

DESIGN AND IMPLEMENTATION OF A SOFTWARE AGENT
PLATFORM APPLIED IN E-LEARNING AND COURSE MANAGEMENT

A Thesis
Presented to the Institute of Science and Engineering

of
Işık University

In Partial Fulfillment of the Requirements for the Degree of
Master of Science

in
The Department of Computer Engineering

by
Gürol Erdoğan

August 2004

Approval of the Institute of Science and Engineering

Prof. Dr. Sıddık B. Yarman

Director

 I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Prof. Dr. Ahmet Aksen

Head of Department

 This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Selahattin Kuru

Supervisor

Examining Commitee Members

... __________________________

... __________________________

... __________________________

... __________________________

... __________________________

 ii

ABSTRACT

DESIGN AND IMPLEMENTATION OF A SOFTWARE AGENT PLATFORM

APPLIED IN E-LEARNING AND COURSE MANAGEMENT

Erdoğan, Gürol

In this thesis, we report an experience on constructing a software agent

platform for development and implementation of software agent systems running

with integrated e-learning and course management applications which are developed

and running under different technologies. The proposed platform consists of an agent

development framework namely JADE (Java Agent Development Environmet), a

common database infrastructure serving to many different applications and the

applications infrastructure running on different platforms. An example e-university

application module which is an integrated course management software running on

the proposed platform namely Course ON-LINE and an agent application running as

an add-on utility to this application namely GAIA is explained in detail to

demonstrate the use of the proposed application.

Keywords: Software Agents, E-University, Course Management, E-Learning

 iii

ÖZET

DESIGN AND IMPLEMENTATION OF A SOFTWARE AGENT PLATFORM

APPLIED IN E-LEARNING AND COURSE MANAGEMENT

Erdoğan, Gürol

Bu çalışmada farklı teknolojiler kullanılarak geliştirilen ve farklı platformlarda

çalıştırılmakta olan ve tümleşik yapıdaki uzaktan eğtim ve ders yönetimi araçları

uygulamalarla birlikte çalışabilecek yazılım etmen sistemlerinin geliştirilebilmesini

sağlayan bir yazılım geliştirme ve çalıştırma ortamı inşa etme deneyimi aktarılmıştır.

Önerilen ortam JADE (Java Agent Development Environmet), isimli bir etmen

geliştirme aracı, etmen sistemleri dahil tüm uygulamaların ortak kullandıkları bir

veritabanı altyapısı, ve farklı ortamlarda çalışan ve farklı teknolojilerle geliştirilmiş

uygulamaların altyapısından oluşmaktadır. Önerilen ortamın kullanılışını göstermek

için tümleşik ders web sayfaları yönetim aracı olan ve e-üniversite uygulamalarının

bir parçası olan Course ON-LINE ve onunla birlikte çalışan bir yazılım etmeni

uygulaması olan GAIA uygulamaları detaylıca sunulmuştur.

Anahtar Kelimeler: Yazılım Etmenleri, E-Üniversite, Ders Web Sayfaları

Yönetimi, Uzaktan Eğitim

 iv

to my wife

 v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those who contributed directly or

indirectly to bringing this publication to this final format, because I would never

have been able, by myself, to achieve this.

My most sincere gratitude and appreciation are dedicated to Prof. Dr. Selahattin

Kuru, my supervisor, for his inspirational guidance, invaluable suggestions and

endless motivation. Many thanks to Mustafa Yıldız, Onur İhsan Arsun, Orhan

Karahasan and Ahmet Oktay, my colleagues, for their personal and professional

support and for being closest friends.

Finally, I wish to record my special thanks to my parents, for their endless love and

confidence.

 vi

TABLE OF CONTENTS

PAGE

ABSTRACT..iii

ÖZET .. iv

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS...vii

LIST OF FIGURES ... x

LIST OF TABLES .. xi

CHAPTER

1. INTRODUCTION.. 1

2. SOFTWARE AGENT SYSTEMS... 3

2.1. Software Agent Definitions... 3

2.2. A Typology of Software Agents ... 7

2.2.1. Collaborative Agents.. 9

2.2.2. Interface Agents ... 10

2.2.3. Mobile Agents.. 10

2.2.4. Information/Internet Agents... 10

2.2.5. Reactive Agents ... 11

2.2.6. Hybrid Agents .. 11

2.2.7. Heterogeneous Agent Systems... 11

2.3. FIPA Agent Specification ... 12

2.3.1. Agents and Services ... 12

2.3.2. Agent Communication Languages... 13

2.4. Benefits of Agent Applications... 14

2.4.1. Reduction of Communication .. 14

2.4.2. Asynchronous Tasks .. 15

2.4.3. Dynamic Protocols and Intelligent Data .. 15

2.4.4. Software Deployment .. 16

2.4.5. Temporary Applications... 16

2.4.6. Distributed and Heterogeneous Computing... 17

 vii

2.4.7. Scalable Applications... 18

2.5. Agent Development Tools .. 18

2.5.1. BT’s ZEUS... 19

2.5.2. Grasshopper.. 19

2.5.3. Concordia ... 20

2.5.4 IBM Aglets.. 20

3. AGENT APPLICATIONS IN E-LEARNING AND COURSE MANAGEMENT

.. 21

3.1. E-Learning and Course Management.. 21

3.2. Functions of E-Learning and Course Management Tools 22

3.2.1. Learner Tools ... 24

3.2.2. Support Tools ... 30

3.3. Agents Usage in E-Learning and Course Management 35

3.3.1. Instructors’ Agents ... 37

3.3.2. Tutor Agents .. 38

3.3.3. Digital Secretary .. 39

3.3.4. Agents in Teaching and Learning Situations ... 40

3.3.5. Incorporating Agents in Learning Management Systems........................ 41

3.3.6. Hardware and Software Issues ... 42

4. THE PROPOSED AGENT DEVELOPMENT PLATFORM SPECIFICATION. 43

4.1. Software Agent Environment.. 43

4.1.1. Java Agent Development Environment (JADE) 43

4.1.2. Application Features of JADE ... 51

4.2. Infrastructure of Integrated Software .. 54

4.2.1. Microsoft .NET Framework... 54

4.2.2. Microsoft .NET Development Platform... 56

4.2.3. Visual Basic .NET.. 56

4.2.4. ASP.NET.. 57

4.3. Patterns and Methodologies Used in Development Process 59

4.3.1. Extreme Programming ... 59

4.3.2. Object – Oriented Programming .. 63

4.3.3. Software Design Pattern Used ... 67

5. AN EXAMPLE AGENT APPLICATION RUNNING ON THE PROPOSED

PLATFORM .. 73

 viii

5.1. An Overview of Course ON-LINE ... 73

5.2. The GAIA Add-On ... 74

5.2.1. How GAIA works .. 75

5.3. Integrating Course ON-LINE With Other University Information Systems .. 77

5.3.1. University Information Systems .. 78

5.3.2. Integration at Data Layer ... 79

5.3.3. Integration at the Business Layer... 81

6. EVALUATION.. 83

7. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 84

REFERENCES... 86

APPENDICES

A. DETAILS OF COURSE ON-LINE FUNCTIONS... 90

A.1. Course ON-LINE Functions .. 90

A.1.1. Course Syllabus... 91

A.1.2. Assignments .. 91

A.1.3. Course Materials ... 94

A.1.4. Web Resources.. 95

A.1.5. Annoucements... 95

A.1.6. Grading.. 96

A.1.7. Calendar .. 100

A.1.8. Tools.. 100

A.1.9. Communication Forums.. 100

A.1.10. Sending Batch E-Mails.. 102

A.1.11. Class / Attendance Lists .. 103

A.1.12. Advanced Features .. 103

B. AGENT SOURCE CODES... 105

B.1. Source Code of the GAIA Agent ... 105

B.2. Source Code of the Titan Agent ... 106

B.3. Source Code of the GAIA Agent Data Layer... 107

 B.4. Source Code of E-Mail API Used by GAIA .. 114

C. CD INCLUDING DOCUMENTS AND APPLICATION SOURCE CODES... 114

 ix

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 A Part View of an Agent Typology.. 8

Figure 3.1 CMT Functionalities Hierarchy.. 24

Figure 4.1 The Jade architecture .. 45

Figure 4.2 MVC Class Architecture... 69

Figure 4.3 Behavior of the passive model.. 71

Figure 5.1 Student Agent Configuration Interface... 75

Figure 5.2 Student Agents Lifecycle.. 77

Figure A.1 Course ON-LINE main page ... 90

Figure A.2 Syllabus Page... 92

Figure A.3 Assignments interface of the instructor ... 93

Figure A.4 Course Materials Page ... 94

Figure A.5 Web Resources Page.. 95

Figure A.6 Announcements Page... 96

Figure A.7 First Page of the Grading Tool .. 97

Figure A.8 Entering Grades for Each Grading Item .. 98

Figure A.9 Viewing Overall Grades .. 99

Figure A.10 Letter Grades Conversion Tool ... 99

Figure A.11 Course Calendar... 101

Figure A.12 Tools Page ... 101

Figure A.13 Communication - Forums .. 102

Figure A.14 Communication – Batch E-Mail .. 103

Figure A.15 Coordination of several sections.. 104

Figure A.16 Edit Privacy ... 104

 x

LIST OF TABLES

TABLE TITLE PAGE

Table 4.1 Traditional Software Engineering Approaches vs. XP 62

Table 6.1 Comparison of active usage of Course ON-LINE in two semesters.......... 83

 xi

CHAPTER 1

INTRODUCTION

The popularization of the Internet is generating a great variety of new services

for its users, such as e-Commerce, bank transactions, marketing and others. The

WWW environment of the Internet has been recognized as a powerful method of

information distribution, because it attracts a great number of users and has a low

cost. Currently, there is a lot of interest and work in the area of developing agents

systems and applications that make use of web technology, which ranges from

intelligent information agents, interface agents, to e-commerce agents. Agents are

independent software tools linked with other applications and databases running

within one or several computer environments. The primary function of an intelligent

agent is to help a user better use, manage, and interact with a computer application

such as a course management system or a campus portal system [1].

To develop and maintain agent systems running with other web based

applications in a particular environment, choosing tools and technologies will be a

critical process. This thesis is concerning with building a software agent

development and execution platform intended for integrated web based applications

and gives detailed information about the technology and tools used in construction of

the platform. The products and tools used in different layers and different platforms

are explained separately. The proposed platform is intended to be used to develop

agent applications running as add-on utilities for existing integrated systems sharing

common data resources and running on different platforms.

The platform is built on the e-university infrastructure of Işık University and an

example agent application is developed which is working as an add-on tool to the

Integrated Course Homepages Management System of Işık University, namely

Course ON-LINE. Course ON-LINE is a member of e-university tools family which

includes Campus ON-LINE [2], the course registration and student information

 1

system; Library ON-LINE [3], the university library automation system and

CAMPUS ON-SMS [4], information distribution system over SMS. All of these

tools are fully integrated with each other and share a common database.

The add-on agent application running within Course ON-LINE is named

GAIA. Gaia is a notification agent system, which is running on the Course ON-LINE

platform. Students use their own interfaces to start their own notification agents.

Student selects the modules of the Course ON-LINE to be tracked by his/her own

agent and gives directive to start the agent. This example application shows how to

integrate the agent application with the existing applications running on different

platforms but using the same data resources.

The second chapter, the agent terminology and a typology of software agents

existing in the literature is given. Software agent application domains and benefits of

using the software agents are also mentioned in this chapter. This chapter concludes

with brief information of publicly and commercially available software agent

development tools and software.

Third chapter is dealing with agent applications particularly for educational

purposes. This chapter basically explains the properties and basic functionalities of

course management and e-learning software and searching for agent applications

concerning those products in the literature.

Fourth chapter deeply examines the platform built in the Işık University’s e-

university infrastructure and explains the tools and technologies used in the

integrated platform using software agents.

Fifth chapter is about the example application Course ON-LINE and its agent

add-on namely GAIA. The core functionalities of these products are presented in this

chapter. This chapter also includes the programming methodology and software

patterns used in development of Course ON-LINE and GAIA.

 2

CHAPTER 2

SOFTWARE AGENT SYSTEMS

2.1. Software Agent Definitions

People involved in agent research have covered a variety of definitions on

software agents, each hoping to explicate his or her use of the word, ‘agent’. These

definitions range from the simple to the lengthy and demanding. Each of them grew

directly out of the set of examples of agents that the definer had in mind. By an

agent, we mean a system that has the following properties [5]:

– autonomy: agents encapsulate some state (that is not accessible to other

agents), and make decisions about what to do based on this state, without the direct

intervention of humans or others;

– reactivity: agents are situated in an environment, (which may be the physical

world, a user via a graphical user interface, a collection of other agents, the

INTERNET, or perhaps many of these combined), are able to perceive this

environment (throughthe use of potentially imperfect sensors), and are able to

respond in a timely fashionto changes that occur in it;

– pro-activeness: agents do not simply act in response to their environment,

they are able to exhibit goal-directed behaviour by taking the initiative;

– social ability: agents interact with other agents (and possibly humans) via

some kind of agent-communication language [28], and typically have the ability to

engage in social activities (such as cooperative problem solving or negotiation) in

order to achieve their goals.

 3

These properties are more demanding than they might at first appear. To see

why, let us consider them in turn. First, consider pro-activeness: goal directed

behavior. It is not hard to build a system that exhibits goal directed behavior — we

do it every time we write a procedure in Pascal, a function in C, or a method in Java.

When we write such a procedure, we describe it in terms of the assumptions on

which it relies (formally, its pre-condition) and the effect it has if the assumptions are

valid (its post-condition). The effects of the procedure are its goal: what the author of

the software intends the procedure to achieve. If the pre-condition holds when the

procedure is invoked, then we expect that the procedure will execute correctly: that it

will terminate, and that upon termination, the post-condition will be true, i.e., the

goal will be achieved. This is goal directed behavior: the procedure is simply a plan

or recipe for achieving the goal. This programming model is fine for many

environments. For example, its works well when we consider functional systems —

those that simply take some input, and produce as output some some function of this

input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal directed

programming is not acceptable, as it makes an important limiting assumption. It

assumes that the environment does not change while the procedure is executing. If

the environment does change, and in particular, if the assumptions (pre-condition)

underlying the procedure become false while the procedure is executing, then the

behavior of the procedure may not be defined — often, it will simply crash.

Similarly, it is assumed that the goal, that is, the reason for executing the procedure,

remains valid at least until the procedure terminates. If the goal does not remain

valid, then there is simply no reason to continue executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in

domains that are too complex for an agent to observe completely, that are multi-agent

(i.e., they are populated with more than one agent that can change the environment),

or where there is uncertainty in the environment, these assumptions are not

reasonable. In such environments, blindly executing a procedure without regard to

whether the assumptions underpinning the procedure are valid is a poor strategy. In

such dynamic environments, an agent must be reactive, in just the way that we

described above. That is, it must be responsive to events that occur in its

 4

environment, where these events affect either the agent’s goals or the assumptions

which underpin the procedures that the agent is executing in order to achieve its

goals.

As we have seen, building purely goal directed systems is not hard. Similarly,

building purely reactive systems — ones that continually respond to their

environment— is also not difficult; we can implement them as lookup tables that

simply match environmental stimuli to action responses. However, what turns out to

be very hard is building a system that achieves an effective balance between goal-

directed and reactive behavior. We want agents that will attempt to achieve their

goals systematically, perhaps by making use of complex procedure-like recipes for

action. But we don’t want our agents to continue blindly executing these procedures

in an attempt to achieve a goal either when it is clear that the procedure will not

work, or when the goal is for some reason no longer valid. In such circumstances, we

want our agent to be able to react to the new situation, in time for the reaction to be

of some use. However, we do not want our agent to be continually reacting, and

hence never focusing on a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance

between goal directed and reactive behavior is hard. After all, it is comparatively rare

to find humans that do this very well. How many of us have had a manager who

stayed blindly focussed on some project long after the relevance of the project was

passed, or it was clear that the project plan was doomed to failure? Similarly, how

many have encountered managers who seem unable to stay focussed at all, who flit

from one project to another without ever managing to pursue a goal long enough to

achieve anything? This problem—of effectively integrating goal-directed and

reactive behavior—is one of the key problems facing the agent designer. As we shall

see, a great many proposals have been made for how to build agents that can do

this—but the problem is essentially still open.

Finally, let us say something about social ability, the final component of

flexible autonomous action as defined here. In one sense, social ability is trivial:

every day, millions of computers across the world routinely exchange information

with both humans and other computers. But the ability to exchange bit streams is not

 5

really social ability. Consider that in the human world, comparatively few of our

meaningful goals can be achieved without the cooperation of other people, who

cannot be assumed to share our goals — in other words, they are themselves

autonomous, with their own agenda to pursue. This type of social ability—involving

the ability to dynamically negotiate and coordinate — is much more complex, and

much less well understood, than simply the ability to exchange bitstreams.

An obvious question to ask is why agents and multi-agent systems are seen as

an important new direction in software engineering. There are several reasons [40,

pp.6– 10]:

– Natural metaphor.

Just as the many domains can be conceived of consisting of a number of

interacting but essentially passive objects, so many others can be conceived as

interacting, active, purposeful agents. For example, a scenario currently driving

much R&D activity in the agents field is that of software agents that buy and sell

goods via the Internet on behalf of some users. It is natural to view the software

participants in such transactions as (semi-)autonomous agents.

– Distribution of data or control.

For many software systems, it is not possible to identify a single locus of

control: instead, overall control of the systems is distributed across a number

computing nodes, which are frequently geographically distributed. In order to make

such systems work effectively, these nodes must be capable of autonomously

interacting with each other— they must agents.

– Legacy systems.

A natural way of incorporating legacy systems into modern distributed

information systems is to agentify them: to “wrap” them with an agent layer, that will

enable them to interact with other agents.

– Open systems.

Many systems are open in the sense that it is impossible to know at design time

exactly what components the system will be comprised of, and how these

 6

components will be used to interact with one-another. To operate effectively in such

systems, the ability to engage in flexible autonomous decision-making is critical.

2.2. A Typology of Software Agents

This section places existing agents into different agent classes. A typology

refers to the study of types of entities. There are several dimensions to classify

existing software agents. [6]

Firstly, agents may be classified by their mobility, i.e. by their ability to move

around some network. This yields the classes of static or mobile agents.

Secondly, they may be classed as either deliberative or reactive. Deliberative

agents derive from the deliberative thinking paradigm: the agents possess an internal

symbolic, reasoning model and they engage in planning and negotiation in order to

achieve coordination with other agents. Reactive agents on the contrary do not have

any internal, symbolic models of their environment, and they act using a

stimulus/response type of behavior by responding to the present state of the

environment in which they are embedded.

