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AUTOMATIC SPEECH RECOGNITION SYSTEM FOR TURKISH SPOKEN 

LANGUAGE 

 

Abstract 

 

 

The transmission and storage of speech sounds is possible for decades. In addition by using 

signal processing techniques, it is also possible to process speech signals. By using time 

and frequency analysis of speech signal and several machine learning algorithms, it is 

possible to build a system which is used to recognize spoken words. Such systems are 

called Automatic Speech Recognition systems. 

In our work, we have used the Automatic Speech Recognition system for Turkish spoken 

language which has built by BUSIM speech group. However, the output of the recognizer is 

the list of spoken words. Even for humans it is a very hard task to understand a text without 

punctuation symbols. Hence to build more complex recognizer whose goal to perform topic 

segmentation and topic summarization, the output of ASR should be divided into sentences 

at first. 

Our goal is to build a system which performs the sentence segmentation. In our work we 

have used ASR system to obtain word level and phoneme level time marks and by using 

that time marks with the audio files, we have extracted prosodic features, where the 

prosodic properties of speech contains information about the punctuation in the text, which 

is not available at the output of ASR system.  

AP

PE

ND

IX 

C 

 



iii 

 

 

 

 

 

 

TÜRKÇE DİLİ İÇİN OTOMATİK KONUŞMA TANIMA SİSTEMİ 

 

 

 

Özet 

 

Uzun yıllardan beri ses ve konuşmaların saklanması ve iletilmesi mümkündür. Ayrık 

zamanlı ve sürekli zamanlı işaret işleme yöntemleri sayesinde ses ve konuşma işaretleri de 

işlenebilmektedir. Bununla beraber, eğitilebilen algoritmalar kullanılarak Otomatik 

Konuşma Tanıma ve Otomatik Konuşmacı tanıma sistemleri de geliştirilebilmektedir. 

Bu çalışmada Boğaziçi Üniversitesi’nde bulunan “BUSİM speech group” tarafından 

geliştirilmiş, Türkçe dili için otomatik konuşma tanıma sistemi kullanılmıştır. Bu sistem; 

konuşmacıların söylediği kelimeleri bir liste halinde dökebilmektedir. Ancak; bir insan için 

bile noktalama işaretlerinden yoksun bir metinden bilgi alabilmek oldukça zordur. Bu 

sebepten dolayı konu bölütleme veya konu özetleme gibi daha ileri uygulamaları 

yapabilmek için, öncelikle cümle bölütleme işleminin yapılması gerekmektedir. 

Dil bilgisine uygun bir yazılı metindeki noktalama işaretleri, diksiyonda vurgu ile 

belirtilmektedir. Başka bir deyişle bu özellikler konuşma işaretinin bürünsel özellikleridir. 

Amacımız, Otomatik Konuşma Sisteminin çıktıları ile ses işaretinin bürünsel özelliklerini 

kullanarak cümle bölütlemesini otomatik yapabilen bir sistem geliştirmektir. 
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Chapter 1 

 

Introduction 

 

Since the beginning of human civilization, speech was the most widely used 

communication tool by humans. However by the development of the civilization and 

technology humans started to use mails to communicate, furthermore by the development 

of the technology telegraph became most widely used communication system.  

 

On the other hand scientists were studying how to capture sound and speech waveforms. In 

the late 1850’s Frenchman Édouard-Léon Scott de Martinville has invented the 

phonautograph [1], which is the earliest known device for printing the sound waves onto a 

roll of paper. In the following years phonograph by Thomas Edison and gramophone by 

Emile Berliner has developed and by the use of those machines the printed waveforms of 

phonautograph has recovered. In early 1900’s electrical and magnetic sound recording 

systems has also developed by the scientists. In the following years by the invention of 

telephone by Alexander Graham Bell, the audio signal started to be transmitted.  

 

Today, speech signals are converted to an electrical signal by using microphone, and it may 

processed or stored by using digital signal processing methods then reconstructed and heard 

by using headphones or loudspeakers. In addition the facility of storing and transmitting 

speech signals, the speech recognition applications can be performed.  

 

There are several examples to Automatic Speech Recognition (ASR) systems such as 

Isolated Word Recognition (IWR) systems and Continuous Speech Recognition (CSR) 

systems. An example of a basic ASR system is Isolated Digit Recognizer, which recognizes 

http://en.wikipedia.org/wiki/%C3%89douard-L%C3%A9on_Scott_de_Martinville
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the utterance of digits spoken by the speaker. On the other hand a complex ASR system 

recognizes the words in a spoken language. However the list of recognized word utterance, 

which is the output of the ASR system, is not enough to understand the meaning of the 

spoken message even for the humans. Hence by using prosodic features, we have 

developed a system which can be trained and used to detect sentence boundaries. The 

sentence boundary detection is the first step of the further studies such as topic 

segmentation and topic summarization. 

 

1.1 The Overview of the Thesis 

 

At the beginning of Chapter 2, the speech chain and the anatomical structure and models of 

human sound production and sound perception of human has discussed. In Chapter 3, the 

theoretical background of speech signal processing is given. In Chapter 4 the speech 

recognition problem, approaches of ASR, complexity of the ASR system, building a speech 

recognition system and performance evaluation of speech recognizers has introduced. In 

Chapter 5, the speech recognition system modeling by using Dynamic Time Warping 

(DTW) and Hidden Markov Modeling (HMM) has introduced and also the Hidden Markov 

Model Toolkit (HTK) has described with applications used in this thesis. In Chapter 6, the 

definition of prosody, the reason of using prosodic features, the prosodic features and Mary 

Harper’s prosodic feature extraction tool on Praat has described. In Chapter 7, usage of a 

supervised machine learning algorithm icsiboost which is based on AdaBoost has explained 

in order to train a model which detects sentence boundaries. Finally Chapter 8 includes the 

tests and conclusion of the thesis. 
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Chapter 2 

 

Communication of Human 

 

2.1 The Speech Chain 

 

Speech is used to communicate information from a speaker to a listener. There are several 

levels which are related with the steps of speech production, speech perception and speech 

chain such as linguistic level, physiological level and acoustic level which is shown at 

Figure 2.1 [2].In addition Figure 2.2 [2] shows the block diagram representation of the 

speech chain. 

 

At the beginning of the whole process, a message or an idea has formed on speaker’s brain. 

Initially we can represent that message as text, where text is the combination of letters, i.e. 

text symbols, where an example shown at Figure 2.3 for Turkish and English spoken 

languages with phonemes. This step is shown at Figure 2.2 [2] at the left block of the 

discrete input block.  

 

In the following step, the text symbols should be converted into a symbolic representation 

of the sequence of sounds corresponding to the spoken version of the message, i.e. phonetic 

symbols. This step is related with linguistic level of speech chain.  
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Figure 2.1  The speech chain 

 

The text symbols are represented by alphabet. There are many kinds of widely used modern 

alphabets such as Latin, Greek, Hebrew and Arabic alphabets. Either in Turkish or in 

English languages, Latin alphabet is used. On the other hand, the phonetic symbols are 

represented by International Phonetic Alphabet (IPA), which is defined as an alphabetic 

system of phonetic notation and based preliminary on Latin alphabet and used mostly in 

linguistics and phonetics. In addition those phonetic symbols are labeled using computer-

keyboard-friendly code called ARPAbet (Advanced Research Project Agency), which does 

not require special fonts and is thus more convenient for computer applications, so that is 

used by mostly engineers and software developers.  

 

In spite of there is difference between alphabet and ARPAbet for English language, i.e. 

there are difference between phoneme and letter transcriptions of a word. However the text 

symbols and phonetic symbols are same at Turkish language. In Turkish, text symbols are 

equivalent to the phonetic symbols [3]. Figure 2.3 shows an example which denotes the 

spoken and written words in Turkish and English [32] languages. 
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Figure 2.2  Block diagram representation of the speech chain 

 

At the next step speaker uses his/her vocal tract system to generate the speech. This step is 

called physiological level of the speech chain, which is shown at Figure 2.2 first and second 

blocks of continuous input part. The speaker uses his/her neuro-muscular controls which 

are the combination of the tongue, lips, teeth, jaw and velum and articulatory motions to 

obtain sound of the desired spoken message. And finally sound waves i.e. acoustic 

waveforms are propagate through the transmission channel which is called the acoustic 

level, which has shown at Figure 2.2. 

 

Afterwards the sound wave i.e. acoustic wave reaches to the both listeners and speakers 

ears. The continuous output step in Figure 2.2 represents the Physiological level of listener 

side in Figure 2.1. Furthermore, the speaker also captures his/her own speech as feedback. 

Hence we can assume that in this step speaker is also becomes a listener while hearing 

his/her own speech. The spectrum analysis and feature extraction processes starts at the 

listener side. In this step, the acoustic wave is converted to electrical signals and those 

electrical signals are delivered to brain by neurons. 
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Figure 2.3  Turkish and English spoken and written words for given examples. The upper side of 

the figure shows Turkish and the down side shows English alphabet and ARPAbet representation of 

the given words 

 

Finally, at the discrete output step which is shown at Figure 2.2 and represents the linguistic 

level at Figure 2.1, the electrical signal which is delivered to the brain by neurons, is 

analyzed in order to extract phonemes, words and sentences, and then the listener 

understands the message by his/her semantics knowledge. 

 

In the following chapters, the steps of the listener side such as spectrum analysis, feature 

extraction, language translation processes will be discussed more detailed with computer 

applications but first in this chapter we will focus on human speech production and 

perception. 
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2.2 The Process of Human Speech Production 

 

In this section and following section, the physiological level of speech chain either speaker 

or listener side will be explained briefly. In this section we will focus on human vocal tract 

system. Figure 2.4 shows the human vocal tract system schematically [4]. The human vocal 

tract and human speech production explained below [2]. 

 

 

Figure 2.4  Human vocal tract system 

 

 

The human vocal tract system starts at vocal cords, or glottis, which takes place under 

Esophagus in Figure 2.4 and ends at the lips. The average length of male vocal tract is 

approximately 17-17.5 cm and the cross sectional area of the vocal tract is 20 cm
2
. The 

region between nostrils, i.e. nose holes and velum, where velum is near nasal pharynx at 

Figure 2.4 is defined as nasal tract. 

 

The procedure of speech production starts with the entrance of air to the lungs which is 

known as normal breathing. Generally there is neither speech nor sound produced at this 

step. The vocal cords are tensed in order to speak or produce sounds.  
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While the air inside the lungs is expelled, the vocal cords vibrate by Bernoulli-Law 

variations of air pressure in the glottis. The glottis converts the air into quasi-periodic 

pulses by opening and closing. The quasi-periodic pulses are frequency-shaped while 

passing through the Pharynx, mouth cavity and nasal cavity. Finally the sound is 

determined by the positions of the jaw, tongue, velum, lips and mouth. 

 

 

Figure 2.5a Schematic view of overall speech production mechanism 

 

Figure 2.5a [5-6] shows a schematic model of speech production mechanism of human. As 

described above, at first the air is transmitted into the trachea and vocal cords by muscle 

force. If the vocal cords are tensed, quasi-periodic or voiced speech sounds are obtained 

such as /a/, /e/, etc. In the case of relaxed vocal cords, the air flow hits a constriction in the 

vocal tract. If the constriction is partial, then unvoiced sounds such as initial sounds in the 

corresponding words /show/, /say/ is produced. If the constriction is full, there will be no 

voice until the pressure on constriction suddenly released.  
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In that case a brief transient sounds such as initial sounds at the beginning of words /cat/, 

/talk/, and /pressure/ are obtained [2].  Figure 2.5b shows another schematic diagram of 

human speech production mechanism. [2-7]. 

 

 

Figure 2.5b Schematic view of overall speech production mechanism 

 

2.3 The Process of Human Hearing and Perception the Sound 

 

In the previous section, the anatomy and basic models of speech production mechanism of 

human, which is the physiological level of speech chain in speaker side. Below, the 

physiological level of listener side, i.e. the human perception of sound is described. In 

addition it is well known that speaker also becomes listener while he/she hears his/her 

speech as feedback.  

At the following, the anatomy of ear will be described first afterwards the range of human 

hearing will be given and finally the perception of sound will be discussed. 

 

 

 2.3.1 Anatomy and Function of the Ear 

 

The whole hearing process i.e. the function of the ear is called as auditory system. The 

input of human auditory system is the acoustic signals which have physical intensity and 

frequency attributes, and the output is perceived sound, where those are called 
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psychophysical observations. The intensity of the acoustic signal is perceived as loudness 

and the frequency of the signal is perceived as frequency. The auditory system divides into 

three parts such as; acoustic to neural conversion, neural transduction and neural 

processing.  

 

 

Figure 2.6  Schematic diagram of human ear. Hallowell and Silverman et. al. 1970. 

 

 

The overview of whole process is, at first the acoustic energy of acoustic signals effects 

drum membrane and drum membrane makes periodic movements. Those periodic 

movements are delivered to inner ear via middle ear. The inner ear converts those periodic 

movements into neural signals and neural signals are delivered to brain and finally brain 

processes those neural signals [8]. 

 

The human ear, shown at Figure 2.6 [9-10], divides into three parts such as outer ear, 

middle ear and inner ear. The outer ear starts at auricle of the ear and ends at drum 

membrane. The middle ear is starts at the drum membrane and ends at the end of 

Eustachian tube. Finally the inner ear is formed by semicircular canals and cochlea. 
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The Auricle picks as much as possible acoustic energy and delivers into external auditory 

canal. The length of auditory canal is approximately 3 cm and it delivers captured acoustic 

energy to the drum membrane. The outer side of drum membrane conducts with air and 

inner side of drum membrane conducts to the bones of middle ear. Because of the structure, 

the drum membrane cannot deliver the vibrations in the air linearly. 

 

The middle ear is formed by three bones which are called malleus, incus and stapes, and 

Eustachian tube. The Eustachian tube expels the exudates inside middle ear and balances 

air pressure between inner side and outer side of drum membrane. The role of bones is to 

compensate the pressure of vibrations delivered to inner ear and protects nerve cells of 

inner ears.  

 

The inner ear is formed by semicircular canals, which balances human body, and the 

cochlea, which converts sound pressure signals from the outer ear into electrical impulses. 

