
ABSTRACT

DATA ACCESS LAYER CODE GENERATOR

GÖKÇE KÜÇÜKEREN

Layering techniques are commonly used in order to supply the operational requirements of

today’s complex enterprise applications. The codes developed for the Data Access Layer

(DAL), which is the foundation of most layered applications, increases the time of projects’

development phases, and the bugs in these manually written codes makes the data access

unreliable. In this thesis, a tool is developed to generate the required codes for DAL. The

automatically generated codes using this tool, Data Access Layer Code Generator, decreases

the time wasted for DAL development and makes the data access reliable due to their uniform

structure. Data Access Layer Code Generator is able to build the foundation of the layered

architectures with its user-friendly interfaces integrated on the development platform and with

the functionalities provided to the developers.

 I

ÖZET

VERİ ERİŞİM KATMANI KOD ÜRETİCİ

GÖKÇE KÜÇÜKEREN

Günümüzün kompleks uygulamalarının operasyonel gereksinimlerini karşılamak üzere

katmanlama teknikleri yaygın olarak kullanılmaktadır. Katmansal yapıların temelini oluşturan

Veri Erişim Katmanı (DAL) için geliştirilen kodlar, projelerin geliştirme sürelerini uzatmakta

ve elle yazılan kodlar içerisindeki hatalar, veri erişimini güvensiz kılmaktadır. Bu tezde, DAL

için gereksinim duyulan kodları üreten bir araç geliştirilmiştir. Bu Veri Erişim Katmanı Kod

Üretici aracı kullanılarak, otomatik olarak üretilen kodlar, DAL geliştirilmesi için harcanan

süreleri kısaltmakta ve tek biçimli yapıları sayesinde veri erişimini güvenilir kılmaktadır. Veri

Erişim Katmanı Kod Üretici, geliştirme platformuna entegre edilmiş, kullanıcı dostu

arayüzleri ve geliştiricilere sağladığı fonksiyonaliteler ile katmansal yapıların temelini inşa

edecek kabiliyete sahiptir.

 II

ACKNOWLEDGEMENTS

I would like to express my thanks to Prof. Dr. Selahattin Kuru for his comments, help and

supervision on the topic; and also I would like to thank all people that support me by giving

intelligent ideas, and psychological support.

 III

TABLE OF CONTENTS

ABSTRACT ...I

ÖZET.. II

ACKNOWLEDGEMENTS.. III

TABLE OF CONTENTS...IV

LIST OF FIGURES ...VI

LIST OF TABLES ..VIII

1 INTRODUCTION.. 1

2 CODE GENERATION IN LAYERED DATABASE APPLICATION 3

2.1 Application Layering.. 3

2.2 Code Generation... 9

2.3 Code Generation For Database Layer .. 10

3 TECHNOLOGIES USED.. 12

3.1 .Net Framework.. 12

3.1.1 Common Language Runtime... 12
3.1.2 The .Net Framework Class Library ... 14

3.2 Overview of C# .. 15

3.2.1 Classes ... 16
3.2.2 Attributes And Reflections .. 17

3.3 Visual Studio 2005 ... 20

3.3.1 Extensibility And Automation in Visual Studio 2005 ... 20

3.4 ADO .Net ... 24

4 CODED WORK ... 27

4.1 “DALCodeGeneratorLibrary” Library... 27

4.1.1 “CSClassGenerator” Class .. 28
4.1.2 “CSPFClassGenerator” Class .. 30
4.1.3 “FieldDescription” Class ... 33
4.1.4 “ClassRelationship” Class ... 34
4.1.5 “RelationshipFields” Class .. 34

 IV

4.1.6 “CSXMLClassGenerator” Class.. 35

4.2 “DALHelper” Library .. 35

4.2.1 “BaseDAL” Class .. 36
4.2.2 “DBConnectionHelper” Class ... 37
4.2.3 “IDBSpecificHandler” Interface.. 39
4.2.4 “DBFieldNameAttribute” Class .. 40
4.2.5 “DBRelationAttribute” Class... 40

5 EXAMPLE USE OF PROPOSED TOOL ... 42

5.1 Presentation Of The Database Used In Demonstration.. 42

5.2 Recommendations To Create DAL Packages .. 49

5.3 Generation Of DAL Codes... 50

5.4 Developing An ASP .Net Application ... 68

5.4.1 Creation Of An ASP .NET Project .. 68
5.4.2 Adding Components To A Web Form... 69
5.4.3 Preparing Applications For DAL Usage.. 70
5.4.4 Usage Of DAL Classes.. 71

6 CONCLUSSION AND FUTURE RECOMENDATIONS ... 78

7 REFERENCES... 79

 V

LIST OF FIGURES

Figure 2.1 General view of a layered application .. 4

Figure 2.2 OSI 7 Layer Model ... 5

Figure 2.3 Three Layered Application Architecture .. 6

Figure 3.1 .Net Framework .. 14

Figure 5.1 Northwind Database Diagram .. 44

Figure 5.2 New Database User... 45

Figure 5.3 New Login Name.. 45

Figure 5.4 SQL Server Login Properties General Tab... 46

Figure 5.5 SQL Server Login Properties Data Access Tab.. 46

Figure 5.6 Server Explorer Data Connection Menu... 47

Figure 5.7 Add Connection Wizard ... 48

Figure 5.8 Add Connection Wizard Advanced Properties... 48

Figure 5.9 Visual Studio 2005 File Menu .. 51

Figure 5.10 New Project Wizard.. 51

Figure 5.11 Solution Explorer Menu.. 52

Figure 5.12 Add New Project Wizard.. 53

Figure 5.13 Solution Explorer Menu.. 53

Figure 5.14 Solution Explorer.. 54

Figure 5.15 Solution Explorer.. 54

Figure 5.16 Visual Studio Tools Menu .. 54

Figure 5.17 DAL Code Generation Wizard ... 55

Figure 5.18 Connection Test Result For Success... 55

Figure 5.19 Connection Test Result For Error ... 56

Figure 5.20 DAL Code Generation Wizard Schema Error .. 56

Figure 5.21 DAL Code Generation Wizard With Loaded Schema.. 57

Figure 5.22 DAL Code Generation Wizard Before Generation Process 60

Figure 5.23 Solution Explorer After Generation.. 61

Figure 5.24 Code Editor After Generation... 61

Figure 5.25 Solution Explorer After All Generation Process .. 62

Figure 5.26 Initial View Of Relation Configurator.. 62

Figure 5.27 Relation Configurator For New Relation Definition .. 63

 VI

Figure 5.28 Method To Call Selection Part 1... 64

Figure 5.29 Method To Call Selection Part 2... 65

Figure 5.30 Method To Call Selection Parameter Number Error .. 65

Figure 5.31 Relation Configurator For Update Existent Relations.. 66

Figure 5.32 Visual Studio 2005 Add New Web Site Wizard... 69

Figure 5.33 Visual Studio 2005 Toolbox ... 70

Figure 5.34 Solution Explorer When the Preparation Completed ... 71

Figure 5.35 Query Section Of Default.aspx... 72

Figure 5.36 Products Listed On Default.aspx .. 74

Figure 5.37 The components For Loading The Product .. 74

Figure 5.38 The Form State After Loading The Product ... 75

Figure 5.39 The Form State After “Edit Product” Button Pressed .. 75

Figure 5.40 The Form State For An Insertion.. 76

 VII

LIST OF TABLES

Table 3.1 Add-in Installation Locations... 24

Table 3.2 Data Provider Interfaces... 26

Table 5.1 Categories Table... 42

Table 5.2 Supplier Table .. 43

Table 5.3 Products Table.. 44

 VIII

1 INTRODUCTION

Today’s enteprise applications compose of a large number of components, which makes the

systems too complex to comprehend in their entirety. The high complexity of the applications

possibly causes serious problems on supporting such operational requirements as

maintainability, reusability, scalability, robustness, and security. To deal with these issues, the

seperation of the components into layers can be the solution. The term, layer, refers to a

collection of application components, that focuses on a specific aspect of the application and

builds upon the facilities of other layers.

A common practice of layering is dividing the application into three layers, that are the

presentation layer, the business layer and the data access layer (DAL). The presentation layer

contains elements responsible for providing some form of communication with a human

being, such as an element in the user interface. On the other hand, the business layer contains

elements responsible for performing some kind of business processing and the application of

business rules. Lastly, the data access layer contains elements responsible for providing

access to an information source, such as a relational database.

While each layer is responsible of its duty, the communication between the layers is to be

provided with the business entities (BE). Business entities are data containers, that carry the

necessary data between layers. Each layer accepts an entity, which contains the required data

to be processed, and passes the same entity or a new entity to the other, after its process has

been completed. For instance, data access components will often return business entities

instead of database-specific structures. This helps significantly in isolating database-specific

details to the data layer.

In this thesis, we develop and present a tool that helps the developers by building the data

access layer in their layered applications. The tool, Data Access Layer Code Generator, is

designed to save the time, wasted by developing data access codes, with a generation process

provided within a simple wizard. The usage of the tool produces all the required data access

functionalities and the business entities of the layer.

A brief description is given below for each achieved work done during the development phase

of Data Access Layer Code Generator;

 1

• The DAL and BE codes generation

The codes developed for data access purposes may reach thousands of lines, but the

tool makes their development process available with a few entries on a wizard.

• Microsoft Visual Studio 2005 integration

Data Access Layer Code Generator is a tool integrated on the development platform,

Visual Studio 2005. It behaves as a part of the platform, and does not executed

externally.

• DB2 and Miscrosoft SQL Server support

The data access support is provided for the two most popular database management

systems. The tool’s structure is also designed to support more systems with a little

modification requirement.

• Database schemas

The developers are also able to store the database schemas, which are the attributes of

the generated codes. This function decreases the time of the regenaration of the codes,

when the database structure is changed.

• Relationships between generated codes

Through the tool, the developers are able to relate generated codes to simulate the

relationships between databases.

The following chapters will give a detailed information about the key technologies used in

development phase, about the builded libraries, and about the usage of the tool.

 2

2 CODE GENERATION IN LAYERED DATABASE APPLICATION

The chapter is prepared to give an overview about the three main concept related to this

thesis. The first section informs you about the layering an application and the advantages

gained by layering. The second section is an overview of code generation and lists the

advantages of the code generation approach. And the last section, Code Generation in

Database Application, explains why the database layer is suitable for using code generators.

2.1 Application Layering

Layering is one of the most common techniques that software designers use to break apart a

complicated software system. You see it in machine architectures, where layers descend from

a programming language with operating system calls into device drivers and CPU instruction

sets, and into logic gates inside chips. Networking has FTP layered on top of TCP, which is

on top of IP, which is on top of ethernet.

When thinking of a system in terms of layers, you imagine the principal subsystems in the

software arranged in some form of layer cake, where each layer rests on a lower layer. In this

scheme the higher layer uses various services defined by the lower layer, but the lower layer

is unaware of the higher layer. Furthermore, each layer usually hides its lower layers from the

layers above, so layer 4 uses the services of layer 3, which uses the services of layer 2, but

layer 4 is unaware of layer 2.

Breaking down a system into layers has a number of important benefits.

• You can understand a single layer as a coherent whole without knowing much about

the other layers. You can understand how to build an FTP service on top of TCP

without knowing the details of how ethernet works.

• You can substitute layers with alternative implementations of the same basic services.

An FTP service can run without change over ethernet, PPP, etc..

• You minimize dependencies between layers. If the cable company changes its physical

transmission system, providing they make IP work, we don’t have to alter our FTP

service.

• Layers make good places for standardization. TCP and IP are standards because they

define how their layers should operate.

 3

• Once you have a layer built, you can use it for many higher-level services. Thus,

TCP/IP is used by FTP, telnet, SSH, and HTTP. Otherwise, all of these higher-level

protocols would have to write their own lower-level protocols.

Layering is an important technique, but there are downsides.