Thirdly, agents may be classified along several ideal and primary attributes

which agents should exhibit. At BT Labs, they have identified a minimal list of three:

autonomy, learning and cooperation. Autonomy refers to the principle that agents can

operate on their own without the need for human guidance, even though this would

sometimes be invaluable. Hence agents have individual internal states and goals, and

they act in such a manner as to meet its goals on behalf of its user. A key element of

their autonomy is their proactiveness, i.e. their ability to ’take the initiative’ rather

than acting simply in response to their environment. Cooperation with other agents is

paramount: it is the reason for having multiple agents in the first place in contrast to

having just one. In order to cooperate, agents need to possess a social ability, i.e. the

ability to interact with other agents and possibly humans via some communication

language. Having said this, it is possible for agents to coordinate their actions

without cooperation. Lastly, for agent systems to be truly ’smart’, they would have to

 7

learn as they react and/or interact with their external environment. The learning may

also take the form of increased performance over time. They use these three minimal

characteristics in Figure 2.1. to derive four types of agents to include in their

typology: collaborative agents, collaborative learning agents, interface agents and

truly smart agents. [5]

Fourthly, agents may sometimes be classified by their roles (preferably, if the

roles are major ones), e.g. World Wide Web (WWW) information agents. This

category of agents usually exploits internet search engines such as WebCrawler,

Lycos and Spiders. Essentially, they help manage the vast amount of information in

wide area networks like the Internet. They refer to these classes of agents as

information or internet agents. Again, information agents may be static, mobile or

deliberative.

Figure 2.1 A Part View of an Agent Typology

Fifthly, they have also included the category of hybrid agents that combine of

two or more agent philosophies in a single agent. There are other attributes of agents

that they consider secondary to those already mentioned. For example, is an agent

versatile (i.e. does it have many goals or does it engage in a variety of tasks)? Is an

agent benevolent or non-helpful, antagonistic or altruistic? Does an agent lie

knowingly or is it always truthful (this attribute is termed veracity)? Can you trust

 8

the agent enough to (risk) delegate tasks to it? Is it temporally continuous? Does it

degrade gracefully in contrast to failing drastically at the boundaries? Perhaps

unbelievably, some researchers are also attributing emotional attitudes to agents - do

they get ’fed up’ being asked to do the same thing time and time again? What role

does emotion have in constructing believable agents (Bates, 1994)? Some agents are

also imbued with mentalist attitudes or notions such as beliefs, desires and intentions

- referred to typically as BDI agents.

In essence, agents exist in a truly multi-dimensional space. For the sake of

clarity of understanding, they have ’collapsed’ this multi-dimensional space into a

single list. In order to carry out such an audacious move, they have made use of their

knowledge of the agents they know are currently ’out there’. Therefore, the ensuing

list is to some degree arbitrary, but these types cover most of the agent types being

investigated currently. There have been identified seven types of agents:

• Collaborative agents

• Interface agents

• Mobile agents

• Information/Internet agents

• Reactive agents

• Hybrid agents

• Smart Agents

There are some applications that combine agents from two or more of these

categories, and we refer to these as heterogeneous agent systems. Such applications

already exist even though they are relatively few. The next sections give a brief

description of each type of agent.

2.2.1. Collaborative Agents

As shown in Figure 2.1 collaborative agents emphasize autonomy and

cooperation (with other agents) in order to perform tasks for their owners. They may

 9

learn, but this aspect is not typically a major emphasis of their operation. In order to

have a coordinated set up of collaborative agents, they may have to negotiate in order

to reach mutually acceptable agreements on some matters.

2.2.2. Interface Agents

Interface agents emphasize autonomy and learning in order to perform tasks for

their owners.

The key metaphor underlying interface agents is that of a personal assistant

who is collaborating with the user in the same work environment. Note the subtle

emphasis and distinction between collaborating with the user and collaborating with

other agents as is the case with collaborative agents. Collaborating with a user may

not require an explicit agent communication language as one required when

collaborating with other agents.

2.2.3. Mobile Agents

Mobile agents are computational software processes capable of roaming wide

area networks (WANs) such as the WWW, interacting with foreign hosts, gathering

information on behalf of its owner and coming ’back home’ having performed the

duties set by its user. These duties may range from a flight reservation to managing a

telecommunications network.

2.2.4. Information/Internet Agents

Information agents have come about because of the sheer demand for tools to

help us manage the explosive growth of information we are experiencing currently,

and which we will continue to experience henceforth. Information agents perform the

role of managing, manipulating or collating information from many distributed

sources. Information or Internet agents are defined by what they do, in contrast to

collaborative or interface agents which we defined by what they are.

 10

2.2.5. Reactive Agents

Reactive agents represent a special category of agents which do not possess

internal, symbolic models of their environments; instead they act/respond in a

stimulus-response manner to the present state of the environment in which they are

embedded. Three key ideas which underpin reactive agents: firstly, there is no a

priori specification (or plan) of the behavior of the set-up of reactive agents.

Secondly, is that of ’task decomposition’: a reactive agent is viewed as a collection

of modules that operate autonomously and are responsible for specific tasks (e.g.

sensing, motor control, computations, etc.). Communication between the modules is

minimized and of quite a low-level nature. Thirdly, reactive agents tend to operate on

representations that are close to raw sensor data, in contrast to the high-level

symbolic representations that abound in the other types of agents discussed so far.

2.2.6. Hybrid Agents

Hybrid agents refer to those whose constitution is a combination of two or

more agent philosophies within a singular agent. Since each type has (or promises)

its own strengths and deficiencies, the trick (as always) is to maximize the strengths

and minimize the deficiencies of the most relevant technique for your particular

purpose.

2.2.7. Heterogeneous Agent Systems

Heterogeneous agent systems, unlike hybrid systems described in the preceding

section, refer to an integrated set-up of at least two or more agents that belong to two

or more different agent classes. A heterogeneous agent system may also contain one

or more hybrid agents.

 11

2.3. FIPA Agent Specification

The Foundation for Intelligent Physical Agents (FIPA) [7] is a multi-

disciplinary group pursuing the standardization of agent technology. This

organization has made available a series of specifications to direct the development

of multi-agent systems. Of particular importance are their Agent Management and

Agent Communication Language specifications. FIPA’s approach to MAS

development is based on a “minimal framework for the management of agents in an

open environment.” This framework is described using a reference model (which

specifies the normative environment within which agents exist and operate), and an

agent platform (which specifies an infrastructure for the deployment and interaction

of agents).

The FIPA architecture defines at an abstract level how two agents can locate

and communicate with each other by registering them and exchanging messages. To

do this, a set of architectural elements and their relationships are described. In this

section the basic relationships between the elements of the FIPA agent system are

described. This section gives a relatively high level description of the notions of the

architecture. It does not explain all of the aspects of the architecture.

2.3.1. Agents and Services

Agents communicate by exchanging messages which represent speech acts,

and which are encoded in an agent-communication-language.

Services provide support services for agents. This version of the Abstract

architecture defines two support services: directory-services and message-transport-

services.

Services may be implemented either as agents or as software that is accessed

via method invocation, using programming interfaces such as those provided in Java,

C++, or IDL. An agent providing a service is more constrained in its behavior than a

general-purpose agent. In particular, these agents are required to preserve the

semantics of the service. This implies that these agents do not have the degree of

 12

autonomy normally attributed to agents. They may not arbitrarily refuse to provide

the service.

2.3.2. Agent Communication Languages

Once we have achieved a way of representing the knowledge of our agents, we

need tools for sharing and exchanging that knowledge. There are two main initiatives

to this end.

The Foundation for Intelligent Physical Agents (FIPA) has a proposed an

Agent Communication Language (ACL) that is founded on Speech Act Theory. The

FIPA-ACL abstracts away low level communication details and assumes the

existence of an Agent Management System not part of the languages. [7]

ACL consists of an inner context language with a common vocabulary and

ontology, and an outer communication language, and message passing mechanisms.

Inner context languages are usually KIF, Eclipse Prolog, Tcl/Tk, Java, or the Java

Agent Template. The outer communication language is almost always KQML.

The Knowledge Query and Manipulation Language (KQML) is perhaps the

most widely used communication formalism. KQML was developed as a part of the

Knowledge Sharing Effort. [9]

KQML is built around a number of performatives designed to achieve tasks at

three conceptual layers: Content - Message - Communication. The attempt in KQML

to be able to handle tasks at several levels of abstractions is sometimes put forward

as a significant drawback of the language. Distinctions between layers are not

directly evident in programs and specifications, something that is confusing and

make building good abstractions difficult.

 13

2.4. Benefits of Agent Applications

Distributed systems based on the concepts of agents and places, of agent

migration and agent communication simplifies the implementation of many

applications. At the same time they make new kinds of applications with novel

functionalities possible. In the following we discuss a sampling of these uses. As has

been pointed out by Chess et al. [12], most of the benefits of mobile agents could

also be achieved by using other means, but mobile agents offer all these benefits in a

single framework.

2.4.1. Reduction of Communication

Although a certain overhead for sending agent code and execution state across

the network must be considered, mobile agents can reduce communication with

respect to latency, bandwidth and connection time. Communication latency can be

reduced by sending an agent with a sequence of service requests across the network

rather than issuing each service request by a separate remote procedure call.

Communication bandwidth can be reduced by moving the agent across the network

in order to deliver instructions for the generation of data on a remote host. A

performance model for communication in mobile agent systems has been given by

Strasser and Schwehm [13]. An example for the reduction of communication by

mobile code is the NeWS window system. In NeWS, clients communicate with the

display server by sending PostScript programs. Instead of drawing a grid by sending

several thousand messages for individual points, it is possible to send one brief

program that will compute and draw the entire grid. The code sent by the client can

also be used to extend the server, so that complex actions can be carried out in the

future using a single message. Communication bandwidth can also be reduced by

moving the agent across the network to the source of data in order to reduce the data

before transmission. For example, an information gathering agent can roam the

network, where it queries several remote databases and filters the results in order to

return only the best 10 matches. The reduction of connection time is important in the

context of mobile computing. The information gathering agent from the previous

example could be uploaded from a mobile computer. The mobile computer need only

 14

be connected to the network while uploading the agent, and eventually to a later time

to gather the agent’s results.

2.4.2. Asynchronous Tasks

Asynchronous communication mechanisms, such as asynchronous message

queues [14] allow for asynchronous processing of requests. While the individual

requests of a task can be processed asynchronously, the client performing this task

must be available to receive and react on incoming replies. Keeping a mobile client

up and connected while task processing is in progress might be expensive at least or

even impossible. With agent technology, the client part of the application can be

transferred from the mobile device to stationary servers in the network. From an end

user’s perspective, not only individual requests but the entire task is moved to the

network, where it is performed asynchronously. Clearly, once the task transfer is

complete, the mobile device can be disconnected from the network. Later, after hours

or even days, the device can be reconnected to receive the task’s results. It is

important to notice that the underlying assumption of those scenarios is that the

underlying system guarantees ‘exactly once’ semantics of agents, i.e. when accepting

an agent, the network guarantees that the agent is not lost and is performed exactly

once, independent of communication and node failures. Unfortunately, none of the

current agent systems supports this level of fault-tolerance.

2.4.3. Dynamic Protocols and Intelligent Data

The rapid growth of the internet has also increased the number of protocols and

data formats for data exchange between computers. A computer generally supports

only a limited number of protocols. If a particular protocol is missing in order to

access, view or process some received data, the protocol must be installed manually.

Mobile agents permit dynamic protocols, i.e. new protocols to be installed

automatically and only as needed for a particular interaction. To receive an agent

initially, the client and server must share some standard protocol. Once the agent is

running, though, it can use a specialized protocol for communication back to its

 15

home server. Furthermore, an executing agent can communicate repeatedly with the

server without intervention from the user, allowing the construction of dynamic

services. For example a news service could transmit news updates to agents on

distributed clients by using a special multicast protocol. Associating agents with data

provides a way for the data to know how to process itself. A recent example of

intelligent data is the MPEG4 compression standard for video, where the

decompression algorithm is bundled with the data. This approach makes the standard

highly flexible and allows the upgrade to use improved compression techniques.

2.4.4. Software Deployment

Mobile agents can be used to automate the software installation and updating

process. Next to the transport of the software package, the agent can gather

information about the environment, query the user for installation preferences,

configure the system, create directories and uncompress and compile the software.

After successful installation, the agent can become responsible to gather software

updates. This approach to software deployment has its limitations since it might not

be possible to capture every special case and error condition of the installation

process and the programming of suitable deployment agents might become very

difficult. Furthermore, it has to be considered that such a software deployment might

only be applicable within a trusted environment (LAN), since software coming from

an untrusted source could (purposely or by accident) delete or damage the data on its

new host. A better approach to software deployment would be to use the agent

language itself, since the agent language is in particular designed to prevent such

damage.

2.4.5. Temporary Applications

A mobile agent is not limited to deploy software packages, the agent could be

the application itself. An application-agent might be self-contained and have no

communication or migratory needs at all. The application agent would be much

smaller than a stand-alone application since it could exploit the infrastructure

 16

provided by the mobile agent system. After downloading the application agent, no

creating of directories, configuring, compiling and installing would be necessary.

This simplicity allows to download applications temporarily and to discard them

after usage. Examples of temporary applications can be travel guides and route

planners downloaded on a mobile computer for a particular trip and discarded

afterwards. Upon arrival at a new location, the user might temporarily download

services that are specific to the new environment. Very popular examples of such

application agents are applets written in the Java language. Applets are self-

contained programs contained in Web pages that start execution once they have been

downloaded.

2.4.6. Distributed and Heterogeneous Computing

Mobile agents can also serve as the basis for general-purpose distributed and

heterogeneous computing. According to the needs for a distributed program, the

agents migrate to their computer node and execute their scheduled task. The mobile

agent system provides the necessary infrastructure for communication between the

tasks in a heterogeneous environment. The agent system furthermore supports the

independent compilation and initiation of agents so that further agents can be

assigned to a task at runtime. Furthermore many algorithms can more naturally be

expressed in terms of mobility through a network rather than message passing.

Prospective applications for agent-based distributed computing are parallel

algorithms with a reasonable low communication overhead compared to its

computation requirements and particle or object based simulations. Note that agent-

based distributed computing does not necessarily require agent mobility.

Adding value to a service - e.g. plotting a graph instead of submitting raw data

- poses a problem to highly frequented servers, since the value added server reduces

the anyway limited computational resources. Submitting the raw data together with a

corresponding agent for graph plotting would move the computation to the client.

This has two advantages: Transfer of raw data and agent might be cheaper than

transferring an image and the computation is moved from the server to the client

which might accept this since he is waiting for the graph anyway. Furthermore, the

 17

agent might provide an interface to customize the graph according to the needs of the

client. On the other hand, if the client uses a small mobile device and the raw data

should be used for a complex image rendering, the user might not want the agent to

execute on the mobile computer but on an intermediate compute-server. Mobile

agents provide an environment which allows moving computation to nodes with

appropriate resources, thus load-balancing a distributed system.

2.4.7. Scalable Applications

Dynamic deployment of agent programs allow for more scalable applications.

Assume, for example, a search application that accesses a large number of globally

distributed data sources. Assume documents are retrieved from the data sources and

selected (or indexed) based on a content-based filtering function. In a pure

client/server setting, a client would access the remote data sources, and all retrieved

documents would be transferred to the client. The final filtering would be performed

at the client site. If accessing the data sources is performed in parallel, the client as

well as (parts of) the network may become a bottleneck. With mobile agents, a

hierarchy of filter agents can be set up. Filter agents not only perform content-based

filtering but also get rid of redundantly retrieved documents. The structure of the

hierarchy and the placement of the individual filter agents mainly depend on the set

of data sources accessed. Both placement and structure can change if new data

sources are detected while the search operation is in progress. Obviously, this setting

is more scalable since filtering is distributed and can be performed close at the data

sources. Moreover, redundant information can be detected early and thus must not

travel all the way to the client.

2.5. Agent Development Tools

Whilst programming languages like Java and C++ provide an extensive library

of classes for general purpose software development, such libraries tend not to

include high-level constructs and concepts needed for agent applications.

Consequently, there is an emerging consensus amongst agent researchers of the need

 18

to develop methodologies and tool-kits for building distributed agent systems. This

equates to moving away from point solutions and towards general architectures,

frameworks and tool-kits.

2.5.1. BT’s ZEUS

According to ZEUS, each agent consists of a definition layer, an organizational

layer and a co-ordination layer. The Definition Layer comprises the agent’s

reasoning (and learning) abilities, its goals, resources, skills, beliefs, preferences, etc.

The organization layer describes the agent’s relationships with other agents, e.g.

what agencies it belongs to, what abilities it knows other agents possess, etc. At the

co-ordination layer the agent is modeled as a social entity, i.e. in terms of the co-

ordination and negotiation techniques it possesses. Built on top of the co-ordination

layer are the communication protocols that implement inter-agent communication;

whilst beneath the definition layer is the application programmer’s interface (API)

that links the agent to the physical realizations of its resources and skills.

2.5.2. Grasshopper

Grasshopper, which has been developed by GMD FOKUS and IKV++ GmbH,

is a mobile agent development and runtime platform which is built on top of a

distributed processing environment. This achieves an integration of the traditional

client/server paradigm and mobile agent technology. Grasshopper is implemented in

Java, based on the Java 2 specification. Most importantly, Grasshopper has been

designed in conformance with the first mobile agent industry standard, namely the

Object Management Group’s Mobile Agent System Interoperability Facility

(MASIF). In addition, the latest Grasshopper version is also compliant with the

specifications of the Foundation for Intelligent Physical Agents (FIPA).

 19

2.5.3. Concordia

Concordia is developed at Mitsubishi Electric ITA Horizon Systems

Laboratory. It is a full-featured framework for the development and management of

network client mobile agent applications which extend to any device supporting

Java. Concordia is written in Java and is portable to any platform running Java. A

Concordia System, at its simplest, is made up of a Java Virtual Machine (VM), a

Concordia Server, and at least one mobile agent on 1 network node. Usually, the

Concordia System will consist of multiple machines in a local or wide area network,

each of which is running Java Virtual Machines, Concordia Servers, and mobile

agents.

2.5.4 IBM Aglets

The Aglets Software Development Kit is an environment for programming

mobile Internet agents in Java. It is what was used to be called Aglets Workbench.

The aglet represents the next leap forward in the evolution of executable

content on the Internet, introducing program code that can be transported along with

state information. Aglets are Java objects that can move from one host on the Internet

to another. That is, an aglet that executes on one host can suddenly halt execution,

dispatch itself to a remote host, and resume execution there. When the aglet moves, it

takes along its program code as well as its data.