The cochlea is the most important organ in sound perception. The cochlea has snail-like 

structure and the length of the snail structure is approximately 3 cm if it is opened through a 

line. The periodic movements which are delivered by outer ear, reaches to the cochlea. The 

basilar membrane which is a part of cochlea includes 30.000 inner hair cells. The basilar 

membrane analyses the captured periodic movements spectrally, in a non-uniform 

frequency scale. Finally inner hair cells convert mechanical vibrations into neural signals.  

 

The frequency of captured sound is inverse proportional to wavelength of the captured 

sound, and the sound reaches to a sequence of inner hair cells in a range where the length 

and location of the range is related with wavelength of the sound. Hence the frequency 

information of a sound is coded as spatial position of induced neurons of basilar membrane 

as shown at Figure 2.7 [3, 8, 11]. 

 

2.3.2 The Perception of Sound 

 

In the previous section, the human ear i.e. human auditory system has described. In this 

section we will focus on perception of the sound by humans.  
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Initially we will describe the basilar membrane mechanics. Then we will define bark scale, 

which is used to model captured frequencies of sound. Then we will define the ranges of 

human hearing in terms of the intensity and frequency of the sound, and finally we will 

define the loudness level in terms of phones and pitch. 

 

 

 

Figure 2.7  Frequency perception of basilar membrane. “A” shows the cochlea. “B, C and D” shows 

the perceived sounds spatially according to their frequencies 

 

2.3.2.1 Basilar Membrane Mechanics 

 

The sound waves propagate through air forces the drum membrane to vibrate coherently 

with its own frequencies. The coherently vibrations are transmitted to perilymph liquid and 

it vibrates a certain region of basilar membrane [8]. There exists inner hair cells (IHC) 

connected along the whole basilar membrane inside the cochlea. The structure of basilar 

membrane is analyzed at [12-15] and summarized at [2]. According to that studies the 

following important findings about basilar membrane is given below. 
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At first, the IHCs are distributed along the basilar membrane. IHCs are motion-to-neural 

converters, i.e. they convert the captured motion on corresponding location of basilar 

membrane to neural signals, where different frequencies excites different points alone the 

basilar membrane.  

 

Each of the IHCs is connected to their corresponding 10 nerve fibers. The thicknesses of 

those 10 fibers are different. High motions are transmitted via thinner fibers and lower 

motions are transmitted via thicker fibers. The mechanical realization of basilar membranes 

is thought as non-uniform filter banks, i.e. cochlear filters. Each filter in the bank of filters 

has their own frequencies and bandwidths. The relation of the center frequency and 

bandwidth is that, while the center frequency is rising, the bandwidth of corresponding 

filter rises up exponentially. More details about filter bank representation and the range of 

human hearing is given below. 

 

 

2.3.2.2 Critical Bands and Bark Scale 

 

Figure 2.8 shows an idealized version of an equivalent basilar membrane filter bank. There 

are ideal band pass filters are shown, where each line represents the borders of each filter 

bank. A healthy human ear can percept the frequencies between approximately 15 Hz to 20 

kHz in general and that frequency range is divided into 25 idealized critical band-pass 

filters. 

 

The relation between the center frequency of each ideal band pass filters and bandwidth of 

corresponding ideal band pass filters are shown at Equation 2.1 [2]. Where    represents the 

center frequency of an ideal band pass filter and     represents the bandwidth of 

corresponding ideal band pass filter. 

 

         [     (
  
    

)
 

]

    

 
 

 (2.1) 
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The band pass filters according to the critical band theory of hearing are defined as ideal 

filters at above. However in reality the filters are not ideal. Overlaps between the filters 

shown at Figure 2.8 will occur in reality. Similarly, the IHC groups in basilar membrane 

according to a selected center frequency cannot vibrate alone. The adjacent IHCs will also 

vibrate with them [2]. A good example about the movements of IHCs is given at [8]. The 

IHCs are thought as grains in a grain farm, and the center frequency    of acoustic sound is 

thought as a small wind which affects only a certain area of the farm. The grains which are 

at the center of the affected area will move very fast, while going through the borders of the 

selected area, the movements of grains will be slower. However the grains which are near 

the borders of the area will also move slowly.  

 

 

 

Figure 2.8  Schematic representation of band pass filters according to the critical band theory of 

hearing 
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Recall that the IHCs are distributed along the basilar membrane and each of the IHCs are 

connected to 10 fibers with different thickness. Hence the center frequency of a captured 

sound is detected the location of moving IHCs and location of the IHCs which has the 

fastest movement. 

 

Previously we have also mentioned that the perceivable frequency ranges by human has 

divided into 25 idealized critical band-pass filters which are shown at Figure 2.8. The Bark 

Scale is used to index those idealized critical band-pass filters such as, the lowest center 

frequency and corresponding band pass filter is indexed with a value z=1, and the other 

filters are indexed as increasing the value of “z” while going through to higher frequencies. 

Table 2.1 shows the Bark Scale. The neural outputs of cochlea can be modeled 

mathematically. The Bark Scale is often used to transform uniform frequency analysis 

using FFT into Bark Scale spectrum in such models. [2, 17-20] 

 

2.3.3.3 The Range of Human Hearing 

 

Sound is defined as variations of air pressure that propagate as waves through air or media 

although; hearing is the ability to sense and process the sound [2]. However inherently like 

all systems, human sound perception system has specific limits. In other words humans 

cannot percept all of regular air pressure vibrations as sound.  The range of sounds that can 

be percept by humans is defined by two criterions such as the frequency of the sound and 

the intensity of the sound. The intensity of the sound will be defined later however we can 

define the limits of hearing in terms of frequency and intensity.  As mentioned before and 

shown at Figure 2.9 [45], humans can percept sounds which has frequency between 15 Hz 

to 20 kHz in general. The sounds which as frequency under 15 Hz are defined as infrasound 

and the sounds which as frequencies greater than 20 kHz are defined as ultrasounds. 

Humans cannot percept ultrasounds but some of animals for instance dogs and vespertilian 

bats can percept those sounds. 
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However to percept a sound, the sound should be not only in suitable frequency range but 

also it has a suitable intensity. Human can percept sounds between approximately 10
-12

 

W/m
2 

and 10 W/m
2
. Equivalently the range is 0 dB to 120 dB, where the upper limit is 

defined as pain threshold. 

 

z Fu, Fl Fc z     Z Fu, Fl Fc z     

Bark Hz Hz Bark Hz Bark Hz Hz Bark Hz 

0 0    12 1720    

  50 0.5 100   1850 12.5 280 

1 100    13 2000    

  150 1.5 100   2150 13.5 320 

2 200    14 2320    

  250 2.5 100   2500 14.5 380 

3 300    15 2700    

  350 3.5 100   2900 15.5 450 

4 400    16 3150    

  450 4.5 110   3400 16.5 550 

5 510    17 3700    

  570 5.5 120   4000 17.5 700 

6 630    18 4400    

  700 6.5 140   4800 18.5 900 

7 770    19 5300    

  840 7.5 150   5800 19.5 1100 

8 920    20 6400    

  1000 8.5 160   7000 20.5 1300 

9 1080    21 7700    

  1170 9.5 190   8500 21.5 1800 

10 1270    22 9500    

  1370 10.5 210   10500 22.5 2500 

11 1480    23 12000    

  1600 11.5 240   13500 23.5 3500 

12 1720    24 15500    

  1850 12.5 280      

 

Table 2.1  Fu, Fl represents upper and lower frequencies of critical bandwidths 

    centered at Fc. [2.1,15] 
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Figure 2.9  Ranges of human hearing 

 

 

2.3.3.4 The Intensity and Intensity Level of Sound 

 

The sound is combined by the superposition of varying sinusoidal signals, so sound 

pressure is related with pressure of sinusoidal waves propagates through the space.  The 

sound pressure is much smaller when compared with atmospheric pressure. The intensity of 

sound can be measured physically as intensity level (IL) and sound pressure level (SPL). 

The acoustic intensity is defined as average flow of energy, i.e. power, through a unit area 

measured in Watts/m
2
. The threshold of hearing is measured as 10

-12
 W/m

2
 and defined as 

reference point I0. The intensity level (IL) of a sound is measured as logarithmic ratio with 

respect to I0. The mathematical representation of intensity level is shown at Equation 2.2. 

        (
 

  
)   

 

(2.2) 

 

The sound pressure level (SPL) is defined as logarithmic ratio of intensity P
2
 of the sound 

which defined in terms of sinusoidal sound wave amplitude P travelling through space to 
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the amplitude of the hearing threshold intensity,        
              at room 

temperature and standard pressure. Equation 2.3 shows the mathematical representation of 

SPL. Note that in general SPL is used widely [2]. 

 

         (
  

  
 )       (

 

  
)    

 

(2.3) 

 

The range of human hearing in terms of intensity level was mentioned while defining the 

ranges of human hearing. We can divide the total range into sub ranges as shown at Table 

2.2 [2]. 

 

SPL (dB) Sound Source SPL (dB) Sound Source 

170 Pain 80 Blow Dryer 

160 Jet Engine – close up 70 Noisy Restaurant 

150 Artillery Fire 60 Conversation Speech 

140 Rock Concert 50 Office Background Noise 

130 22 Caliber Rifle 40 Quiet Conversation 

120 Thunder 30 Whisper 

110 Subway Train 20 Rustling Leavers 

100 Power Tools 10 Breathing 

90 Lawn Mower 0 Threshold of Hearing 

 

Table 2.2  SPLs for a range of sound sources. 

 

 

 

2.3.3.5 Loudness Level 

 

Previously we have defined the intensity level of the sound and at Table 2.2 we have shown 

some examples about the intensity level of some sound sources. However the loudness 

level (LL) of a sound is not directly proportional with only the sound pressure level (SPL) 

of a sound. Suppose that we have a sound which has 1 kHz frequency and 60 dB intensity 
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level. If we fix the SPL and reduce the frequency of the sound slowly, as shown at Figure 

2.10 with horizontal line, we will sense that the loud of the sound is descending, 

furthermore if we reduce the frequency to 30 Hz, we will not hear the sound.  

 

On the other hand, we may fix the SPL of a 1 kHz sound to 60 dB as a reference sound. 

Then if we tune the loudness of a second sound which has a center frequency 125 Hz 

according to the reference sound, at the beginning we may adjust the SPL of the second 

sound as 60dB but we will sense that the loudness of two sounds are not equal, so we will 

increase the SPL of the second sound until 80 dB, which has shown at Figure 2.10 with 

vertical line, and we will sense that both sounds has equal loudness level [8]. Hence, we 

should define the loudness level not only as a function of SPL but also the frequency of the 

sound. The loudness level (LL) of a tone is defined as the IL or SPL of the sound at 1 kHz 

[2]. Therefore the loudness level (LL) is defined with phons. Figure 2.10 [46] shows the 

phon curves, where each of the phon curves are depends on both frequency (Hz) of the 

sound and SPL (dB) of the sound. 

 

 

 

Figure 2.10 Loudness Level (LL) Curves. 
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2.3.3.6 Pitch 

The frequency of a sound, which is an objective quantity, is percept by human as pitch of 

the sound and that is a subjective quantity it implies that the pitch of the sound is highly 

correlated with the frequency of the sound. In Figure 2.7, the distribution of IHC’s and the 

frequency perception regions in cochlea has shown. The unit of the pitch is measured by 

Mels where the word “mel” is derived from the word “melody”[2]. The way that 

researchers have related the frequency of a sound with pitch of sound was [2], at the first 

1000Hz is adjusted to 1000mels for normalization purposes, then it is asked to several 

respondents to adjust the frequency of a second tone until it has half the pitch of the first 

tone. By performing similar tasks with many respondents, the relation in Equation 2.4 

obtained between pitch and frequency. 

 

      (    )          (           (  )    ) (2.4) 
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Chapter 3 

 

Speech Signal Processing  

 

3.1 Speech Properties and Speech Waveform 

 

Speech is defined as sequence of ever-changing sounds according to the spoken language 

grammar rules. The speaker encodes the message by using ever-changing sounds according 

to the grammar rules of spoken language. Furthermore the speech signal depends on the 

sounds occurred before and after the current sound and state of vocal organs [2].  

 

In previous section, we had mentioned that the text message was converted to symbolic 

representation of sequence of sounds, i.e. utterance. Furthermore in Figure 2.3 we have 

gave an example of Turkish and English utterance of words. As it mentioned in Chapter 2, 

the elements of utterance are called phonemes, and they are represented by ARPAbet, 

where table [23] shows ARPAbet for modern Turkish.  

 

In addition, the speech signal varies slowly with time such as approximately 5-15 sounds 

per second [2]. If we capture approximately 20 – 40 milliseconds length speech signal, we 

will observe that the signal on that captured frame is quasi-periodic. For instance, Figure 

3.1 shows a 16 kHz 16-bit sampled 0.5 seconds long, (8000 samples) male voice, says “see 

you later.” Figure 3.2 shows five 25 milliseconds long frames of that speech signal. If we 

consider first two frames, where frames are divided by vertical lines, we see that the signals 

are similar. Then if we consider second and third frames, again there is similarity between 
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those two signals. Furthermore if we consider fourth and fifth frames, we see the same 

signal. Hence short segments of the speech signal are isolated and processed as if they were 

short segments from a sustained sound with fixed i.e. not time varying properties. Hence 

this property of speech signal leads short-time processing methods [2], which will be 

discussed at sections 3.2 and 3.4.  

 

 

Figure 3.1  16 kHz 16-bit sampled male speech signal. 

 

 

 

Figure 3.2  Five 25 milliseconds long cascade frames. 

 

When we consider a speech signal in 5 seconds frame, we will see three main types of 

regions such as voiced, unvoiced and silence or background noise regions. The production 
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of voiced and unvoiced sounds was described in the previous chapter. Figure 3.3 shows 

three seconds of Turkish spoken words “Irakta dokuz amerikan askerinin” by a female 

speaker. The voiced regions are shown by the “V” sign, and the unvoiced regions are 

shown by “U” sign. 

 

 

 

 

 

Figure 3.3 Voiced, Unvoiced and Silence/Background Noise regions of speech signal. 

Additionally Figure 3.4 shows one word “ancak” of a female speaker. The voiced, unvoiced 

and silence regions can be seen better at this figure. 
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Figure 3.4  Voiced, Unvoiced and Silence regions of one word. The “s” at the seventh frame is the 

first letter of the next word. 