• Layers encapsulate some, but not all, things well. As a result you sometimes get

cascading changes. The classic example of this in a layered enterprise application is

adding a field that needs to display on the UI, must be in the database, and thus must

be added to every layer in between.

• Extra layers can harm performance. At every layer things typically need to be

transformed from one representation to another. However, the encapsulation of an

underlying function often gives you efficiency gains that more than compensate. A

layer that controls transactions can be optimized and will then make everything faster.

The number of layers in an application may vary according to the system. A general view of

the layer architecture is displayed in Figure 2.1

Figure 2.1 General view of a layered application

One of the most familiar models for layering is the OSI 7 Layer Model, defined by the

International Organization for Standardization (ISO).

 4

Figure 2.2 OSI 7 Layer Model

Although there is no limit for layering, a common pattern for the enterprise applications has

three principle layers.

• Presentation Layer :

The presentation layer contains elements responsible for providing some form of

communication with a human being, such as an element in the user interface.

• Business Layer :

The business layer contains elements responsible for performing some kind of

business processing and the application of business rules.

• Data Access Layer :

The data access layer contains elements responsible for providing access to an

information source, such as a relational database.

The following figure explaines dividing an application into three layers. The presentaion layer

showed with yellow boxes interacts with the user and the layer below that, which is business

layer. Business layer with blue colored boxes is the middle layer of the application and

contains the business parts, Business Workflow and Business Component, where the business

logic is implemented. One more blue box exists in this layer to hold the components, which

carries data from data access layer, Business Entities. The green layer, Data Access Layer, is

the base of the application that is responsible to collect the data from data sources ans

services.

 5

Figure 2.3 Three Layered Application Architecture

The description of the numbered components included in the layers are listed below. Some

components may not be exist in every application, but most applications needs these kind of

component.

1. User interface (UI) components :

Most solutions need to provide a way for users to interact with the application. In the

retail application example, a Web site lets customers view products and submit orders,

and an application based on the Microsoft Windows operating system lets sales

representatives enter order data for customers who have telephoned the company. User

interfaces are implemented using Windows Forms, Microsoft ASP.NET pages,

controls, or any other technology you use to render and format data for users and to

acquire and validate data coming in from them.

2. User process components :

In many cases, a user interaction with the system follows a predictable process. For

example, in the retail application you could implement a procedure for viewing

product data that has the user select a category from a list of available product

 6

categories and then select an individual product in the chosen category to view its

details. Similarly, when the user makes a purchase, the interaction follows a

predictable process of gathering data from the user, in which the user first supplies

details of the products to be purchased, then provides payment details, and then enters

delivery details. To help synchronize and orchestrate these user interactions, it can be

useful to drive the process using separate user process components. This way the

process flow and state management logic is not hard-coded in the user interface

elements themselves, and the same basic user interaction “engine” can be reused by

multiple user interfaces.

3. Business workflows :

After the required data is collected by a user process, the data can be used to perform a

business process. For example, after the product, payment, and delivery details are

submitted to the retail application, the process of taking payment and arranging

delivery can begin. Many business processes involve multiple steps that must be

performed in the correct order and orchestrated. For example, the retail system would

need to calculate the total value of the order, validate the credit card details, process

the credit card payment, and arrange delivery of the goods.

4. Business components :

Regardless of whether a business process consists of a single step or an orchestrated

workflow, your application will probably require components that implement business

rules and perform business tasks. For example, in the retail application, you would

need to implement the functionality that calculates the total price of the goods ordered

and adds the appropriate delivery charge. Business components implement the

business logic of the application.

5. Service agents :

When a business component needs to use functionality provided in an external service,

you may need to provide some code to manage the semantics of communicating with

that particular service. For example, the business components of the retail application

described earlier could use a service agent to manage communication with the credit

card authorization service, and use a second service agent to handle conversations with

the courier service. Service agents isolate the idiosyncrasies of calling diverse services

from your application, and can provide additional services, such as basic mapping

between the format of the data exposed by the service and the format your application

requires.

 7

6. Service interfaces :

To expose business logic as a service, you must create service interfaces that support

the communication contracts (message-based communication, formats, protocols,

security, exceptions, and so on) its different consumers require. For example, the

credit card authorization service must expose a service interface that describes the

functionality offered by the service and the required communication semantics for

calling it.

7. Data access logic components :

Most applications and services will need to access a data store at some point during a

business process. For example, the retail application needs to retrieve product data

from a database to display product details to the user, and it needs to insert order

details into the database when a user places an order. It makes sense to abstract the

logic necessary to access data in a separate layer of data access logic components.

Doing so centralizes data access functionality and makes it easier to configure and

maintain.

8. Business entity components :

Most applications require data to be passed between components. For example, in the

retail application a list of products must be passed from the data access logic

components to the user interface components so that the product list can be displayed

to the users. The data is used to represent real-world business entities, such as products

or orders. The business entities that are used internally in the application are usually

data structures, such as DataSets, DataReaders, or Extensible Markup Language

(XML) streams, but they can also be implemented using custom object-oriented

classes that represent the real-world entities your application has to work with, such as

a product or an order.

9. Components for security, operational management, and communication :

The application will probably also use components to perform exception management,

to authorize users to perform certain tasks, and to communicate with other services

and applications.

 8

2.2 Code Generation

Code generation is the use of a program, a code generator, to write your programs for you.

There is nothing magical about the code generator itself. Just like any program it takes some

input and creates something new as output that is high level code (e.g. C, C++, C#, Java, Perl,

Python, Ruby, etc.). These tools range in size and complexity from simple code parsers to

fully featured class and layer builders.

Code generation has four key advantages;

• Quality :

The code created is of uniform quality across the entire output code base. The higher

the quality of the templates the better the resultant code. So investments in the

templates are rewarded quickly. In addition, when the templates are changed to fix a

bug that fix is propagated by design across all of the maintained code. Because of this,

code eneration does not suffer from the maintainability problem of copy and paste

coding.

• Consistency :

The use of a code generator to build the code means that the design of the interfaces

and classes that are produced are completely uniform. This makes writing client code

much easier.

• Productivity :

Having a generator produce code is undeniably faster than handcoding, but that is not

where the productivity gain really lies. Gains become immediately apparent when you

can alter your design input and easily generate new code to match the new

requirements.

• Abstraction :

Perhaps the most important benefit is the abstraction provided by some generator

models. When the design of the database access layer is abstracted into an external

form e.g. templates, you have extracted the core portion of your business logic the

implementation. This means that you are not bound to any particular technology

decisions, such as language or platform. This is a tangible portability benefit.

 9

Code generation is often considered just a speed-up tool. It is important to think beyond the

speed and about the advantages for all aspects of software design and implementation. With

all of these advantages it is hard to imagine the downsides.

2.3 Code Generation For Database Layer

The foundation of most applications is the database access layer, which bundles the queries

and other operations performed upon the database. The business objects and the user interface

use the database access layer to read and write the database. As with any structure, the

strength of an application lies within the strength of its foundation. The more solid and robust

the database access layer, the foundation, the stronger the application built on top of it will be.

The database access layer takes responsibility for:

• Marshalling database types and application types

• Wrapping SELECT queries

• Wrapping the INSERT, UPDATE and DELETE operations

• Wrapping any stored procedures, if those are being used

• Doing validations of the arguments being passed to the queries and operations

• Handling errors coming from the database

Most of this code in the database access layer is fairly simple and repetitive. A query method,

for example, follows this process: It accepts and validates the parameters for the query. It then

establishes the database connection and executes the query. As a final step it places the

resultant data in a memory structure.

The types of bugs associated with this type of method are usually argument ordering

mismatches and inadequate error handling. Other more disturbing sources of error are copy

and paste errors, where fixes are applied inconsistently across a number of methods where the

source was literally copied and pasted as an implementation technique. Database access code

is particularly vulnerable to these issues because of the volume of critical work required to

implement the code. As a result, we would like it to contain zero bugs with uniformly high

quality code throughout. The layer should have an interface with predictable naming and

 10

consistent argument ordering. In addition the methods should not contain any surprising

behavior.

As a conclusion, due to the crittical importance of the codes included in data access layer, and

due to their repetitive structure, it is necessary and suitable to create data access layer codes

through a code generator, so the resulted codes will be reliable, much more readable and

uniform.

This thesis offers a code generator to automatically generate the codes of data access layer,

which prevents the bugs produced by developers.

 11

3 TECHNOLOGIES USED

This chapter covers the key technologies used in the development phase of Data Access Layer

Code Generator tool. In the following pages, these technologies will be discussed just with

their important functionalities that have an important role in building this project.

3.1 .Net Framework

The .NET Framework is an integral Windows component that supports building and running

the next generation of applications and XML Web services. The .NET Framework is designed

to fulfill the following objectives: [1]

• To provide a consistent object-oriented programming environment whether object

code is stored and executed locally, executed locally but Internet-distributed, or

executed remotely.

• To provide a code-execution environment that minimizes software deployment and

versioning conflicts.

• To provide a code-execution environment that promotes safe execution of code,

including code created by an unknown or semi-trusted third party.

• To provide a code-execution environment that eliminates the performance problems of

scripted or interpreted environments.

• To make the developer experience consistent across widely varying types of

applications, such as Windows-based applications and Web-based applications.

• To build all communication on industry standards to ensure that code based on the

.NET Framework can integrate with any other code.

The .NET Framework has two main components:

• The common language runtime

• The .NET Framework class library

3.1.1 Common Language Runtime

The common language runtime is the foundation of the .NET Framework. You can think of

the runtime as an agent that manages code at execution time, providing core services such as

memory management, thread management, and remoting, while also enforcing strict type

safety and other forms of code accuracy that promote security and robustness. In fact, the

concept of code management is a fundamental principle of the runtime. Code that targets the

 12

runtime is known as managed code, while code that does not target the runtime is known as

unmanaged code.

With regards to security, managed components are awarded varying degrees of trust,

depending on a number of factors that include their origin (such as the Internet, enterprise

network, or local computer). This means that a managed component might or might not be

able to perform file-access operations, registry-access operations, or other sensitive functions,

even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable

embedded in a Web page can play an animation on screen or sing a song, but cannot access

their personal data, file system, or network. The security features of the runtime thus enable

legitimate Internet-deployed software to be exceptionally feature rich.

In addition, the managed environment of the runtime eliminates many common software

issues. For example, the runtime automatically handles object layout and manages references

to objects, releasing them when they are no longer being used. This automatic memory

management resolves the two most common application errors, memory leaks and invalid

memory references.

The runtime also accelerates developer productivity. For example, programmers can write

applications in their development language of choice, yet take full advantage of the runtime,

the class library, and components written in other languages by other developers. Any

compiler vendor who chooses to target the runtime can do so. Language compilers that target

the .NET Framework make the features of the .NET Framework available to existing code

written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today

and yesterday. Interoperability between managed and unmanaged code enables developers to

continue to use necessary common object model (COM) components and dynamic link

libraries (DLL).

The runtime is designed to enhance performance. Although the common language runtime

provides many standard runtime services, managed code is never interpreted. A feature called

just-in-time (JIT) compiling enables all managed code to run in the native machine language

 13

of the system on which it is executing. Meanwhile, the memory manager removes the

possibilities of fragmented memory and increases memory locality-of-reference to further

increase performance. [2]

Figure 3.1 .Net Framework

3.1.2 The .Net Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with

the common language runtime. The class library is object oriented, providing types from

which your own managed code can derive functionality. This not only makes the .NET

Framework types easy to use, but also reduces the time associated with learning new features

of the .NET Framework. In addition, third-party components can integrate seamlessly with

classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you

can use to develop your own collection classes. Your collection classes will blend seamlessly

with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable

you to accomplish a range of common programming tasks, including tasks such as string

management, data collection, database connectivity, and file access. In addition to these

common tasks, the class library includes types that support a variety of specialized

 14

development scenarios. For example, you can use the .NET Framework to develop the

following types of applications and services:

• Console applications.

• Windows GUI applications (Windows Forms).

• ASP.NET applications.

