exotic Liquids” and Category is “Beverages”.

73

Product Id Product Mame
Supplier Mame | Exotic Liguids |¥| Category Mame | Beverages E4

[Load Products]

3 products has been loaded,
ID Product Name Category Name Supplier Name

1 Chai Bewerages Ezxotic Liquids
2 Chang Bewerages Exotic Liquids
98 testd Beverages Exotic Liquids

Figure 5.36 Products Listed On Default.aspx

Obviously, it is very easy to get the records on the database using generated DAL classes, but
most of the applications have more requirements than listing a block of records, such as
CRUD operations. Next demonstration form will show the way of dealing with CRUD using
DAL classes.

The designed form to demonstrate CRUD operations on Products’ records includes many
sections for each operation. Due to its wide content, each section will be discussed seperately.
First section of the form is designed to read a single record and to display its content on the
form. For the purposes, a combobox is located, which lists the product names, and a button is

ready to get the selected product from the database.

select the product | Aniseed Syrup V | Load]

Figure 5.37 The components For Loading The Product

The code triggered with the button explaines the way of a read operation using the generated

Products class, where “p_Productld” parameter is the identity value of the destination record.

Products product
productNamelLabel . Text
supplieriDLabel . Text
supplierLabel .Text
categorylDLabel .Text
categorylLabel .Text
quantityPerUnitLabel .Text
unitPricelLabel .Text
unitsinStockLabel . Text

new Products(p_Productlid);
product.ProductName;
product.SupplierID.ToString();
product._SupplierName;
product.CategorylD.ToString();
product.CategoryName;
product.QuantityPerUnit;
product.UnitPrice.ToString();
product._UnitsInStock.ToString();

74

As the result of the assignments of component values, next view will be appeared on the form.

Product Mame Amzeed Syrup
suppler 1 - Exotic Liquids
Categotry 2 - Condimerts
uantity Per Uit 12 - 550 ml bottles
it Price 10
Uruts In Stock 13

Edit Product

Figure 5.38 The Form State After Loading The Product

The “Edit Product” button is the gate to an update operation. When its click event is fired, the
fields are replaced with the components, that let user to modify the product’s values. Next

view displays the instance, after the user make some modification on the record.

Product Mame Aniseed Syrup 1

suppler Mew Otleans Cajun Delights w
Categoty Beverages v

Cuantity Per Tt 10 - 50 ml bottles

Tt Price 20

Trits In Stock 30

[Lpdate]

Figure 5.39 The Form State After “Edit Product” Button Pressed

Again, a button, “Update”, is ready to accomplish an action. The name of the action is an

update.

Products product
product.ProductName
product.SupplierlD
product.CategorylD
product.QuantityPerUnit
product.UnitPrice
product.UnitsInStock
productToUpdate.Update();

new Products(p_Productld);
productNameTextBox.Text.Trim();
int.Parse(supplierDropDownList.SelectedValue);
int_Parse(categoryDropDownList.SelectedValue);
quantityPerUnitTextBox.Text.Trim();
double_Parse(unitPriceTextBox.Text.Trim());
short.Parse(unitsInStockTextBox.Text.Trim());

The first line is familiar from the previous part, beacuse an DAL object is to be loaded before
an update operation. Each loading means a database access, which decreases our performance.

To deal with this issue, caching of the object is recommended after its first load, so it can be

75

used from the cache and does not nees to be loaded again. The last line of the code block is
the place, where the update occurs, after replacing the object values with user entries.

The next operation to demonstrate is the insertion. The components used for the update are
also used for this one, on which the user enters the values for a new Product record. The user

interface and the code fired with the “Insert” button comes next.

Product Matne

Suppler W
Category ¥

Cuantity Per Thnit

TTnit Price

Thits In Stock

[Insert]

Figure 5.40 The Form State For An Insertion

Products product
product.ProductName
product.SupplierlD
product.CategorylD
product.QuantityPerUnit
product._UnitPrice
product._UnitsInStock
productToUpdate. Insert();

new Products();
productNameTextBox.Text.Trim();
int.Parse(supplierDropDownList.SelectedValue);
int.Parse(categoryDropDownList.SelectedValue);
quantityPerUnitTextBox.Text.Trim();
double_Parse(unitPriceTextBox.Text.Trim());
short.Parse(unitsinStockTextBox.Text.Trim());

The code to be executed for an insertion is very similar to the update. The important
difference is on the first line, where the object is initialized with the defult constructor. A call
to the default constructor of a DAL class causes an emty object creation, which also means no
database connection is established. It is also logically true, because the record, that will be
inserted, is not to be exist in the database, in other words, it is an emty object. The code block
continues with the assignment statements, and ends with an insert call, where the connection
is established and created on the database.

The only operation in CRUD, that is not discussed yet, is the deletion. The demontration is

made by a single button, which trigger the following code block.

Products product = new Products(p_Productid);
productToUpdate. Insert();

76

As the update operation needs, a deletion is also needs a previously loaded object before its

execution.

77

6 CONCLUSSION AND FUTURE RECOMENDATIONS

This thesis is about presenting a solution for the layered applications. Although layered
architectures prevent serious problems on supporting such operational requirements as
maintainability, reusability, scalability, robustness, and security, the implementation of a
planned layered structure probably requires an assigned source of architects, an effort of
developers and, most important, a time period of the projects. The tool developed in this
thesis offers savings on the sources reserved for the implementation of the data access layer,
which is the base layer of any layered architecture. The tool, Data Access Layer Code
Generator, generates the DAL components automatically, any of which has a standart
structure, are reusable, and are easy to use. The generator supports the generation of codes
that are responsible to access data on two most popular database management systems, DB2
and Microsoft SQL Server. On the other hand, it is also designed to provide an easy

adaptation of other DBMS’.