 

3.2 Short-Time Fourier Representation of Speech 

 

Previously, the quasi-periodic property of speech signal has introduced. Then we have 

mentioned that this property of speech signal was leaded short-time analysis of speech 

signal. Obviously the speech signal is not processed not only in time domain, but also in 

frequency domain. The details of speech processing in frequency domain will be discussed 

at section 3.5, however above we will define the short-time representation of speech and 

spectrogram which is a gray-scale graph shows magnitudes as darkness, of all frequencies 

at vertical axis and for all time instances at horizontal axis. 

 

Equation 3.1 shows the short-time Fourier representation of speech signal. In Equation 3.1 

  ( )[2] represents the whole speech signal,  ̂ represents a specified analysis time,   

represents radian frequency and   ( ̂   ) represents time-localized analysis window. 

Hence Equation 3.1 takes the Fourier Transform of time-localized speech signal window. 

 

 {  ( ̂  )} = ∫   ( ̂   )  ( ) 
      

  

  
 (3.1) 

 

In 1930’s Fourier representation of speech was printed by using sonograph, also called 

sound spectrograph [3.2-3]. The sonograph and mechanical block diagram of sonograph 

has shown at [2]. Today instead of such machines, computer programs such as Wavesurfer, 

MATLAB spectrogram built-in function, Praat, etc. is being used. However computer 
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programs perform short-time Fourier transform in discrete time which has shown at 

Equation 3.2. 

 

  ̂( 
  )  ∑  [ ̂   ] [ ]    

  

  
 

(3.2) 

 

Where;  ̂ represents a specified time analysis, w represents normalized frequency for 

discrete-time signals,  [ ] represents whole speech signal and  [ ̂   ] represents a time 

localized window of  [ ]. Furthermore analog frequencies    (     )   for   

          can be evaluated efficiently by using N-point fast Fourier transform (FFT) 

algorithm [2]. Figure 3.5 shows a general algorithmic block diagram printing spectrograph. 

 

As shown at Figure 3.5, at first step the speech signal is converted to electrical waveforms 

by using microphone and visualized as speech signal at time domain, which shown at upper 

part of Figure 3.6. At the second step a frame of speech signal is taken, where maximum 3 

or 4 second long frames are used to visualize the spectrogram of the speech signal which 

shown at the down part of figure 3.6 for a single Turkish word “amerikan”. At the third 

step, the whole frequency ranges are set, where 0 Hz is the last line of the horizontal paper 

and 5 kHz is the top line of the horizontal paper. At the fourth step the frequency range 

between 0-5 kHz is scanned by using band pass filters. According to the selection of the 

bandwidth of the band pass filter, either narrowband spectrograms (BW = 30-90 Hz) or 

wideband spectrograms (BW = 300-900 Hz) could be displayed.  

Finally the resulting short-time spectrum |  ̂( 
 (     )  )|can be displayed as function of 

 ̂ and k on computer screen either colored or grayscale image. Figure 3.6 shows an 

example of such gray scale image, which is viewed by using the Praat [58] for a Turkish 

word “amerikan”. The average energy of selected frequency is printed by black color on 

corresponding frequency location (vertical dimension) and corresponding time location 

(horizontal dimension). 
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Figure 3.5  Algorithmic block diagram of performing spectrograms by computer programs. 

 

 

 

 

Figure 3.6  Electrical speech signal at upper part and corresponding spectrogram for the Turkish 

word “amerikan”. 

 

There are several advantages and disadvantages of using either narrowband or wideband 

spectrograms. Wideband spectrograms have good temporal resolution but its poor at 
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frequency resolution. On the other hand, narrowband spectrograms are better in frequency 

resolution but worse in temporal i.e. time resolution [2]. Moreover in wideband 

spectrograms, voiced regions are visualized by vertical striated lines due to the periodicity 

of the time waveform and the harmonics of fundamental frequencies are shown at vertical 

dimension of narrowband spectrogram as horizontal striated appearance. If the window is 

long enough, several pitch periods could also be visualized. Figure 3.7 shows such 

fundamental frequencies with red dots and pitch periods with blue dots and also intensity 

with yellow line is displayed for the signal shown at Figure 3.6. 

 

 

 

Figure 3.7  Electrical speech signal at upper part and corresponding spectrogram for the Turkish 

word “amerikan”, with intensity, pitch and fundamental frequency displays. 

 

In addition, the band pass filter bandwidths are highly dependent on pitch frequency of the 

speaker. For instance for a male speaker who has a pitch frequency approximately at 

100Hz, band pass filter with 300 Hz bandwidth is used and for a female speaker who has 

approximately 200 Hz pitch frequency, band pass filter with 600 Hz bandwidth is used [2].  
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3.3 Acoustic Phonetics 

 

In order to design best speech processing systems such as either speech synthesis or speech 

recognition systems, we should know articulatory properties of all sounds (phonemes) of 

the language which we study on. Previously, at Figure 2.3 we have shown some examples 

of the relation between utterance of phonemes for corresponding Turkish and English 

words and we have mentioned that in English, the written language and utterance of 

phonemes i.e. orthography were different, and in Turkish they were exactly same. 

Furthermore we have introduced phoneme alphabets such as IPA and ARPAbet. Below a 

list of Turkish phonemes with IPA and ARPAbet representations and also an alternative 

representation of Turkish phonemes which we have used in HTK (Hidden Markov Toolkit) 

and Mary Harpers prosodic feature extraction tool on Praat are shown. There are several 

Turkish letters which are not found in English. The Unicode representations of that letters 

are given at Table 3.2. 

 

Turkish phonemes are divided into several classes such as vowels and consonants, in 

addition vowels and consonants are also divided into several sub-classes. Below those 

classes and properties of those classes will be given. Initially Table 3.3 shows the list of 

vowels and consonants." 

 

The vowels are produced by extraction of air in the lungs by vibrating vocal cords without 

any brush. Also there is no restriction on vocal tract. The position of tongue, lips and chin 

affects to produce vowels. The vowels are divided into two classes such as back vowels and 

front vowels depending on the position of tongue and exit of sound. Furthermore the back 

and front vowels are also divided into two classes such as rounded vowels and unrounded 

vowels, where the position of lips determines this class and also unrounded and rounded 

vowels are divided into two classes which are called wide and close vowels and this 

property belongs to the position of mouth [24]. Table 3.3 shows the vowels in Turkish 

alphabet according to their classes.  
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Alphabet 

IPA 

Phoneme 

 

ARPAbet 

 

HTK 

 

Alphabet 

IPA 

Phoneme 

 

ARPAbet 

 

HTK 

A /a/ AA a M /m/ M m 

B /b/ B b N /n/,/ɲ/ N, NX n 

C /dʒ/ JH c O /o/ OW o 

Ç /tʃ/ CH C1 Ö /œ/  O1 

D /d/ D d P /p/ P p 

E /e/,/æ/ EH, AE e R /r/ R r 

F /f/ F f S /s/ S s 

G /g/ G g Ş /ʃ/ SH S1 

Ğ /ɰ/  G1 T /t/ T t 

H /h/ H h U /u/,/ʊ/ UH u 

İ i IY i Ü /y/ Y U1 

I /ı/ IH I1 V /v/ V v 

J /ʒ/ ZH j Y /j/ JH y 

K /k/ K k Z /zh/ ZH z 

L /l/,/ɬ/ L l    

Table 3.1  Condensed list of phonetic symbols for Modern Turkish[23]. 

 

 

Letter Unicode Capital Letter Unicode 

ç 231 Ç 199 

ğ 287 Ğ 286 

ı 305 İ 304 

ö 246 Ö 214 

ş 351 Ş 350 

ü 252 Ü 220 

Table 3.2  Turkish letters which does not exist in English Alphabet[23]. 

 

 

Vowels a, e, ı, i, o, ö, u, ü 

Consonants b, c, d, f, g, ğ, h, j, k, l, m, n, p, r, s, ş, t, v, y, z 

Table 3.3  Vowel and Consonant letters of Modern Turkish alphabet. 
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Vowels Unrounded Vowel Rounded Vowel 

Wide Close Wide Close 

Back Vowel a I o u 

Front Vowel e i ö ü 

 

Table 3.4a Classification of vowels belongs to modern Turkish alphabet. 

 

In addition the cross-sectional area varies along the vocal tract determines the resonant 

frequencies i.e. formants and thus the sound that is produced [2]. The timbre of the sound is 

belongs to first three formants, first two of them (F1 and F2) are the most effective ones. 

The formant differences are defined as the difference between first and second formant. 

This difference is highly correlated with the wideness of mouth while producing the sound. 

The time-domain representations, spectrograms and formant frequencies of vowels are 

shown below. 

 

 

Vowel F1 F2 F3 

a 628.9 1259.3 2706.2 

e 485.6 1834.0 2614.1 

ı 537.4 1577.5 2722.0 

i 286.1 2177.9 2942.7 

o 467.7 1064.5 2695.4 

ö 543.9 1516.7 2549.3 

u 309.9 908.8 2400.9 

ü 372.1 1632.7 2369.3 

 

Table 3.4b Average Formant Frequencies of vowels spoken by adult men [56] 
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 Male Female 

a 

  

e 

  

ı 
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i 

  

o 

  

ö 
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u 

  

ü 

  

 

Table 3.5  The vowels in modern Turkish Language. The signals in time domain and spectrum 

representations (0-5kHz) are shown by Praat for male (left side) and female (right side) speakers.  

 

The consonants are divided into two main classes such as voiced consonants and unvoiced 

consonants; also they are divided into sub-classes which are shown at Table 3.6. On the 

other hand, consonants are divided into subclasses according to occurrence location. Table 

3.7 shows this classification of consonants [2, 24]. The production of consonants is 

explained below [2]. 

 

The semivowels has vowel like nature. In order to produce semivowels, the vocal tract is 

constricted but no turbulence is created so the air flow is not totally blocked. The transition 
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with adjacent vowels (the vowels before or after the semivowel) is so smooth and because 

of that the semivowels are affected by adjacent vowels. 

 

Consonants Fricatives Stops Nasals Semivowels 

Voiced c, j, v, z b, d, g m, n ğ, l, r, y 

Unvoiced ç, f, h, s, ş t, k, p - - 

 

Table 3.6  Classification of consonants in modern Turkish is shown. 

 

 

Labial Consonants b, p, m 

Labial-Dental Consonants f, v 

Dental Consonants d, t, n, s, z 

Palatal-Dental Consonants c, ç, j, ş 

Front-Palatal Consonants g, k, l, r, y 

End-Palatal Consonants ğ 

Glottis Consonants h 

 

Table 3.7  Classification of consonants in modern Turkish according to occurrence location is 

shown. 

 

The nasals are produced by levering velum in order to air flows from nasal tract. They are 

produced with glottal excitation. 

 

The unvoiced fricatives are produced as follows. The steady air flow is constricted in vocal 

tract and becomes turbulent. The produced unvoiced consonant sound is depends on the 

location of the constriction, i.e. constricted vocal organ. 

 

The counterparts of the unvoiced fricatives are voiced fricatives. The similarity with 

unvoiced fricatives is the locations of the constrictions are same. However, the main 

difference is that in voiced fricatives there are two excitation sources are involved in order 
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to produce those sounds. While vocal cords are vibrating also turbulent occurs in the 

neighborhood of the constriction.  

 

The voiced stops are produced by building up pressure behind somewhere in oral tract by 

constriction and suddenly releasing the pressure. The location of constriction effects the 

phoneme such as /b/ produced at lips, /d/ is produced at back teeth and /g/ is produced at 

velum. The voiced stops are transient and non-continuant sounds. 

 

The unvoiced stops are similar with voiced stops. The counter parts of voiced stops /b/, /d/ 

and /g/ are /p/, /t/ and /k/ respectively. The main difference is that during the period of total 

closure of the vocal tract, as the pressure builds up, the vocal cords do not vibrate, which is 

similar with the difference between voiced and unvoiced fricatives. 

 

The affricates i.e. whispers are not take place at Table 3.6. They are dynamic sounds which 

can be modeled as the concatenation of a stop and a fricative such as combining /d/ and / ̌/ 

in order to produce the phone /j/. Also /h/ is an affricative which is produced by exciting 

vocal tract by steady air flow without vibrating vocal cords; the turbulent flow is produced 

at glottis. 

 

 

3.4 Speech Signal Processing in Time Domain 

 

The analysis speech signals in time domain is that to analysis the electrical signal recorded 

by the microphone. On the other hand, in the following sections Fourier representations of 

speech signal will be used. The analysis of sound propagation in the human vocal tract, 

Rabiner, Schafer et al, leads to the source/system model for speech production which has 

shown at Figure 3.8. This model will help us to model and process the speech signal. 

Previously we have mentioned that the speech signal was varied slowly and we have also 

showed how to frame the speech signal. In this section we will compare rectangular 

windowing which has shown at Figure 3.2 with hamming windowing while introducing 

several time domain representations such as short-time log energy, short-time zero crossing 
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rate and short-time autocorrelation function which are simple to implement and useful to 

estimate to important parameters of the speech signal. 

 

 

Figure 3.8  Model for speech production and synthesis [2]. 

 

Figure 3.8 shows also the information carried by speech signal s[n]. At the beginning Np 

defines the time-varying pitch period in terms of samples. The pitch period Fp is defined by 

using sampling frequency Fs and Np as Fp = Fs/ Np in voiced signals. Then the glottal pulse 

model is represented by g[n] in time domain. The convolution of g[n] and p[n] is multiplied 

with AV where AV represents time-varying amplitude of voiced excitation. On the other 

hand for unvoiced case, the random noise generator g[n] represents the consonants between 

vowels. The voiced and unvoiced transitions are modeled as a switch where voiced signals 

are quasi-periodic and have steady variations of fundamental (pitch) frequency and 

unvoiced regions are modeled as pseudo-random noise. That difference between voiced and 

unvoiced regions provides useful clues to estimate voiced and unvoiced parts of the speech 

signal 

 

 3.4.1 Short-Time Analysis of Speech Signal 

 

As mentioned before, speech signal varies slowly in time. Furthermore, speech signal is not 

a periodic signal in a long time-period however in time periods 20-100msec, the speech 
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signal is observed as stationary and quasi-periodic. This property of speech signal leads 

short-time analysis of speech as shown at Figure 3.2. The general representation of short-

time analysis is shown at Figure 3.9, where s[n] represents the input speech signal. The s[n] 

is filtered by using a linear filter in order to isolate a frequency band. Filtered signal is 

represented by x[n]. In the next step, the T(.) represents either linear or non-linear transform 

in order to make some property of speech signal more significant. Those transformations 

will be discussed below more detailed. Finally the LPF block is the low-pass windowing 

sequence, i.e. framing operation for a particular time “ ̂”. The output   ̂ represents vector 

of values depends on particular analysis time “ ̂”. Equation 3.3 is the mathematical 

representation of   ̂ which has shown at Figure 3.9. 