 20

CHAPTER 3

AGENT APPLICATIONS IN E-LEARNING AND COURSE

MANAGEMENT

3.1. E-Learning and Course Management

The Internet is being widely used in education already, as a source of

information it is almost unrivalled for speed and accessibility to a huge range of data.

This is one of the important reasons why the Internet became a good reference tool

and also a teaching aid. With almost instantaneous communication anywhere in the

world, information, be that lecture notes or shared projects, can be passed between

students and teachers with reliability and ease. [15]

With the introduction of distance learning and virtual university concepts, the

academic world began to argue which one is the best way of teaching. Mostly

accepted idea is that existing universities must assimilate new communications

technologies and new ways of teaching, learning, research and communications are

necessary in order to prevent extinction. In other words, the traditional universities

are going to be virtualized rather than to be replaced. [16]

Currently many instructors use Internet for creating course homepages for their

own lectures and share their resources over Internet. They communicate with their

students mostly using e-mail.

A good way to encourage the use of these new technology tools in universities

is to supply a uniform framework and form an integrated course homepage

management system.

 21

Integrated course homepage management has the following advantages:

• Standardized interfaces for every course homepage. This makes it

easy for students and instructors to learn and use the system and gives

opportunity for every instructor to use same number of functionality on their

own course homepages.

• Centralized management of the whole electronic resources of the

university gives instructors the opportunity to manage their electronic content

easer and more controlled.

• Availability of course contents as a university asset with uniform and

managed course content

• Provides a tool for school administration to promote widespread use

of web resources and technology in education.

The availability of a uniform and managed course materials is an important

asset for a university to provide access to course materials for all educators, students,

and self-learners around the world to share the research, pedagogy, and knowledge to

benefit others which is an important mission of a university.

Web support for courses is becoming increasingly important. An interesting

example is that MIT (Massachusetts Institute of Technology) announced a project

named Open Courseware [17] which aims to put all electronic content of MIT to the

web and make them publicly accessible. In the beginning of 2004, over 500 courses’

contents are being published in this project.

3.2. Functions of E-Learning and Course Management Tools

This section beriefly lists expected functions of electronic learning and course

management systems. The functionalities are categorized in the hierarcy given in

Figure 3.1. [18]

 22

• Learner Tools

 Communication Tools

• Discussion Forums

• File Exchange

• Internal Email

• Online Journal/Notes

• Real-time Chat

• Video Services

• Whiteboard

 Productivity Tools

• Bookmarks

• Calendar/Progress Review

• Orientation/Help

• Searching Within Course

• Work Offline/Synchronize

 Student Involvement Tools

• Groupwork

• Self-assessment

• Student Community Building

• Student Portfolios

• Support Tools

 Administration Tools

• Authentication

• Course Authorization

• Hosted Services

• Registration Integration

 Course Delivery Tools

• Automated Testing and Scoring

• Course Management

• Instructor Helpdesk

• Online Grading Tools

• Student Tracking

 23

 Curriculum Design

• Accessibility Compliance

• Content Sharing/Reuse

• Course Templates

• Curriculum Management

• Customized Look and Feel

• Instructional Design Tools

• Instructional Standards Compliance

Figure 3.1 CMT Functionalities Hierarchy

Following sections explain each functionality in more detail.

3.2.1. Learner Tools

3.2.1.1. Communication Tools

Discussion Forums

Discussion forums are online tools that capture the exchange of messages over

time, sometimes over a period of days, weeks, or even months. Threaded discussion

forums are organized into categories so that the exchange of messages and responses

are grouped together and are easy to find.

Discussion forums tools are very similar to Usenet newsgroups where text

conversations over time are displayed. The organization of the messages can be a

simple temporal sequence or they can be presented as a threaded discussion where

only messages on a specific topic called a thread are displayed in sequence.

File Exchange

File exchange tools allow learners to upload files from their local computers

and share these files with instructors or other students in an online course. Note: File

attachments to messages are part of Internal Email and Discussion Forums.

 24

File Exchange tools enable downloading files and upload or posting files over

the Web from within the course (a.k.a. assignment drop box).

Internal Email

Internal email is electronic mail that can be read or sent from inside an online

course.

Email tools enable messages be read and sent exclusively inside the course or

alternatively the tools enable links to external email addresses of those in the course

so that contacting course members is facilitated. Internal email may include an

address book and some address books are searchable.

Online Journal/Notes

Online Notes/Journal enable students to make notes in a personal or private

journal. Students can share personal journal entries with their instructor or other

students but cannot share private journal entries.

Online Note/Journal tool enables students to make notes about course

experiences. These notes can be personal or private. Students can share personal

notes with an instructor or other students. They cannot share private journal entries.

This tool can be used to facilitate writing assignments where parts are written over

time and then later assembled into a document. This tool also can be used to make

personal annotations to pages of a course that can later be used as a study aide. The

Online Notes tool can also be used to record reflections about personal learning

accomplishments and how to apply this new knowledge.

Real-time Chat

Real-time chat is a conversation between people over the Internet that involves

exchanging messages back and forth at virtually the same time.

Chat includes facilities like Internet Relay Chat (IRC), instant messaging, and

similar text exchanges in real time. Some chat facilities allow the chats to be

archived for later reference. Some chats can be moderated, similar to the notion of

 25

"passing the microphone." Other chats can be monitored, where an instructor can

view the conversation in a room without their presence being broadcast.

Video Services

Video services enable instructors to either stream video from within the

system, or else enable video conferencing, either between instructors and students or

between students.

Video Services include tools for broadcasting video to those without a video

input device. Some video services provide for two-way or multi-way video

conferencing which may be point-to-point connections or mediated through a central

server. See also Real-Time Chat and Whiteboard.

Whiteboard

Whiteboard tools include an electronic version of a dry-erase board used by

instructors and learners in a virtual classroom (also called a smartboard or electronic

whiteboard) and other synchronous services such as application sharing, group

browsing, and voice chat.

Application sharing allows a software program running on one computer to be

viewed, and sometimes controlled from a remote computer. For example, an

instructor using this feature can demonstrate a chemistry experiment or a software

utility to an online student and allow the student to use the demonstration software

from their own computer. Group Web Browsing allows an instructor to guide

learners on a tour of web sites using a shared browser window. Voice chat allows

two or more to communicate in real time via microphones, conference call style, over

an Internet connection.

3.2.1.2. Productivity Tools

Bookmarks

Bookmarks allow students to easily return to important pages within their

course or outside their course on the web. In some cases bookmarks are for an

 26

individual students private use, and in others can be shared with an instructor or

amongst an entire class. Some systems also allow bookmarks to be annotated.

Bookmarks allow students to easily return to important pages within their

course or outside their course on the web. Systems vary in allowing students to store

their bookmarks in a course folder, a personal folder, or a private folder. Course

folders are open to all students and instructors in a course. Personal folders contain

bookmarks that individual students can share whereas bookmarks in private folders

are for the students own use. Bookmarks can sometimes be annotated and

categorized within folders.

Calendar/Progress Review

Calendar/Progress Review tools enable students to document their plans for a

course and the associated assignments in a course.

Calendar/Progress Review tools often enable students to check their marks on

assignments and test, as well as their progress through the course material. Students

can sometimes compare their marks on an assignment with the average score on that

assignment, view total points earned, total points possible and percentages per unit,

per item and overall course grade.

Orientation/Help

Orientation/Help tools are designed to help students learn how to use the

course management system. Typically, these tools are self-paced tutorials, user

manuals, and email or telephone helpdesk support.

Orientation/Help tools enable students to make the best use of the software.

These tools provide instruction about and job aids for using various aspects of the

course management system. Student support tools may include context sensitive

help, hints, and wizard style assistants. Some product providers include courses in

how to study effectively and/or how to work in online groups. A student helpdesk

does not typically offer help with course content.

 27

Searching Within Course

Searching within a course is a tool that allows users to find course material

based on key words.

Searching tools enable students to locate parts of the course materials on the

basis of word matching beyond the user's current browser page (which can be

searched using the browser>edit>find menu).

Work Offline/Synchronize

Work offline/synchronize is a set of tools that enable students to work offline

in their online course and for their work to be synchronized into the course the next

time they log-in. Sometimes students download course content to their local

computers and sometimes they access content on a CD-ROM. Course content that

resides on a CD-ROM can also be linked to dynamically within the online course. A

course placeholder automatically returns students to the location in their course

where they were working the last time they logged off.

The ability to work in a course environment offline and/or to automatically

return to the location in the course where you were working the last time you logged

off, is especially useful in situations where communication links are unreliable or

expensive. The offline environment is essentially a local client application that

embodies the important features of the online product without a continuous

connection to the Internet. Tracking and student performance data are automatically

uploaded into and synchronized with the student performance database the next time

the student logs in. The course placeholder tool is essentially an automated bookmark

that returns users directly to the page of the course where they had stopped working

the last time they logged off.

3.2.1.3. Student Involvement Tools

Groupwork

Group Work is the capacity to organize a class into groups and provide group

work space that enables the instructor to assign specific tasks or projects.

 28

Some systems also enable groups to have their own communications features

like real-time chat and discussion forums.

Self-assessment

Self-assessment tools allow students to take practice or review tests online.

These assessments do not count toward a grade.

Self assessments encourage students to take responsibility for their own

learning and to monitor their learning progress. Self assessments can also facilitate

student motivation if students receive feedback on the self-assessments and if there is

a direct connection between the self assessments and the measurement instruments

the instructor uses to determine final course grades. Note: For information on the

different question formats, e.g., multiple choice or fill-in-the-blank, see Automated

Testing and Scoring.

Student Community Building

Student Community Building tools allow students to create study groups,

clubs, or collaborative teams.

Student Community Building tools can encourage and support the growth of

student friendships and partnerships. Some products enable students to create and

manage these groups. Some products also allow these groups to be formed at the

system level, rather than the course level. See also Discussion Forums, File

Exchange, Real-Time Chat, and Groupwork.

Student Portfolios

Student Portfolios are areas where students can showcase their work in a

course, display their personal photo, and list demographic information.

Student Portfolios are often located on or are a part of students personal

homepages in each course. Some products provide a private folder and a public

course or team folder that students can use to display their work. Students personal

homepages typically give them access to course content, internal email, course

announcements, and the course calendar. See also Calendar/Progress Review for

tools that allow students to track their progress in a course.

 29

3.2.2. Support Tools

3.2.2.1. Administration Tools

Authentication

Authentication is a procedure that works like a lock and key by providing

access to software by a user who enters the appropriate user name (login) and

password. Authentication also refers to the procedure by which user names and

passwords are created and maintained.

Authentication systems can involve a single logon which is the most user

friendly and most vulnerable to hacking. More complicated systems can involve

layers with separate logins for each layer and secure socket layer transaction

(SSL)encryption.

Course Authorization

Course authorization tools are used to assign specific access privileges to

course content and tools based on specific user roles, e.g. students, instructors,

teaching assistants. For example, students can view pages and instructors can author

pages.

Students and instructors typically need different tools to complete their

instructional responsibilities. For example, students need to be able to view their

records in a grade book but instructors need to be able to view and modify the

records of all students in the course. Most course management systems provide a

small set of default user roles. Some systems allow institutions to add and define

additional user roles.

Hosted Services

Hosted Services means that the product provider offers the course management

system on a server at their location so the institution does not provide any hardware.

 30

An important aspect of Hosted Services is that the product provider takes

responsibility for all technical support and maintenance of the server, as well as the

actual web service of providing online courses.

Registration Integration

Registration tools are used to add students to and drop students from an online

course. Administrators and/or instructors use registration tools but students also use

them when self-registration is available. Students can also be added to or dropped

from an online course through integration of the course management system with a

Student Information System(SIS). Registration tools include secure credit card

transactions.

Some registration tools allow administrators or instructors to add or drop

students in batches through the use of formatted text files. Time limited student self-

registration may also be available to shift the clerical burden of the process to the

students. Registration tools include the integration of the course management system

with an administrative student registration or information system. Integration with

Student Information Systems (SIS) enables the course management system to work

with products such as SCT Banner, Peoplesoft, or Datatel. Typically, integration

allows the following types of functionality: shared common student information,

ability to transfer grades between the SIS and the course management system, and

the ability to have common accounts. The registration tools for secure transactions

involve making arrangements with financial institutions for the funds to be

transferred to the college or university. These arrangements may have a separate cost

structure. See also Authentication for information on secure socket layer transaction

(SSL) encryption. See also Optional Extras for third party credit card support and

international pricing.

3.2.2.2. Course Delivery Tools

Automated Testing and Scoring

Automated Testing and Scoring tools allow instructors to create, administer,

and score objective tests.

 31

Some products provide support for proctored testing in a suitable computer lab

classroom as an approach to ensuring academic honesty. Note: See also Online

Grading, Self Assessment, and Student Tracking.

Course Management

Course management tools allow instructors to control the progression of an

online class through the course material.

Course Management tools are used to make specific resources in a course, such

as readings, tests or discussions, available to students for a limited time only or after

some prerequisite is achieved. This deliberate unfolding of the course resources can

be used to prevent students from being overwhelmed and discouraged. Some systems

enable this course management to be individualized so that course experience can be

tailored to accommodate individual learner situations. Note: The management of

testing is covered in the Automated Testing and Scoring feature.

Instructor Helpdesk

Instructor Helpdesk tools help faculty members use the course management

software. These tools typically include telephone contact with the helpdesk of the

product provider and documentation, instruction, and/or listserves. Instructor

Helpdesk tools may also enable faculty members to participate with other faculty in

online discussion forums to share ideas or build knowledge.

Instructor Helpdesk tools often do not include assistance with content or

instructional design.

Online Grading Tools

Online grading tools help instructors mark, provide feedback on student work,

manage a gradebook.

Online Grading Tools enable instructors to mark assignments online, store

grades, and delegate the marking process to teaching assistants. Some tools allow

instructors to provide feedback to students, to export the gradebook to an external

spreadsheet program, and to override the automatic scoring.

 32

Student Tracking

Student Tracking is the ability to track the usage of course materials by

students, and to perform additional analysis and reporting both of aggregate and

individual usage.

Student Tracking tools include statistical analysis of student performance data

and progress reports for individual students in the course. The progress reports

generally consist of both activities and the time stamps of when the activity occurred.

3.2.2.3. Curriculum Design

Accessibility Compliance

Accessibility compliance means meeting the standards that allow people with

disabilities to access information online. For example, the blind use a device called a

screen reader to read the screen but Web pages need to be designed so that screen

readers can read them.

Content Sharing/Reuse

Content sharing/reuse enables specific content created for one course to be

conveniently shared with another instructor teaching a different course perhaps even

at a different institution. Sometimes the content is in the form of learning objects.

The system may enable sharing and reuse with a special file server or digital content

repository that includes some form of digital rights management that spans campuses

and even institutions.

Content sharing/reuse is a specialized form of digital publishing that is tailored

to online learning situations. It is similar to the sharing and reuse of course templates

that are stored centrally and used in more than one course, but different in that the

content generally includes learning materials like lessons or learning objects and the

access is managed centrally. There are several technically different variations

including: content management systems, digital repositories, and content syndication

systems. These systems are also similar to databases of content where the access to

 33

specific content is managed with an authorization process that can protect the

intellectual property.

Course Templates

Course templates are tools that help instructors create the initial structure for an

online course.

Instructors use templates to go through a step-by-step process to set up the

essential features of a course. Course Templates are artifacts of particular

pedagogical approaches to instructional content and process. The local value of

particular templates will depend in part on the match between the template designer's

approach and the specific instructor's approach.

Curriculum Management

Curriculum management provides students with customized programs or

activities based on prerequisites, prior work, or results of testing.

Curriculum Management includes tools to manage multiple programs, to do

skills/competencies management, and to do certification management. These tools

may be similar to the tools used in student services as part of providing academic

advising to students.

Customized Look and Feel

Customized Look and Feel is the ability to change the graphics and how a

course looks. This also includes the ability to institutionally brand courses.

Customized Look and Feel also includes the branding of content with

institutional logos and navigation to provide a consistent look-and-feel across the

entire institutional site and the integration of the system with additional institutional

resources such as the library.

Instructional Design Tools

Instructional design tools help instructors creating learning sequences, for

example, with lesson templates or wizards.

 34

Instructional Standards Compliance

Instructional standards compliance concerns how well a product conforms to

standards for sharing instructional materials with other online learning systems and

other factors that may affect the decision whether to switch from this product to

another.

Instructional Standards Compliance involves trying to make it possible for

applications from different product producers to work well together. There are

presently several proposed standards but the most prominent are the standards

developed by the IMS Global Learning Consortium that define the technical

specifications for interoperability of applications and services in distributed learning

and support. The IMS standards can be found at www.imsproject org. The SCORM

standards-in-progress integrate the industry specifications from IMS, AICC, IEEE,

and ADRIANE and are operational standards with corresponding compliance test

suites for learning objects (www.adlnet.org/main.html). In terms of compliance there

appear to be three levels: awareness of the standards, claimed partial compliance, and

self-tested compliance with the SCORM test suites. Other migration considerations

are situations that would make switching to another application more complicated,

such as proprietary data formats for content which make it difficult to import course

content into another application. Also there are sometimes situations that complicate

the upgrading from one version of the software to a later version. To the extent that

student data is maintained in the system there can be separate complications in

migrating non-course information to other versions or platforms.

3.3. Agents Usage in E-Learning and Course Management

There are many course management software tools ranging from home grown

software environments to sophisticated commercial products. Some of these software

use easy-to-use web authoring tools and some offer passive services. As a result

instructors spend more time teaching a distance learning course than teaching the

same course in class. This problem results mostly from the time consuming

operational nature of the online courses. For example, instructor is expected to

 35

regularly check the students’ progress by visiting many web pages and using

different tools within the course management system. This includes monitoring the

message board activities log to verify student participation, consulting the drop box

to see if students have submitted assignments and regularly visiting the course

activity log to monitor the students’ online activities. Performing these tasks in

addition to handling hundreds of e-mail messages has become a major time

consuming operation for most instructors. Intelligent agents functioning within the

course management software system or a campus portal could perform some of these

tasks, relieving the instructor from manual monitoring and management of course

activities.

Until recently, a major requirement of course management software was ease

of use. This no longer seems to be as important as before. We need smart learning

environments that offer personal services with capabilities to learn, reason, have

autonomy and be totally dynamic. Using intelligent agents in a course management

environment can diminish some of the limitations of course management systems.

For instance once a course instructor logs into the course environment, a teaching

assistant agent could provide information such as the names of the students who have

overdue assignments, have not collaborated in classroom message boards, have not

taken an online quiz, or have not signed on for several days. Students’ participation

could even be ranked and categorized according to the instructor’s preferences. The

course instructor can configure an agent to give it autonomy to send personal e-mail

to those who have done better than average or worse than expected.