• XML Web services.

• Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable types that

vastly simplify Windows Graphical User Interface (GUI) development. If you write an

ASP.NET Web Form application, you can use the Web Forms classes.

3.2 Overview of C#

For the past two decades, C and C++ have been the most widely used languages for

developing commercial and business software. While both languages provide the programmer

with a tremendous amount of fine-grained control, this flexibility comes at a cost to

productivity. Compared with a language such as Microsoft Visual Basic, equivalent C and

C++ applications often take longer to develop. Due to the complexity and long cycle times

associated with these languages, many C and C++ programmers have been searching for a

language offering better balance between power and productivity.

The ideal solution for C and C++ programmers would be rapid development combined with

the power to access all the functionality of the underlying platform. They want an

environment that is completely in sync with emerging Web standards and one that provides

easy integration with existing applications. Additionally, C and C++ developers would like

the ability to code at a low level when and if the need arises.

The Microsoft solution to this problem is a language called C#. C# is a modern, object-

oriented language that enables programmers to quickly build a wide range of applications for

the new Microsoft .NET platform, which provides tools and services that fully exploit both

computing and communications.

 15

Because of its elegant object-oriented design, C# is a great choice for architecting a wide

range of components - from high-level business objects to system-level applications. Using

simple C# language constructs, these components can be converted into XML Web services,

allowing them to be invoked across the Internet, from any language running on any operating

system.

More than anything else, C# is designed to bring rapid development to the C++ programmer

without sacrificing the power and control that have been a hallmark of C and C++. Because of

this heritage, C# has a high degree of fidelity with C and C++. Developers familiar with these

languages can quickly become productive in C#. [3]

3.2.1 Classes

Classes are types, but are far more powerful than the simple types like int and float. Not only

you can customize your data storage using classes, but you can also add methods to classes.

That kind of compartmentalization, where data and methods are rolled up into a single class,

is the entire reason that object oriented programming (OOP) was introduced in the first place.

It enables the programmers to deal with larger programs. The process of wrapping related data

and methods into a class (and so preventing them from cluttering up the rest of the program)

to create a single entity is called encapsulation.

Classes enable you to develop applications using OOP techniques . Classes are templates that

define objects.When you create a new form in a C# project, you are actually creating a class

that defines a form; forms instantiated at runtime are derived from the class. Using objects

derived from predefined classes, such as a C# Form class, is just the start of enjoying the

benefits of object-oriented programming—to truly realize the benefits of OOP, you must

create your own classes.

The philosophy of programming with classes is considerably different from that of traditional

programming. Proper class-programming techniques can make your programs better, both in

structure and in reliability. Class programming forces you to consider the logistics of your

code and data more thoroughly, causing you to create more reusable and extensible object-

based code.

 16

Classes consist of members. Everything defined within the class is considered to be a member

of that class. The list of the various types, that can be defined as members of a C# class,

comes next.

• Fields :

A field is a member variable used to hold a value.

• Methods :

A method is the actual code that acts on the objects’s data (or field value).

• Properties :

A property is actually a method, that looks like a field to the class’s clients. The

properties allows the client a greater degree of abstraction, because the client does not

know whether it is accessing the field directly of whether an accessor method is being

called.

• Constants :

As the name suggests, a constant is a field with a value that can not be changed.

3.2.2 Attributes And Reflections

Attributes provide a powerful method of associating declarative information with C# code

(types, methods, properties, and so forth). Once associated with a program entity, the attribute

can be queried at run time using a technique called Reflection. [4]

The attributes can be used to define design-time information (such as documentation), run-

time information (such as the name of a database column for a field), or even run-time

behavioral characteristics. The possibilities are endless, which is the point. In as sense, this

association of information follows the same principles used in the development of extensible

markup language (XML). Because you can create an attribute based on any information you

want, a standard mechanism exists for defining the attributes themselves and for querying the

member or type at run time about its attached attributes.

Attributes exist in two forms: attributes that are defined in the Common Language Runtime's

base class library and custom attributes, that you can create, to add extra information to your

code. This information can later be retrieved programmatically. [5]

 17

An example will better illustrate how to use this powerfull feature. Let assume that we have a

class, whose fields hold the values of a record in a database table, and we need to keep the

features of these columns for some reason. One pratical way to deal with this requirement is

attaching an attribute to each field in the class.

The following code is the illustration of an attribute attachment.

[DBFieldName(“ProductID”, true, false, true, DbType.Int32)]
private int productID;

The field, “productID”, has an attribute which holds its corresponding column features.

Below, you can see the attribute class, “DBFieldName”, that explaines which features are

kept as metadata of the field.

public class DBFieldNameAttribute : Attribute
 {
 private string fieldName;
 public string FieldName
 {
 get
 {
 return fieldName;
 }
 }

 private bool isKey;
 public bool IsKey
 {
 get
 {
 return isKey;
 }
 }

 private bool isDecimal;
 public bool IsDecimal
 {
 get
 {
 return isDecimal;
 }
 }

 private bool isAutoIncrement;
 public bool IsAutoIncrement
 {
 get
 {
 return isAutoIncrement;
 }
 }

 18

 private DbType fieldDBType;
 public DbType FieldDBType
 {
 get
 {
 return fieldDBType;
 }
 }

 public DBFieldNameAttribute(string p_FieldName, bool p_IsKey, bool
p_IsDecimal, bool p_IsAutoIncrement, DbType p_DBType)
 {
 this.fieldName = p_FieldName;
 this.isKey = p_IsKey;
 this.isDecimal = p_IsDecimal;
 this.isAutoIncrement = p_IsAutoIncrement;
 this.fieldDBType = p_DBType;
 }
 }

The code above is the content of DBFieldNameAttribute class. The properties of this class are

explained below.

• FieldName stands for the corresponding column’s name.

• IsKey indicates whether the column is a key of the database table or not.

• IsDecimal holds the metadata indicating whether the column’s type is decimal or not.

• IsAutoIncrement holds the metadata indicating whether the column is an identity

column or not.

• FieldDBType holds the type of the column.

Until now, we only see how to define an attribute by deriving it from System.Attribute, and

how to attach it to a type or member. The answer of the question, how we can use attributes in

code, is Reflections.

Reflection is the process by which a program can read its own metadata. A program is said to

reflect on itself, extracting metadata from its assembly and using that metadata either to

inform the user or to modify its own behavior. In other words, it is the way to query a type or

member about its attached attributes. [5]

In the previous example, we defined the DBFieldNameAttribute attribute. Now we will see,

how these attributes can be reached with an simple rutine. The following lines of code gets the

type of an object and finds the fields defined in this type. After that, it gets the custom

 19

attributes of each field and checks, if the attribute is DBFieldNameAttribute. Finally, if any

attribute is found in our type, then the place comes to execute any operation using the

metadata.

Type t = myObject.GetType();
foreach (FieldInfo fi in t.GetFields(BindingFlags.NonPublic |
BindingFlags.Instance))
{
 foreach (Object ca in fi.GetCustomAttributes(false))
 {
 if (myAttribute is DBFieldNameAttribute)
 {
 //Here is the place, where the metadata of a field is reached.

 }

 }

}

3.3 Visual Studio 2005

Microsoft Visual Studio is a complete set of development tools for building ASP.NET Web

applications, XML Web services, desktop applications, and mobile applications. Visual Basic,

Visual C++, Visual C#, and Visual J# all use the same integrated development environment

(IDE), which allows them to share tools and facilitates in the creation of mixed-language

solutions.

3.3.1 Extensibility And Automation in Visual Studio 2005

Visual Studio features a number of targeted, programmable object models. By using these

models, you can access the underlying components and events inside the Visual Studio

integrated development environment (IDE) and its projects. Each model contains types and

members that represent solutions, projects, tool windows, code editors, debuggers, code

objects, documents, events, and more. Consequently, you can extend the functionality of the

IDE, automate repetitive tasks, and integrate other applications into the IDE. The object

models can be accessed through any of four methods: macros, add-ins, wizards, and the

Visual Studio Industry Partner (VSIP) program.

This is an important part of Visual Studio because it lets developers easily tailor the tool to

their personal working style and enables them to accommodate team practices. You can

simply capture several steps in a regular process (for example, for check-ins, creating new

 20

projects or forms, or updating code) and make that process available as a single command to

invoke. Independent software vendors can implement entirely new features (including

groupware, profiling tools, work flow, or life-cycle tools) that fit into Visual Studio 2005 as

seamlessly as if they were built into the shipping Visual Studio product. [6]

With this automation model, you can do the following:

• Intercept commands when they are invoked, and either provide preprocessing or

implement the command yourself.

• Control the solution, projects, and project items by adding or removing them.

• Control the build configurations mechanisms and hook various build events.

• Control a large portion of the text editor.

• Implement commands that help you debug with the debugger objects.

• Control the Windows Forms Designer.

• Create tool windows that behave just like the built-in tool windows for docking and

floating.

• Provide content to the Property Browser when items are selected in tool windows.

• Control several of the built-in tool windows (including Task List, Toolbox, Command

Window, and Output Window).

Add-in Creation in Visual Studio 2005

An add-in is a tool that you create programmatically by using objects, methods, properties,

collections in .NET's extensibility model. This compiled application enables you to automate

the difficult and tedious tasks within the visual studio integrated development environment

(IDE). These tasks can be accomplished in response to an event, such as the mouse being

clicked, forms being added to the project or control being added to the form. The actions may

not be visible to the developer. An add-in extends the functionality of the Visual Studio IDE.

Extensibility is the mechanism exposed to the developer that provides the ability to enhance

and extend the functionality of the IDE. It basically exposed IDE's internal functions to add-in

developer. [7]

Add-in's can be invoked in many ways, such as

• Through Add-in Manager

• Toolbars command or buttons

 21

• Development environment (devenv) Command Line

• Events such as IDE start-up

An add-in is a compiled DLL that runs inside the Visual Studio integrated development

environment (IDE). The fact that it is compiled protects your intellectual property and

improves performance. While you can create add-ins manually, it is far easier to use the Add-

In Wizard. The Add-In Wizard creates an add-in with a fully functional but basic framework

that you can run immediately after you create it. After the Add-In Wizard generates the basic

framework, you can add code to it and customize it. [8]

The Add-In Wizard can be started by completing the following steps.

• Open new project and select Other Projects - Extensibility Projects in Project Types

and select Visual-Studio .Net add-in in templates.

• Enter Name of the Add-in Project and select the location where you want you add-in

to be placed using “Browse” button.

• After clicking ok, you will get Add-in Welcome wizard.

The Add-In Wizard lets you supply a display name and description for the add-in, both of

which appear in the Add-In Manager dialog box. Optionally, you can choose to have the

wizard generate code that adds a command to the Tools menu to load and invoke the add-in.

You can also choose to display a custom About Box for your add-in. When the wizard

completes, you have a new project with a single class named “Connect” that implements the

add-in. The project includes also a file with the “.AddIn” extension to be used in Add-in

registration.

The “Connect” class created by the wizard has methods that are used in the project and briefly

explained below.

• “Connect()” constructor :

The constructor of the class, that is called first when the class is initialized.

• “OnConnection()” method :

OnConnection method is the method that is first called by the IDE when it starts the

add-in. It is the obvious point to place your UI (menus,toolbars, tool buttons) through

which the user will communicate to the add-in. This method is also the place to put

 22

your validation code if you are licensing the add-in. You would normally do this

 before putting up the UI. If the user is not a valid user, you would not want to put the

UI into the IDE.

• “OnDisconnection()” method :

This event occurs when the add-in is unloaded.

• “QueryStatus()” method :

When the user clicks a command (menu or tool button), the QueryStatus event is fired.

The QueryStatus event returns the current status of the specified named command,

whether it is enabled, disabled, or hidden in the vsCommandStatus parameter, which is

passed to the event by reference.

• “Exec()” method :

The Exec event is fired after the QueryStatus event is fired, assuming that the return to

the statusOption parameter of QueryStatus is supported and enabled. This is the event

where you place the actual code for handling the response to the user click on the

command.