 

As shown in the Equation 3.3, the transformed signal is convolved with the impulse 

response of a linear filter, i.e.  ̃[ ]. Equation 3.4 and 3.5 shows rectangular and Hamming 

window respectively and Figure 3.10 and 3.11 shows corresponding impulse responses for 

number of samples L is 21.  

 

Figure 3.9  General representation of short-time analysis in time domain [2]. 

 

  ̂   ( [ ])   ̃[ ] (3.3) 

 

In short-time speech signal processing, the starting point of the window is shifted by 1< R < 

L samples at each step. Previously we have defined  ̂ as a particular time of windowing 

operation, where it is integer multiplies of R. Hence, the output is down sampled by a factor 

of R; i.e. the short-time representation is evaluated at times  ̂    , where r is an integer 

[2]. Doing short-time evaluations at integer multiplies of R<L causes overlap between the 

frames, and in general the length of overlap is selected as a little more than half of the 

frame length. For instance consider the Equation 3.5 and Figure 3.11. For each frame, the 

edges of the frame amplitude will be reduced, and at the either previous or following frame, 
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the reduced part of the original signal takes place on at the middle of the window, so the 

amplitude of that samples will be maximized at that step. Hence, framing by using overlap 

avoids data loss. 

 

            [ ]  {
         
           

 
(3.4) 

 

        [ ]  {
            (    (   ))        

           
 

(3.5) 

 

 

3.4.2 Short-time Energy and Magnitude 

 

The energy of a given signal is calculated by using Equation 3.6. However when we apply 

Equation 3.6 to whole speech signal, we will get only a scalar value and we will get no 

information about time-dependent properties of the signal.  

 

  ∑ ( [ ]) 
  

    
 

(3.6) 

 

Hence short-time analysis approach will be used in order to evaluate the energy of frames, 

then we will obtain a vector of energy values of corresponding frames, then we will have 

much more useful data. Equation 3.7 shows energy calculation by using short-time 

processing approach [2]. 

 

 

  ̂   ∑ ( [ ] [ ̂   ]) 
  

    
  ∑ ( [ ])  ̃[ ̂   ]

  

    
 

 

(3.7) 

 

In the left side of Equation 3.7, the speech signal multiplied by  [ ̂   ] first, i.e. it has 

filtered in time domain. The original signal is convolved with the impulse response of used 

window. For instance Equation 3.4 used for rectangular window and Equation 3.5 used for 

Hamming window. 
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Figure 3.10 Impulse response of rectangular window. 

 

 

Figure 3.11 Impulse response of Hamming window. 
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The right side of Equation 3.7 shows this operation in the general form which has given at 

Equation 3.3, where the operation T(.) represent the squaring operation and  ̃[ ̂   ] 

represent the windowing operation  ̃[ ]. Figure 3.12 shows the short-time energy 

calculation process. For instance for L-point rectangular window, the calculation of short-

time energy at time instance  ̂ has shown at Equation 3.8. 

 

In time domain using either rectangular or Hamming window does not makes any 

improvement on energy calculation of the speech signal, however increasing the frame 

length L will decrease the bandwidth of the low pass filter and energy contour will be much 

more smoother [2]. 

 

  ̂ = ∑ ( [ ])  ̂
   ̂     (3.8) 

 

 

Figure 3.12 Short-time energy calculation process [2]. 

 

There are several examples at the following figures. At first Figure 3.13 shows a 

normalized speech signal, where DC mean value of the speech signal has removed. Then 

Figure 3.14 shows short-time energy functions by using rectangular window in different 

frame lengths. As shown in Figure 3.14 the frame length is increasing, the energy function 

gets smoother. 

 

The difference of using either rectangular of Hamming window is much more prominent in 

frequency domain, where in frequency domain when the frequency response plots of 

rectangular windowed signal and Hamming windowed signal is compared, we will see that 

Hamming windowed plot will have much more smoother curves.  
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Figure 3.13 The signal at top shows 0.1 second long normalized speech signal. The figure at the 

middle shows energy signal of the speech signal calculated by using rectangular window and the 

figure at bottom shows energy signal of the speech signal calculated by using Hamming window.  

L=1601 samples, R=800 samples and Fs=16000Hz. 

 

 

As shown in Figure 3.11, Hamming window reduces the energy of signal in the edges. In 

other words, while using Hamming window as a low pass filter, the high frequency 

components are reduced much more than rectangular window. The examples are shown at 

section 3.5. 

 

On the other hand, the energy function gives clues about the locations of voiced and 

unvoiced segments in the time domain. For instance in Figure 3.13 a 0.1 seconds long 

speech signal has shown with energy signals. At the approximately first 0.07 seconds we 

see that we have a voiced speech signal (see Figure 3.4 also) and there are periodic 

movements at energy signal. However in approximately last 0.03 seconds, we see the 

unvoiced region of the speech signal and the energy signal is similar with a noise signal. 

Furthermore, the energy of voiced segments is much greater than unvoiced parts. 

 

In other words, it has high dynamic range. Hence, advantage of that is it is easier to 

segment voiced and unvoiced parts on the other hand the short-time energy function is very 

sensitive to large signal levels [2].  
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Figure 3.14 Windowed signals in different window and overlap lengths.In the first case L=1601 and 

R=800, in the second case L=801 and R=400 and finally at the last case L=401 and R=200. 

 

There are two solutions to that problem. The first one is squaring the short-time energy 

function and the other one is instead of using magnitude function which has shown at 

Figure 3.15 and Equation 3.9. 

 

  ̂   ∑ | [ ] [ ̂   ]|

  

     

 ∑ | [ ]| ̃[ ̂   ]

  

    

 
 

(3.9) 

 

 

Figure 3.15 Short-time magnitude calculation process [2] 
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 3.4.3 Short-time Zero Crossing Rates 

 

Previously we have discussed that the energy of the signal helps us to detect unvoiced and 

voiced parts of the speech, where in the unvoiced regions the energy levels are low and at 

the voiced regions the energy levels are high. However, the clues of detecting voiced and 

unvoiced regions are not only the high or low energy levels of the signal, but also zero 

crossing rates. Below, at first we will define the zero crossings and how to calculate zero 

crossing rates. Then we will show how zero crossing rates are affected by DC noise 

component of the signal and finally we will show the zero crossing rates at voiced and 

unvoiced signals. 

 

The zero crossing is occurred when in the time instance n of a signal x intersects the x-axis. 

In other words if 

 

 [ ]                [   ]     [   ]        [ ]                [  

 ]     [   ]      i.e. when    ( ⌈ ⌉   [   ])       ( ⌈ ⌉   [   ])  

 

The zero crossing rate is defined as the number of crossings per unit of a time. Figure 3.16 

shows the zero crossings for sinusoidal signals. In the first signal from the top, the DC 

component of the signal is zero. There are two zero crossings per cycle. In the second line 

of the figure, a little DC component has added to sinusoidal signal. The whole signal has 

shifted to up and the zero crossing locations have changed. For a signal whose amplitude is 

constant, the zero crossings per unit of a time will not change. However, if we consider a 

signal which is the combination of sinusoidal signals with different frequencies and 

amplitude, this kind of shifting may cause to lose some of the zero crossings. In the third 

line, we have added a higher DC component, and the signal has shifted upper. In that signal 

we see that there are no zero crossings. Because of such reasons, in many speech signal 

processing and signal processing applications, the DC component of the signal is removed 

first. 
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As shown at the Figure 3.16 there are two zero crossings per one cycle of the sinusoidal 

signal. However we are interested in crossings per unit of samples. So we should consider 

also cycles per samples. If we consider the Equation 3.10 we will see that the crossings per 

cycles are multiplied with cycles per sample, where cycles per sample are the ratio of 

frequency of the signal and the sampling frequency. 

 

 ( )   
         

     
   
  
  

     

       
  
   
  

         

      
 

(3.10) 

 

The Equation 3.10 calculates the zero crossings per one sample. However we are interested 

in zero crossings on a fixed interval such as length of used either rectangular, hamming or 

another suitable window. In other words we are interested in the number of crossings in the 

interval of M samples. So we multiply the Z
(1) 

with M in order to find crossings per M 

samples and represented by Z
(M)

. 

 

The Z
(M)

 is used to estimate the frequency of a sine-wave by using Equation 3.11, where Fe 

is the approximate sinusoidal frequency of  a given zero crossing rate  Z
(1)

 of a signal. 

Furthermore if the signal is single sinusoid, then Fe = F0 and if the signal is not sinusoid, 

then Fe represents equivalent sinusoidal frequency of the signal [2]. 

 

         
( ) (3.11) 

 

In short-time analysis, the zero crossing rate calculations are shown at Figure 3.17 and 

Equation 3.12. The first step is to determining sqn function of the signal, then first 

difference equation is applied to sqn function of the signal as shown in Equation 3.12 and at 

the second block of Figure 3.17. Afterwards absolute value is taken and finally the 

windowing operation is applied. In general, rectangular windows are preferred [2]. 

 

In Equation 3.12 inside the absolute value operation, for each sample pairs, if there a zero 

crossing exist the value of  |   ( [ ])     ( [   ])| will be 2 and 0 otherwise. So ½ 

coefficient stands for normalize this count, and Leff represents effective window.  
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Previously we have mentioned that energy distribution of the speech signal was giving us 

important clues to detect voiced and unvoiced regions. Also zero crossing rates give us 

important clues on detecting voiced and unvoiced signal. In general voiced signals have 

high energy and low zero crossing rates and unvoiced signals have low energy and high 

zero crossing rates.  

 

 

  ̂  
 

     
∑ |   ( [ ])     ( [   ])|

  

    

 ̂[ ̂   ] 
 

(3.12) 

 

 

 

 

Figure 3.17 Block diagrams of short-time zero crossing rate calculation. 

 

 

3.5 Speech Signal Processing in Frequency Domain 

 

In speech processing applications, not only time-domain analysis used but also the 

frequency-domain analysis has been used. 

In this subsection the frequency-domain analysis techniques such as Discrete-Time Fourier 

Analysis (DTFT), Discrete Fourier Transform (DFT), short-time Fourier Analysis (STFT) 

will be introduced. In addition the effect of using either rectangular or Hamming window in 

frequency-domain analysis and spectrographic displays will be introduced. 

 

 



46 

 

 

 

 

 

Figure 3.16 Zero crossings and effect of DC component of the sinusoidal signal to zero crossing 

rates. The green line shows the x-axis. 

 

 

Fourier representation of the speech signal includes information about the frequency 

responses of the vocal tract system. Equation 3.12 and 3.13 shows voiced speech and 

unvoiced speech components in the frequency domain respectively, where, in Equation 

3.13a P(.) represents impulse train generator, G(.) represents glottal pulse model, V(.) 

represents vocal tract model and R(.) represents radiation model and in Equation 3.13b the 

term | (   )|
 
 represents vocal tract model and | (   )|

 
 represents radiation model. 
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 (   )     ( 
  ) (   ) (   ) (   ) (3.13a) 

  

   ( 
  )    

 | (   )|
 
| (   )|

 
 (3.13b) 

 

Discrete Fourier Transform (DFT) of a speech signal includes information about average 

pitch frequencies of the speaker. The Discrete Fourier Transform is a sampled in frequency 

version of Discrete-Time Fourier Transform (DTFT). At Equations 3.14 and 3.15 Discrete-

Time Fourier Analysis and Synthesis equations are given and Equation 3.16 and 3.17 

shows the analysis and synthesis equations of DFT and Equation 3.18 show the relation 

between DTFT and DFT. 
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(3.18) 

However to observe time-varying properties of the speech signal better, short-time Fourier 

Analysis (STFT) is used, where the speech signal is divided into frames and windowed then 

either DTFT or DFT applied to the speech signal. The time-dependent short-time Fourier 

Transform is defined at Equation 3.19. 
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  ̂( 
  ̂)  ∑  [ ̂   ] [ ]    ̂ 

  

    

 
 

(3.19) 

 

In equation 3.19 the term  ̂ represents time index and  ̂ represents the frequency variable, 

which is continuous and periodic with period    and the w[.] represents the window. 

 

An alternative representation of Equation 3.19 can be obtained by changing summation 

index. 

 

  ̂( 
  ̂)      ̂ ̂ ̃ ̂( 

  ̂)      ̂ ̂ ∑  [ ̂   ] [ ]   ̂ 
  

    

 
 

(3.20) 

 

The length and shape of the used window affects frequency resolution of the speech signal. 

By using windowed frequency representations, at first the analysis becomes independent 

from the part of the signal which is not intersected with the window. In addition, by 

analyzing the frequency representation of short-time segments of the speech signal, one can 

understand if the speech in analyzed time instance belongs to voiced or unvoiced regions 

and also if it belongs to a vowel and which vowel.  

 

The STFT analysis of speech signal divides into two sub analyses such as narrowband 

analysis and wideband analysis. In the case of narrowband analysis, the window length is 

selected as several pitch periods. This representation shows fundamental frequency better. 

On the other hand, in the wideband analysis case, the window length is a little bit more than 

one period and in this case the formant frequencies are shown better. 