To expand the capabilities of course management software, various kinds of

intelligent agents that perform teaching and learning tasks in behalf of teachers and

learners are being suggested by researchers[1] and are being developed in some

research activities.[19] The proposed agents in the literature generally divides into

three categories. Each group of agents is conceptualized to perform certain tasks

normally carried out by instructors, students and administrators. Each group may

consist of one or more intelligent agents focusing on certain tasks within a course

site, a series of courses or the campus portal environment. These agents may

communicate with their human clients using a combination of text, graphics, speech,

facial expression, and voice recognition. Besides using the web browser on PC,

 36

agents may use other types of communication environments including Personal

Digital Assistants (PDAs), telephones, instant messenger systems etc. The following

sections describe these three groups of agent usage in more detail.

3.3.1. Instructors’ Agents

The instructors’ intelligent agents assist the teacher in various teaching

functions often performed by a human teaching assistant or a graduate student. It is a

personal agent that may be configured by its owner, the human instructor. The

concept is that the instructor will configure the digital TA at the beginning of the

course. The configuration could include for instance, the agents’ autonomy to send

overdue notices to students on behalf of the teacher, and the language used in the

body of the e-mail.

The digital TA is more useful in distance learning applications [1]. For

instance, in a typical distance learning situation, the instructor is physically isolated

form the students, not necessarily knowing if and when students worked on an

assignment, for how long, or what types of collaboration they used. The teacher

remains mostly unaware of the students’ progress until an exam or until student

submits and assignment or drops out of the course. In terms of student retention, the

instructor ideally should be constantly and dynamically aware of a student’s

participation in a course and assist a discouraged student before he or she drops out.

Additionally, a digital TA can assist a course instructor with course operation and

maintenance similar to assistance of a human TA provides to an instructor. An

example of instructor agent is the inactivity agent [1]. In this example, the agent is

configured to send messages to the course instructor identifying students with more

than one week of inactivity. The course instructor can further define the types and

level of inactivity, such as lack of discussion on the class message board, failure to

keep up with the reading assignments, or not taking quizzes. This is a very simple

configuration of the agent.

In a more advanced configuration, the agent could continue monitoring student

behavior after sending the initial notice to the student. An example of this might

 37

include sending an additional notice with stronger language if the student continues

to ignore the first or second messages. The agent may notify the course instructor

about a potentially troubled student. With this notification to the course instructor,

the agent could provide additional background information about each troubled

student, including past submission record, grades, class ranking etc. This amount of

information encourages the instructor to take quick and appropriate action for a

troubled student.

As noted earlier, the Digital TA agents could include a series of agents, with

only one being the inactivity agent illustrated in this example. The Cheat Buster

intelligent agent described later is another useful example of an intelligent agent

within the Digital TA group.

3.3.2. Tutor Agents

The intelligent agent acting as a Digital Tutor assists students with specific

learning needs, just like a human tutor or a classmate. The Digital Tutor may act as a

smart search engine, finding specific resources to solve learning needs for a student

an intelligent agent that is expert both on content and on understanding a student’s

learning needs. Depending on the level of its sophistication, the Digital Tutor could

“learn” and become more expert and useful as it provides more assistance to a

student and receives more feedback. Consider an online distance-learning course

where a student has difficulties understanding new learning objectives. The Digital

Tutor has access to outside mobile agents who can help to identify appropriate

resources. It is assumed that the Digital Tutor has access to students’ learning

profiles. Accessing student profiles and knowing students’ strengths and weaknesses

on a learning objective empowers the Digital Tutor to provide more useful resources.

The student profile includes data dynamically collected from various databases,

including campus information and registration databases (student information

system, CMS databases and so on); personal preferences entered by an individual

student; and usage data dynamically obtained by monitoring students’ online

activities. Examples of dynamic data obtained from various databases include the

student’s major and minor, previously taken courses, grades received for online

 38

quizzes, and final transcript information. A smarter Digital Tutor may use assessment

data from passed courses to make suggestions on new learning modules and

information resources. An example of this scenario might be a student taking a

second college English course who did very poorly in the grammar part of his first

English course. Based on this data, the Digital Tutor might offer more learning

exercises on grammar. A Digital Tutor may also act as a communication agent.

Consider situations where students within a course are working on an online project.

The communication agent can dynamically show the list of online students within the

CMS environment who are working on the same project at the same time. Students

can use this list to establish a virtual online communication and collaboration session

with other online students in the classroom. The course chat room, instant messenger,

or white-board can support this purpose. A student could further program the

communication agent to inform him or her when another student in the same class

working on the same assignment signs onto the CMS environment.

3.3.3. Digital Secretary

The intelligent agent acting as a Digital Secretary assists students and

instructors in various logistical and administrative assistants needs. Like a human

secretary, the Digital Secretary performs tasks as directed by its supervisor in this

case, the human being at the keyboard. A simple example of the type of tasks that a

Digital Secretary might perform is the “out of office” e-mail notification offered by

Microsoft Outlook. The owner of a calendar can program Outlook to send an

automatic e-mail notification to those who send e-mail messages during a specific

time period. The Digital Secretary, however, should offer more intelligent and

sophisticated services than the out-of-office agent. Consider a situation where an

instructor would like to send a different auto-response e-mail to only those students

taking a specific undergraduate course or those in the course that meets in the

evenings. For instance, there might be only one group of Digital Secretary Agents

within a student portal, while there might be a series of dedicated Digital TAs offered

for each course. With this concept, the Digital Secretary can be accessed within the

faculties’ and students’ portal environment, not within a course environment. An

account owner of portal or course management software will configure the Digital

 39

Secretary agent. Scheduling a meeting, finding a colleague with similar research

interests, or finding the best math students who might serve as mentors are examples

of tasks undertaken by a Digital Secretary in a teach-ing and learning environment. A

Digital Secretary may also be used by other members of an educational institution

who are not directly involved in teaching and learning, such as administrative staff,

alumni, and parents.

3.3.4. Agents in Teaching and Learning Situations

Teaching and learning intelligent agents operate within CMS systems or

campus portals. Each member of a CMS or campus portal (student, instructors, and

others) has access to a series of personal intelligent agents after signing on. Users can

configure their agents to perform specific tasks or services. The owner can program

the agent to sequentially monitor certain incidences, compare them with preset

thresholds, and perform certain tasks on the owner’s behalf. For instance, a teacher

could program his or her agent to send e-mail notification to students with a grade

lower than C who additionally did not participate in the classroom message forum for

the previous two weeks.

Depending on the type of agent, the access for configuring them could be

located in the “My Portal” section of a campus portal or within a profile section of a

CMS system. The agents could be multipurpose or course-specific (for example, an

agent that monitors certain activities in Psychology 101). An agent may have access

to a variety of dynamic and static data, including data obtained from the campus

student information system, course management system, and student profile

databases. Based on this information and configuration settings provided by the

owner of an agent; the agent can think and perform intelligent actions. Given the

massive amount of data processing involved, it might be necessary to run intelligent

agent software on dedicated computer servers. Further-more, various tasks performed

by an agent could be distributed among several computer servers.

 40

3.3.5. Incorporating Agents in Learning Management Systems

Who should develop and build intelligent agents? How can the agents be

integrated into the CMS and campus portals? How much will future intelligent

learning environments cost, and what kind of resources and support will they

require? These and other questions related to the design, development, integration,

implementation, maintenance, and cost of intelligent learning environments will soon

dominate the thinking of many technology administrators. As discussed earlier,

intelligent agents can be integrated into existing teaching and learning environments

as an add-on tool. Alternatively, CMS and portal vendors may improve the

functionalities of various tools within their learning management systems to offer

similar intelligent services. Consider the capabilities of the message board tool

within the CMS system on your campus. The developer of the message board could

release a newer version of its software that supports personalization and delivers

user-defined functions, similar to the types of functions that external intelligent

agents can perform. Campuses with self-built course management and portal

software will have more flexibility in the design and integration of intelligent agents.

Since they developed their own code and maintain ownership and control of their

software, the in-house development of agents could be accomplished faster and

easier. However, this is only feasible for larger institutions with greater programming

and database expertise, substantial resources within IT support units, or more

research groups within academic departments of the institution. Campuses that use

off-the-self course management and portal software are at the mercy of their software

providers to deliver intelligent learning tools. However, they might enjoy more cost-

effective and plug-and-play situations. Additionally, integration and interoperability

concerns are automatically resolved when integrating a vendor-designed agent into

the learning management system developed by the same vendor Note that simple

agents may not require a major development and implementation effort. For instance,

the inactivity agent example given above can be developed easily using a few lines

of code to access and analyze data already existing within a relatively few tables of

course management or portal databases.

 41

3.3.6. Hardware and Software Issues

Like CMS systems, agent designs rely heavily on the use of databases. Agents

use external databases to obtain information about each user and local databases to

store the query results and to build user profiles. Agents also use a substantial

amount of computer resources on the database server side to run queries, stored

procedures, triggers, and user-defined functions. Depending on the level of

sophistication and intelligence, each agent may require its own server, operating

system, and database software. This will certainly require budget provisions for

purchasing new hardware and software, and for new maintenance and support

services, especially in the area of database and data storage. Agent use makes it easy

to forecast more applications of databases in our institutions once we begin

delivering intelligent learning management systems.

 42

CHAPTER 4

THE PROPOSED AGENT DEVELOPMENT PLATFORM

SPECIFICATION

This section is concerned with building a software agent development and

execution platform intended for integrated web based applications and gives detailed

information about the technology and tools used in construction of the platform. The

products and tools used in different layers and different platforms are explained

separately. The proposed platform is intended to be used to develop agent

applications running as add-on utilities for existing integrated systems sharing

common data resources and running on different platforms. This chapter gives brief

information about the infrastructure for those systems as well as the agent running

environment.

4.1. Software Agent Environment

The software agent add-on utilities are developed with Java in JADE; Java

Agent Development Environment. The agent system uses Java Runtime Environment

version 1.4 and uses the common databases with its master software which is

operating on a Microsoft SQL Server 2000. The JADE environment is explained in

detail in the following section. The agent system is developed in Sun ONE Studio 5.0

SE.

4.1.1. Java Agent Development Environment (JADE)

JADE is the middleware developed by TILAB for the development of

distributed multi-agent applications based on the peer-to-peer communication

architecture [20]. The intelligence, the initiative, the information, the resources and

 43

the control can be fully distributed on mobile terminals as well as on computers in

the fixed network. The environment can evolve dynamically with peers, which in

JADE are called agents, which appear and disappear in the system according to the

needs and the requirements of the application environment. Communication between

the peers, regardless of whether they are running in the wireless or wired network, is

completely symmetric with each peer being able to play both the initiator and the

responder role. JADE is fully developed in Java and is based of the following driving

principles:

• Interoperability – JADE is compliant with the FIPA specifications [7]. As a

consequence, JADE agents can interoperate with other agents, provided that they

comply with the same standard.

• Uniformity and portability – JADE provides a homogeneous set of APIs that

are independent from the underlying network and Java version. More in details, the

JADE run-time provides the same APIs both for the J2EE, J2SE and J2ME

environment. In theory, application developers could decide the Java run-time

environment at deploy-time.

• Easy to use – The complexity of the middleware is hidden behind a simple

and intuitive set of APIs.

• Pay-as-you-go philosophy – Programmers do not need to use all the features

provided by the middleware. Features that are not used do not require programmers

to know anything about them, neither adds any computational overhead.

4.1.1.1. The Architectural model

JADE includes both the libraries (i.e. the Java classes) required to develop

application agents and the run-time environment that provides the basic services and

that must be active on the device before agents can be executed. Each instance of the

JADE run-time is called container (since it “contains” agents). The set of all

containers is called platform and provides a homogeneous layer that hides to agents

(and to application developers also) the complexity and the diversity of the

underlying tires (hardware, operating systems, types of network, JVM).

 44

As depicted in Figure 4.1., JADE is compatible with the J2ME

CLDC/MIDP1.0 environment. It has already been tested on the fields over the GPRS

network with different mobile terminals among which: Nokia 3650, Motorola

Accompli008, Siemens SX45, PalmVx, Compaq iPaq, Psion5MX, HP Jornada 560.

The JADE run-time memory footprint, in a MIDP1.0 environment, is around 100

KB, but can be further reduced until 50 KB using the ROMizing technique [21], i.e.

compiling JADE together with the JVM. JADE is extremely versatile and therefore,

not only it fits the constraints of environments with limited resources, but it has

already been integrated into complex architectures such as.NET or J2EE [22] where

JADE becomes a service to execute multi-party proactive applications. The limited

memory footprint allows installing JADE on all mobile phones provided that they are

Java-enabled.

Figure 4.1 The Jade architecture

 45

4.1.1.2. The Functional Model

From the functional point of view, JADE provides the basic services necessary

to distributed peer-to peer applications in the fixed and mobile environment. JADE

allows each agent to dynamically discover other agents and to communicate with

them according to the peer-to-peer paradigm. From the application point of view,

each agent is identified by a unique name and provides a set of services. It can

register and modify its services and/or search for agents providing given services, it

can control its life cycle and, in particular, communicate with all other peers. Agents

communicate by exchanging asynchronous messages, a communication model

almost universally accepted for distributed and loosely-coupled communications1,

i.e. between heterogeneous entities that do not know anything about each other. In

order to communicate, an agent just sends a message to a destination. Agents are

identified by a name (no need for the destination object reference to send a message)

and, as a consequence, there is no temporal dependency between communicating

agents. The sender and the receiver could not be available at the same time. The

receiver may not even exist (or not yet exist) or could not be directly known by the

sender that can specify a property (e.g. “all agents interested in football”) as a

destination. Because agents identifies each other by their name, hot change of their

object reference are transparent to applications. Despite this type of communication,

security is preserved, since, for applications that require it, JADE provides proper

mechanisms to authenticate and verify “rights” assigned to agents. When needed,

therefore, an application can verify the identity of the sender of a message and

prevent actions not allowed to perform (for instance an agent may be allowed to

receive messages from the agent representing the boss, but not to send messages to

it). All messages exchanged between agents are carried out within an envelope

including only the information required by the transport layer. That allows, among

others, to encrypt the content of a message separately from the envelope. The

structure of a message complies with the ACL language defined by FIPA [7] and

includes fields, such as variables indicating the context a message refers-to and

timeout that can be waited before an answer is received, aimed at supporting

complex interactions and multiple parallel conversations. To further support the

implementation of complex conversations, JADE provides a set of skeletons of

typical interaction patterns to perform specific tasks, such as negotiations, auctions

 46

and task delegation. By using these skeletons (implemented as Java abstract classes),

programmers can get rid of the burden of dealing with synchronization issues,

timeouts, error conditions and, in general, all those aspects that are not strictly related

to the application logic. To facilitate the creation and handling of messages content,

JADE provides support for automatically converting back and forth between the

format suitable for content exchange, including XML and RDF, and the format

suitable for content manipulation (i.e. Java objects). This support is integrated with

some ontology creation tools, e.g. Protégé, allowing programmers to graphically

create their ontology. JADE is opaque to the underlying inference engine system, if

inferences are needed for a specific application, and it allows programmers to reuse

their preferred system. It has been already integrated and tested with JESS and

Prolog. To increase scalability or also to meet the constraints of environments with

limited resources, JADE provides the opportunity of executing multiple parallel tasks

within the same Java thread. Several elementary tasks, such as communication, may

then be combined to form more complex tasks structured as concurrent Finite States

Machines. In the J2SE and Personal Java environments, JADE supports mobility of

code and of execution state. That is, an agent can stop running on a host, migrate on

a different remote host (without the need to have the agent code already installed on

that host), and restart its execution from the point it was interrupted (actually, JADE

implements a form of not-so-weak mobility because the stack and the program

counter cannot be saved in Java). This functionality allows, for example, distributing

computational load at runtime by moving agents to less loaded machines without any

impact on the application. The platform also includes a naming service (ensuring

each agent has a unique name) and a yellow pages service that can be distributed

across multiple hosts. Federation graphs can be created in order to define structured

domains of agent services. Another very important feature consists in the availability

of a rich suite of graphical tools supporting both the debugging and

management/monitoring phases of application life cycle. By means of these tools, it

is possible to remotely control agents, even if already deployed and running: agent

conversations can be emulated, exchanged messages can be sniffed, tasks can be

monitored, and agent life-cycle can be controlled. The described pieces of

functionality, and particularly the possibility of remotely activating (both from code

and from console), even on mobile terminals, tasks, conversations and new peers,

 47

makes JADE very well suited to support the development and execution of

distributed, machine-to-machine, multi-party, intelligent and proactive applications.

4.1.1.3. JADE in the Mobile Environment

As already mentioned, the JADE run-time can be executed on a wide class of

devices ranging from servers to cell phones, for the latter the only requirement being

Java MIDP1.0 (or higher versions). In order to properly address the memory and

processing power limitations of mobile devices and the characteristics of wireless

networks (GPRS in particular) in terms of bandwidth, latency, intermittent

connectivity and IP addresses variability, and at the same time in order to be efficient

when executed on fixed network hosts, JADE can be configured to adapt to the

characteristics of the deployment environment. JADE architecture, in facts, is

completely modular and, by activating certain modules instead of others, it is

possible to meet different requirements in terms of connectivity, memory and

processing power. More in details, a module called LEAP allows optimizing all

communication mechanisms when dealing with devices with limited resources and

connected through wireless networks. By activating this module, a JADE container is

“split”, into a front-end, actually running on the mobile terminal, and a back-end

running in the fixed network. A proper architectural element, called mediator, must

be already active and is in charge of instantiating and holding the back-ends (that

basically are entries in the mediator itself). To face work-load problems it is possible

to deploy several mediators each one holding several back ends. Each front-end is

linked to its corresponding back-end by means of a permanent bi-directional

connection. It is important to note that there is no difference at all for application

developers depending on whether an agent is deployed on a normal container or on

the front-end of a split container, since both the available functionality and the APIs

to access them are exactly the same. The approach has a number of advantages:

• Part of the functionality of a container is delegated to the back-end, thus

making the front-end extremely lightweight in terms of required memory and

processing power.

• The back-end masks, to other containers, the actual IP address assigned to

the wireless device and, among the others, allows hiding to the rest of the multi-agent

 48

system a possible change of IP address. • The front-end is able to detect a loss of

connection with the back-end (for instance due to an out of coverage condition) and

re-establish it as soon as possible.

• Both the front-end and the back-end implement a store-and-forward

mechanism: messages that cannot be transmitted due to a temporary disconnection

are buffered and delivered as soon as the connection is re-established.

• Several information that containers exchange (for instance to retrieve the

container where an agent is currently running) are handled only by the back-end.

This approach, together with a bit-efficient encoding of communications between the

front-end and the backend, allows optimizing the usage of the wireless link.