The tool produces the DAL classes that are able to successfully process any CRUD operations
on the destination databases in multiple ways. Moreover, the developers can define relations
between the generated classes to realize the relationships between database tables. Because it
is fully integrated on Visual Studio 2005 development platform, the developers can easily
adapt to the tool. As much as the usage of the tool increases, the possible errors will be
prevented done by the developers on the data access. Additionally, the readability level of the
codes will also be improved due to the standardized and commented codes generated by this

tool.

As a conclusion, I believe in that the functionalities and the easy usage experience provided
by DAL Code Generator tool makes itself one of the first preferences of the developers,

where they require access to an information source.

In the future, the tool will be improved with the modules that will generate data access layer
components for the sources other than relational databases, such as XML sources. Moreover,
some design elements will be builded for the ASP .Net and desktop projects, which will be
responsible for adding data access capability to the applications with just a single drag and

drop action.

78

7 REFERENCES

References Cited

[1] Microsoft, “.NET Framework Conceptual Overview”, URL
http://msdn2.microsoft.com/en-us/library/zw4w595w.aspx

[2] Microsoft, “Common Language Runtime Overview”, URL
http://msdn2.microsoft.com/en-us/library/ddk909ch.aspx

[3] Netscope, “C# Introduction and Overview”, URL
http://www.netscope.co.za/directions/mpnetpro/mpnet _csharpintro.htm

[4] Microsoft, “Attributes (C# Programming Guide)”, URL http://msdn2.microsoft.com/en-
us/library/z0w 1kczw(VS.80).aspx

[5] Jesse Liberty, “Programming C#”, O’REILLY, 2001

[6] Microsoft, “Visual Studio 2005 Automation Samples”, URL
http://www.microsoft.com/downloads/details.aspx?Familyld=79C7E038-8768-4E1E-87AE-
SBBBE3886DE8&displaylang=en#Instructions

[7]. Santhi Maadhaven, “Creating simple Add-in for Visual Studio.NET”, 16 March 2005,
URL http://www.c-sharpcorner.com/Code/2005/March/CreatingAddin.asp

[8] Microsoft, “How to: Create an Add-in”, URL http://msdn2.microsoft.com/en-
us/library/80493a3w.aspx

[9] Alex Mackman, Chris Brooks, Steve Busby, Ed Jezierski, Jason Hogg, Roberta Leibovitz
and Colin Campbell, “.NET Data Access Architecture Guide”, Microsoft Corporation, 2003
[10] Joe Mayo, “The C# Station ADO.NET Tutorial”, 8 January 2004, URL
http://www.csharp-station.com/Tutorials/AdoDotNet/Lesson01.aspx

[11] Manoj G, “Implementing a Provider Independent Data Access Layer in .NET”, 4
November 2003, URL http://www.codeproject.com/vb/net/data_access_layer.asp

References Not Cited

[12] Microsoft, “Overview of the NET Framework”, URL http://msdn2.microsoft.com/en-
us/library/a4t23ktk.aspx

[13] Microsoft, “Creating Custom Attributes (C# Programming Guide)”, URL
http://msdn2.microsoft.com/en-us/library/sw480ze8.aspx

[14] Tom Archer, Andrew Whitechapel, “INSIDE C#”, Arkadas Yaynlar

[15]. Microsoft, “Custom Add-Ins Help You Maximize the Productivity of Visual Studio
NET”, URL http://msdn.microsoft.com/msdnmag/issues/02/02/VSIDE/default.aspx

79

[16] Microsoft, “.NET Framework Data Providers”, URL
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconADONETProviders.asp

[17] Dino Esposito, “Building Web Solutions With ASP.Net And ADO.Net”, Microsoft
Press, 2002

[18] Mickey Williams, “Microsoft VISUAL C# .Net”, Microsoft Press, 2002

[19] David Scoppa, “Microsoft ADO.Net”, Microsoft Press, 2002

[20] Jeff Webb, “Visual Basic .Net And Visual C# .Net”, Microsoft Press, 2003

[21] Nikhil Kathari, Vandana Datye, “Developing Microsoft ASP.Net Server Controls and
Components”, Microsoft Press, 2003

[22] Martin Fowler, “Pattern of Enterprise Application Architecture, Addision Wesley
Professional”, 2003

[23] Steve McConnell, “CODE COMPLETE”, Microsoft Press, 2004

[24] Peter Eeles, “Layering Strategies”, 15 October 2001, URL http://www-
128.ibm.com/developerworks/rational/library/4699.html

[25] Buschmann, Frank, “Pattern-Oriented Software Architecture”, Wiley & Sons, 1996
[26] Peter Eeles and Oliver Sims, “Building Business Objects”, John Wiley & Sons, 1998
[27] Peter Herzum and Oliver Sims, “The Business Component Factory”, John Wiley & Sons,
2000

[28] Ivar Jacobson, “Software Reuse”, Addison-Wesley, 1997

[29] David Hayden, “Domain-Driven Design - Layered Applications”, 29 March 2005, URL
http://codebetter.com/blogs/david.hayden/archive/2005/03/29/60806.aspx

80