 

In addition the shape of the filter is also affects the analysis. In section 3.4, the rectangular 

window and Hamming window were introduced. The advantage of using Hamming 

window instead of using Rectangular window is that, because of Hamming window 

suppresses the edge parts of the corresponding frame, the high frequency components are 

suppressed better, hence the sharpness of pitch harmonics becomes more smooth, hence 

formant frequencies of the signal can be captured better. 
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3.6 Homomorphic Speech Signal Processing 

 

In section 2.3.2, the human perception of sound has introduced. The basilar membrane 

mechanics and, the critical and the bark scale have been introduced. Human perception 

sound, i.e., the frequency analysis performed in the inner air, can be represented by using 

Mel Frequency Cepstral Coefficients. In order to explain the extraction of Mel Frequency 

Cepstral Coefficients, at the beginning the Homomorphic analysis of the speech model and 

computing the short-time Cepstrum will be introduced. 

 

The meaning of Cepstrum is; Inverse Fourier Transform of logarithm of spectrum [2] and 

used to determine fundamental frequencies of human speech and also to estimate pitch 

period. Equation 3.21 shows the Cepstrum of a signal x[n]. However in order to perform 

Cepstrum analysis, Homomorphic systems should be used. In this section, Homomorphic 

systems will be explained.  

 

 

 [ ]  
 

  
∫    | (   )|      
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 (   )  ∑  [ ]     
  

    

 

 

 

 

 

(3.21) 

 

 

 3.6.1 Homomorphic Systems 

 

At the beginning of defining the Homomorphic system, to visualize the concept better at 

first the basic properties of linear systems will be shown. Afterwards the Homomorphic 

system will be defined and finally the purposes of Homomorphic filtering and the way of 

implementing Homomorphic filters will be shown in theoretically at the next sub section. 

 

If a system verifies the properties which are shown in Equation 3.22 is called a linear 

system. As shown in the Equation 3.22, if an input signal is composed of an additive 
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combination of elementary signals, then the output is an additive combination of the 

corresponding outputs. In addition a scaled input results in a correspondingly scaled output. 

 

 [ ]   { [ ]}   {   [ ]     [ ]}    {  [ ]}    {  [ ]}     [ ]     [ ] (3.22) 

 

In Equation 3.22, the  [ ] can be thought as superposition of two linear systems. 

Oppenheim showed that classes of non-linear systems could be defined on the basis of a 

generalized principle of superposition; such systems are called Homomorphic systems [2]. 

As shown at Equation 3.23 the definition of Homomorphic systems are similar with linear 

systems. The difference is that instead of addition operation on linear systems, convolution 

operation is used. 

 

 [ ]   { [ ]}   {  [ ]    [ ]}   {  [ ]}   {  [ ]}    [ ]    [ ] (3.23) 

 

Recall that in Equation 3.12 and 3.13 that, the frequency response of speech signal was 

combination of impulse train generator, glottal pulse model, vocal tract model and radiation 

model for the voiced speech and combination of vocal tract model and radiation model for 

unvoiced speech. It is also well known that multiplication in the frequency domain implies 

convolution in the time domain. Hence all of the information above is the background of 

Homomorphic filtering.  

 

 

 3.6.2 Homomorphic Filtering 

 

Homomorphic filters are used in order to separate the components of a system. The desired 

component passes through the system and undesired component is altered. For instance 

Homomorphic systems are used in order to separate the convolved excitation (pitch) and 

vocal tract components (formants) of the speech model. Any Homomorphic system can be 

represented as a cascade of three Homomorphic systems which has shown at Figure 3.18 

and Equations 3.24 and 3.25. 
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Figure 3.25 Canonic form of system for Homomorphic deconvolution in time domain [2]. 

 

In Figure 3.25 the system   { } is called characteristic system for convolution and   
  { } 

is called inverse characteristic system for convolution. The properties of the characteristic 

system and the inverse characteristic system are shown at Equation 3.24 and 3.25 

respectively. 

 

 

 ̂[ ]    { [ ]}    {  [ ]    [ ]}    {  [ ]}    {  [ ]}   ̂ [ ]   ̂ [ ] 

 

(3.24) 

 [ ]    
  { ̂[ ]}    

  { ̂ [ ]   ̂ [ ]}    
  { ̂ [ ]}    

  { ̂ [ ]}    [ ]    [ ] (3.25) 

 

The canonic form for deconvolution can be represented in frequency domain. The DTFT of 

 [ ]    [ ]    [ ]is  (   )    ( 
  )      ( 

  ). Hence the representation of the 

canonic form for Homomorphic deconvolution in terms of DTFTs which is shown at Figure 

3.26. 

 

In the characteristic system for Homomorphic deconvolution in terms of DTFT, at first the 

DTFT of the signal  [ ] is computed. 

 

Figure 3.26 Canonic form of system for Homomorphic deconvolution in terms of DTFT [2]. 

      L       
      

             exp     
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At the second step, the multiplication operator in the term   ( 
  )      ( 

  ) is mapped 

onto addition operator by using logarithm and finally by applying IDTFT, the term 

  ( 
  )      ( 

  ) is represented as   ̂( 
  )    ̂( 

  ).  

 

The term   { } represents conventional linear operator on the logarithm of DTFTs. As 

shown in Figure 3.25, there is a linear system at the middle block. The property of a linear 

system implies that the input   ̂( 
  )    ̂( 

  ) can be converted to the output  ̂( 
  )  

  ̂( 
  ). 

 

Finally in the inverse characteristic system for Homomorphic deconvolution in terms of 

DTFTs, at first the DTFT of the signal   ̂( 
  )    ̂( 

  ) is computed. Then the 

exponential operator maps the addition operation onto multiplication operation and finally 

by applying IDTFT the term   ( 
  )      ( 

  ) is obtained. 

 

In computer implementations instead of using DTFT, using either DFT or FFT reduces the 

computational complexity. 

 

3.7 Linear Predictive Analysis 

 

In this section we will introduce the Linear Predictive Analysis of speech signal which is 

most widely used and powerful method used in automatic speech or speaker recognition 

systems to estimate the parameters of the discrete-time model such as pitch, formants, 

short-time spectra and vocal tract area functions, for speech production. 

 

The Fourier representation of speech signal is used to view spectral magnitude. The Linear 

Predictive Coding (LPC) derives representation of spectral magnitude for signals. The LPC 

is computed efficiently and provides more accurate spectral resolution than non-parametric 

Fourier Transform techniques. Several information of speech signal can be estimated by 

applying LPC such as vocal fold vibration, shape of the vocal tract, and the frequencies and 
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bandwidth of spectral poles and zeros and LPC coefficients which are used in digital filters 

and in pattern recognition. [57]. 

 

Recall from short time analysis of speech signal that; the speech signal s[n] is considered a 

stationary signal in short-time slots. Consider the speech signal has sampled with a 

sampling period T, where s(n) = s(nT). In Z domain, the speech signal S(Z) is modeled as 

the combination of the excitation source U(Z) and spectral shaping filter which is related 

with shape of the vocal tract H(Z). The goal of applying LPC is to deconvolve S(Z) in order 

to estimate the excitation source model  ̂( ) and vocal tract model i.e., filter ̂( ), where 

the hats represents the estimation. 

 

 ( )   ( )      ( ) (3.26) 

 

The H(Z) can be modeled with constant coefficients where it has p poles and q zeros, where 

the  ̂( ) is modeled as linear combination of p previous output symbol with q-1 previous 

input symbols. 

 ̂( )   ∑    ̂(   )

 

   

  ∑   ̂(   )

 

   

 

 

(3.27) 

 

Where in Equation 3.27 G represents the gain factor for excitation and    represents LPC 

coefficients which are characterizing all-pole  ̂( ) model. Hence the  ̂( ) can be found 

by using Equation 3.28. 

 

 ̂( )  
 ̂( )

 ̂( )
  

  ∑    
   

   

  ∑    
   

   

 
(3.28) 

Human hearing system is more sensitive to energy peaks in frequency analysis. This factor 

is related with vocal tract. Hence, if there is energy in a certain frequencies, it will be easier 

to characterize the sound. One of the Least Squares method is to characterize sound is that 

to minimize the mean energy in error signal over a frame, where the error signal is defined 

as sharp peaks separated in time by pitch period. Equation 3.29 represents the error signal 

and Equation 3.30 represents the energy. 
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(3.30) 

In Equation 3.30 the term x(n) represents windowed signal which is  ( )  ( ). To find 

LPC coefficients, the partial derivative of energy is set to zero 
  

   
   for all coefficients 

in order to find the coefficients which minimizes the energy. 

On the other hand, in spectral estimation of LPC coefficients, Parseval’s theorem is used.  
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(3.31) 

Inverse LPC filter is used in order to obtain error signal from the speech signal, where the 

characteristics of the inverse LPC filter is  ( )     ( ). 

LPC coefficients are extracted by minimizing the Energy expression in Equation 3.32. The 

minimum energy is also related with minimum average ratio of the signal spectrum to its 

LPC approximation. 

  
  

  
∫

| (   )|
 

| (   )| 
  

  

  

 
 

(3.32) 

The optimum LPC order i.e. the value of the p should be selected in order to estimate 

formant frequencies of the speech. If the LPC order is selected low, then at the logarithmic 

plot versus frequency, the function will be too much smooth and it will not provide 

sufficient information about the formant frequencies. On the other hand, if the LPC order is 

selected too high, not only the computational complexity of the script will increase but also 

the harmonics of the formant frequencies will be also make peaks. Ideal order of LPC order 

is defined as between 8-12 at [57].  
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Chapter 4 

 

The Speech Recognition Problem 

 

In the previous chapters; we have studied human to human communication, human speech 

perception and production and also the properties of speech signal and analysis techniques. 

Now we are ready to study the communication between human and machines. The most 

significant advantage of using human to machine communication is cost reduction. Today 

most of the companies are using such systems at calling centers for several purposes. 

Furthermore those kinds of systems could be used not only by the companies but also 

humans. For instance people can listen to an e-book instead of reading it by using Text to 

Speech analysis and they can either control their computer or any device by their voices, 

where in that case Speech to Text synthesis will be used. 

 

The overview of human to machine communication is, at the first step the human speech is 

analyzed by the system by using Automatic Speech Recognition system. The output of 

Automatic Speech Recognition system is the utterance of spoken words i.e. Speech-To-

Text analysis has performed. In the second step, the system processes the input message 

according to a specified algorithm and finally responses to human by using Text-To-Speech 

Synthesis.  

 

In our work, we have focused on the first step of human to machine communication, which 

is Automatic Speech Recognition (ASR) System for Turkish Spoken Language. The ASR 

in general is introduced in this chapter and approaches of ASR have explained. In Chapter 
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5, the Dynamic Time Warping, Hidden Markov Modeling approaches, acoustic models and 

language models has explained in more detail and finally the Hidden Markov Toolkit 

applications have explained. 

 

4.1 Introduction to Automatic Speech Recognition 

 

The ASR system is used to convert an input speech signal into transcription of spoken 

words, i.e. doing speech to text analysis, as efficient and accurate as possible. At the 

beginning we will show the overall speech recognition system. The speech recognition 

system has two main parts as shown at Figure 4.1 [2] which is called acoustic processor and 

linguistic decoder.  

 

The acoustic processor part which is the first main part of ASR system converts the speech 

signal into set of either spectral or temporal features, such as Mel Frequency Cepstral 

Coefficients (MFCC’s). Then the linguistic decoder part of the ASR, which is the second 

main part, performs a best maximum likelihood estimate of the words of the spoken 

sentence by using acoustic model, language model and word lexicon. Finally a confidence 

score is given for each recognized word. 

 

 

Figure 4.1  Block diagram of overall speech recognition system [2]. 

 

In Figure 4.1, the first block, which is also the first main part, performs short-time spectral 

analysis. Mel Frequency Cepstral Coefficients are used to represent short-time spectral 
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characteristics of the speech signal. Extracting MFCC by using HTK HCopy tool will be 

explained in detail at Chapter 5. Then the pattern classification block which is the first 

block of the linguistic decoder, decodes the sequence of feature vectors which are extracted 

by acoustic processor, into a symbolic representation that is maximum likelihood string. 

Pattern classification block uses the acoustic model which is defined by HMMs, an N-gram 

language model which computes probabilities of possible word strings and word lexicons 

which includes utterance words, i.e. phoneme transcription of each word in the dictionary. 

The final block represents confidence scoring, where the system scores each recognized 

words and it is possible to detect wrong recognized words by using that confidence scores 

[2]. 

 

4.2 Approaches of ASR 

 

The overall ASR system has summarized above. In this section, different approaches of 

ASR system such as the acoustic-phonetic approach, the pattern recognition approach and 

the artificial intelligence approach will be explained with strengths and weakness of them 

briefly [6].  

 

 

 4.2.1 Acoustic-Phonetic Approach to Speech Recognition 

 

In the Acoustic-Phonetic approach, it is assumed that there are finite different phonetic 

units in spoken language. The phonetic units are matched with little time segments 

according to the acoustic properties of speech. However the acoustic properties are depend 

on either the speaker or neighboring phonetic unit. Acoustic-Phonetic approach has two 

main steps. The first step is segmentation and labeling. In this step, the speech signal is 

divided into short segments and corresponding phonetic units are labeled. And at the 

second step, the utterance of phonetic units, i.e. utterance of phonemes is converted into a 

valid word.  
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Figure 4.2  Block diagram of acoustic-phonetic speech recognition system [6]. 

 

As shown at the Figure 4.2 there are four main steps of this approach such as speech 

analysis, feature detection, segmentation and labeling, and finally control strategy. In the 

first step, by using either LPC analysis or other filter bank approaches such as MFCC, the 

speech signal is converted into a set of vectors. Where a short-time analysis of speech is 

used and for each frame a set of vectors is obtained. In the second step, the set of vectors 

which are extracted at the first step is converted into features such as formant frequencies, 

pitch frequencies, voiced and unvoiced parts, duration and energy features in general. In 

this step one may use more feature sets. In the third step, the system tries to find stable 

regions and match them with phonetic units and finally at the last step the utterance of 

phonetic units is compared with the words at the lexicon in order to find the best match. 

 

The third step of the Acoustic-Phonetic approach is the most important part for a successful 

recognition. This step uses the features which were extracted at the previous part. In [6] 

Acoustic-Phonetic vowel classifier (Figure 4.3) and speech sound classifier (Figure 4.4) has 

shown. 