4.1.1.4. Technical/functional Characteristics

Following is a list of technical and functional characteristics of JADE:

• Distributed, multi-party application with peer-to-peer communication.

• Compliance with the FIPA standard.

• Agent life cycle management.

• White pages and yellow pages services with the opportunity of creating

federation graphs at run-time.

• Graphical tools supporting the debugging, management and monitoring

phases.

• Support for agent code and execution state migration.

• Support for complex interaction protocols (e.g. contract-net).

• Support for messages content creation and management including XML and

RDF.

• Support for integration in JSP pages by means of a tag library.

• Support for application level security (currently only in J2SE).

• Transport protocols selectable at run-time. Currently available: JAVA-RMI,

JICP (JADE proprietary protocol), HTTP and IIOP.

 49

4.1.1.5. The open source project

The whole JADE source code is distributed under an open source policy, the

Lesser GNU Public License (LGPL for short) [23]. LGPL enables full exploitation of

JADE, even in a business environment, while enforcing the constraint that any

modification of JADE source code and any derivative work be returned to the

community under the LGPL license itself. No restrictions, instead, are put on

applications and other categories of software that uses JADE. A large user base,

counting more than a thousand members, gathered around this project; many among

them are contact points within their company or university, bridging internal JADE

users with the worldwide community. Community subscribers come partly from

academic environments (JADE is very popular as a teaching support environment in

distributed AI courses), partly from R&D centers of world leading companies such as

Motorola, HP, Siemens and Rockwell Automation, and partly from small start-ups

such as Mobile Tribe and Acklin, looking at JADE as an enabling technology for

their businesses. Outstanding contributions of Motorola, Siemens, and Broadcom

have to be acknowledged because, within the framework of the LEAP IST project

[7], they strongly contributed to port the JADE platform to the J2ME/MIDP

environment. The JADE project is supported by a web site [24] where users can

download code and documentation, report possible bugs and browse a collection of

useful links maintained by the JADE team. Moreover, two mailing lists are available

to developers for discussing technical issues or just for staying tuned about the

project, e.g. to be informed about new releases. Due to such an active user base,

hundreds of JADE downloads were registered in peak days and the project counts

now more than 40,000 downloads in total. JADE welcomes contributions of the

Open Source Community that can be given under different forms: simply making

publicly known the usage of JADE, reporting and, better, fixing bugs and

documentation, replying and giving support to less-experienced users on the mailing

list, contributing with new add-ons and software modules. The JADE Governing

Board In May 2003 TILAB and Motorola launched a new initiative, the JADE

Governing Board, a not-for-profit organization, with the intent of promoting the

evolution and the adoption of JADE by the mobile telecommunications industries as

 50

a java-based de-facto standard middleware for agent-based applications in the mobile

personal communication sector. The mission of the JADE Governing Board is the

industrial affirmation of JADE through the establishment of consensus and the

contribution of key players in the mobile sector in order to expand consumer options

and interest through new wireless agent applications. The JADE-board paves the way

for mobile VAS services, where peer-to-peer communication and services on PCs,

PDA’s and phones will enable tailored solutions for the mobile users and mobile

teams to meet the increasing demand for intelligent mobile lifestyles. The Board

intends to leverage, continue and consolidate the Open-source tradition through the

continuous support and involvement of the JADE Open-source Community. The

Board has been formed as a contractual consortium among the Members, it is open

and it welcomes all those companies and organizations that have a concrete business

interest in the extension of JADE and that commit to contribute to its development

and promotion. The JADE Web site provides information on how to join the Board.

4.1.2. Application Features of JADE

JADE is a middleware that simplifies the development of agent applications.

Several companies are already using it for very different application sectors

including supply chain management, manufacturing, rescue management, fleet

management, auctions, tourism, etc. The following sections try to describe which

application features best benefit from JADE.

4.1.2.1. Distributed Applications Composed of Autonomous Entities

First of all, JADE simplifies the development of distributed applications

composed of autonomous entities that need to communicate and collaborate in order

to achieve the working of the entire system. A software framework that hides all

complexity of the distributed architecture is made available to application

developers, who can focus their software development just on the logic of the

application rather than on middleware issues, such as discovering and contacting the

entities of the system. This type of distributed applications enabled by JADE, in

 51

particular when applied to the mobile environment, ignite a new trend of evolution

that we like to name smart-device smart-interconnection: the software on each device

is equipped with autonomy, intelligence, and capability of collaboration and the

value of the system is given by the capabilities of the devices and by their interaction

and collaboration capabilities. This is quite different from the ubiquitous access trend

where the value of the system is given by the content and the capability of accessing

the content from anywhere.

4.1.2.2. Negotiation and Coordination

JADE simplifies the development of applications that require negotiation and

coordination among a set of agents, where the resources and the control logics are

distributed in the environment. In fact, easy-to-use software libraries to implement

peer-to-peer communication and interaction protocols (i.e. patterns of interaction

between autonomous entities) are provided by JADE to developers.

4.1.2.3. Proactivity

JADE agents control their own thread of execution and, therefore, they can be

easily programmed to initiate the execution of actions without human intervention

just on the basis of a goal and state changes. This feature, that is usually called

proactivity, makes JADE a suitable environment for the realization of machine-to-

machine (m2m) applications, for example, for industrial plant automation, traffic

control and communication network management.

4.1.2.4. Multi-party applications

Peer-to-peer architectures are more efficient than client-server architectures for

developing multi-party applications, as the server might become the bottleneck and

the point of failure of the entire system. Because JADE agents can both provide and

consume services, they remove any need to distinguish between clients and servers.

 52

JADE agents allow clients to communicate each-other without the intervention of a

central server. Moreover, the fact that intelligence, information and control are

distributed, allows the realization of applications where the ownership is distributed

among the peers (agents) given that each peer may be able, and authorized to

perform, just a subset of the actions of the application.

4.1.2.5. Interoperability

JADE complies with the FIPA specifications that enable end-to-end

interoperability between agents of different agent platforms. All applications where

inter-organization communication is needed can benefit from interoperability,

including machine-to-machine and manufacturing.

4.1.2.6. Openness

JADE is an open-source project that involves the contributions and

collaborations of the user community. This user-driven approach allows both users

and developers to contribute with suggestions and new code, which guarantees

openness and usefulness of the APIs. Of course, anarchy must be avoided and the

JADE Governing Board is the actor that formally controls the evolution of JADE in

terms of new APIs and functionalities.

4.1.2.7. Versatility

JADE provides a homogeneous set of APIs that are independent from the

underlying network and Java version. It in fact provides the same APIs both for the

J2EE, J2SE and J2ME environment. This feature allows application developers to

reuse the same application code both for a PC, a PDA or a Javaphone; it allows

postponing this choice as late as possible, in theory, until the deploy-time.

 53

4.1.2.8. Ease of Use and Mobile Applications

JADE API’s are easy to learn and use. JADE has been designed to simplify the

management of communication and message transport by making transparent to the

developer the management of the different communication layers used to send a

message from an agent to another agent, and so allowing her/him to concentrate on

the logic of the application. Of course, the effect of this feature is to make faster the

development of applications. JADE reduces the application development time in

respect to the time necessary to develop the same application by using only Java

standard packages. In particular when developing distributed applications for mobile

terminals, JADE APIs and ready-to-use functionalities allow to strongly reduce the

application development time and costs (some estimations have been given that

indicates reduction of development time up to 30%).

4.2. Infrastructure of Integrated Software

The applications that can benefit from our software agent system may be

composed of different technologies and different types of tools. The example agent

application currently running on our platform is sharing resources with a variety of

different software products including Java applications, Microsoft .NET applications

and also old versions of ASP technologies together. Their common point is; all of

them use the same data resources. Following sections deeply concern with the

different technologies that can be involved within the proposed platform.

4.2.1. Microsoft .NET Framework

The .NET Framework is a new way to expose operating system and other

APIs. For years, the set of Windows functionality that was available to developers

and the way that functionality was invoked were dependent on the language

environment being used. For example, the Windows operating system provides the

ability to create windows (obviously). Yet, the way this feature was invoked from a

C++ program was dramatically different from the way it was invoked from a Visual

 54

Basic program. With .NET, the way that operating system services are invoked is

uniform across all languages (including code embedded in ASP.NET pages). This

portion of .NET is commonly referred to as the .NET Framework class library. [25]

The .NET Framework is a new infrastructure for managing application

execution. To provide a number of sophisticated new operating-system services—

including code-level security, cross-language class inheritance, cross-language type

compatibility, and hardware and operating-system independence, among others—

Microsoft developed a new runtime environment known as the Common Language

Runtime (CLR). The CLR includes the Common Type System (CTS) for cross-

language type compatibility and the Common Language Specification (CLS) for

ensuring that third-party libraries can be used from all .NET-enabled languages. To

support hardware and operating-system independence, Microsoft developed the

Microsoft Intermediate Language (MSIL, or just IL). IL is a CPU-independent

machine language-style instruction set into which .NET Framework programs are

compiled. IL programs are compiled to the actual machine language on the target

platform prior to execution (known as just-in-time, or JIT, compiling). IL is never

interpreted.

The .NET Framework is a new web server paradigm. To support high-capacity

web sites, Microsoft has replaced its Active Server Pages (ASP) technology with

ASP.NET. While developers who are used to classic ASP will find ASP.NET

familiar on the surface, the underlying engine is different, and far more features are

supported. One difference is that ASP.NET web page code is now compiled rather

than interpreted, greatly increasing execution speed.

The .NET Framework is a new focus on distributed-application architecture.

Visual Studio .NET provides top-notch tools for creating and consuming web

services vendor-independent software services that can be invoked over the Internet.

The .NET Framework is designed top to bottom with the Internet in mind. For

example, ADO.NET, the next step in the evolution of Microsoft's vision of

"universal data access," assumes that applications will work with disconnected data

by default. In addition, the ADO.NET classes provide sophisticated XML

capabilities, further increasing their usefulness in a distributed environment.

 55

4.2.2. Microsoft .NET Development Platform

Visual Studio .NET is an environment for developing Windows and Web

applications. Visual Basic .NET is just one of the languages we can use to program

our applications. Actually, Visual Studio .NET was designed to host any language,

and many companies are working on languages that will be integrated in Visual

Studio .NET. Some people will develop Windows applications in Visual Studio

.NET with COBOL, or FORTRAN. So, what’s the distinction between Visual Studio

.NET and the language? Visual Studio .NET is the environment that provides all the

necessary tools for developing applications. The language is only one aspect of a

Windows application. The visual interface of the application isn’t tied to a specific

language, and the same tools we will use to develop our application’s interface will

also be used by all programmers, regardless of the language they’ll use to code the

application. The tools we’ll use to access databases are also independent of the

language. Visual Studio provides tools that allow us to connect to a database; inspect

its objects, retrieve the information we’re interested in, and even store it in objects

that can be accessed from within any language. There are many visual tools in the

IDE, like the Menu Designer. This tool allows us to visually design menus and to set

their names and basic properties (such as checking, enabling, or disabling certain

options). Designing a menu doesn’t involve any code, and it’s carried out with point-

and click operations. Of course, we will have to insert some code behind the

commands of our menus, and (again) we can use any language to program them. To

simplify the process of application development, Visual Studio .NET provides an

environment that’s common to all languages, which is known as integrated

development environment (IDE). The purpose of the IDE is to enable the developer

to do as much as possible with visual tools, before writing code. The IDE provides

tools for designing, executing, and debugging our applications. [25]

4.2.3. Visual Basic .NET

Visual Basic .NET is the next generation of Visual Basic, but it is also a

significant departure from previous generations. However, Microsoft has made some

changes to make Visual Basic .NET a better language and an equal player in the

 56

.NET world. These include such additions as a Class keyword for defining classes

and an Inherits keyword for object inheritance, among others. Visual Basic 6 code

can't be compiled by the Visual Basic .NET compiler without significant

modification. [26]

Visual Basic .NET is released shortly after the tenth anniversary of the first

version of VB. The original language that changed the landscape of computing has

lasted for 10 years and has enabled more programmers to write Windows application

than any other language. In the world of computing, however, things change very

fast, including languages. At some point, they either die, or they evolve into

something new. Visual Basic was a language designed primarily for developing

Windows applications. It was a simple language, because it managed to hide many of

the low-level details of the operating system. Those who wanted to do more with

Visual Basic had to resort to Windows API. In a way, earlier versions of Visual

Basic were ‘sandboxed’ to protect developers from scary details.

Microsoft had to redesign Visual Basic. The old language just didn’t belong in

the .NET picture (at least, it wouldn’t integrate very well into the picture). Visual

Basic .NET is not VB7; it’s a drastic departure from VB6, but a necessary departure.

4.2.4. ASP.NET

ASP.NET is a key part of the wider Microsoft .NET initiative, Microsoft’s new

application development platform. .NET is both application architecture to replace

the Windows DNA model and a set of tools, services, applications and servers based

around the .NET Framework and common language runtime (CLR). Rather than just

being ASP 4 or an incremental upgrade, ASP.NET is a complete rewrite from the

ground up, using all the advanced features .NET makes available. ASP.NET can take

advantage of all that .NET has to offer, including support for around 20 or more

.NET languages from C# to Perl.NET, and the full set of .NET Framework software

libraries. Web applications written in ASP.NET are fast, efficient, manageable,

scalable, and flexible, but, above all, easy to understand and to code! Components

and Web applications are all compiled .NET objects written in the same languages,

 57

and they offer the same functionality, so no need to leave the ASP environment for

purely functional reasons. With a few lines of code, ASP.NET can talk to XML,

serve as or consume a Web service, upload files, “screen scrape” a remote site, or

generate an image.

With the .NET Framework and ASP.NET, Microsoft has not just shown itself

to be a contender in Web development technologies, but many commentators also

believe Microsoft has taken the lead.ASP.NET is well equipped for any task you

want to put to it, from building intranets to e-business or e-commerce sites. Microsoft

has been very careful to include the functionality and flexibility developers will

require, while maintaining the easy-to-use nature of ASP.

• With ASP.NET you now have a true choice of languages. All the .NET

languages have access to the same foundation class libraries, the same type of

systems, equal object orientation and inheritance abilities, and full interoperability

with existing COM components.

• You can use the same knowledge and code investment for everything from

Web development to component development or enterprise systems, and developers

do not have to be concerned about differences in APIs or variable type conversions,

or even deployment.

• ASP.NET incorporates all the important standards of our time, such as XML

and SOAP, plus with ADO.NET and the foundation class libraries, they are arguably

easier to implement than in any other technology, including Java.

• An ASP.NET programmer still only needs a computer with Notepad and the

ability to FTP to write ASP code, but now with the .NET Framework command-line

tools and the platform’s XML-based configuration, this is truer than before!

• Microsoft has included in the .NET Framework an incredibly rich feature set

of library classes, from network-handling functions for dealing with Transmission

Control Protocol/Internet Protocol (TCP/IP) and Domain Name System (DNS),

through to XML data and Web Services, to graphic drawing.

• In the past, the limitations of ASP scripting meant components were required

for functionality reasons, not just for architectural reasons. ASP.NET has access to

 58

the same functionality and uses the same languages in which you would create

components, so now components are an architectural choice only.

• A .NET developer is shielded from changes in the underlying operating

system and API, as the .NET technologies deal with how your code is implemented;

and with the Common Type System, you don’t have to worry whether the component

you are building uses a different implementation of a string or integer to the language

it will be used in.

4.3. Patterns and Methodologies Used in Development Process

In developing Course ON-LINE, we followed the Extreme Programming

software development model [32,33]. The design and development of the software

has lasted about 4 man/months and developed with 2 programmers building a pair.

The concept of pair programming is explained later in this chapter. The rapidness in

development is achieved thanks to the method XP answers the changing

requirements. The used development processes and methods are the key to this short

project size. In the following section, the extreme programming and used practices

are explained in more detail.

4.3.1. Extreme Programming

Extreme Programming has some very obvious advantages when compared to

the traditional approaches.

We discussed the definition and characteristics of a process above. When the

process involves building a software product, it is called a software lifecycle,

because it describes the life of a software product from its conception to its

implementation, delivery, use and maintenance. OD-STD-2167A/498, the current

prevailing standard guiding software development, has been interpreted as mandating

as specific process for use on all military acquisitions. This process is represented by

the "Waterfall Model”, which serves as the conceptual guideline for almost all Air

Force and NASA software development. The waterfall model was first describer by

 59

Royse [34]. The waterfall model is an activity-centered life cycle model that

prescribes a sequential execution of a subset of the development processes and

management processes. The requirement activities are all completed before the

systems design activity starts. The goal is to never turn back once an activity is

completed. The key feature of his model is the constant verification activity that

ensures that each development activity does not introduce unwanted or deletes

mandatory requirements. Many of the phases require successful completion of a

government review process. Critics of the "Waterfall" Model, in fact, find that the

model is geared to recognize documents as a measure of progress rather than actual

results.

The nine major activities described in 2167A/498 are as follows:

1. Systems Concept/System Requirements Analysis

2. Software Requirements Analysis

3. Software Parametric Cost Estimating

4. Preliminary Design

5. Detailed Design

6. Coding and Computer Software unit (CSU) Testing

7. Computer Software Component (CSC) Integration and Testing

8. Computer Software Configuration Item (CSCI) Testing

9. System Integration and Operational Testing

As a response to rapid-change in requirements and the increase of failures in

software development projects due to the incapability of traditional software

engineering approaches like the waterfall model above to this change, new agile

development methodologies are introduced. Extreme Programming (XP) is one of

those methodologies. It is described as “a lightweight discipline of software

development, which is designed for use with small teams who need to develop

software quickly in an environment of rapidly-changing requirements, based on

principles of simplicity, communication, feedback, and courage.” Most significant

and major difference of XP from traditional software engineering methodologies is;

XP focuses on the product whereas process is focused by many of the other software

development methodologies. XP is based on rapid application development and it is

informal and verbal. Change in requirements is not considered as a problem. XP is

 60

based on some practices that are easy to follow but not strict and formal rules. XP

Practices are grouped in four; Planning Practices, Designing Practices, Coding

Practices and Testing Practices [33].

XP improves a software project in four essential ways; communication,

simplicity, feedback, and courage. XP programmers communicate with their

customers and fellow programmers. They keep their design simple and clean. They

get feedback by testing their software starting on day one. They deliver the system to

the customers as early as possible and implement changes as suggested. With this

foundation XP programmers are able to courageously respond to changing

requirements and technology.

The major distinction between XP and other approaches is that; XP focuses on

the product whereas traditional SE approaches focus on the process. The idea is to

develop hundred percent working software products no matter how you develop it.

The process is defined with practices, which are fruitful and easy to follow. Other

major distinction is; changes in the requirements are welcomed at any stage in an XP

project but change in the requirements is controlled and avoided in other SE

methodologies.