Add-in Registration in Visual Studio 2005

After an add-in is created, you must register it with Visual Studio before it becomes available

for activation in the Add-In Manager. This was done in previous versions of Visual Studio by

using registry keys, but this is now accomplished by using an XML file, that is created by the

Add-In Wizard with an extention “.AddIn”.

You no longer need to register the .NET assemblies with Windows. Instead, you simply place

the assembly .DLL file into a specific directory along with an XML file that has an .Addin file

extension. This XML file describes the information that Visual Studio requires to display the

add-in in the Add-In Manager. When Visual Studio starts, it looks in the .Addin File location

for any available .Addin files. If it finds any, it reads the XML file and provides the Add-In

Manager with the information needed to start the add-in when it is clicked.

 23

The locations, where the .AddIn XML file should be located to be processed by Visiual

Studio 2005, is listed below.

Table 3.1 Add-in Installation Locations

.Addin File Location .DLL File Location Description
Add-in folder
(for example, \Documents
and Settings\All Users\My
Documents\Visual Studio
2005\Addins)

-or-
(\Documents and
Settings\<user name>\My
Documents\Visual Studio
2005\Addins)

Project debug folder
(for example, \My
Documents\Visual Studio
Projects\MyAddin1\MyAddin1\bin)

Used for running the
add-in in the debugging
environment. Should
always point to the
output path of the
current build
configuration.

Root project folder
(for example, \My
Documents\Visual
Studio\Projects\MyAddin1)

Local path (MyAddin1.dll) Used for deployment of
the add-in project. It is
included in the project
for ease of editing and is
set up with the local
path for XCopy-style
deployment.

3.4 ADO .Net

ADO.NET is the data access model for .NET-based applications, that is an object-oriented set

of libraries that allows you to interact with data sources. Commonly, the data source is a data

base, but it could also be a text file, an Excel spread sheet, or an XML file.

Although ADO.NET allows us to interact with different types of data sources and different

types of data bases, there is not a single set of classes that allow you to accomplish this

universally. Since different data sources expose different protocols, we need a way to

communicate with the right data source using the right protocol. Some older data sources use

the Open Database Connectivity (ODBC) protocol, many newer data sources use the Object

Linking and Embedding Database (OLE DB) protocol, and there are more data sources every

day that allow you to communicate with them directly through .NET ADO.NET class

libraries. [9]

 24

ADO.NET provides a relatively common way to interact with data sources, but comes in

different sets of libraries for each way you can talk to a data source. These libraries are called

Data Providers and are usually named for the protocol or data source type they allow you to

interact with. Currently, ADO.NET ships with two categories of providers: bridge providers

and native providers. Bridge providers, such as those supplied for OLE DB and ODBC, allow

you to use data libraries designed for earlier data access technologies. Native providers, such

as the SQL Server and Oracle providers, typically offer performance improvements due, in

part, to the fact that there is one less layer of abstraction. [10] The available data providers in

ADO.NET are listed below.

• The SQL Server .NET Data Provider :

This is a provider for Microsoft SQL Server 7.0 and later databases. It is optimized for

accessing SQL Server, and it communicates directly with SQL Server by using the

native data transfer protocol of SQL Server.

• The Oracle .NET Data Provider :

The .NET Framework Data Provider for Oracle enables data access to Oracle data

sources through Oracle client connectivity software. The data provider supports Oracle

client software version 8.1.7 and later.

• The OLE DB .NET Data Provider :

This is a managed provider for OLE DB data sources. It is slightly less efficient than

the SQL Server .NET Data Provider, because it calls through the OLE DB layer when

communicating with the database.

• The ODBC .NET Data Provider :

The .NET Framework Data Provider for ODBC uses native ODBC Driver Manager

(DM) to enable data access by means of COM interoperability.

All the data providers listed above implement the interfaces provided by the System.Data

namespace. These interfaces makes it possible to program provider independent data access

layer codes. Next table shows the interfaces implemented by the providers. [11]

 25

Table 3.2 Data Provider Interfaces

Interface Description

IDbConnection Represents a connection to the database.

IDbDataAdapter Represents a set of command related properties that are used to work

with a DataSet.

IDbCommand Represents a SQL statement (or command) to be executed against a

data source.

IDataParameter Represents a parameter to the command object.

IDataReader Represents one or more result sets which can be accessed in read only,

forward only manner.

IDbTransaction Represents a transaction to be performed against a data source.

 26

4 CODED WORK

During the development phase of Data Access Layer Code Generator, some code libraries

have been build for different purposes. While writing each line of code, it has been taken cake

of their readablities. In other words, an effort has been given to make the codes as clear as a

developer can easily understand, when he/she goes into it. To increase the readability of the

code, most of the properties, the methods and the classes have been also commented. Despite

of the clarity of the codes, this section was perpared to explain the functionalities of the

classes and the relationships between these classes, that has been developed for this project.

DAL Code Generator libraries can be divided into two parts according to their service levels.

The first and the main function of the tool is to provide an interface, that accepts the attribute

entry of the generated classes, and that generates these classes. The second service level

contains the functions, that helps the first level, the generated classes and the developer by

accessing the desired data. These parts are listed below respectively.

• DALCodeGeneratorLibrary

• DALHelper

On the rest of this chapter, these code libraries will be discusses deeply.

4.1 “DALCodeGeneratorLibrary” Library

This library is used by the DAL Code Generator add-in project, that provides an user interface

for the generation process. Although this library is allmost loose coupled, it also uses

DALHelper library for database accesses. The main responsibilities of this class collection is

listed below.

• Getting and holding the schema of the specified database table. A schema is the

collection of the properties of the table. For example, colums of the table, types of its

colums, corresponding type of the columns in C#, etc. are included in as schema.

• Provide methods to modify the fields of the schema, each of which is correspond to a

column of the table.

• Provide classes and methods to define relationships between generated classes.

• Loading the schema back from XML files, that are stored by the add-in.

• Includes the templates of the DAL classes, that are used during the generation proces.

 27

• Generation of the DAL class and BE class.

The library has 6 main classes to provide these functionalities, that are to be known.

• “CSClassGenerator” class.

• “CSPFClassGenerator” class.

• “FieldDescription” class.

• “ClassRelationships” class.

• “RelationshipsFields” class.

• “CSXMLClassGenerator” class.

4.1.1 “CSClassGenerator” Class

As its name explaines, this class is responsible to generate classes. Actually, the class is the

base class of the other class generators, that expand and customize its content by inheriting

CSClassGenerator. In the scope of this project, just one inherited generator class is developed,

CSPFClassGenerator, but CSClassGenerator has been designed as basic as posible for future

developments. It only contains main properties, that a generator class should have, and it

includes virtual methods, that an inherited class has to implement.

Moreover, this is the class, whose instance holds the schema info of the related table and the

relationship definitions. The variables, properties and methods, that are necessary to be known

are explained below.

• “CSClassGenerator()” constructor :

The constructor of the class. Although it does not contain any code, all inherited

classes should call it for future modifications.

• “fields” variable :

The protected variable is an arraylist, that holds the fields of the schema as

FieldDescription objects.

• “UpdateField()” method :

The method enables the modification on the attributes of fields.

• “DeleteField()” method :

The method deletes a field from the field list.

• “buffer” variable :

 28

The private variable, that holds the generated code.

• “Relations” property :

The property that holds all the relation definitions. This hashtable contains

ClassRelationship objects with the key of the names of the relations.

• “AddRelation()” method :

The method adds a new relation definition to the relation list.

• “RemoveRelation()” method :

The method deletes an existent relation from the relation list.

• “ClassNamespace” property :

The public variable holds the namespace of the generated class.

• “ClassName” property :

The public variable holds the name of the generated class.

• “CreateClass()” method :

The method fills the buffer with the code of the generated class by calling the virtual

methods, that may be implemented by the inherited generator classes. After the

creation of the DAL class is completed, the code in the buffer is returned by this

method.

• “WriteUsingLines()” virtual method :

The virtual method adds the “using” statements to the buffer.

• “WriteFields()” virtual method :

The virtual method adds the property codes, each of which is to hold the values of the

database columns (fields).

• “WriteRelations()” virtual method :

The virtual method adds the property codes, each of which is to hold an object of the

child class of the relation.

• “WriteConstructors()” virtual method :

The virtual method adds the contructors’ code of the generated class. The number of

constructors may vary, so these codes should also implemented by the inherited

generator classes.

• “WriteOtherMethods” virtual methods :

The virtual method generates the methods’ code blocks, that are special to the

generator classes.

 29

4.1.2 “CSPFClassGenerator” Class

This class is derived from CSClassGenerator, so it includes the content of CSClassGenerator

and extends the capabilities to generate classes from a given physical file in a database to

manage the data access to this file. This generator class prepares two types of class. First type

is the Data Access Layer class, and the Business Entity class is generated as the second type,

that is derived from the DAL class.

The generetion process starts by calling “CreateClass()” method of the base class,

CSClassGenerator, and it ends after calling the implemented virtual methods. In the following

lines, these implemented methods and their results will be discussed.

• “CSPFClassGenerator()” constructor :

The constructor takes two arguments. First argument indicates on which database the

physical file locates. The name of the file is taken as the second argument. After

assigning its arguments to the related properties, it calls LoadSchema() method.

• “Database” property :

The property holds the database definition, which is assigned by the constructor.

• “FileName” property :

The property holds the name of the pysical file, which is assigned by the constructor.

• “ClassBECode” property :

The property, that is initially empty, contains the code generated for the business

entity class.

• “LoadSchema()” method :

The method is responsible to get the column info of the file. It queries the specified

database, and fills the “fields” list with the result set that comes from the execution of

the query. As you remember, “fields” is the protected variable on the base class. If the

method does not find the specified file on the database, it throws

PossibleFileNotFoundException().

• “WriteUsingLines()” override method :

The method adds the first lines of the generated class, that are “using” statements.

• “WriteFields” override method :

The method adds a variable, a property and attributes for each field of the schema. The

example given below shows the code generated for a field, that corresponds to the

ProductID field in the database.

 30

 [DBFieldName("ProductID", true, false, true, DbType.Int32)]
 private int productID;
 private FieldRunTimeInfo _productID;
 public int ProductID
 {
 get
 {
 return productID;
 }
 set
 {
 UpdateState(ref _productID);
 productID = value;
 }
 }

• “WriteConstructors()” override method :

The method adds the contructors’ code of the generated class. It adds five constructors

for a DAL class for different usages, whose templates are given below with an

example of a file with two key fields. Let assume that the class name is “Classname”

and the names of the keyfiels are “Keyname1” and “Keyname2”.

public ClassnameDAL() {...}
public ClassnameDAL(IDataReader p_Reader) {...}
public ClassnameDAL(key1type p_Keyname1, key2type p_Keyname2) {...}
public ClassnameDAL(IDbConnection p_Connection, key1type p_Keyname1,

key2type p_Keyname2) {...}

public ClassnameDAL(IDbTransaction p_Transaction, key1type p_Keyname1,

key2type p_Keyname2) {...}

• “WriteOtherMethods()” override method :

The method that calls the methods, that are specific to this class. These called methods

are listed below in the call order, each of which adds different code blocks to the

generated class.