 

In Figure 4.3 there is a 4-level binary classifier, where at each step different features of the 

vowel are used in order to classify. In the first step, the first formant frequency of the vowel 

is compared with average first formant frequency of all vowels, which is a threshold. If the 
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first formant frequency is high, the classifier decides that it is a compact vowel, else it is a 

diffuse vowel. In the next step, second formant frequencies are considered. For high F2 it is 

an acute vowel, else it is a grave vowel. In the third step, the duration features are 

considered. If the duration is long, then the vowel is classified as long vowel, else it is a 

short vowel and finally the sum of first and second formant frequencies are compared with 

a threshold. If the sum of first two formant frequencies exceeds the threshold then the 

vowel classified as a flat vowel, else it is classified as a plain vowel.  

 

Figure 4.3 shows the vowel classifier, however we should classify all of the 40 phonetic 

units in the case of working on English spoken language, or 29 phonetic units in the case of 

working on Turkish spoken language. Figure 4.4 shows more comprehensive classifier. 

 

 

 

Figure 4.3  Acoustic-Phonetic vowel classifier for Turkish spoken language. 

 

 

The first decision is if the input speech features are correspond either a sound or silence. If 

it is a sound, then the decision of if it is a voiced or unvoiced sound is given. Then by 

comparing the preceded frames features and the frequencies the final decision is given. 
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Note that, if the classifier decides that the segment of the signal is a vowel, then vowel 

classifier is used. Hence, the Acoustic-Phonetic vowel classifier which is shown at Figure 

4.3 is a part of Figure 4.4. 

 

There are several disadvantages of using Acoustic-Phonetic approach. Firstly, it requires 

extensive knowledge of acoustic properties of phonetic units. In addition the speaker should 

speak very clearly. The system can give wrong decisions if a few phonemes are spoken 

wrongly. Secondly the choice of features is mostly made ad hoc considerations, so choice 

of features is not optimal. Hence thirdly the design of sound classifiers is not optimal [6]. 

 

 

4.2.2 Pattern Recognition Approach to Speech Recognition 

 

In pattern recognition approach [6], trained speech patterns are compared with the input 

speech signal. This method has two main steps such as training speech patterns and 

recognition of pattern by pattern comparison. In order to use this approach properly, 

enough versions of patterns should be trained. In recognition side, if enough versions of 

patterns are recognized the system will able to process the input speech, for instance 

consider the Isolated Digit Recognition task. In the training procedure, the words “zero, one 

,…, nine” will be trained. Then if the input speech is the utterance of spoken numbers, for 

example “five four zero six” the recognizer side will recognize the words separately and 

combine them at the output. In other words, the machine learns which acoustic properties of 

speech class are reliable and repeatable across all training tokens of the pattern.  

 

There are several advantages of using Pattern Recognition approach such as its simplicity, 

robustness and high performance.  Furthermore it is easy to expand the vocabulary, and use 

different users and different feature sets. 
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Figure 4.4  Binary tree speech sound classifier for Turkish spoken language [6]. 

 

 

 

 

Figure 4.5  Block diagram of pattern-recognition speech recognizer [6]. 
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Figure 4.5 shows the block diagram of pattern-recognition approach to speech recognition. 

There are four main steps of that approach which are analysis, pattern training, pattern 

classification and decision. In the first block, by using short-time analysis methods the 

feature measurements are performed by using spectral analysis techniques such as filter 

bank approach, linear predictive coding and Discrete Fourier Transform. Then there is a 

switch which represents if the system is at either training or classification mode. As usual 

firstly the system should be trained. So the second step is the pattern training block. In this 

step templates for different speech sounds are generated and stored. The third step is pattern 

classification, where the switch addresses to the classification block. In that step the feature 

measures which are extracted at the first step is compared with the templates, i.e. sound 

models in the library. And finally by using local distance measures such as dynamic time 

warping algorithm, the final decision about the unknown pattern is given. 

 

The size of training patterns, speaking environment and the speech transmission channel 

affects the performance of the system. Furthermore the system is not affected by different 

vocabularies or specific words. But increasing the size of word library in the system causes 

additional computational load. However syntactic and semantic knowledge of the system 

reduces the computational load and improves the accuracy. 

 

 

 4.2.3 Artificial Intelligence Approach to Speech Recognition 

 

The Artificial Intelligence Approach is a combination of Acoustic-Phonetic approach and 

Pattern Recognition Approach. The basic idea is to compile and incorporate knowledge 

from a variety of several knowledge sources and relate them with the problem at hand. The 

knowledge sources are acoustic knowledge, which is obtained by spectral measures, lexical 

knowledge, which is the dictionary of words and their corresponding phoneme utterance, 

the syntactic knowledge, which controls if the combination of words are grammatically 

correct, the semantic knowledge, which represents understanding the related task of the 

sentence or the couple of the recognized words and finally pragmatic knowledge which is 

the ability to do corrections if any word makes the word utterance semantically 
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meaningless. The Neural Network approaches are being used in the training of such 

knowledge sources which are explained in section 4.3.4. 

 

 4.2.4 Neural Networks 

 

The general structure of a Neural Network is that, there are several nodes which are 

connected to each other, and according to the task to be implemented, there are several 

weights assigned to the paths which connects the nodes. For instance consider human 

neural system and the task is to shake our hand. Our brain sends some commands to our 

hands and fingers by using the most efficient path on whole Neural Network of the body. 

The fundamental element of a Neural Network is shown at Figure 4.6, where we can 

imagine whole Neural Network as the combinations of fundamental element of the Neural 

Network. The Figure 4.6 has modeled at Equation 4.1. Where i = 1... N represents the index 

of inputs xi, wi represents the weight of the path xi→y,   represents the internal threshold 

and f(.) represents either a linear or non-linear function. 

 

   [∑    

 

   

  ] 
 

(4.1) 

 

 

 

Figure 4.6  Fundamental element of a Neural Network [6] 
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There are three kinds of Neural Network topologies such as Single/Multilayer Topologies, 

Hopfield or Re-current Networks and Kohonen or Self-Organizing Networks.  

 

In the first topology which is Single/Multilayer Topologies, in single layer topology N 

inputs are connected directly to M outputs, however in Multilayer Topology there are some 

hidden layers between N inputs and M outputs. Each layer, i.e. level of connections is 

related with some decisions. In the second topology which is Re-current Networks, each 

computational element includes both inputs and outputs. Consider Equation 4.2. The index 

“i” represents the index of nodes and index “j” represents the inputs coming through to 

each nodes whose index represented by “i”, and the “t” represents the time instance and wij 

represents the weight of the connection to the node indexed by “i”. 

 

  ( )   [  ( )  ∑     (   )   

 

] 

 

(4.2) 

 

 

4.3 Complexity of the ASR System 

 

There are several factors which affect the complexity of the speech recognition system such 

as; number of the speakers to be recognized, the size of the vocabulary, if the speaker 

speaks continuously such as speaker of a broadcast news channel or discrete units such as 

specific commands, the acoustic confusability between the words which has similar 

pronunciations, the speaking environment of the recognized speaker and the linguistic 

knowledge built into the recognizer. Waibel and Lee (1990) have called them as 

“dimensions of difficulty” in speech recognition [27].  

 

 4.3.1 Speaker-Dependent and Speaker-Independent Recognition Systems 

 

Using either speaker-dependent or speaker-independent recognition systems has several 

advantages and disadvantages when they are compared.  
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The strength of using speaker-dependent system instead of speaker-independent system is, 

because of the system is used by the speaker or speakers who are trained the system, the 

performance of speaker-dependent system is higher than speaker-independent systems. 

However, for each new speaker, the system should be re-trained by the new speaker. Those 

systems are preferred in security systems. 

 

The strength of using speaker-independent system instead of using speaker-dependent 

system is that, the recognition system could be used by the speakers which are not in the 

group of speakers who have trained the system. Hence those systems could be accessible to 

the public such as call centers. However, speaker-independent systems performance is poor 

when it is compared with speaker-dependent recognizing systems. 

 

 

 4.3.2 Vocabulary Size 

 

The vocabulary size is one of the factors that affect the efficiency and the performance of 

the recognition systems. As usual, increasing the size of the vocabulary will cause degrease 

on the efficiency and performance of the recognition system. According to [27] some 

speech researchers have estimated the difficulty of the recognition problem increased 

logarithmically with the size of the vocabulary. Furthermore increasing the size of 

vocabulary requires more memory, because the size of the lexicon should be increased.  

 

According to the vocabulary size, speech recognition systems has basically divided into 

several classes such as, x-small vocabulary systems where the number of words are vary 

between 1-99 words, small vocabulary systems whose size is varies between 100-999 

words, medium sized systems whose size varies between 1K-100K words, large and x-large 

sized systems whose sizes are more than 100K and 1000K words respectively.  

 

The purpose of the recognition system generally defines approximate size of the system in 

general. For instance, if we want to design a speech-recognition system which will 

recognize only specific words or commands, then we will expect that the size of that system 
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will small. On the other hand, in our work we are interested in speech recognition system 

for Turkish broadcast news; in addition those are continuous speech, our lexicon should 

include all of the used words in Turkish language and additionally some special words such 

as foreign names and most widely used foreign words. 

 

 

 4.3.3 Isolated-Word and Continuous-Speech Recognition Systems 

 

The Isolated-Word Recognition (IWR) and Continuous-Speech Recognition (CSR) models 

are used according to the structure of the speech. In the first case, the speech could be 

combination of utterances of speech units and generally those are word utterances and there 

are at least 200 milliseconds duration between two words. In that case IWR systems are 

used.  

 

In the second case, the speaker is speaking naturally, so there are no duration rules such as 

at least 200 milliseconds pauses after each word. Furthermore, the speaker can pronounce 

some phonetic units different, where the pronunciations of phonemes were depended on 

neighbor sounds. In addition two separate words could be combined. For instance in 

Turkish language instead of speaking “geçen-sil-akşam”, where “sil” represents the silence 

between two words, it could be spoken as “geçenakşam”. Hence the recognizer should be 

able to handle the problems of unknown temporal boundaries in acoustical signal, 

coarticulatory effects and sloppy articulation.  

 

In both IWR and CSR approaches, end point detection is essential. The goal of end point 

detection is to separate background noise and speech. Basically short-time zero crossing 

rate and short-time energy measures are performed at the first step. Then thresholds for 

both zero crossing rates and energy measures are defined for speech and non-speech 

regions. It is similar with detecting voiced and unvoiced parts of a speech, hence high 

energy and low zero crossing rates will be occurred at speech regions, and low energy, high 

zero crossing rates will be occur in non-speech regions. 
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 4.3.4 Linguistic Constraints of Speech Recognition Systems 

 

The linguistic constraints are defined the rules of how basic language units such as phones, 

phonemes, syllables and words will be concatenated in order to recognize a meaningful 

message by the recognizer. The complexity of linguistic constraints is also known as the 

perplexity of the ASR system. Adding more constrained rules to spoken language 

recognizer system will reduce the freedom of the speaker. Hence the perplexity measures 

the limitations of the speaker by the system. The perplexity of a speech recognizer will be 

analyzed more detailed at Chapter 5.  

 

Peirce’s model of language (Hartstone and Weirs, 1935) as described by Rabiner and 

Levinson (1981) includes four levels of the natural language code, which are symbolic, 

grammatical (syntax), semantic and pragmatic levels, which are shown at Figure 4.7[27]. 

 

The symbolic level is the most fundamental unit of a language, where for a spoken 

language we can assign either phonemes or words as symbols, and for written language we 

can assign letters as the symbols. If we model symbols as the phonemes, we will observe 

that they are highly correlated with the spectral properties of the signal. (See Chapter 3 for 

more detail.)  

 

The grammatical level (also referred as syntax) of a language determines how symbols 

should be combined to obtain a meaningful message. If we think the symbols as the 

phonemes or letters, the grammatical component controls if the concatenated version of that 

symbols forms a valid word. That is the lexical sub-level of the grammatical component. 

Then in the next sub-level, the syntactic level controls if the concatenated utterance of 

recognized words forms a grammatically correct sentence. 

 

The further levels are semantic and pragmatic levels, where semantic level controls if the 

recognized message is meaningful, and pragmatic level discerns various meanings of the 

output of semantic level and estimates the correct meaning. 

 



68 

 

 

Figure 4.7  Block diagram of a general speech recognizer showing the acoustic and linguistic 

processors [27]. 

 

 

 4.3.5 Acoustic Ambiguity and Confusability of Speech Recognizing System 

 

In the spoken language there may be some similar pronounced words such as similarity 

between parts of the word, where confusability referred to this situation or same 

pronunciations for different words, where this situation is referred as acoustically 

ambiguous words. For instance the words “gelmek” (to come) and “gitmek” (to go) has 

similar ending so they may be confused. On the other hand the words “gül” (rose) and 

“kül” (ashes) are acoustically ambiguous words. The corrections of similar examples could 

be performed at pragmatic level of the language model according to the estimated meaning 

of the recognized message. 
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 4.3.6 The effects of Environment to Speech Recognition System 

 

The environment is important in speech recognition systems because the background noise 

which made in the environment of the speaker location affects the performance of the 

recognizer. However end-detection techniques which are introduced at IWR and CSR 

approaches, handles those problems. As usual, the performance of the recognizer increases 

in the case of reduced background noise. 

 

4.4 Building a Speech Recognition System 

 

There are four main steps of building a speech recognition system such as choosing the 

recognition task, choosing the feature set, training acoustic and language models and 

evaluating the performance of the speech recognition system. 

 

In our work, the recognition task is to recognize words and sentences with boundaries in 

Turkish Broadcast news. The lexicon (dictionary) is used which is a vocabulary list 

includes the written word with phonetic utterances, and the syntax of the language is used 

as language model. In further applications such as topic segmentation and summarizing 

semantics and pragmatics should be also used. 

 

The feature set, which are Mel Frequency Cepstral Coefficients (MFCC) are used in our 

ASR developed by using Hidden Markov Toolkit (HTK) in order to recognize the spoken 

words and perform forced alignment operation (see chapter 5) in the first step. The 

performance evaluation of the first system is given at section 4.5. At the second step 

prosodic features (see chapter 6) are used in order to train models which detects sentence 

boundaries (see chapter 7).  

 

And finally the performance of the overall system corresponding several feature sets on 

trained model are evaluated in terms of F-measure score and Nist error rate (see chapter 7 

and 8). 
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The recognition part where pattern classification and decision operations are done is the 

heart of the overall ASR system. A brief introduction to the Bayesian formulation of the 

ASR problem is given in [2]. 