McCormick compares the two approaches as given in Table 4.1. [35]

As seen from the table, XP is informal and verbal, is based on rapid application

development, and change is not considered a problem, whereas software engineering

is formal and written, and change is controlled and avoided. Software engineering

attempts to complete design before starting coding whereas XP does not devote

much effort to design, and code itself is considered to be the design. In short, XP

focuses on programming and on directly producing the code.

XP proves to be very useful and productive especially in cases where

requirements change frequently and where architectural issues are already solved

either because of the nature of the application or because of the tools and the

platforms chosen.

 61

Table 4.1 Traditional Software Engineering Approaches vs. XP

Software Engineering Extreme Programming

Avoid change in coding phase Code change is no problem

Specifications must be formal and

written

Specifications may be informal and

verbal

Design must be completed before

coding

Code is the design

Communication is a problem for

programmers

Programmers can communicate well

Change control should be enforced for

requirements

Informal requirements suffice

Rapid Application Development is

avoided

Rapid Application Development is

favoured

Apart from the core XP practices we used some practices introduced in [36].

These are:

• Issue-Based Programming is a designing practice where issues

determine priorities. At any time instance during the software development

project there are many issues to be resolved and many issues already resolved. At

the early stages of development, most of the issues identified are related to

requirements rather than design or implementation, whereas at later stages most

issues are related to implementation. Still there are implementation-related issues

at early stages and requirements-related issues at later stages. An issue table is

maintained throughout the software development project and issues are identified

as closed when they are resolved. A closed issue may become open later. The

prioritization of issues is done regarding the requests of the customer and by

negotiation between the customer and the development team.

• Comment-first coding is a coding practice. It breaks the coding of a

single module into two phases: coding the semantics, and coding the syntax.

When coding a module, first the algorithm of that code is written to the editor as

 62

comment lines in natural language. The level of detail should be such that the

architecture of the algorithm should be understood at a glance and that converting

each comment line to the valid syntax of the language used is easy for all the

programmers in the team. After the first phase is completed, the output is a

formatted text, which is easy to read and easy to convert to programming

language’s syntax. In the second phase, the programmer starts to code each

construct following an outside-in approach. The reason why we call outside-in

but not top-down is that the level of granularity is more or less the same at the

end of the two phases.

• JIT collective code ownership is an extension of collective code

ownership, which is an existing coding practice. On an XP project, any pair of

programmers can improve any code at any time. This is called collective code

ownership. This means each programmer is aware of everything in the project

and each programmer is responsible of all parts of the code. This kind of a

practice leads to efficiency in some cases such as when a programmer is waiting

for a piece of code to be written by another programmer that is responsible of that

code. On the other hand, the overhead of being aware of everything for each

single programmer may be very high in many cases. To overcome this problem,

XP teams follow a common coding standard, so that all the code looks as if it is

written by a single programmer.

4.3.2. Object – Oriented Programming

While developing Course ON-LINE and GAIA add-on, the development team

used an object – oriented programming language and had considerable benefits.

Object – oriented method is a software design method that models the

characteristics of abstract or real objects using classes and objects. In procedural

programming languages, programming tends to be action – oriented, and the unit of

programming is the function. In object – oriented programming languages the unit of

programming is the class from which objects are eventually instantiated. There are

many definitions of an object, such as found in [37]: "An object has state, behavior,

 63

and identity; the structure and behavior of similar objects are defined in their

common class; the terms instance and object are interchangeable". This is a "classical

languages" definition, as defined in [38] where "classes play a central role in the

object model", since they do not in prototyping/delegation languages. "The term

object was first formally applied in the Simula language, and objects typically

existed in Simula programs to simulate some aspect of reality" [39]. Other

definitions referenced by Booch include Smith and Tockey: "an object represents an

individual, identifiable item, unit, or entity, either real or abstract, with a well-

defined role in the problem domain." and "anything with a crisply defined boundary"

(in context, this is "outside the computer domain". A more conventional definition

appears on pg 44). Booch goes on to describe these definitions in depth. [40] defines:

"An "object" is anything to which a concept applies", and "A concept is an idea or

notion we share that applies to certain objects in our awareness". [41] defines: "We

define an object as a concept, abstraction or thing with crisp boundaries and meaning

for the problem at hand." [42] defines: "An object is an abstraction of a set of real-

world things such that:

• All of the real-world things in the set - the instances - have the same

characteristics

• All instances are subject to and conform to the same rules"

And on identifying objects: "What are the *things* in this problem? Most of

the things are likely to fall into the following five categories: Tangible things, Roles,

Incidents, Interactions, and Specifications." [41] covers "Identifying Key

Abstractions" for objects and classes based on an understanding of the problem

domain and [42] provides a novel approach to identifying objects through use-cases

(scenarios), leading to a use-case driven design. Use cases have become very

important and popular today, providing an easy way to identify objects and methods

by their use in satisfying system requirements and uses. Uses cases occur throughout

the development lifecycle.

The basic idea behind an object is that of simulation. Most programs are

written with very little reference to the real world objects the program is designed to

work with; in object oriented methodology, a program should be written to simulate

the states and activities of real world objects. This means that apart from looking at

data structures when modeling an object, we must also look at methods associated

 64

with that object, in other words, functions that modify the objects attributes. A

method is an operation which can modify an objects behavior. In other words, it is

something that will change an object by manipulating its variables.

A class is a blueprint for an object. What this basically means is that we

provide a blueprint, or an outline of an object. This blueprint is valid whether we

have one or one thousand such objects. A class does not represent an object; it

represents all the information a typical object should have as well as all the methods

it should have. A class can be considered to be an extremely extended TYPE

declaration in the C programming language, since not only are variables held but

methods too.

Object Oriented Programming method has a very distinguishing feature:

Inheritance and sub-classes. A subclass is a class definition which derives

functionality from another class definition. Inheritance provides a natural

classification for kinds of objects and allows for the commonality of objects to be

explicitly taken advantage of in modeling and constructing object systems. Natural

means we use concepts, classification, and generalization to understand and deal with

the complexities of the real world. See the example below using computers.

Inheritance is a relationship between classes where one class is the parent

(base/superclass/ancestor/etc.) class of another. Inheritance provides programming

by extension (as opposed to programming by reinvention and can be used as an is-a-

kind-of (or is-a) relationship or for differential programming. Multiple Inheritance

occurs when a class inherits from more than one parent/superclass. For example, a

person is a mammal and an intellectual_entity, and a document may be an

editable_item and a kind of literature.

So why user inheritance? Inheritance is a natural way to model the world or a

domain of discourse, and so provides a natural model for OOA and OOD (and even

OOP). This is common in the AI domain, where semantic nets use inheritance to

understand the world by using classes and concepts for generalization and

categorization, by reducing the real-world's inherent complexity.

 65

Inheritance also provides for code and structural reuse. In the above Computer

class diagram, all routines and structure available in class Computer are available to

all subclasses throughout the diagram. All attributes available in Personal computers

are also available to all of its subclasses. This kind of reuse takes advantage of the is-

a-kind-of relationship. Class libraries also allow reuse between applications,

potentially allowing order-of-magnitude increases in productivity and reductions in

defect rates (program errors), as library classes have already been tested and further

use provides further testing providing even greater reliability.

With differential programming, a class does not have to be modified if it is

close to what's required; a derived class can be created to specialize it. This avoids

code redundancy, since code would have to be copied and modified otherwise.

Polymorphism is often explicitly available in many Object Oriented languages

(such as C++, CLOS, Eiffel, etc.) based on inheritance when type and class are

bound together (typing based on subclassing, or subclass polymorphism), since only

an object which is a member of (inherits from) a class is polymorphically assignment

compatible with (can be used in place of) instances or references of that class. Such

assignment can result in the loss of an object's dynamic type in favor of a static type

(or even loss of an object's representation to that of the static class, as in C++

slicing). Maintaining the dynamic type of objects can be provided (and preferred);

however, C++ provides both sliced and non-sliced replacement in a statically typed

environment.

Object Oriented Programming with all of the above features increases code

reusability. Course ON-LINE received great benefit from this feature. Most of the

business logic was encapsulated and reused throughout the code. The same business

modules were use in the web tier and in the desktop tier. Using the advantages of

inheritance, the data model was mapped to an object model, forming a data access

layer and an abstraction model. All of the data access was done through this layer,

giving a DBMS vendor independent code.

 66

4.3.3. Software Design Pattern Used

With usage of software design patterns, a framework was constructed during

the development of the course management system Course ON-LINE. In this section

we take a closer look on these patterns and how they affected the development of the

Course ON-LINE. These patterns can be found in [43].

4.3.3.1 Model-View-Controller

The purpose of many computer systems is to retrieve data from a data store and

display it for the user. After the user changes the data, the system stores the updates

in the data store. Because the key flow of information is between the data store and

the user interface, you might be inclined to tie these two pieces together to reduce the

amount of coding and to improve application performance. However, this seemingly

natural approach has some significant problems. One problem is that the user

interface tends to change much more frequently than the data storage system.

Another problem with coupling the data and user interface pieces is that business

applications tend to incorporate business logic that goes far beyond data

transmission.

The problem that this pattern is trying to solve is the following: How do you

modularize the user interface functionality of a Web application so that you can

easily modify the individual parts?

The following forces act on a system within this context and must be

reconciled as you consider a solution to the problem:

User interface logic tends to change more frequently than business logic,

especially in Web-based applications. For example, new user interface pages may be

added, or existing page layouts may be shuffled around. After all, one of the

advantages of a Web-based thin-client application is the fact that you can change the

user interface at any time without having to redistribute the application. If

presentation code and business logic are combined in a single object, you have to

 67

modify an object containing business logic every time you change the user interface.

This is likely to introduce errors and require the retesting of all business logic after

every minimal user interface change.

In some cases, the application displays the same data in different ways. For

example, when an analyst prefers a spreadsheet view of data whereas management

prefers a pie chart of the same data. In some rich-client user interfaces, multiple

views of the same data are shown at the same time. If the user changes data in one

view, the system must update all other views of the data automatically.

Designing visually appealing and efficient HTML pages generally requires a

different skill set than does developing complex business logic. Rarely does a person

have both skill sets. Therefore, it is desirable to separate the development effort of

these two parts.

User interface activity generally consists of two parts: presentation and update.

The presentation part retrieves data from a data source and formats the data for

display. When the user performs an action based on the data, the update part passes

control back to the business logic to update the data.

In Web applications, a single page request combines the processing of the

action associated with the link that the user selected with the rendering of the target

page. In many cases, the target page may not be directly related to the action. For

example, imagine a simple Web application that shows a list of items. The user

returns to the main list page after either adding an item to the list or deleting an item

from the list. Therefore, the application must render the same page (the list) after

executing two quite different commands (adding or deleting)—all within the same

HTTP request.

User interface code tends to be more device-dependent than business logic. If

you want to migrate the application from a browser-based application to support

personal digital assistants (PDAs) or Web-enabled cell phones, you must replace

much of the user interface code, whereas the business logic may be unaffected. A

 68

clean separation of these two parts accelerates the migration and minimizes the risk

of introducing errors into the business logic.

Creating automated tests for user interfaces is generally more difficult and time

consuming than for business logic. Therefore, reducing the amount of code that is

directly tied to the user interface enhances the testability of the application.

Solution

The Model-View-Controller (MVC) pattern separates the modeling of the

domain, the presentation, and the actions based on user input into three separate

classes [Burbeck92]:

• Model. The model manages the behavior and data of the application domain,

responds to requests for information about its state (usually from the view), and

responds to instructions to change state (usually from the controller).

• View. The view manages the display of information.

• Controller. The controller interprets the mouse and keyboard inputs from the

user, informing the model and/or the view to change as appropriate.

Figure 4.2. depicts the structural relationship between the three objects.

Figure 4.2 MVC Class Architecture

It is important to note that both the view and the controller depend on the

model. However, the model depends on neither the view nor the controller. This is

 69

one the key benefits of the separation. This separation allows the model to be built

and tested independent of the visual presentation. The separation between view and

controller is secondary in many rich-client applications, and, in fact, many user

interface frameworks implement the roles as one object. In Web applications, on the

other hand, the separation between view (the browser) and controller (the server-side

components handling the HTTP request) is very well defined.

Model-View-Controller is a fundamental design pattern for the separation of

user interface logic from business logic. Unfortunately, the popularity of the pattern

has resulted in a number of faulty descriptions. In particular, the term “controller”

has been used to mean different things in different contexts. Fortunately, the advent

of Web applications has helped resolve some of the ambiguity because the separation

between the view and the controller is so apparent.

Variations

In Application Programming in Smalltalk-80: How to use Model-View-

Controller (MVC) [Burbeck92], Steve Burbeck describes two variations of MVC: a

passive model and an active model. The passive model is employed when one

controller manipulates the model exclusively. The controller modifies the model and

then informs the view that the model has changed and should be refreshed (see

Figure 3.3).

The model in this scenario is completely independent of the view and the

controller, which means that there is no means for the model to report changes in its

state. The HTTP protocol is an example of this. There is no simple way in the

browser to get asynchronous updates from the server. The browser displays the view

and responds to user input, but it does not detect changes in the data on the server.

Only when the user explicitly requests a refresh is the server interrogated for

changes.

The active model is used when the model changes state without the controller’s

involvement. This can happen when other sources are changing the data and the

changes must be reflected in the views. Consider a stock-ticker display. You receive

stock data from an external source and want to update the views (for example, a

 70

ticker band and an alert window) when the stock data changes. Because only the

model detects changes to its internal state when they occur, the model must notify the

views to refresh the display.

Figure 4.3 Behavior of the passive model

However, one of the motivations of using the MVC pattern is to make the

model independent from of the views. If the model had to notify the views of

changes, you would reintroduce the dependency you were looking to avoid.

Fortunately, the Observer pattern [Gamma95] provides a mechanism to alert other

objects of state changes without introducing dependencies on them. The individual

views implement the Observer interface and register with the model. The model

tracks the list of all observers that subscribe to changes. When a model changes, the

model iterates through all registered observers and notifies them of the change. This

approach is often called “publish-subscribe.” The model never requires specific

information about any views. In fact, in scenarios where the controller needs to be

informed of model changes (for example, to enable or disable menu options), all the

controller has to do is implement the Observer interface and subscribe to the model

changes. In situations where there are many views, it makes sense to define multiple

 71

subjects, each of which describes a specific type of model change. Each view can

then subscribe only to types of changes that are relevant to the view.

 72

CHAPTER 5

AN EXAMPLE AGENT APPLICATION RUNNING ON THE

PROPOSED PLATFORM

This chapter focuses on the functional details of developed course management

software namely Course ON-LINE and its intelligent agent add-on GAIA developed

in the aforementioned agent development and execution platform.

5.1. An Overview of Course ON-LINE

Course ON-LINE is a member of e-university tools family which includes

Campus ON-LINE [2], the course registration and student information system;

Library ON-LINE [3], the university library automation system and CAMPUS ON-

SMS [4], information distribution system over SMS. All of these tools are fully

integrated with each other and share a common database.

Course ON-LINE uses the common database of the e-university tools for

initially setting up of course homepages automatically as the new semester begins

and generates a course syllabus for each course. Instructors can add custom

information to the syllabus (i.e. course outline, course objectives, textbooks and

references etc.), define grading scheme of the course and assign teaching assistants to

the course. Instructors can give assignments, publish course materials, make

announcements, add web based tools (i.e. web based simulations or animations

related to the course), supply links to different web resources, announce grades of

homework, projects or exams, or communicate with the students using forums or e-

mail facilities.

 73

Students can view course syllabus, view assignments and upload assignment

files, reach to instructor’s course materials, reach to web resources related to the

course supplied by the instructor, view course announcements, grades of homeworks,

projects or exams, view and participate to the forums and communicate with their

instructors using e-mail.

Course ON-LINE supplies centralized management of all course homepages of

a school and enables a uniform, easy to learn and use structure for each course

homepage. It enforces Internet use in courses and generates a significant amount of

publicly accessible course content.

With effective use of Course ON-LINE, the university gains the asset of

structured and uniformly collected course content.

Course ON-LINE has four type of users; instructors, teaching assistants,

students and guest users. Instructors and teaching assistants are the content suppliers

and managers of their courses’ homepages. A detailed explanation of each Course

ON-LINE funciton and typical use of instructors facilities are demonstrated in

Appendix A.

5.2. The GAIA Add-On

Gaia is the notification agent system of students running on the Course ON-

LINE platform. Students use their own interfaces to start their own notification

agents. To start a student agent, student selects the modules of the Course ON-LINE

to be tracked by his/her own agent and gives directive to start the agent. (Figure 5.1)

 74

Figure 5.1 Student Agent Configuration Interface

5.2.1. How GAIA works

GAIA is the creator and living environment of each student’s notification

agent. There are three modules that are running the environment. First module is the

main constructor of the agent platform called Gaia Agent Startup (GAS). This

module starts when the Course ON-LINE server starts up. It is a console application

which is responsible for starting the JADE platform and initiating the preconfigured

agents to be created and started to monitor.

Second module is the agent environment developed by Java and running in the

JADE agent platform. The mother agent ‘GAIA’ and child agents ‘Titans’ live in this

environment.

 75

Third module is the user interface module that is accessible by students from

Course ON-LINE interface and enables students to turn on and off their own

notification agents (Titans).

If it is the first time that GAS is running, it initially creates a main agent called

GAIA. The only purpose of this mother agent is to create child agents (Titans) when

a new agent request comes from a student. Actually GAIA is the name of this mother

agent. The GAIA agent monitors the Course On-Line database for every 5 seconds

and looks for a new agent request from a student. If finds a new one, creates a titan

and goes asleep for next turn. Each titan is born with an array of parameters that

holding the Course On-Line functions to be monitored.

If for any reason the server is stopped or crashed, the previously running

agents’ information is kept in the database. So if server is started for second time, the

GAS utility checks for this situation and recreates all titans which were previously

running. This ensures the continuity of the agent system.

When the GAS starts the JADE platform and creates GAIA agent, it starts to

monitor Course ON-LINE database for new agents every 5 seconds. If a new agent

request is found in the database, GAIA creates a new Titan and sleeps. The first thing

that a Titan does is to learn which functions of Course On-Line it should monitor on

behalf of the student. This information is gathered by the Gaia agent and sent to the

newly born Titan as startup parameter. After learning which functions it should

monitor, titan starts to monitor the relevant tables in the Course ON-LINE database

and sends an e-mail notification if it finds out a new entry in those tables. The titan

does this operation continually until the owner of the agent stops it.

Figure 5.2 shows the lifecycle of the monitoring agents.