 CreateArrayListMethods()
 CreateStaticArrayListAllRecordsMethod()
 CreateStaticArrayListAllRecordsWithWhereMethod()
 CreateStaticArrayListAllRecordsWithWhereMethodAndConnection()
 CreateSearchMethods()

 31

• CreateArrayListMethods() method :

The method adds some functions to the generated class, that runs a SELECT query on

the database and returns the results in an arraylist, which contains generated BE

objects. The condition of the query is determined inside the methods using the given

parameters. It adds N-1 methods to the class, where N is the number of the key fields

in the schema. For a schema having three key fields, two methods will be generated.

public ArrayList LoadAll_Key1(int p_Key1){...}

public ArrayList LoadAll_Key1_Key2(int p_Key1, string p_ Key2){...}

• “CreateStaticArrayListAllRecordsMethod()” method:

The methods adds a single method, Load(), to the generated code, which returns an

arraylist including all the records of the related table.

public override ArrayList LoadAll(){...}

• “CreateStaticArrayListAllRecordsWithWhereMethod()” method:

The method adds a method to the code, which takes a condition and queries the

database using this where clause. The obtained result is returned by the generated

method in an arraylist.

public override ArrayList LoadAll(string p_Where, int p_MaxRecord){...}

• “CreateStaticArrayListAllRecordsWithWhereAndConnectionMethod()” method:

This method adds a very similar code to the method above, except that its generated

rutine accept an database connection and queries the database over this connection.

public ArrayList LoadAll(IDbConnection p_Connection, string p_Where, int

p_MaxRecord){...}

• “CreateSearchMethods()” method :

The method adds two FindFirst() methods to the generated code. The added methods

queries the database as the LoadAll() methods do, but FindFirst() methods returns just

the first found record in the database.

 32

public BEObject FindFirst(string p_Where){...}

public BEObject FindFirst(IDbConnection p_Connection, string p_Where){...}

4.1.3 “FieldDescription” Class

This class is designed to hold all the necessary data about a field of a database column. The

instances of this class are initialized in the LoadSchema() method of CSPFClassGenerator,

because they are the main elements of the table schemas. Although it is basically the container

of column attributes, the decision about the .Net type of the field is taken here. This type will

also be the types of the related local variable and the related property in the generated class.

The important parts of the class structure are listed below.

• “FieldDescription()” constructor :

The constructor assignes the variables of the class.

• “FieldDbType” property:

The property holds the type of the column on the database.

• “FieldType” property:

The property holds the converted .Net type of the field.

• “Name” property :

The property holds the column name in the database file.

• “FieldName” property :

The property holds the name of the field, which will be the name of a property in the

generated class.

• “IsKey” property :

The property indicates whether the field is a key of the database table.

• “IsAutoIncrement” property :

The property indicates whether the field is an autoincrement column, in other words

identity column, or not.

• “IsDecimal” property :

The property indicates whether the corresponding column is decimal or not.

 33

4.1.4 “ClassRelationship” Class

DALCodeGeneratorLibrary provides a class to define a relationship between the generated

class and the class, that is already generated. Basically, a relation means that the parent class

has a property, that returns an intance or a list of instances of the child class by calling a

method of the child class. If the relation type is 1 to 1, than the property returns just one

instance of the child class, but in a 1 to N relationship, the property returns an arraylist.

The following list describes the necessary structure to define a relationship.

• “ClassRelationship()” constructor :

The constructor initializes the object, by the way, assigns the local variables.

• “Name” property :

The name of the relationship, that is also the name of the discussed property in the

main class.

• “ChildClassName” property :

The name of the child class.

• “Relationship” property :

The property holds the type of the relation. It can be 1 to1 or 1 to N.

• “MethodToCall” property :

The method name of the child class, which is called in the main’s property to realize

the relationship.

• “MethodParameters” property :

The property holds the RelationshipFields objects, that are basically the mapping of

which variable of the main class is passed to MethodToCall as which method

argument.

4.1.5 “RelationshipFields” Class

As dicussed above, a child’s method is called by the parent class to realize a relationship. If

the method has any arguments, that are to be passed by calling it, we should also specify

which variables in the parent class are used for each argument. The specification is made by

RelationshipFields objects.

• “RelationshipFields” constructor :

The constructor of the RelationshipFields class.

• “ParentField” property :

 34

The property holds the parent field name, that located in the parent class.

• “ChildField” property :

The property holds the name of the method parameter.

4.1.6 “CSXMLClassGenerator” Class

This class is a derivation of CSPFClassGenerator. It expands its base class with a single

method, LoadFieldsFromXML(), that provides to load its attributes from a XML file.

4.2 “DALHelper” Library

This library is designed to help the data access, so it is used by the elements of data access

layer. DALHelper contains a collection of classes, each of which provides methods to manage

the interactions with the databases. The main responsibilities of this class collection is listed

below.

• Contains the base class of the generated DAL classes.

• Contains the definitions for the production databases, that are permitted to access.

• Contains the definitions for the test databases, that are permitted to access.

• Handling the behaviors, that are specific to the database providers.

• Managing database connections and transactions.

• Managing the Create, Read, Update and Delete (CRUD) operation for the generated

DAL classes.

The list of the classes, included in this library, to implement the responsibilities is as the

following.

• BaseDAL class.

• DBConnectionHelper class.

• The classes, that implements IDBSpecificHandler interface.

o SQLClientHandler class.

o OLEDBHandler class.

o MSDB2Handler class.

• DBFieldNameAttribute class.

• DBRelationAttribute class.

 35

These classes will be discusses deeply in the following pages.

4.2.1 “BaseDAL” Class

This class is the base of the generated classes. Its main responsibility is to contain the

methods, that every DAL class should have. Of course, these mandotory methods is about

dealing with the CRUD operations. As a result of being inherited BaseDAL by DAL classes,

the critical operations are centralized, and it is provided, that the management of the code is

made in one place. The variables, properties and methods, that are necessary to be known are

explained below.

• “Load()” methods :

The library has four overloaded methods, each of which is responsible to query the

database and to assign the fields with the related column values of the found records.

• “Insert()” methods :

Eight overloaded methods are to insert a new record to the database. Each overload

applies different insertion operations.

• “Update()” methods :

The methods are to update an existent record on the database. Four overloaded

methods are provided.

• “Delete()” methods :

An existent record can be deleted using on of the three overloaded Delete() methods.

• “Save()” methods :

The methods insert or update a record. The decision, whether the record is inserted or

updated, is taken in the methods according to the state of BaseDAL object.

• “CurrentState” property :

The property holds the state of the BaseDAL object. An object can be in Empty,

Loaded, Inserted or Modified state.

• “IsAutoIncrementFieldExists” property :

The property is the flag indicating whether the database file has an identity column or

not.

 36

• “AutoRefreshDataAfterInsert” property :

The property is the flag indicating whether the object should be loaded after an

insertion. If it value is true, a select query will be executed after the insertion, so it

effects the performance.

• “InternalVersion” property :

The property holds the version of the DAL class.

• “DBFileName” property :

The property holds the name of the database file, on which CRUD operations occur.

4.2.2 “DBConnectionHelper” Class

This class is designed to help the generated classes and the developer by writing their custom

DAL classes. The main purpose of DBConnectionHelper is to provide the methods, that

contains the rutines to establish a database connection, to get the result sets and to close the

connection. The definitions for each permitted database are also located here. The properties

and the methods to accomplish the functionalities are listed in the following.

• “DBConnectionHelper()” constructor :

The constructor of the class takes the destination database as parameter. The passed

argument is assigned to ConnectionType property.

• “ConnectionType” property :

The property holds the index of the database definition list. During the operations, this

index will be used to get the appropriate connection provider, connection string, etc.

• “Connections” variable :

The variable holds the array of providers defined for each database.

• “ConnectionStrings” variable :

The variable holds the array of connection strings defined for each production

database.

• “TestConnectionStrings” variable :

The variable holds the array of connection strings defined for each test database.

• “DBConnectionHandlers” variable :

The variable holds the array of specific handlers.

• “DBHandler” variable :

The variable holds the appropriate specific handler for the destination database.

 37

• “Test” property :

This property holds whether the connection will be established with the test database

or with the production database.

• “productionWebServers” variable :

The variable holds the list of the production server names. The list is for the web

applications. If the web server is in the list, Test property will be set to false

automatically.

• “GetConnection()” method :

The method opens a connection with the destination database using the appropriate

connection string and database provider. It check Test property and decides whether

the connection will be established with the production database or with the test

database.

• “BeginTransaction()” method :

The method begins a transaction with the destination database.

• “GetCommand()” method :

The method creates a IDbCommand object and returns it.

• “CreateCommandParameter()” method :

The methods adds the specified parameter to the specified command object.

• “GetReader()” method :

The methods returns an IDataReader object, which is obtained after creating a

command and executing the command.

• “CloseConnection()” method :

The method closes and disposes the specified connection object. Before these actions,

the object is also checked if it is null or not.

• “CloseReader()” method :

The method closes and disposes the specified reader object. Before these actions, the

object is also checked if it is null or not.

• “CloseAll()” method :

The method does the operations of both CloseReader() and CloseConnection().

• “Commit()” method :

The method commits the specified transaction. After the commit operation, the

connection of the transaction is terminated.

 38

• “Rollback()” method :

The method rollbacks the specified transaction. After the rollback operation, the

connection of the transaction is terminated.

4.2.3 “IDBSpecificHandler” Interface

The database providers used during database operations may have different implementations

from each other. If it is needed to make use of a variaty of providers, these differences should

be handled separately. For this reason, IDBSpecificHandler interface is added to DALHelper

library. For each used provider, a class is created, that implement this interface, such as

SQLClientHanler, OLEDbHandler and MSDB2Handler. The following methods belongs to

the interface, that are to be implemented.

• “GetParameterPlaceHolder()” method :

The place holder used in queries for command parameter may differ provider by

provider. This method returns the appropriate place holder. Two query examples are

given below to show the place holders of SQLClient provider and OLEDb provider

respectively.

SELECT * FROM DbFile WHERE @ParameterName = 10

SELECT * FROM DbFile WHERE ? = 10

• “InsertAndGetIdentityValue()" method :

If a database file has an identity column, the methods of getting the value of this

column after an insetion can differ. Each handler should implement its own way in this

method.

• “GetDbTypeFromProviderType()” method :

While getting the schema from the database, a provider returns a column type as

integer values. The mapping between these integers and .Net DBType should be done

in this method. For example, SQLClient provider returns 8 for Int32 type, on the other

hand, OLEDb provider returns 3.

• “GetLargeTextFieldSelectStatementConversion()” method :

If a column is AnsiString, the select query to read its value may differ between the

providers. For example, the column should be cast to character type, if you are

accessing a DB2 database.

 39

SELECT CHAR(ColumnName, 256) FROM DatabaseFile

• “LockTable()” method :

To lock a database table, also different implementation may be needed. This method

separates these implementations.

4.2.4 “DBFieldNameAttribute” Class

This class is designed to hold the attributes of each database column on the generated classes.

The fields on the generated classes holds the values of the corresponding column. Moreover,

each of fields has alos an DBFieldNameAttribute attribute to keep the metadata of its column.

These attributes are needed during CRUD oparetions. In the following lines of code, you can

see an example of DBFieldNameAttribute usage.

[DBFieldName("CategoryID", true, false, true, DbType.Int32)]
private int categoryID;

The attribute indicates that the name of the corresponding column of “categoryID” field is

“CategoryID”. Moreover,

 this column is a key of the table (first true),

 the type of the column is not Decimal (false),

 this column is an autoincrement column (second true),

 the type of the colunm is DBType.Int32.

4.2.5 “DBRelationAttribute” Class

The attribute class to indicate the relationship metadata of a parent field. As you remember,

the generator adds an extra property for the child object to the generated class. The methods,

that provide the relation integrity, need the metadata which relates the variable and the

property of the parent field with the child property. An example is given below.

 40

[DBRelation("categorie", "CategoryID")]
private int categoryID;

public int CategoryID
{
 get{...}
 set{...}
}

...

private Categories categorie;

Where “categorie” is the name of the property name for the child object, and “CategoryID” is

the name of the parent property.

 41

5 EXAMPLE USE OF PROPOSED TOOL

Data Access Layer Code Generator tool gives the developers the ability of building the layer,

that is responsible of accessing data on the defined databases, without giving huge effort. In

other words, instead of wasting time to deal with data access, the developer will concentrate

much more on the business part of his/her projects.

This chapter aims to view the earnings by using Data Access Layer Code Generator. The best

way to show the usage of the generator is developing a simple application, so an ASP .Net

program has been prepared, whose development phases you will see in the following pages.