 

 

4.4.1 Bayesian Formulation of the ASR Problem 

 

The goal is to recognize the spoken words and concatenate them in order to recognize the 

spoken message. Hence the problem is modeled as a statistical decision problem which is to 

find the word string in the spoken language  ̂, that maximizes the a posteriori probability, 

P(W|X), of that string, given the sequence of feature vectors X as shown at Equation 4.3. 

 

 ̂        
 

 ( | ) (4.3) 

 

In Equation 4.3, the X represents the acoustic features of the spoken message. In Chapter 3, 

the short-time analysis of speech processing in time and frequency domain has introduced. 

As it mentioned, the speech has divided into little time segments i.e., frames. Hence the X 

is combination of feature vectors of corresponding frames as shown at Equation 4.4. 

 

  [          ] (4.4) 

 

In each of   vectors includes 12 MFCC features, energy of the frame, 12 delta-mfcc values 

and delta-energy value and also acceleration values of the corresponding frame. (See 

chapter 5 for details) The W represents the optimal decoded word string such as   

{             } where it is assumed that there are M words in the decoded message. 

 

By using the Bayes’ rule, we can re-write Equation 4.3 as 

 

 ̂        
 

 ( | ) ( )

 ( )
 

 

(4.5) 
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Where P(W) represents the a priori probability of the word sequence W,  ( | ) 

represents the likelihood that the word string W, produced the feature vector X, and finally 

P(X) represents the a priori probability of the feature vector. While P(X) is independent of 

the word sequence W being optimized we can discard P(X) in Equation 4.5 and we can re-

write  ̂ as shown at Equation 4.6. 

 

 ̂        
 

  ( | )  ( ) (4.6) 

 

Where the term  ( | ) represents the acoustic model and shown as   ( | ) and the 

term P(W) represents the language model and shown as   ( ) in equation 4.6. As shown 

in Equation 4.6 there are three main steps of the recognition and decoding process such as 

the first step is to compute the probability associated acoustic properties of the speech 

message with   ( | ), in the second step   ( ) is computed which is the probability of 

word sequence associated with the language model of the spoken language and finally 

       ( ) operation searches through all possible valid word utterances in order to find 

the maximum likelihood sentence. 

 

In Chapter 5, Hidden Markov Modeling, The Viterbi Algorithm, Acoustic and Language 

Modeling and the search problem which is the process of finding the maximum likelihood 

sentence will be explained. 

 

4.5 Performance Evaluation of Speech Recognizers 

 

The performance of a speech recognition system depends on how well the spoken words 

are recognized. Hence; the ratio of total word errors over all of the words, in the recognized 

speech. There are three types of word errors such as word insertions, word substitutions and 

word deletions. Word insertion error occurs when a word is recognized even it has not 

spoken. Generally they are short words and they may occur in long pause durations or 

hesitations and self-corrections of the speaker.  
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The word substitution error is occurred when the spoken words and the corresponding 

recognized words are different. This type of error generally occurs when those two words 

has similar soundings. And finally word deletion error is occurs when the spoken word is 

not recognized by the recognizer. This type of error may occur when two words are 

pronounced as a single word.  

 

The calculation of word error rate (WER) is shown at Equation 4.8, Where NI represents 

number of word insertions, NS represents number of word substitutions and ND represents 

number of word deletions, and | | represents number of the words in the spoken word 

utterance [2]. 

 

    
        

| |
 

 

(4.7) 

 

Word error rates of several speech recognizers are shown at Table 4.1 [2]. 
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Corpus Type of Speech Vocabulary Size WER 

Connected digit strings (TI 

database) [28] 

Spontaneous 11 (0-9, oh) 0.3%   

Connected digit strings 

(AT&T mall recordings) 

[28] 

Spontaneous 11 (0-9, oh) 2.0% 

Connected digit strings 

(AT&T HMIYH © mall 

recordings) [28] 

Conversational 11 (0-9, oh) 5.0% 

Resource Management 

(RM) 

Read Speech 1000 2.0% 

Airline Travel Information 

System (ATIS) [29] 

Spontaneous 2500 2.5% 

North American Business 

(NAB & WSJ) 

Read Text 64,000 6.6% 

Broadcast News (CNBC) 

 

Narrated News 210,000 ~15% 

Switchboard [30] 

 

Telephone 

Conversation 

45,000 ~27% 

Call-Home Telephone 

Conversation 

28,000 ~35% 

 

Table 4.1  Word Error Rates of several speech recognition systems 
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Chapter 5 

 

Modeling a Speech Recognizer 

5.1 Dynamic Time Warping 

 

The Dynamic Time Warping (DTW) approach is one of the earliest speech recognition 

approaches. This approach can be applied into simple applications which require relatively 

straightforward algorithms. The major difference of DTW from pattern recognition 

algorithms is that, before applying the confidence scoring, the features of the test utterance 

should aligned temporally with the features of training utterance. [27] 

 

At the beginning the dynamic programming will be introduced, then how DTW approach is 

used in Isolated Word Recognition (IWR) and Continuous Speech Recognition (CSR) will 

be shown. 

 

 

 5.1.1 Dynamic Programming 

 

In section 4.2.4 the Neural Networks has introduced, and in Figure 4.6 the fundamental 

element of a Neural Network has shown. In addition it has mentioned that, whole Neural 

Network system was the concatenated combinations of the fundamental elements of the 

Neural Network.  

 

The general framework of dynamic programing is defined in [27] which states that to find 

the most efficient distance, which is the shortest distance with minimum cost, in between 



75 

 

two nodes which are spreaded in an abstract space. To visualize the concept easily, a two 

dimensional i-j plane is preferred, where i=0,…,I (the horizontal axis) and j=0,…,J (the 

vertical axis).  

 

The starting node is represented by (s,t) and the ending node is represented by (u,v). Also 

the notation (s,t) * (u,v) represents the path. In addition if (s,t)=(0,0) and (u,v)=(I,J) then 

the path  (s,t) * (u,v) is called a complete path. Moreover there are several distances, in other 

words costs are assigned to the paths between two adjacent nodes such as (T-type) 

Transition cost, (N-type) Node cost and (B-type) which is the  sum of T-type and N-type. 

 

Firstly, the transition cost is the case when the cost is associated with only to the transition 

from the current node to adjacent node and the nodes themselves are free. For instance, a 

businessman travels from the office to the home by using a bus. The cost of total path is 

charged only at the travelling, in other words transition stage. The formal definition of the 

transition cost is shown at Equation 5.1. The transition cost   [ ] is always non negative 

and any transition   [(   )|(   )] is defined costless, i.e. unit element of the operation 

which calculate the total cost. For instance it is zero for addition and one for multiplication. 

 

  [(         )|(     )]                  

where (s,t) =  (         ) and (u,v) = (     ) 

(5.1) 

 

Secondly the N-type cost (cost of the node) is the case when the cost is associated with only 

at the nodes themselves and the transition to that node is costless. For instance, the 

businessman walks to a hotel after finishing his work at the office. In that case, the cost will 

be charged only at the hotel, and because of he has walked, there is no cost of travelling. 

The formal definition of the Node cost is shown at Equation 5.2. The cost of the Node is 

always defined as non-negative and the cost of initial (0,0) node is always zero or unit 

element of the operation. (For instance it is one for multiplication) 

 

  (   )                                 (   ) (5.2) 
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Finally the B-type cost is defined as the sum of the transition cost and the cost associated 

with the node. In B-type costs, both of the T-type and N-type costs could be charged. The 

formal definition of the B-type cost has shown at Equation 5.3. 

 

 [(         )|(     )]     [(         )|(     )]

    [(         )|(     )]     (     ) 

(5.3) 

 

The distance associated to complete-path is the total cost of (s,n) * (u,v). In Equations 5.3 

and 5.4 the total cost is defined in terms of addition and multiplication operations 

respectively, where “K” is the number of all transitions. 

 

  ∑ [(         )|(     )]

 

   

 

 

(5.3) 

  ∏ [(         )|(     )]

 

   

 

 

(5.4) 

 

The best path (s,t) * (u,v) is the case when the total cost Dis minimized. This path may pass 

through a node (w,x). In that case the total paths are the concatenated paths of (s,t) * (w,x) 

and (w,x) * (u,v) which is notated as (s,t) * (w,x)   (w,x) * (u,v) by using Bellman 

Optimally Principle (BOP) [47], where   is the concatenating symbol. That is also notated 

as(   )     
(   )
→   (   ). The best path (0,0) ⃗ (     ) is represented by     (   ), and this best 

path may pass through a predecessor node (         ). So     [(     )|(         )] 

defines the distance (cost) from (0,0) to (     ) which passes through the predecessor node 

(         ). Hence     [(     )|(         )] represents the partial path of 

(   )            
(         )
→           (     ) as shown at Equation 5.5. 

 

    [(     )|(         )]       (         )   [(         )|(     )] (5.5) 

 



77 

 

There may be a set of best-paths corresponding to different predecessor nodes, in that case 

the optimum partial path is found by taking the minimum of those possible best-paths as 

shown at Equation 5.6. 

 

 

    (     ) = 

= 

   
(         )

{    [(     )|(         )]} 

   
(         )

{    (         )   [(         )|(     )]} 

 

 

(5.6) 

 

In Equation 5.6 we have only information about the starting node and the ending node and 

distance (cost) of a path. By using Bellman Optimally Principle notation, we have also 

information about a node between the starting and the ending nodes about the path which 

has minimum distance. In most applications it is enough to know the distance of the 

shortest path, on the other hand in other problems we must not only know the distance of 

the shortest path but also the path itself with all nodes.  

 

The offered method in [27] is that, once optimal partial path to (     ) be found, to perform 

backtracking (     ) to the starting node and each step recording the partial paths to a 

memory. While recording each step to a memory, the index notation of the each partial path  

and also the general idea of recording each step into a memory has shown Equation 5.7, 

where (  
    

 ) represents the t
h
 index pair on the K node long path (   )    

→ (   ) and 

 (     ) represents index of the predecessor node to (     ) on (0,0) ⃗ (     )and 

 (     )  (         ). 

 

(  
    

 ) =(   )   

(    
      

 ) =  (   ) = (  
    

 )  

(    
      

 ) 

… 

= ( (   )) 

         … 

=  (    
      

 )  

(  
    

 ) = (   (   )) = (  
    

 ) = (0,0) (5.7) 
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In addition, the transitions between states may depend on some defined rules, such that it 

the whole path corresponds to a word in the vocabulary of the spoken language and each 

node, in other words state is one of the phonetic units, then the lexical knowledge of the 

speech recognizer (see figure 4.7) will define the transition rules. Hence, while deciding the 

transition according those rules; it is also become dependent on past transitions. Hence it 

becomes a Markov transition. 

 

 5.1.2 Dynamic Time Warping Applied to Isolated Word Recognition 

 

5.1.2.1 DTW problem and its solution with DP 

 

The goal of Dynamic Time Warping (DTW) is to perform time-alignment on temporal 

regions of reference features and test features. The need of doing such operation is that, the 

difference on speaking speed may be different in test and reference utterances. For instance 

duration of a word, sub-word and even a phoneme may be different in reference and test 

records, which are represented by a string of features. 

 

In Isolated Word Recognition systems, both the reference and test words are represented as 

string of features. Once an incoming unknown test word is recognized as a word in the 

reference word lists, i.e., best matching scored reference word, the feature strings of 

features belongs to test word should be mapped onto feature strings of reference word to 

prevent mistaken word recognitions. 

 

Earlier, linear methods have been used to temporally align utterance of test features to 

reference features. In this method, the heart of the task was to determine all of the endpoints 

correctly but even detecting endpoints correctly, this method was not sensitive to 

differences of phonetic durations inside the words. Later, researchers found more efficient 

way to perform that alignment. In the new method, instead of using a linear alignment of 

test and reference feature utterances, a non-linear mapping strategy, in other words, 

warping has been used by considering energy measures. To perform this operation, 

Dynamic Programming has been used. 
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The representation of the test utterance features and reference word utterances have shown 

below at Equation 5.8, where the string trepresents the test utterance of features and r 

represents the reference utterance of features [27]. 

 

Test features:               t(1), t(2),…,t(i),…,t(I)  

Reference features:      r(1), r(2),…,r(j),…,r(J) (5.8) 

 

The task is to find a function j=w(i) which aligns the test feature utterances onto reference 

feature utterances. In two dimensional space, if we place the test features t(ik) on horizontal 

lines and r(jk) on vertical lines, the problem is to find the best global match scored path 

through (1,1) to (I,J).The cost of matching is defined as positive value, to match t(ik) with 

r(jk), which is shown at Equation 5.9. The   (.) term represents Itakura distance [27]. 

However in the case of using cepstral coefficients, the cost of matching is evaluated the 

Euclidean distance between  (  )      (  ). 

 

  (     )     ( (  )  (  ))    (5.9) 

 

The minimum-cost of total path is evaluated by taking the sum of all costs of matching. In 

this calculation, only N-type costs (see 5.1.1) have been used. So the minimum-cost 

searching problem has turned into minimum-path search problem. However, if B-type costs 

are used instead of N-type costs, the transition costs (T-type) will be also included in 

minimum-cost searching. Hence the distance between the connected nodes will be also 

considered and warped. 

 

 

5.1.2.2 DTW search constraints 

 

In previous section, we have stated the DTW problem and we have basically modeled the 

problem by using Dynamic Programming. However there are several search constraints 

which should be obeyed in order to obtain legal transitions in the final path such as 
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endpoint constraints of the path, monotonicity, global path constraints and local path 

constraints. 

 

Firstly according to the endpoint constraint, the starting point of the path should be at the 

(t,r)=(1,1) point and the end point of the path should be at the (t,r)=(I,J) point as shown in 

the Figure 5.1 [27], where the starting and ending points are referring the location of the 

first and last node. 

 

 

 

Figure 5.1  The locations of endpoints in the (i,j) plane according to the endpoint constraint. 

 

Recall from section 5.1.1 that the cost of the (i,j) = (0.0) node and transitions from that 

node was costless, hence defining the starting point as (1,1) will not change the total 

distance (total cost) of the path. 