 76

Figure 5.2 Student Agents Lifecycle

5.3. Integrating Course ON-LINE With Other University Information

Systems

Course ON-LINE is a part of other university information systems available

currently used in Işık University. These are Campus ON-LINE; student registration

and information system, Library ON-LINE; library management system, Campus

ON-SMS; SMS based information distribution system, Pay ON-LINE; electronic

payment system and Access ON-LINE, electronic access control system. Course

ON-LINE, in this sense, has conceptual and physical connections with these systems.

In this section, information about the integration is delivered.

The integration is done in two different layers: Integration at the data layer, and

integration at the business layer. These will be described in detail.

 77

5.3.1. University Information Systems

Campus ON-LINE

Campus ON-LINE is the student information and online registration system of

IŞIK University. Students use this system when first registering to the university and

when registering to courses at the beginning of each semester. Instructors use the

system to see class lists during the semester, submit letter grades at the end of each

semester and advise online to students during the registration periods. There are also

some functions defined for some administrative units.

There are more that 2000 users of the system, which are, grouped into more

that 10 different user groups. As development technology, ASP is used with MS SQL

Server 2000 as database management system. Components are developed in Visual

Basic 6.0.

Library ON-LINE

Library On-Line is the library management software currently used at Işık

University. Library ON-LINE is a very efficient and powerful library automation

system. Currently it has four key facilities are functional. These are Cataloging,

Circulation, WebOPAC and Administration modules.

The development is done in J2EE and running on the Sun ONE Application

Server platform using Microsoft SQL Server 200 as the DBMS.

Campus ON-SMS

Campus ON-SMS is an SMS based information distribution service. The

service currently, delivers course final notes or announcements from the university to

the students who are registered to the system.

Campus ON-SMS is based on the Microsoft SQL Server 2000 and transact-sql

language.

Pay ON-LINE

Pay ON-LINE is an electronic payment system. The system is in use in IŞIK

University campuses. The system allows payment in campuses to be done through an

 78

electronic proximity card and holds the student information in this card. The system

has reports for the accounting department and other departments of interest.

Pay ON-LINE is developed in Microsoft .NET platform and uses Microsoft

SQL Server as a DBMS.

5.3.2. Integration at Data Layer

The information system above all share a common user database. The users of

the system are students, instructors (part and full time), alumni, administrative staff,

and sub-contractors of the university that access to the university. There are also

guest users in the system. The user database is therefore designed to be common.

The common user database is responsible only from storing the student (or

administrative) id numbers, passwords, and names. Other types of information are

left out, because each system needs distinct data. For example, Campus ON-LINE

needs to distinguish between the grades of the students, while Library ON-LINE

needs to know whether he/she is undergraduate or graduate. Storing of user types are

also left to the individual systems, as the level of granularity changes from one

system to other.

This common database scheme has the following advantages:

• Redundant data is kept minimal. When there is not a common

database, all system should keep track of a common set of information on its own

separately. This means that the same information would exist in many databases.

• Simplifies record updates. Keeping the same data across multiple

databases delivers the problem of updating this data. For example, when student

number changes or a student graduates, the related data on all of these databases

should be updated. Some trigger mechanisms might be deployed, but this is

problematic as well, as these trigger programs at the database level, makes the

database design more complex than it should be and makes the system platform

 79

dependent as these triggers should be re-coded if the database system should

change. Likewise, every time a user changes a password, the change should be

propagated though all databases.

• Enables some common software modules to be used by all systems. A

good example is the common authentication system which is described in detail

in the next chapter. With the module all the authentication is done through a

common application, which is a web service.

• Reduces the need for storage. Minimizing the existence of redundant

data reduces the need for physical storage and helps increase the overall

performance.

• Simplifies operational processes. This is an important issue when the

systems are in interest of various university departments. For example,

undergraduate students’ information is under control of the student registrar

department, while the student’s tuition information is under control of the

accounting department. The common database model allows the processes to be

separated. A change in student information is done only through a single

database, and does not need to propagate.

• Reduces complexity of the database. Eliminating redundant data

reduces the database complexity and dependencies across the databases.

There is only one table in the common database, which is the user table. It has

two attributes; userid and password. The userid attribute is the student id or the

administrative id of the user. Password attribute is the SHA1 [27] hash of the

password. It is a fixed 40 character column. The SHA1 hash of a string is a 40

character hexadecimal number.

When a message of any length < 2^64 bits is input, the SHA-1 produces a 160-

bit output called a message digest. The message digest can then, for example, be

input to a signature algorithm which generates or verifies the signature for the

message. Signing the message digest rather than the message often improves the

efficiency of the process because the message digest is usually much smaller in size

than the message. The same hash algorithm must be used by the verifier of a digital

signature as was used by the creator of the digital signature. Any change to the

 80

message in transit will, with very high probability, result in a different message

digest, and the signature will fail to verify. The SHA-1 is called secure because it is

computationally infeasible to find a message which corresponds to a given message

digest, or to find two different messages which produce the same message digest.

Any change to a message in transit will, with very high probability, result in a

different message digest, and the signature will fail to verify.

The common database as seen above has a very simple design but is sufficient

and cost effective for the university information system.

5.3.3. Integration at the Business Layer

The university information systems used does not share many functionality

except the system operation which are handled by the development platforms. One

common function implemented is the authentication.

All of the university information systems share a common user base, and as

described above a common database is designed for this user base. For this user

database, a common authentication software module is implemented and used across

all systems.

The problem that arises when implementing a common software module is that

all of the systems in the university information system are developed in different

platforms. Some are in Microsoft Active Server Pages (Visual Basic 6.0), some are

in Microsoft .NET, and some are developed in Java platform. Although there are

many ways of sharing common modules across these platforms, most of them are

inefficient and costly. Some methods are listed below:

• Using a C module: Windows native Dynamic Link Libraries written in

C are accessible by both Visual Basic 6.p and the .NET platform. Java can also

access these components through the JNI (Java Native Interface) [28]. The JNI

allows Java code that runs within a Java Virtual Machine (VM) to operate with

applications and libraries written in other languages, such as C, C++, and

 81

assembly. In addition, the Invocation API allows you to embed the Java Virtual

Machine into your native applications. Using this method has many drawbacks.

First the performance is limited. The authentication module is busy software, as it

handles the entire authentication from all the university information systems. The

other problem is coding and accessing these modules is programmatically hard to

implement.

• Using Middleware Architecture: Middleware architectures like the

CORBA can be used, but again implementing these architectures are hard.

• Using a XML web service: The most appropriate solution is using this

method. Java, .NET and the Visual Basic 6.0 has methods or libraries that

simplify accessing XML web services.

From the above choices, we took taking XML web services into account. A

software module was implemented complying with the web services standard in the

Java programming language. The web service uses SOAP [29] over HTTP to

communicate with the clients. The clients in this case are the application software

like the Library ON-LINE, Campus ON-LINE, Course ON-LINE, and Pay ON-

LINE. These applications software send the username / password pair to the web

service in XML. The web service calculates the SHA1 [27] hash of the password and

authenticates it against the pair stored in the user database. The web service responds

with ‘true’ or ‘false’ Boolean value.

 82

CHAPTER 6

EVALUATION

Course ON-LINE is in use at Isik University already. For the fall semester of

the 2003-2004 academic year, a total 178 course homepages were set by the system,

involving 190 instructors and 1986 students. Table 6.1. summarizes the comparison

of active usage of Course ON-LINE in two consequent semesters.

 Table 6.1 Comparison of active usage of Course ON-LINE in two semesters

 2002-2003 Spring 2003-2004 Fall

Total number of courses opened

in the semester
129 178

Total number of course sections

opened in the semester
329 392

Number of courses having

actively used web page in Course

ON-LINE

22 173

GAIA is the notification agent of students using Course ON-LINE. There are

three modules that are running the GAIA agent. First module is the main constructor

of the agent platform. Second module is the agent environment developed by Java

and running in the JADE agent platform. The mother agent ‘GAIA’ and child agents

‘Titans’ live in this environment. Third module is the user interface module that is

accessible by students from Course ON-LINE interface and enables students to turn

on and off their own notification agents.

 83

CHAPTER 7

CONCLUSION AND RECOMMENDATIONS FOR FUTURE

WORK

In this thesis, we reported an experience on constructing a software agent

platform for development and implementation of software agent systems running

with integrated applications which are developed and running under different

technologies. The proposed platform consists of an agent development framework

namely JADE, a common database infrastructure serving to many different

applications and the applications infrastructure running on different platforms.

The example application running on the proposed platform consists of an

integrated course management software, namely Course ON-LINE, and an agent

application running as a notification agent of Course ON-LINE namely GAIA.

Course ON-LINE offers a uniform and centralized management of all course

homepages of a school and encourages Internet use in courses. It generates a

significant amount of publicly accessible course content which is a very important

asset for a university. With advanced features using intelligent agents, the

functionality and user friendliness is achieved.

The example agent application does not include many advantages that are

brought by agent software like pro-activeness, social abilities, and mobility. The

example is aiming to demonstrate the use of proposed platform in conjunction with

running integrated applications.

Improvement of the agent based systems by introducing more intelligence,

autonomy and mobility to agents running on the proposed platform would be next

steps of future work. As demonstrated in second chapter of this work, introducing the

core functionality and usability of software agents highly depends on their mobility.

 84

From this point of view, developing mobile software agent applications in this

environment would enhance the usability of the system.

Other research topics on the field might be performance issues and

enhancements of using the proposed platform, or scalability problems that may arise

and security problems.

Obviously, using an existing open source environment for agent software

development might lead the developers and system architects to limit themselves on

the existing platform. A typical research area therefore would be to extend the

capabilities of the existing agent platforms or replacing the agent development

platforms with other alternative either by developing a new one from scratch or

another existing alternative.

 85

REFERENCES

[1] A.Jafari, “Conceptualizing Intelligent Agents for Teaching and Learning”

Educase Quarterly, No 3, 2002 p 28-33

[2] Campus ON-LINE Web Site, http://campus.isikun.edu.tr

[3] Library ON-LINE Web Site, http://library.isikun.edu.tr

[4] Campus ON-SMS Web Site, http://irdc.isikun.edu.tr/projects/campusonsms

[5] Gilbert, D.; Aparicio, M.; Atkinson, B.; Brady, S.; Ciccarino, J.; Grosof, B.;

O’Connor, P.; Osisek, D.; Pritko, S.; Spagna R. and Wilson, L., “IBM

Intelligent Agent Strateg”y, IBM Corporation, (1995).

[6] Kostakos V., Taraschi C., “Agents”, May 7, 2001

[7] FIPA Web Site, http://www.fipa.org

[8] Iglesias, C.A. and González, J.C. “A Survey of Agent-Oriented Methodologies”

In Proceedings of the 5th International Workshop on Agent Theories,

Architectures and Languages (ATAL'98), LNAI n1555 - Springer Verlag,

Paris, France, July 1998, pp:317-330.

[9] Finin, T.; McKay, D. and McEntire, R., “KQML as an Agent Communication

Language”. In: Proc. 3rd Int. Conf. Information and Knowledge Management,

(Adam, N. R. ed.), ACM Press, 1994.

[10] The Agent Society Web Site, http://www.agent.org/

 86

http://campus.isikun.edu.tr/
http://library.isikun.edu.tr/
http://irdc.isikun.edu.tr/projects/campusonsms
http://www.fipa.org/
http://www.agent.org/

[11] W. Brenner, R. Zarnekow and H. Wittig. “Intelligent Software Agents:

Foundations and Applications.” Springer, 1998

[12] Chess, D.;Harrison, C. and Kershenbaum, A., “Mobile Agents: Are They a

Good Idea?”, 1997, pp. 25-47

[13] Birman, K. P. and van Renesse, R., “Reliable Distributed Computing with the

ISIS Toolkit.” IEEE Computer Society Press, 1994.

[14] IBM Corp., “Messaging and Queueing Technical Reference”, SC33-0850,

1993.

[15] McDermott, Dominic, “Is the Internet the Way For Teaching To Go

Forward?”, The Culture of Publishing, June 2001, Oxford Brookes University

Press

[16] Gilbert, Alan “The Virtual University”, The Virtual University Symposium, 21-

22 November 1996. The University of Melbourne, Melbourne.

[17] Open CourseWare Web Site, http://ocw.mit.edu

[18] EduTools Web Site, www.edutools.info

[19] SILVEIRA, Ricardo Azambuja, VICARI, Rosa Maria. “JADE - Java Agents

for Distance Education framework”. DEC 2001, 2001, Austin. DEC 2001. CD-

rom, 2001

[20] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “Jade, A Whitepaper”, exp -

Volume 3 - n. 3 - September 2003

[21] Michael Berger, Steffen Rusitschka, Dmitri Toropov, Michael Watzke, Marc

Schlichte, “Porting Agents to Small Mobile Devices –The Development of the

Lightweight Extensible Agent Platform”, exp - Volume 3 - n. 3 - September

2003

 87

http://ocw.mit.edu/
http://www.dutools.info/

[22] BlueJADE Project Web Site, http://sourceforge.net/projects/bluejade

[23] LGPL license, http://www.opensource.org/licenses/lgpl-license.php

[24] JADE Web Site, http://jade.tilab.com/

[25] Grundgeiger D., “Programming VisualBasic .NET”, O’Reilly Publication,

January 2002, p. 13-14

[26] Petroutsos E., “Mastering Visual Basic .NET”, Sybex , 2002

[27] Eastlake, D., Jones, P., “US Secure Hash Algorithm 1 (SHA1)” Network

Working Group, RFC: 3174, 2001

[28] Altendorf E., Hohman M., Zabicki R., “Using J2EE on a Large, Web-Based

Project”, IEEE Software, pp.81-89, March 2002

[29] Mitra N., “SOAP Version 1.2 Part 0: Primer”, W3C Recommendation, 2003

[30] Stallings, W., “Cryptograhy and Network Security” pp. 362, 2001

[31] Curbera F., et al. “Unraveling the Web Services Web: An Introduction to

SOAP, WSDL, and UDDI” IEEE Internet Computing, pp. 86-93, March, 2002.

[32] S. Hayes, “An Introduction to extreme Programming” Second International

Conference on eXtreme Programming and Agile Processes in Software

Engineering, Sardinia, 2001

[33] W.C. Wake, “The XP series: Extreme Programming Explored”, Addison-

Wesley, NJ, 2002

[34] Kelley, C., “The Waterfall Model”

http://www.jsc.nasa.gov/bu2/PCEHHTML/pceh.htm, 2000.

 88

http://sourceforge.net/projects/bluejade
http://www.opensource.org/licenses/lgpl-license.php
http://jade.tilab.com/

[35] McCormick M., “Programming Extremism” Communications of the ACM,

Volume 44, No. 6, 2001

[36] Yıldız M., “New Practices For Extreme Programming Applied In Campus On-

Line, A Large Web Based Application Development Project”, MS Thesis, Isik

University, January 2003

[37] Cox, Brad J., “Object-Oriented Programming, An Evolutionary Approach”,

Addison Wesley, NJ, 2001

[38] Martin J., Odell, J. J., “Object-Oriented Analysis and Design”, Prentice-Hall,

Englewood Cliffs, NJ. Pp241, 1998

[39] Booch, G., “Object-Oriented Analysis And Design With Applications”, 2nd Ed.

Benjamin Cummings. ISBN 0-8053-5340-2. pp.83, 1998

[40] Rumbaugh J., et al., “Object-Oriented Modeling and Design”, Prentice Hall,

NJ, 1997

[41] Shlaer S., Mellor S. J., “Object-Oriented Systems Analysis: Modeling the

World in Data”, Pp14, 1996

[42] Jacobson I., et al. “Object-Oriented Software Engineering - A Use Case Driven

Approach”, ACM Press/Addison Wesley, 1994

[43] Trowbridge D., Mancini D., Quick D., Hohpe G., Newkirk J., Lavigne D.,

“Enterprise Solution Patterns Using Microsoft .NET” Version 2.0, Microsoft

Press, December 2002

 89

APPENDIX A

DETAILS OF COURSE ON-LINE FUNCTIONS

A.1. Course ON-LINE Functions

Figure A.1. shows the main page of Course ON-LINE. Guest users may reach

to the course homepages using the “List of Courses” menu on the left side. Other

users reaches to their own interfaces by logging in to the system. All users can

conduct search on course homepages using the “Search” facility.

After instructor logs in, the left side menu customizes for that user and lists the

courses of that instructor. By clicking to the link of a specific course, instructor

reaches his/her own course’s homepage.

Figure A.1 Course ON-LINE main page

 90

A.1.1. Course Syllabus

The first page of each course is the “Syllabus” page. Instructors can view and

edit syllabus information on this page. Figure A.2. shows the syllabus page.

Some of the items in the syllabus come from Campus ON-LINE, so they are

read only (eg. Prerequisite Courses, Corequisite Courses). You can define textbook,

reference book of the course, assign teaching assistants to the course. You can define

custom course requirement using Other Requirements field. You can also define

course outline, course objectives and grading policy items.

Instructors can assign teaching assistants for the course and edit access

privileges for that teaching assistant to the specific Course ON-LINE functions for

that course. After the instructor grants access, that assistant may reach to the

instructor’s user interfaces by logging in to the system with his/her own username

and password.

If instructor has more than one sections of a particular course, he/she will see

an extra field named “Apply to Sections” at the bottom of each page. This field gives

him/her the opportunity to apply the syllabus to multiple sections of this course.

A.1.2. Assignments

Instructors can give assignments by uploading assignment files to the system,

and download and view students’ answers to the assignments. There are some

advanced features of this assignment facility. For example instructor can define a late

submission penalty for an assignment and system automatically calculates the

penalized grade for assignments which are submitted after assignment due date.

 91

Figure A.2 Syllabus Page

To add a new assignment, instructors are asked to supply some information in

the Add New Assignment form. Each assignment defined here should correspond to

an item in the Grading Scheme that was previously defined in the Syllabus Page.

Each grading scheme item can be found in the “Apply To” column of the “Add New

Assignment” form. Students will see instructor’s assignments from the course page

and will upload their homework files. To define valid file types that the students may

upload, instructor can use “Valid File Types” field. To allow students upload any

type of files, ‘all' must be chosen. To allow students to upload some file types, the

file extensions separating with commas should be entered. (eg. doc,xls).

Publishing an assignment is realized by following these steps:

• Before defining assignments, he/she should define grading policy scheme.

 92

• Instructor must define a name, upload a file, and select a due date for each

assignment.

• To apply a penalty to the assignment he/she must check Apply Rule

checkbox.

• To define valid file types for an assignment he/she should put commas

between file types (e.g. doc,xls).

• If instructor deletes a homework item, all information related to this

homework item will be lost (e.g. grades).

• If he/she is an instructor of more than one section of this course, instructor

may add the same assignment for other sections of this course by using Apply to

field as well.