5.1 Presentation Of The Database Used In Demonstration

During the demontration of Data Access Layer Code Generator tool, Misrosoft SQL Server

2000 will be used as DBMS, that is running on the same machine with the development

environment. While installing the server, the sample database – Northwind – has been also

installed, so I had the chance to test developed codes on that database. As the same, it is

planned that the application developed in the following pages also will try to access this

database.

Northwind database is a sample database that comes with the setup of Misrosoft SQL Server

2000. It has many tables that have relations with eachother and have columns with variaty of

types, so Northwind is suitable to realize a database that is build in any project. In our

application, three Northwind tables are choosen to demonstrate the DAL Generator Tool.

• Categories Table :

The table with four colums to define a category has records each of which logically

corresponds to a group of products.

Table 5.1 Categories Table

Column Name Data Type Is Nullable Desciption

CategoryID int False Category key.

CategoryName nvarchar False Name of category.

Description ntext True Description of category.

Picture image true Picture of category.

 42

• Supplier Table :

The table contains data about product suppliers.

Table 5.2 Supplier Table

Column Name Data Type Is Nullable Desciption

SupplierID int False Supplier key.

CompanyName nvarchar False Company name of supplier.

ContactName nvarchar True Contact name of supplier.

ContactTitle nvarchar True Contact title of supplier.

Address nvarchar True Address of supplier.

City nvarchar True City of supplier.

Region nvarchar True Region of supplier.

PostalCode nvarchar True Postal Code of supplier.

Country nvarchar True Country of supplier.

Phone nvarchar True Phone of supplier.

Fax nvarchar True Fax of supplier.

HomePage ntext True HomePage of supplier.

 43

• Products Table :

The table holds the information about the products. It has two relations with the

Categories table and the Suppliers table on CategoryID, SupplierID colums

respectively. In other words, a product record can be included just in one category and

can have just one supplier. On the other hand, a category can include and a supplier

can supply more than one product.

Table 5.3 Products Table

Column Name Data Type Is Nullable Desciption

ProductID int False Product key.

ProductName nvarchar False Name of product.

SupplierID int True Supplier’s key of product.

CategoryID int True Category’s key of product.

QuantityPerUnit nvarchar True Quantity per unit of product.

UnitPrice money True Unit price of product.

UnitsInStock smallint True Units in stock of product.

UnitsOnOrder smallint True Units on order of product.

ReorderLevel smallint True Reorder level of product.

Discontinued bit True Discontinue status of product.

Figure 5.1 Northwind Database Diagram

 44

Before we develop our application, we should prepare the database to establish a connection.

The first step is to define a user on the database which will be used during data access. The

procedure listed below is adequate for this example.

• Open Enterprise Manager of MSSQL 2000.

• Expand Northwind database and right-click on “Users”. Select “New Database

User...” menu item.

Figure 5.2 New Database User

• Select “<new>” item for Login name on the up coming window.

Figure 5.3 New Login Name

• Enter the login properties as...

General Tab

Name : webuser

Authetication : SQL Server Authentication

Password : webuser

Database : Northwind

 Database Access Tab

 *Select Northwind on the database list to permit the user access.

 45

Figure 5.4 SQL Server Login Properties General Tab

Figure 5.5 SQL Server Login Properties Data Access Tab

 46

Until now a user is defined that has right to access Northwind database. On the next step, we

will test the connection to the database using MS Visual Studio 2005 and obtain a basic

connection string. The work to be done for this step comes...

• Open VS 2005.

• View the Server Explorer pain of VS 2005.

• Select “Add Connection...” item on the appeared menu by right-clicked on Server

Explorer.

Figure 5.6 Server Explorer Data Connection Menu

 47

• Enter the connection paramters and test it. If test is successful, get the connection

string from the Advanced window.

Figure 5.7 Add Connection Wizard

Figure 5.8 Add Connection Wizard Advanced Properties

 48

The obtained connection string is one of the parameters used by DAL Generator to establish

database connections, so it has to be defined in DALHelper.DBConnectionHelper class. As

explained in earlier chapters, the connection string value should be added to

ConnectionStrings and TestConnectionStrings arrays. A brief list of actions to define a new

database for DAL Generator is listed below.

• Add an explanatory name for the connection to the DBConnectionType enum on

DALHelper.DBConnectionHelper.

• Add the connection string to ConnectionStrings and TestConnectionStrings arrays on

DALHelper.DBConnectionHelper.

• Add the SqlConnection type to the Connections array on

DALHelper.DBConnectionHelper.

• Add SQLClientHandler type to the DBSpecificHandlers array on

DALHelper.DBConnectionHelper.

• Build and ditribute the DAL Generator to the developers, who will need to use the

newly defined connection.

After these procedures were completed successfully, we are ready to build the data access

layer of the applications that works on Northwind database’s records.

5.2 Recommendations To Create DAL Packages

A DAL package is the class library project in which a group of DAL class reside. This part

contains some recommandations that can be useful for developers when they generate DAL

packages. Usage of this written experience is not a mandotory rule of DAL Generator, but it

gives some clue about basic decisions.

Before generating any DAL code, the first thing to do should be creating a blank solution

which will contain all the DAL packages and the DALHelper project. After having a solution

for DAL codes, any generated class should be added to this solution. With this decision, a

developer will know where the data access layer classes locates, and whether any needed

class has already been generated or not. If the searched DAL class is found, it can be reused

without generating new one. In other words, management of data access layer gets easier and

reusability of classes increases.

 49

The DALHelper project is the class library that is using by all of the DAL classes. Although

this library has static attributes, some needs may arise to add extra properties and

functionalities to this library. In such a case, compiling the DAL classes with new

functionalities against undetermined errors will be useful. Instead of determining the locations

of each DAL code, collecting all classes in the same solution makes the life easier.

Another point, that the developer should think about it, is how he/she will group the DAL

classes, because using one well grouped package can be enough for an application. On the

other hand, using more than one DAL package for a purpose can make progamming difficult.

For example, the DAL classes related to accounting of a company can be put in the same

package. The grouping criterias differ developer by developer or according to the

requirements of the applications. Possible package decisions;

• Grouping DAL classes according on which database they access.

• Grouping DAL classes according to the application they used in.

• Grouping DAL classes according to the usage frequencies of the classes.

While grouping the classes, the package names should also be as clear as every developer can

understand/guess the content of it.

DAL Code Generator tool provides to save the schema of the generated classes as XML files.

With this ability, the developer can regenerate the classes after some modifications with a

little effort. It is important to locate the schemas on the same project with the related DAL

class, so it can be found easily by the developer.

5.3 Generation Of DAL Codes

Until this step, we prepared the connectivity to the database and set the connection parameters

of the DAL Code Generator tool. The following pages will explain the usage of the tool and

its capabilities.

As written in previous part, a solution will be created, into which a DAL package will be

added to be used in the example application, before generating any class.

 50

In the following lines, the creation of a solution will be described.

• After opening VS 2005, select “Project...” item under File-New menu. This begins

new project dialog.

Figure 5.9 Visual Studio 2005 File Menu

• The entered parameters on the New Project dialog are listed below.

Project Type : Visual Studio Solutions under Other Project Types tree node

Visual Studio Installed Templates : Blank Solution

Name : DALSoln

Location : C:\Projects\Packages

Figure 5.10 New Project Wizard

• The dialog creates and opens a blank solution with the given paramaters.

 51

DALSoln is the solution where all the dal packages are included, so the class library for the

Northwind database will be genared on it.

• When rigth-clicked over the DALSoln on the Solution Explorer, “New Project...” item

should be selected under “Add” menu. As the result, “Add New Project” dialog will

appear.

Figure 5.11 Solution Explorer Menu

• The entered parameters on the dialog are listed below.

Project Type : Windows under Visual C# tree node

Visual Studio Installed Templates : Class Library

Name : NorthwindDAL

Location : C:\Projects\Packages\DALSoln

 52

Figure 5.12 Add New Project Wizard

• This dialog creates a class library that contains an empty class, Class1. It should be

deleted, because no code will be written on that.

As written before, all the generated classes use the DALHelper library. Due to that reason, the

library has to be added to the solution by selecting “Existing Project...” appearing when rigth-

clicked over the DALSoln.

Figure 5.13 Solution Explorer Menu

 53

Figure 5.14 Solution Explorer

We are now ready to execute the DAL Code Generator tool and to generate our first class.

The generator decides, on which project it generates code, by getting the selected project on

the solution explorer, so firstly, the project (DAL Package) or a member of the project is to

be selected on the solution explorer. After the project selection, it can be run by clicking on

“Generate DAL Code” item under “Tools” menu of Visual Studio.

Figure 5.15 Solution Explorer

Figure 5.16 Visual Studio Tools Menu

 54

The generator wizard comes to the screen.

Figure 5.17 DAL Code Generation Wizard

The tool has three main parts. On the top of the wizard, the first part exists for the data source

selection. The data sources listed on a combobox component are the defined sources on

DALHelper.DBConnectionHelper class. The developer should choose the right one according

to the table he/she wants to access. This wizard also contains a button to test the connection to

the selected data source. As the connection test result, the developer is informed with a

messagebox which indicates a succeccfully established connection or the exception thrown

during connection attempt.

Figure 5.18 Connection Test Result For Success

 55

Figure 5.19 Connection Test Result For Error

The second part of the wizard is the area where the table selection is made and where the

attributes of the DAL class is set. On this part, the developer should enter the table name,

whose DAL code will be generated. After that, pressing to the “Get Schema” button fills the

Gridview component with the schema of the table by accessing the data source. If the table

name is miss written or the database can not be accessed, the wizard will warn the developer.

Figure 5.20 DAL Code Generation Wizard Schema Error

 56

Figure 5.21 DAL Code Generation Wizard With Loaded Schema

The main schema of the table is loaded to the grid. Now, the developer can modify the fields

of the schema, if any changes is needed. The grid columns and the circumtances where the

changes is needed is explained below.

• Name Column :

The names listed under this column is the column names of the database table. This

values should not be changed, otherwise an exception will be thrown when accessing

that column using the generated class.

• FieldType Column :

The generated class will have properties for each table column. FieldTypes indicates

the .Net types of these properties. The values listed under this column can be modified

by the developer under such circumtances;

 The generator decides the appropriate .Net type according to an algoritm, but it

does not always choose the prefered data type by the developer. Mostly, the

reason is that not all the database types have the exact match to a .Net type. For

example, DB2 database does not have the boolean type, so SHORT INT type is

generally is used to hold true/false values. In this case, the developer can

modify FieldTypes value with “bool” string. As a result, the property will be in

boolean type, on the other hand it sets its value into a SHORT INT database

column. As an another example, the database column can be double, but the

 57

programmer can prefer to access its values through a decimal property, so

he/she should change the FieldTypes from double to decimal.

• FieldName Column :

As it is explained, the generator will create properties on the generated class for each

database column. The name of these properties will the values of FieldName column.

The developer can edit these value, but he/she should watch out the uniqueness of the

names in the schema.

• Key Column :

For the key fields of the table, the corresponding checkboxes will be checked by the

generator while getting the schema from the database. Some tables may have a key

column, which does not have a logical meaning. For example, a student table can have

an autoincrement column as key, but it can also include a column that holds the

student numbers, which is known as unique for every student record. In this case, the

programmer may prefer to set student number as key, because it is much more

logically useful in applications than an identity column.

• Decimal Column :

If a database column is decimal, and the generator decides to use non-decimal .Net

type for this column, the checkbox is checked while getting the schema. A checked

checkbox indicates that the value on the database should be covered as decimal. If the

developer prefered to use double type, the value on the database is to be cast to double

during a read operation, and for an update operation, the object’s value is to cast to

decimal.

• AutoIncrement Column :

An autoincrement (or identity) column is the column whose value is given by the

database during insertion the record. If any identity column is found while loading the

schema, the corresponding checkbox will be checked automatically. The developer

should be aware of that reading an identity column decreases the performance, so if

such a column is not needed, it should be deleted from the loaded schema, or its

AutoIncrement checkbox should be unchecked.

• DbType Column :

This column specifies the type of the corresponding field on the database. The value is

not to be changed.

 58

Moreover, the wizard has buttons to change the order of the schema’s rows and to delete a

row from the schema. A deleted row is not reflected to the generated schema.

This part contains buttons to load previously saved schemas and to define relationships, but

these functionalities will be covered after our first DAL class will be generated.

The last section of the wizard is the last step before the class generation. Here, the developer

enters for the final parameters of the wizard that are explained below.

• Project Information :

The project label shows on which project the generated class will be created, so the

developer can be sure that he/she did not select the wrong project on the solution

explorer of Visual Studio.

• Class Name :

The name written on this textbox will be the name of the generated DAL classes. For

the class that accesses to the database, the generator appends “DAL” extension to the

name specified on the textbox. By the way, for the business entity class, that inherits

the DAL class, will have the same name as specified.

• “Create BE Class” Checkbox :

The generator creates also a business entity class, if this checkbox is checked. Because

the business entities may contain custom properties and methods, that are added by the

developer, he/she may not want to create a new business entity and lose these

modifications when a regeration is in process.

• “Save Schema” Button :

The DAL Code Generator gives the ability to save the loaded and modified schema in

an XML file. At this point, the developer can press this button and save the schema

after a save dialog. The location of the saved xml file may be critical for the future

regenation needs. It is recommended, that the schema should be kept in the project

folder and, also, should be included in the project, so it can be easily found by other

developers.

• “Generate DAL Code” Button :

This button is the last action of the wizard. The generation process begins by pressing

this button.

 59

Until now, the main functions of the tool are explained. At this point, we can resume to build

the data access layer of our demonstration application.

Lastly, the generator is excuted, and the schema of the Supplier table is loaded to the

generator. The last view is shown below, after the class name was specified the same name as

the table, Suppliers.

Figure 5.22 DAL Code Generation Wizard Before Generation Process

After the “Generate DAL Code” button is pressed, the generator creates two files and opens

them on the Visual Studio. The created files for the Suppliers table are;

• Suppliers.cs :

Business entity class file, that is open for the developer’s modifications.

• SuppliersDAL.cs :

The class that is actually responsible of the data access to the Suppliers table.

 60

Figure 5.23 Solution Explorer After Generation

Figure 5.24 Code Editor After Generation

As a result, hundreds of lines of codes are generated with a little effort in a very short time.

Now, the same generation process will be repeated for the Categories table of Northwind

database. After the generation process is completed, the server explorer will have a view

displayed below.

 61

Figure 5.25 Solution Explorer After All Generation Process

There is one more table left to generate its DAL class on which the demonstration application

aims to work. This table is the Products table, that has relations with Suppliers and Categories

tables. The steps taken to generate ProductsDAL file will show how a relationship can be

defined using the DAL Code Generator tool.

• As it is done on the previous generation procedures, the NorthwindDAL project

should be selected on the solution explorer, and the generator wizard should be

executed by pressing “Generate DAL Code” item on Visual Studio’s tools menu.

• After loading the schema from the database using “Get Schema” button, as described

earlier, the relation button should be clicked. () As a result, the Relation

Configurator will appear on the center of the screen.

Figure 5.26 Initial View Of Relation Configurator

 62

• The Relation Configurator has two main parts. The first part, located on the left side of

the form, is to display defined relations. Because the schema does not have any

existent relation yet, the list is empty. Moreover, this part contains two buttons to add

a new relation and to delete an existent one, that is selected on the list. The second

part, “Relation Details”, makes the developer to be able to enter the attributes of a new

relation or to modify an existent relation. To add our first relation, the button, “Add

New Relation”, should be pressed.

• This action enables “Relation Details” part. As written on the top of the part, the status

became “Define a new relation”, so the developer is aware of the action, that he/she is

doing. Moreover, it is also seen, that there is a tree, Project Classes, which is

displaying the classes in the project and the classes in the references of the project.

The treenode, we intrested in, is the NorthwindDAL project. This treenode has two

subnodes, that are familiar for us, because Categories and Suppliers are the classes,

that have been generated earlier. Next action should be double-clicking on the

Categories subnode to begin defining a relation with Categories class.

Figure 5.27 Relation Configurator For New Relation Definition

• By default, “Relation Name” entry has the same name with the relation class. In our

case, it will be “Categories”. The developer can change it to a more explanatory name

for him/her, because the generated class will have a property with this name. In

general, I rename it with a singular word, if the relation is 1 to 1. If not, a plural word

 63

is choosen by me. For this relation, the name, “Category”, is used, because each

product can have at most one category, that means the relation type is 1 to 1.

• The relation between Products and Categories classes is provided with calling a

method of Categories by Products, so the right method should be specified.

Additionally, the parameters, that is to be passes to the method, should be choosen in

the property list of Products. To start these selections, “Method to Call” button should

be use.

• The first dialog lists the constructors of Catogories. The developer selects one of them

on single selection listbox. We choose the construnctor, that takes just the category id

as parameter.

• The second dialog of “Method To Call Selection” gives a multi selection list of

Product’s properties. As mentioned in previous step, the method to call takes just one

argument, so the developer has to select as many properties as the number of the

selected method’s arguments, 1. The “CategoryID” property is the one, that is to be

passes to the constructor. If the developer select wrong number of items on the list,

he/she will be warned.

Figure 5.28 Method To Call Selection Part 1

 64

Figure 5.29 Method To Call Selection Part 2

Figure 5.30 Method To Call Selection Parameter Number Error

 65

• This relation definition ends with saving the relation. The same steps will be repeated

for the relation with Suppliers. The last screen is as shown below.

Figure 5.31 Relation Configurator For Update Existent Relations

With closing the relation configurator, the wizard form appears again. The first thing, that the

developer should do after defining the relations, is to save the schema changes. The XML file,

produced with save operation, will also contain the relation definitions, so if a regeneration of

the Products DAL class is needed, the relations info can also be obtained.

 <ClassRelations>
 <Name>Category</Name>
 <ChildClassName>Categories</ChildClassName>
 <Type>0</Type>
 <MethodToCall>Categories</MethodToCall>
 </ClassRelations>

 <ClassRelations>
 <Name>Supplier</Name>
 <ChildClassName>Suppliers</ChildClassName>
 <Type>0</Type>
 <MethodToCall>Suppliers</MethodToCall>
 </ClassRelations>

 <Parameters>
 <Name>Category</Name>
 <MethodToCall>Categories</MethodToCall>
 <ParamName>CategoryID=CategoryID</ParamName>
 </Parameters>

 66

 <Parameters>
 <Name>Supplier</Name>
 <MethodToCall>Suppliers</MethodToCall>
 <ParamName>SupplierID=SupplierID</ParamName>
 </Parameters>

After the generation process of Products class, we will observe two more files added to the

NorthwindDAL project like previous generation processes did. On the other hand, when we

take a close look in ProductsDAL.cs, which is one of the produced files, we will see that the

properties, Supplier and Category, was added to provide relationships.

 private Suppliers supplier; //Local variable.
 public Suppliers Supplier //Property as the given relation name.
 {
 get
 {
 if (supplier == null)
 {
 try
 {
 //The selected methods to call is loacted in the property.
 supplier = new Suppliers(SupplierID);
 }
 catch (RecordNotFoundException)
 {
 supplier = null;
 }
 }
 return supplier;
 }
 set
 {
 supplier = value;
 UpdateRelationBackwards("supplier", supplier);
 }
 }

 private Categories category;
 public Categories Category
 {
 get
 {
 if (category == null)
 {
 try
 {
 category = new Categories(CategoryID);
 }
 catch (RecordNotFoundException)
 {
 category = null;
 }
 }
 return category;
 }
 set

 67

 {
 category = value;
 UpdateRelationBackwards("category", category);
 }
 }

5.4 Developing An ASP .Net Application

Before developing an application, the developer generally decides the data sources, which the

application will access, according to the requirements. After the determination of the sources,

the DAL Code Generator tool helps to building data access layer just in minutes, so the

developer can quickly begin to focus on the presentation and the business layers. Similarly,

we can start to develop our demonstration application.

This section will mostly focus on the usage of the generated classes, but the basic steps of

creating an ASP.Net application and the main attributes of the used component will be also

explained.

5.4.1 Creation Of An ASP .NET Project

Visual Studio .Net has a very basic wizard to create an ASP.Net Application. The “Add New

Web Site” wizard can be viewed by using “File – New – Web Site” menu item of Visual

Studio 2005. On the opened form, the developer have the choices to select the template of the

site, the location, where the project will reside, and the language, in which the application will

be written. The selection made for this example is listed below.

Visual Studio installed templates : ASP.Net Web Site

Location Type : File System

Location :

“C:\Projects\WebProjects\DALUsageDemonstrationSoln\DALUsageDemonstration”

Language : Visual C#

 68

Figure 5.32 Visual Studio 2005 Add New Web Site Wizard

This wizard creates an ASP.Net project according to the given parameters and adds it to a

solution. The project contains a default web form, Default.aspx , but the developer can add

more items to the project using “Add New Item” wizard, that pops up by right clicking on the

project and selecting “Add New Item” item. This wizard shows the available items on Visual

Studio. In the project developed in the following pages, we will need to add one more Web

Form using this wizard.

5.4.2 Adding Components To A Web Form

Visual Studio includes lots of component for each kind of projects, that can be easily added

with drag and drop, and whose attribute can be set in the code behind of the form or in the

property pain of Visual Studio.

For the ASP.Net web forms, the available components are also listed on the Toolbox pain,

and they can be moved onto the form.

 69

Figure 5.33 Visual Studio 2005 Toolbox

5.4.3 Preparing Applications For DAL Usage

After these informations, we will begin to build our example project, but we should first to

complete the requirements of DAL Classes’ usage.

In the previous pages, a class library is created, which includes data access codes of

Northwind database. Firstly, the class library should be referenced by the project, that will use

it. There is two ways to reference a DAL library generated by our tool.

• The reference can be defined by targetting the DLL file of the DAL library. The

developer should build the DAL library, so he/she obtains the DLL file.

• The second method is defining the reference from the list of the solution’s projects. To

practice this method, the developer is to add the related DAL library project to the

same solution as the application that will use it.

While the second way is choosen to apply, the NorthwindDAL project is added to the

demontration solution.

The second requirement of DAL usage preparation is adding the reference of DALHelper

library to the solution as well, because DALHelper is the library, that is used by every

generated DAL class. Moreover, it also contains helper functions, that can be used to access

the data sources without using DAL classes, or to obtain parameters to call a DAL class. If

DALHelper will be used in the project, it is also to be added to the references of the project.

After these requirements are completed, the view of the solution explorer looks like as the

following. The developer is now ready to continue developing his/her application.

 70

Figure 5.34 Solution Explorer When the Preparation Completed

5.4.4 Usage Of DAL Classes

The first web form of the demonstration application will list the Products’ records. It will

contain a grid view component which shows the product id, the product name, the category

name and the supplier name for each product record.

To deal with this approach, the generated Products class provides the first two data, but it has

only the ids of the related category and supplier records, not their name info. What the

developer is going to do is to code the properties for them in Products.cs of NorthwindDAL

library. The added code should be like this.

 #region Custom Properties
 public string CategoryName
 {
 get
 {
 if (this.Category != null)
 {
 return this.Category.CategoryName;
 }
 else
 {
 return null;
 }
 }
 }

 public string SupplierName
 {
 get
 {
 if (this.Supplier != null)
 {
 return this.Supplier.CompanyName;
 }
 else

 71

 {
 return null;
 }
 }
 }
 #endregion

As a result, Products class become able to provide the needed data over its properties.

After we complete the missing data, we can continue to design our first form, Default.aspx.

It is planned to have a form, over which some queries can be executed and the result are

displayed on the same form. Due to these requirements, some components are added onto

Default.aspx to let the users to enter the query conditions. The designed query section of the

form has a view as the following.