Figure A.3 Assignments interface of the instructor

 93

A.1.3. Course Materials

Instructor can supply course materials by uploading files to the system, or

using the “Course Materials” page.

Instructor may upload course materials such as handouts, slides, etc. using this

page. Instructor can also delete the uploaded course materials by using the checkbox

near the material name and clicking the “Delete Selected” button. If an instructor is

tutoring more than one section of this course, he/she may add the same material for

other sections of this course by using “Apply to” field as well. Figure A.4. shows a

snapshot of Course Materials Page.

Figure A.4 Course Materials Page

 94

A.1.4. Web Resources

Instructor can supply links to different web resources using the “Web

Resources” page. He/she may add web page links related to the course by giving it a

title, explanation and url. He/she can also delete the web resources defined before by

using the checkbox near the title of the resource and clicking the “Delete Selected”

button. Figure 5.5. shows a snapshot of the Web Resources Page.

A.1.5. Annoucements

Instructor may add announcements related to his/her course by defining its

subject and content. He/she can also delete the announcements defined before by

using the checkbox near the title of the announcements and clicking the “Delete

Selected” button. If instructor tutors more than one section of this course, he/she may

add the same announcement for other sections of this course by using “Apply to”

field as well. Figure A.6. shows a snapshot of the Announcements Page.

Figure A.5 Web Resources Page

 95

A.1.6. Grading

Grading is one of the most important tools of Course ON-LINE. Instructor can

grade each work done in the course using this tool. After grading assignments,

quizzes, exams or attendances, overall grades are automatically calculated and

reported to the instructor; with various statistical information, like maximum and

minimum grades, averages and standard deviations.

Figure A.6 Announcements Page

Instructors enter grades for each item in their course and calculate overall

grades by using this interface. The grading policy items for the course will be listed

under the “Item List” part. Figure.A.7. shows the first page of the Grading Tool.

 96

Figure A.7 First Page of the Grading Tool

Using Enter Grades link, instructor reaches to the specific page of that grading

item to give students’ grades (Figure A.8.). If grades related to this grading policy

item are entered before, they are listed and all changes will be overwritten.

 Students can not see their grades until instructor clicks the submit button. If

instructor wants to apply a penalty to the student grade, he/she must check the

checkbox under the Apply Penalty heading of the table.

The other important parameter that can be defined in the Syllabus Page is the

“Grading Scheme”. In the grading scheme, instructor supplies the grading items and

their percentages. This scheme is required for giving assignment and grade

calculations.

To define a grading scheme, instructor should repeat supplying an item name

and give a percentage for that item. If he/she wishes to give a weight to course

 97

attendance, he/she should also enter a grading item with the name “Attendance” and

mark the attendance checkbox.

Using Overall Grades link instructor can view the overall grades of the students

(the weights of the item are applied to the grade) for this course. Instructor can view

overall grades of the class, maximum, minimum and average grades of each grading

policy item. Instructor can also sort the grades according to each grading policy item

and total in both descending and ascending order. (Figure A.9)

In the Letter Grades part, instructor may calculate and submit/save letter grades

of the course. Instructor must define the grading policy of the course in the Syllabus

Page, otherwise he/she will not be able to enter or calculate grades. If letter grades

are calculated before, they are listed and after recalculation they are overwritten.

Instructor can define lower limits for each letter grade and the overall grades are

automatically converted to letter grades. Instructor can make further arrangements on

the pre-calculated letter grades manually. (Figure A.10)

Figure A.8 Entering Grades for Each Grading Item

 98

Figure A.9 Viewing Overall Grades

Figure A.10 Letter Grades Conversion Tool

 99

Using the “Letter Grades” page, instructor can convert the overall grades to

letter grades and submit the final grades to Campus ON-LINE. These grades will

also be published in the students’ interfaces automatically.

A.1.7. Calendar

Instructor may add new events to the calendar or delete events from the

calendar. He/she can also list events according to time period in ascending or

descending order. To publsh a new calendar event, instructor must enter the Event

Title and Event Date fields. To delete and event instructor should check the

checkbox near the Event Title before clicking the Delete Selected button. If

instructor is a tutor of more than one section of this course, he/she may add the same

material for other sections of this course by using Apply to field as well. A snapshot

of course calendar is shown in Figure A.11.

A.1.8. Tools

Instructors can also supply custom web based tools related to the course using

the “Tools” page. These tools may be animations or simulations running on the web

(like Java applets or Flash animations). This function is added to the Course ON-

LINE to give flexibility to the instructor to use any kind of custom web based course

material in the course. (Figure A.12.)

A.1.9. Communication Forums

Communication is the one of the most important functions of a course

management software. It is very crucial for an instructor to communicate with the

students and other teaching staff during the course. Course ON-LINE supplies two

kinds of communication channels. One is the course forums. Instructors can open

and manage forum threads about their courses.

 100

Figure A.11 Course Calendar

Figure A.12 Tools Page

 101

After opening a new forum thread, students can view and reply to the

messages. Instructor can set a rule if he/she wants to check students' messages before

they are published in the students' forum pages. Or he/she may allow students to send

messages instantly without any pre-activation. To adjust these rules instructor uses

the "Forum Rules" tab. Instructor may also view and activate/deactivate existing

messages by clicking on the relevant message. Instructor may open the same forum

thread on multiple sections of this course by using “Apply to” checks. Figure A.13.

shows a snapshot of Forums pages.

A.1.10. Sending Batch E-Mails

Sending batch E-Mails is another communication channel supplied within

Course ON-LINE. Instructor can send batch e-mails to his/her teaching assistants and

students using this facility. Instructor can also define permanent groups for sending

e-mails. By defining those groups instructor can send batch e-mails to the mail

groups more easily. (Figure A.14.)

Figure A.13 Communication - Forums

 102

A.1.11. Class / Attendance Lists

Attendance handling is another facility of Course ON-LINE. Instructors can

enter the attendance information using “Class/Attendance Lists” page and this

information will be used in grade calculation if attendance has a grading weight

defined in the grading scheme.

A.1.12. Advanced Features

Course ON-LINE offers advanced features on management of the course

homepages. Coordination of course sections is one of these advanced features. If an

instructor owns several sections of a course, he can apply his actions to multiple

sections of a course using the “Apply to Sections” checkboxes. (Figure A.15)

Figure A.14 Communication – Batch E-Mail

 103

Figure A.15 Coordination of several sections

Another advanced feature of Course ON-LINE is the privacy management. In

the “Edit Privacy” page, instructors can define which functions of their course

homepage will be available for public use. (Figure A.16)

Figure A.16 Edit Privacy

 104

APPENDIX B

AGENT SOURCE CODES

B.1. Source Code of the GAIA Agent

import jade.core.*;

import jade.wrapper.*;

import java.sql.*;

import java.util.*;

import jade.core.behaviours.TickerBehaviour;

public class Gaia extends jade.core.Agent {

 /** Creates a new instance of Gaia */

protected void setup() {

 System.out.println("Gaia says : Gaia Started, creating a titan;");

 // Add the TickerBehaviour (period 3 sec)

 addBehaviour(new TickerBehaviour(this, 3000) {

 protected void onTick() {

 System.out.println("Agent "+myAgent.getLocalName()+":

tick="+getTickCount());

 DBConnector con = new DBConnector();

 Vector newAgent = con.getNewAgentInfo();

 int i = 0;

 while (i < newAgent.size()) {

 Vector tmpvec = (java.util.Vector) newAgent.get(i);

 String agentId = tmpvec.get(0).toString();

 System.out.println("New Agent is: "+agentId);

 // New Titan creation and mark to DB as started

 try {

 Object args[] = new Object[1];

 args[0]=agentId;

 jade.wrapper.PlatformController cont =

getContainerController();

 cont.createNewAgent("Titan_"+agentId, "Titan",

args).start();

 System.out.println("Gaia says : Titan created.");

 con.setNewAgentAsStarted(agentId);

 }

 catch (Exception ex) {

 ex.printStackTrace();

 105

 }

 i++;

 }

 if (i==0) {

 System.out.println("No New Agent request arrived");

 }

 }

 });

 }

}

B.2. Source Code of the Titan Agent

import jade.core.*;

import jade.wrapper.*;

import java.util.*;

import jade.core.behaviours.TickerBehaviour;

public class Titan extends jade.core.Agent {

 Vector agentMonitors;

 String studentName;

 String studentEmail;

 String monitoredCourses;

 String aid;

 /** Creates a new instance of Titan */

 public void setup() {

 aid = "";

 Object[] args = getArguments();

 if(args.length > 0) {

 aid = (String)args[0];

 }

 DBConnector con = new DBConnector();

 studentName = con.getStudentName(aid);

 studentEmail = con.getStudentEmail(aid);

 System.out.println("Titan says : I am agent of: "+studentName);

 addBehaviour(new TickerBehaviour(this, 5000) {

 protected void onTick() {

 String message;

 DBConnector con2 = new DBConnector();

 DBConnector con3 = new DBConnector();

 agentMonitors = con2.getAgentMonitorInfo(aid);

 106

 monitoredCourses = con2.getMonitoredCourses(aid);

 int i = 0;

 while (i < agentMonitors.size()) {

 Vector tmpvec = (Vector) agentMonitors.get(i);

 String functionId = tmpvec.get(0).toString().trim();

 String lastItem = tmpvec.get(1).toString().trim();

 message =

con3.checkCourseOLFunction(functionId,aid,lastItem,monitoredCourses);

 if (message.length()>0) {

 System.out.println(message);

 ms.SendMail sm = new ms.SendMail(studentEmail,

"CourseOL Agent Notification", message);

 }

 i++;

 }

 if (con2.isAgentDead(aid)) {

 kill();

 }

 }

 });

 }

 public void kill() {

 System.out.println("I am dead");

 this.doDelete();

 }

}

B.3. Source Code of the GAIA Agent Data Layer

import java.sql.*;

import java.util.*;

public class DBConnector {

 public void DBConnector() {

 }

 public Connection getConnection () {

 Connection con;

 try {

 Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver");

 107

 con =

DriverManager.getConnection("jdbc:microsoft:sqlserver://irdc:1433;DatabaseNam

e=courseonline", "dbuser", "dbuserpassword");

 return con;

 }

 catch (ClassNotFoundException ce) {

 System.out.println("Class Not Found");

 return null;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public Connection getConnectionTOCOL () {

 Connection con;

 try {

 Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver");

 con =

DriverManager.getConnection("jdbc:microsoft:sqlserver://poseidon:1433;Databas

eName=CommonDB", "dbuser", "pass");

 return con;

 }

 catch (ClassNotFoundException ce) {

 System.out.println("Class Not Found");

 return null;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public boolean releaseConnection (Connection con) {

 try {

 con.close();

 return true;

 }

 catch (SQLException se) {

 return false;

 }

 }

 public Vector getNewAgentInfo () {

 Connection con;

 DBConnector connector = new DBConnector();

 Vector newAgent = new Vector();

 108

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT * FROM Agent_Log WHERE

isStarted=0");

 while (rs.next()) {

 Vector row = new Vector();

 row.add(rs.getString(1));

 row.add(rs.getString(2));

 newAgent.add(row);

 }

 con.close();

 return newAgent;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public boolean setNewAgentAsStarted(String aid) {

 Connection con;

 DBConnector connector = new DBConnector();

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 stmt.executeUpdate("UPDATE Agent_Log SET isStarted=1 WHERE

agent_id='"+ aid +"'");

 con.close();

 return true;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return false;

 }

 }

 public Vector getAgentMonitorInfo(String aid) {

 Connection con;

 DBConnector connector = new DBConnector();

 Vector agentMonitor = new Vector();

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT fnid,

ISNULL(last_found_id,0) AS lastid FROM Agent_Monitor WHERE agent_id = '"+ aid

+"'");

 while (rs.next()) {

 Vector row = new Vector();

 109

 row.add(rs.getString("fnid"));

 row.add(rs.getString("lastid"));

 agentMonitor.add(row);

 }

 con.close();

 return agentMonitor;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public String getStudentName(String aid) {

 Connection con;

 DBConnector connector = new DBConnector();

 String stuName="";

 String sql="";

 try {

 con = connector.getConnectionTOCOL();

 Statement stmt = con.createStatement();

 sql = "SELECT * FROM Student WHERE StuID = '"+ aid +"'";

 ResultSet rs = stmt.executeQuery(sql);

 while (rs.next()) {

 stuName = rs.getString("Stu_FName") + " " +

rs.getString("Stu_LName");

 }

 con.close();

 return stuName;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public String getStudentEmail(String aid) {

 Connection con;

 DBConnector connector = new DBConnector();

 String stuEmail="";

 String sql="";

 try {

 con = connector.getConnectionTOCOL();

 Statement stmt = con.createStatement();

 sql = "SELECT Stu_Univ_E_Mail FROM Student_Address WHERE StuID =

'"+ aid +"'";

 ResultSet rs = stmt.executeQuery(sql);

 110

 while (rs.next()) {

 stuEmail = rs.getString("Stu_Univ_E_Mail");

 }

 con.close();

 return stuEmail;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public String getMonitoredCourses(String aid) {

 Connection con;

 DBConnector connector = new DBConnector();

 String courseList="";

 String sql="";

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 sql = "SELECT courseid,crssection FROM Agent_Monitoring_Courses

WHERE agent_id = '"+ aid +"'";

 ResultSet rs = stmt.executeQuery(sql);

 while (rs.next()) {

 courseList += "(courseid = '" + rs.getString("courseid") +

"' AND crssection = '"+ rs.getString("crssection") +"') OR ";

 }

 if (courseList.length() > 0) {

 courseList = courseList.substring(0,courseList.length() - 4);

 }

 con.close();

 return courseList;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public String checkCourseOLFunction(String functionId,String aid, String

lastItem,String monCourses) {

 Connection con;

 DBConnector connector = new DBConnector();

 String message="";

 String sql="";

 String id="";

 if (functionId.equals("2")) {

 sql = "SELECT ISNULL(MAX(assignmentid),0) as id FROM Assignments

 111

WHERE assignmentid > "+ lastItem +" AND (" + monCourses + ")";

 message = "Assignment";

 }

 if (functionId.equals("3")) {

 sql = "SELECT ISNULL(MAX(id),0) as id FROM Course_Materials WHERE

id > "+ lastItem +" AND (" + monCourses + ")";

 message = "Course Material";

 }

 if (functionId.equals("4")) {

 sql = "SELECT ISNULL(MAX(id),0) as id FROM WebResources WHERE id

> "+ lastItem +" AND (" + monCourses + ")";

 message = "Web Resource";

 }

 if (functionId.equals("5")) {

 sql = "SELECT ISNULL(MAX(announcementid),0) as id FROM

Announcements WHERE announcementid > "+ lastItem +" AND (" + monCourses +

")";

 message = "Announcement";

 }

 if (functionId.equals("6")) {

 sql = "SELECT ISNULL(MAX(id),0) as id FROM Grades WHERE stuid =

'"+ aid +"' AND id > "+ lastItem +" AND (" + monCourses + ")";

 message = "Grade";

 }

 if (functionId.equals("7")) {

 sql = "SELECT ISNULL(MAX(eventid),0) as id FROM Calendar WHERE

eventid > "+ lastItem +" AND (" + monCourses + ")";

 message = "Calendar";

 }

 if (functionId.equals("8")) {

 sql = "SELECT ISNULL(MAX(toolid),0) as id FROM Tools WHERE toolid

> "+ lastItem +" AND (" + monCourses + ")";

 message = "Tool";

 }

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(sql);

 if (rs.next()) {

 id = rs.getString("id");

 }

 con.close();

 if (Integer.parseInt(id) > 0) {

 connector.setFnIdMonitored(id,aid,functionId);

 message = "New " + message + " detected by your Titan Agent.

Please check Course ON-LINE";

 }

 else {

 112

 message = "";

 }

 return message;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return null;

 }

 }

 public boolean setFnIdMonitored(String id,String aid,String functionId) {

 Connection con;

 DBConnector connector = new DBConnector();

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 stmt.executeUpdate("UPDATE Agent_Monitor SET last_found_id='"+ id

+"' WHERE agent_id='"+ aid +"' AND fnid="+ functionId);

 con.close();

 return true;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return false;

 }

 }

 public boolean isAgentDead(String id) {

 Connection con;

 DBConnector connector = new DBConnector();

 boolean res=true;

 try {

 con = connector.getConnection();

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT * FROM Agent_Log WHERE

agent_id='"+ id +"'");

 if (rs.next()) {

 res=false;

 }

 con.close();

 return res;

 }

 catch (SQLException se) {

 System.out.println(se.getMessage());

 return false;

 }

 }

 113

}

B.4. Source Code of E-Mail API Used by GAIA

package ms;

import java.util.*;

import javax.mail.*;

import javax.mail.internet.*;

public class SendMail {

 private String to;

 private String message;

 private String subject;

 /** Creates a new instance of SendMail */

 public SendMail(String to, String subject, String message) {

 this.to = to;

 this.message = message;

 this.subject = subject;

 this.sender();

 }

 public void sender () {

 //Create Properties

 Properties props = new Properties();

 props.put("mail.transport.protocol", "smtp");

 props.put("mail.smtp.auth", "true");

 props.put("mail.debug", "smtp");

 props.put("mail.smtp.host", "irdc.isikun.edu.tr");

 props.put("mail.from", "courseonline@irdc.isikun.edu.tr");

 props.put("mail.user", "courseonline@irdc.isikun.edu.tr");

 //Create Authenticator

 //Create JavaMail Session

 Session ses = Session.getDefaultInstance(props, new

SMTPAuthenticator());

 //Make message

 try {

 MimeMessage msg = new MimeMessage(ses);

 InternetAddress from = new

InternetAddress("courseonline@irdc.isikun.edu.tr");

 114

 from.setPersonal("Course ON-LINE <NO-REPLY>");

 InternetAddress to = new InternetAddress(this.to);

 msg.setFrom(from);

 msg.setRecipient(MimeMessage.RecipientType.TO, to);

 msg.setSubject(this.subject);

 msg.setContent(this.message, "text/plain");

 Transport trans = ses.getTransport();

 trans.connect();

 trans.send(msg);

 }

 catch (MessagingException mx) {

 mx.printStackTrace();

 }

 catch (java.io.UnsupportedEncodingException uue) {

 uue.printStackTrace();

 }

 }

 public String test() {

 return this.to;

 }

 class SMTPAuthenticator extends Authenticator {

 public PasswordAuthentication getPasswordAuthentication() {

 String userid = "courseonline@irdc.isikun.edu.tr";

 String password = "smtppass";

 return new PasswordAuthentication (userid, password);

 }

 }

}

 115

C. CD INCLUDING DOCUMENTS AND APPLICATION

SOURCE CODES

 116