Figure 5.35 Query Section Of Default.aspx

As you see, the form has two textboxes for “Product Id”, “Product Name” inputs, and it has

two dropdown lists to let the user to select “Supplier Name” and “Category Name”, which

have been filled with the existent records on the database. The codes to fill the dropdown lists

are given below.

private void LoadSupplierList()
 {
 Suppliers supplierLoader = new Suppliers();
 ArrayList supplierList = supplierLoader.LoadAll();

 supplierDropDownList.Items.Clear();
 supplierDropDownList.Items.Add(new ListItem());
 foreach (Suppliers supplier in supplierList)
 {
 ListItem listItem = new ListItem(supplier.CompanyName,
supplier.SupplierID.ToString());
 supplierDropDownList.Items.Add(listItem);
 }
 }

 private void LoadCategoryList()
 {
 Categories categoryLoader = new Categories();
 ArrayList categoryList = categoryLoader.LoadAll();

 72

 categoryDropDownList.Items.Clear();
 categoryDropDownList.Items.Add(new ListItem());
 foreach (Categories category in categoryList)
 {
 ListItem listItem = new ListItem(category.CategoryName,
category.CategoryID.ToString());
 categoryDropDownList.Items.Add(listItem);
 }
 }

The marked lines shows, how the lists of suppliers and categories are retrived from the

database. As you see, just two lines of code for each are sufficient to access the database

records using generated DAL classes.

The query section of the form has also a button, “Load Products”, that is resposible to get the

condition inputs, to query database and to bind the resulted query result to a gridview

component, that is also be added next to this section.

Because the document focus on the usage of DAL classes more than the usage of form

components, the only code block is included, that is responsible with data access of Products

results.

 //p_Condition Examples:
 //"SupplierID = 1 AND CategoryID = 2"
 //"ProductName LIKE '%Chai%'"
 //"ProductId = 5"
 private ArrayList LoadProducts(string p_Condition)
 {
 Products productLoader = new Products();
 ArrayList products = productLoader.LoadAll(p_Condition, 0);
 return products;
 }

An example screenshot of Default.aspx has been taken, which list the products, whose

Supplier is “Exotic Liquids” and Category is “Beverages”.

 73

Figure 5.36 Products Listed On Default.aspx

Obviously, it is very easy to get the records on the database using generated DAL classes, but

most of the applications have more requirements than listing a block of records, such as

CRUD operations. Next demonstration form will show the way of dealing with CRUD using

DAL classes.

The designed form to demonstrate CRUD operations on Products’ records includes many

sections for each operation. Due to its wide content, each section will be discussed seperately.

First section of the form is designed to read a single record and to display its content on the

form. For the purposes, a combobox is located, which lists the product names, and a button is

ready to get the selected product from the database.

Figure 5.37 The components For Loading The Product

The code triggered with the button explaines the way of a read operation using the generated

Products class, where “p_ProductId” parameter is the identity value of the destination record.

Products product = new Products(p_ProductId);
productNameLabel.Text = product.ProductName;
supplierIDLabel.Text = product.SupplierID.ToString();
supplierLabel.Text = product.SupplierName;
categoryIDLabel.Text = product.CategoryID.ToString();
categoryLabel.Text = product.CategoryName;
quantityPerUnitLabel.Text = product.QuantityPerUnit;
unitPriceLabel.Text = product.UnitPrice.ToString();
unitsInStockLabel.Text = product.UnitsInStock.ToString();

 74

As the result of the assignments of component values, next view will be appeared on the form.

Figure 5.38 The Form State After Loading The Product

The “Edit Product” button is the gate to an update operation. When its click event is fired, the

fields are replaced with the components, that let user to modify the product’s values. Next

view displays the instance, after the user make some modification on the record.

Figure 5.39 The Form State After “Edit Product” Button Pressed

Again, a button, “Update”, is ready to accomplish an action. The name of the action is an

update.

Products product = new Products(p_ProductId);
product.ProductName = productNameTextBox.Text.Trim();
product.SupplierID = int.Parse(supplierDropDownList.SelectedValue);
product.CategoryID = int.Parse(categoryDropDownList.SelectedValue);
product.QuantityPerUnit = quantityPerUnitTextBox.Text.Trim();
product.UnitPrice = double.Parse(unitPriceTextBox.Text.Trim());
product.UnitsInStock = short.Parse(unitsInStockTextBox.Text.Trim());
productToUpdate.Update();

The first line is familiar from the previous part, beacuse an DAL object is to be loaded before

an update operation. Each loading means a database access, which decreases our performance.

To deal with this issue, caching of the object is recommended after its first load, so it can be

 75

used from the cache and does not nees to be loaded again. The last line of the code block is

the place, where the update occurs, after replacing the object values with user entries.

The next operation to demonstrate is the insertion. The components used for the update are

also used for this one, on which the user enters the values for a new Product record. The user

interface and the code fired with the “Insert” button comes next.

Figure 5.40 The Form State For An Insertion

Products product = new Products();
product.ProductName = productNameTextBox.Text.Trim();
product.SupplierID = int.Parse(supplierDropDownList.SelectedValue);
product.CategoryID = int.Parse(categoryDropDownList.SelectedValue);
product.QuantityPerUnit = quantityPerUnitTextBox.Text.Trim();
product.UnitPrice = double.Parse(unitPriceTextBox.Text.Trim());
product.UnitsInStock = short.Parse(unitsInStockTextBox.Text.Trim());
productToUpdate.Insert();

The code to be executed for an insertion is very similar to the update. The important

difference is on the first line, where the object is initialized with the defult constructor. A call

to the default constructor of a DAL class causes an emty object creation, which also means no

database connection is established. It is also logically true, because the record, that will be

inserted, is not to be exist in the database, in other words, it is an emty object. The code block

continues with the assignment statements, and ends with an insert call, where the connection

is established and created on the database.

The only operation in CRUD, that is not discussed yet, is the deletion. The demontration is

made by a single button, which trigger the following code block.

Products product = new Products(p_ProductId);
productToUpdate.Insert();

 76

As the update operation needs, a deletion is also needs a previously loaded object before its

execution.

 77

6 CONCLUSSION AND FUTURE RECOMENDATIONS

This thesis is about presenting a solution for the layered applications. Although layered

architectures prevent serious problems on supporting such operational requirements as

maintainability, reusability, scalability, robustness, and security, the implementation of a

planned layered structure probably requires an assigned source of architects, an effort of

developers and, most important, a time period of the projects. The tool developed in this

thesis offers savings on the sources reserved for the implementation of the data access layer,

which is the base layer of any layered architecture. The tool, Data Access Layer Code

Generator, generates the DAL components automatically, any of which has a standart

structure, are reusable, and are easy to use. The generator supports the generation of codes

that are responsible to access data on two most popular database management systems, DB2

and Microsoft SQL Server. On the other hand, it is also designed to provide an easy

adaptation of other DBMS’.

The tool produces the DAL classes that are able to successfully process any CRUD operations

on the destination databases in multiple ways. Moreover, the developers can define relations

between the generated classes to realize the relationships between database tables. Because it

is fully integrated on Visual Studio 2005 development platform, the developers can easily

adapt to the tool. As much as the usage of the tool increases, the possible errors will be

prevented done by the developers on the data access. Additionally, the readability level of the

codes will also be improved due to the standardized and commented codes generated by this

tool.

As a conclusion, I believe in that the functionalities and the easy usage experience provided

by DAL Code Generator tool makes itself one of the first preferences of the developers,

where they require access to an information source.

In the future, the tool will be improved with the modules that will generate data access layer

components for the sources other than relational databases, such as XML sources. Moreover,

some design elements will be builded for the ASP .Net and desktop projects, which will be

responsible for adding data access capability to the applications with just a single drag and

drop action.

 78

7 REFERENCES

References Cited

[1] Microsoft, “.NET Framework Conceptual Overview”, URL

http://msdn2.microsoft.com/en-us/library/zw4w595w.aspx

[2] Microsoft, “Common Language Runtime Overview”, URL

http://msdn2.microsoft.com/en-us/library/ddk909ch.aspx

[3] Netscope, “C# Introduction and Overview”, URL

http://www.netscope.co.za/directions/mpnetpro/mpnet_csharpintro.htm

[4] Microsoft, “Attributes (C# Programming Guide)”, URL http://msdn2.microsoft.com/en-

us/library/z0w1kczw(VS.80).aspx

[5] Jesse Liberty, “Programming C#”, O’REILLY, 2001

[6] Microsoft, “Visual Studio 2005 Automation Samples”, URL

http://www.microsoft.com/downloads/details.aspx?FamilyId=79C7E038-8768-4E1E-87AE-

5BBBE3886DE8&displaylang=en#Instructions

[7]. Santhi Maadhaven, “Creating simple Add-in for Visual Studio.NET”, 16 March 2005,

URL http://www.c-sharpcorner.com/Code/2005/March/CreatingAddin.asp

[8] Microsoft, “How to: Create an Add-in”, URL http://msdn2.microsoft.com/en-

us/library/80493a3w.aspx

[9] Alex Mackman, Chris Brooks, Steve Busby, Ed Jezierski, Jason Hogg, Roberta Leibovitz

and Colin Campbell, “.NET Data Access Architecture Guide”, Microsoft Corporation, 2003

[10] Joe Mayo, “The C# Station ADO.NET Tutorial”, 8 January 2004, URL

http://www.csharp-station.com/Tutorials/AdoDotNet/Lesson01.aspx

[11] Manoj G, “Implementing a Provider Independent Data Access Layer in .NET”, 4

November 2003, URL http://www.codeproject.com/vb/net/data_access_layer.asp

References Not Cited

[12] Microsoft, “Overview of the .NET Framework”, URL http://msdn2.microsoft.com/en-

us/library/a4t23ktk.aspx

[13] Microsoft, “Creating Custom Attributes (C# Programming Guide)”, URL

http://msdn2.microsoft.com/en-us/library/sw480ze8.aspx

[14] Tom Archer, Andrew Whitechapel, “INSIDE C#”, Arkadaş Yayınları

[15]. Microsoft, “Custom Add-Ins Help You Maximize the Productivity of Visual Studio

.NET”, URL http://msdn.microsoft.com/msdnmag/issues/02/02/VSIDE/default.aspx

 79

[16] Microsoft, “.NET Framework Data Providers”, URL

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpguide/html/cpconADONETProviders.asp

[17] Dino Esposito, “Building Web Solutions With ASP.Net And ADO.Net”, Microsoft

Press, 2002

[18] Mickey Williams, “Microsoft VISUAL C# .Net”, Microsoft Press, 2002

[19] David Scoppa, “Microsoft ADO.Net”, Microsoft Press, 2002

[20] Jeff Webb, “Visual Basic .Net And Visual C# .Net”, Microsoft Press, 2003

[21] Nikhil Kathari, Vandana Datye, “Developing Microsoft ASP.Net Server Controls and

Components”, Microsoft Press, 2003

[22] Martin Fowler, “Pattern of Enterprise Application Architecture, Addision Wesley

Professional”, 2003

[23] Steve McConnell, “CODE COMPLETE”, Microsoft Press, 2004

[24] Peter Eeles, “Layering Strategies”, 15 October 2001, URL http://www-

128.ibm.com/developerworks/rational/library/4699.html

[25] Buschmann, Frank, “Pattern-Oriented Software Architecture”, Wiley & Sons, 1996

[26] Peter Eeles and Oliver Sims, “Building Business Objects”, John Wiley & Sons, 1998

[27] Peter Herzum and Oliver Sims, “The Business Component Factory”, John Wiley & Sons,

2000

[28] Ivar Jacobson, “Software Reuse”, Addison-Wesley, 1997

[29] David Hayden, “Domain-Driven Design - Layered Applications”, 29 March 2005, URL

http://codebetter.com/blogs/david.hayden/archive/2005/03/29/60806.aspx

 80