 

Secondly, the path should be monotonic. In other words, in the (i,j) plane only the 

transitions to the north and east are allowed. In other words, it is forbidden to make a 

transition which will reduce the value of either “i” or “j” is forbidden as shown at Figure 

5.2 where the forbidden transitions are shown with red lines on the transition lines. 
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Figure 5.2  Legal and illegal transitions according to the monotonicity constraint [27] 

 

Thirdly the global path constraint specifies the allowable amount of compression and 

extension in the path, where the compression occurs when the projection of the path to the 

reference axis is bigger than the projection of the path to the test axis and vice versa for 

expansion case. Hence global path constraint determines a kind of borders on the (i,j) plane, 

and the path cannot exceed that area. For instance as shown in the Figure 5.3 that, Itakura 

global search constraints permitted maximum compression and expansion factor as two. On 

the other hand, as shown in the Figure 5.4, a simple global search constraint has fixed the 

width of the path with a constant number W such as |     |     

 

Finally the local path constraint is related with the connection of each arrival node. All of 

the arrival nodes will have several constraints. Those constraints are related with the slope 

of the transition. As shown in the Figure 5.5, several valid transitions to arrival node are 

shown, and illegal transitions are hidden. The local path constraint limits either extension or 

compression of small neighborhood preceding (     ). 
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Figure 5.3  The Itakura global path search constraints [27]. 

 

 

 

 

Figure 5.4  A simple global search region with fixed width [27]. 
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Figure 5.5  Example to a local path constraint, minimum allowed slope is 0.25 and maximum 

allowed slope is 4 [27]. 

 

As shown in the example given at the figure 5.5, the transitions to arrival node(    )  

(       ). However in this case, the T-type costs are no more Markovian, because the 

current transitions are depended on previous transitions. By using Bellman Optimally 

Principle (BOP) the Markov nature of the transitions can be preserved. In section 5.1.1, we 

have defined the Bellman Optimally Principle such that a path (   )     
(   )
→   (   ) can be 

modeled as concatenate of two partial paths such as (s,t) * (w,x)   (w,x) * (u,v), without a 

requirement that (w,x) is the immediate predecessor node (i.e. adjacent) to node (u,v). In 

that case, the calculation of the minimum distance of the total path is shown at the Equation 

5.10. 

 

 



84 

 

    [(     )|(         )] =    [(         )]   ̂[(     )|(         )] 

where 

 

 

 ̂[(     )|(         )] 
 ∑  [(         )|(             )]

   

   

 

 

(5.10) 

 

In order to find the optimal path to (     ), the minimum over all distance predecessors are 

taken, which has shown at Equation 5.11. 

 

    (     ) =    (         ){    [(     )|(         )]} 
(5.11) 

 

 

 

5.1.3 Dynamic Time Warping Applied to Continuous Speech Recognition 

 

In section 4.3.3 the major differences of input speech to IWR and CSR has explained. 

When the input speech signal to a CSR system compared with IWR, there will be much 

larger utterance of speech with varying speaking rate, prosodic variations and articulations. 

In addition the partitions of the input test speech and corresponding features might be 

compared with individually trained speech pieces. Hence relax constraints are required but 

the computational cost becomes unacceptable. For instance for a given task with K 

reference templates per word, V vocabulary size and contains L words,  [(  ) ] matches 

should be performed between reference strings and test utterances. Furthermore the number 

of required distance computations and DP solutions are  [   ], where   represents an 

integer with a typical value  ⁄ , I represents the length of the test, and J represents the 

length of the reference string. The number of distance computations is  [ (  )   ]̅ where 

  ̅represents average string length of reference single words.  

 

As described above [27], there is unacceptable computational cost. Hence more efficient 

algorithms are needed such as Level Building (LB) Algorithm [48], and One-Stage (OS) 

Algorithm (known also as Bridle Algorithm) [49, 50] The algorithms with complexity and 

memory requirements are explained below. 
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5.1.3.1 Level Building (LB) Algorithm 

 

The Level Building (LB) algorithm divides the global search region into levels, where the 

Itakura global path constraint (see Figure 5.3) is used. For a task with L-words, the 

reference axis is divided into L-levels as shown at Figure 5.6. It is also assumed that the 

reference templates have the same length ,̅ so there are   ̅frames in j-axis. 

 

 

Figure 5.6  A four-level LB algorithm search region [27]. 

 

The Algorithm starts to proceed at Level 1 and goes through straightforward to remaining 

levels. The overview of the algorithm is shown at Table 5.1. 

 

The DTW algorithms are compared by considering the complexity and memory 

requirements of the algorithm. The operations performed are local distance computations 

and DP searches. In addition three-level storage array associated with the top boundary of 

each level.  (   ) Memory size required for this task. In addition  (  ) sized local 

memory is required to memorize the distances and  (  ) sized global memory is required 

for backtracking task. 
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Overview of the LB Algorithm 

 

LEVEL 1 

 

STEP 1 

Obtain the reference string    for word v. 

Where  {  ( )   ( )     ( )̅} , each   ( ) corresponds the jth frame. 

 

STEP 2 

For   , Algorithm proceeds to find the best path to each of the possible endings of level 1, 

considering the local path constraints. 

 

STEP 3 

Record the normalized minimum distance for the first found suitable path. 

    
 (     )  

    
 (    )

 
, where the i at denominator is the normalizing factor. 

 

STEP 4 

Search for alternative path and if an alternative found which has lower cost, replace with the 

recorded path. 

               
 (     )      

 (     ) 

 

STEP 5 

Record the following information for each node (    )     , where    represents endpoints of 

Level-1. 

   (    ) : Index of the word associated with best path to (    ) 

     
  (    ) : Cost of the best path (    ) 

 (     ), starting node of the best path to (    ) 

STEP 6 

Go to Level 2 and further levels straightforward. 

 

Table 5.1  Overview of the LB algorithm 

 

 5.1.3.2 One Stage (OS) Algorithm 

 

In OS algorithm [27,52], instead of dividing the i-j plane into several levels, in OS 

algorithm the goal is to find an optimal path through a DP grid in one stage.  However the 
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2D i-j plane is extended to 3D i-j-v space, where each word, i.e. template is represented by 

an i-j plane located on v-axis, as shown at Figure 5.7 

 

 

Figure 5.7  3D space for the OS algorithm [27]. 

 

The cost of the minimum-cost path is represented by     (     ), as shown at Equation 

5.12. 

 

     (        )

  

   
(              )

{    [        ]|(              )}  

=    
(              )

{    (              )

   ̂[    [        ]|(              )]} 

 

Where  

 ̂[    [        ]|(              )]

 ∑  [(              )|(                    )]

   

   

 

 

 

 

(5.12) 

There are two types of transitions such as within-template transitions and between-template 

transitions. For instance at the Figure 5.7, the transitions 1 to 2, 3 to 4 and 5 to 6 are within-
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template transitions and the transitions 2 to 3 and 4 to 5 are between-template transitions. 

The cost of within-template transitions are modeled as Type-N costs and the cost of 

between-template transitions are modeled as Type-T costs. 

 

The formulation of within-template cost is shown at Equation 5.13, where that is the 

reduced version of Equation 5.12, where the v is constant in the I X Jv plane. 

 

    (        )      
(       )

{    [(       )|(           )]} (5.13) 

 

In the calculation of between-template boundary, it is assumed that (     ) may be 

preceded by (       ) and (          ) for any v’ including v’=v. Hence, 

 

    (     ) =    {    [(     )|(       )]} 

                      =      {    [(     )|(          )]} 

                      =    {    [(       )]   [(     )|(       )]} 

                      =       {    [(          )]   [(     )|(          )]} 

 

 

 

(5.14) 

 

The OS algorithm for connected-word recognition [27] is shown at Table 5.2. The size of 

required local memory is  (  )̅ and the size of the required global memory for back-

tracking is  (   ̅   ). The complexity of the algorithm is         ,̅ which represents 

number of distances and DP searches. As shown above, both memory and complexity of 

the algorithm is depends the size of the vocabulary. When it is compared with LB 

algorithm, it has a little more computational cost but on the other hand it is simpler 

algorithm and requires less memory. In addition at each boundary only one path survives, 

that property provides optimization over origins [27].   
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The OS Algorithm 

 

STEP 1: Initialization 

For all v     (     )   [(     )|(     )] 

 

STEP 2: Recursion 

For i = 2,…,I 

      For v = 1,…,V 

             Focus on parallel grid corresponding to word v. Search grid points (i,j,v) with fixed v 

             For j = 2,…,J 

Determine     (     ) for any i and for all j>1.  

                   Store     (     ) into a column vector  (   ) whose size is [Jv 1]. 

                   Update  (   ) for each I, which are distances to the top boundaries of words in their location. 

                   In this step, total amount of local storage is  (  )̅ 

                   Total size of the matrix is [         ] 

                   Required memory for  is  (            ), where v is a small integer. 

Update  (   )which holds back-tracking information, where it is enough to know for any path 

reaches (i,j,v), what was (i’,Jv’,v’).  

 (   ) is complement of the local memory vector  (   ) 

              Next j 

        Next v 

Set w(i)   ( )             (      )          (    ) 

The row vector w(.) whose size is [I X 1] holds the word with best existing path at frame i. 

Set e(i) =  [  ( )
    ( )] which is frame of the preceding exit node on the path, where [    ( )

    ( )] 

represents best existing path. 

Exit points are stored in an e(.) complementing w(.) 

 

STEP 3: Backtracking 

The optimal sequence of words in reverse order is w(J), w(e(J)),…, w(e(..e(J))) and so on. 

 

 

Table 5.2  The OS Algorithm 
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5.2 Hidden Markov Modeling  

 

In section 4.2.4 we have introduced the neural network topology and in section 5.1 we have 

introduced dynamic time warping (DTW) algorithm and we have also briefly described 

DTW applied either to IWR and CSR. Hidden Markov Modeling is a stochastic form of 

DTW and it is used in higher level problems compared with the DTW applications. In this 

section at first we will do a theoretical introduction to Hidden Markov Modeling and also 

we will observe the differences between Markov Modeling and Hidden Markov Modeling. 

And then we will briefly introduce the applications performed by using Hidden Markov 

Modeling and several algorithms.  

 

 5.2.1 Discrete Markov Models 

 

Consider system which is combination of a sequence of N physical events and we are 

interested in to observe their occurrence in time. To model such system by using Markov 

Models, several essential information are required such as the number of states and state 

transition probabilities. 

 

For instance, if Isolated Digit Recognition task is considered (see Table 4.1 [28]), there are 

11 physical events, i.e. states, which are the digits zero to nine and an “oh” which means 

also zero, and there will be 121 state-transition probabilities, where each state has 

connection with each state. Let us now reduce the number of states for simplicity, where we 

have only three states N=3, which are the digits, S1=zero, S2= one and S3= two 

respectively. Figure 5.8 shows a Markov Model for this case [6]. The state transition 

probabilities are shown on each transition line. 

 

In Figure 5.8, the state transition probabilities are already given. However before going 

through let define the state transition probabilities in formal. Firstly consider Equation 5.15 

 

 [    |               ] =  [    |      ] (5.15) 
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Where,    represents the observed state is j in time instance t, and rest of the left-hand side 

is straightforward. It is shown that, the occurrence of state j in time instance t depends all 

previous occurred states. In the right-hand side of equation 5.15, the dependence is reduced 

to first order. Hence the state transition probability aij defined in Equation 5.16, with the 

properties of     , for all i and j, and also ∑      
 
    for all i. 

 

     [    |      ] (5.16) 

 

 

 

Figure 5.8  Three state ergodic Markov Model 

 

By combining Equation 5.16 and state transitions given at Figure 5.8, for our model, state 

transition matrix, which includes the probabilities of all transitions are shown at Equation 

5.17. 

 

  {   }  [
         
         
         

] 
 

(5.17) 
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Once the model is given, it is easy to calculate the probability of an observed sequence of 

spoken digits. For instance the observed sequence   [                       

   ] for time instances t = 1 to 5 respectively. Hence 

 

 ( |     ) =  [            ]  

=  [  |  ] [  |  ] [  |  ] [  |  ] [  |  ] [  ]  

=                    

where    represents initial state probability 

    [    ]       

 

(5.18) 

 

 

5.2.2 Hidden Markov Models (HMM) 

 

In discrete Markov Models, the observations was also the states themselves in other words, 

each state corresponded to a deterministically observed event [6]. However in Hidden 

Markov Models, the observation becomes probabilistic function of the state and only the 

sequence of observations is given and any information about the states is hidden. Two 

examples to explain the concept of HMM [6, 53] which are, coin toss example and The Urn 

and Ball model are given below. 

 

In coin toss example, two persons are separated with a wall in a room. There is no 

information about either the number of coins or the selected coin in the corresponding time 

instance. The only shared information is the observations which are Heads H or Tails T. 

Several assumptions can be performed in order to obtain the whole model. Firstly, it can be 

assumed that, there is only one coin and whole model is assumed as an discrete Markov 

Model whose states are the observations either heads or tails. Secondly it can be assumed 

that there are two coins. Hence the states will be the coins themselves. However the state 

transitions are unknown at the beginning. Thirdly, similar with second case, it can be 

assumed that there are three coins, and further assumptions can be made straightforward. 

The important questions are, which model among several assumptions best matches with 

actual observations and is the sequence of observations is long enough to specify a complex 

model. 
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The Urn and Ball example is similar with coin toss example. In that case, there are several 

urns which have red, blue, green and yellow colored balls. One urn is selected and one ball 

is picked from the selected urn, the color of the ball is recorded and the selected ball is 

released into its urn. In this example, any information about urns is hidden and the only 

given information is the sequence of observed ball colors. 

 

An HMM, for a sequence of discrete observations, can be modeled by defining the 

characteristic parameters, which are shown at Table 5.3. 

 

Characterizing a HMM 

 

1. We assume that we have N states, i.e. for the coin toss experiment we assign how 

many coins are being used and for urn experiment we assign how many urns we 

have. The states are represented as  . 

2. Discrete alphabet size M. For the coin toss experiment, the results are head or tail 

and for the urn example the results are the set of colors of the balls. The 

observations are represented as    {          }. 

3. The state transition matrix “A”, which is the combination of Equation 5.16 and 

5.17. 

4. The observation symbol probability distribution in state j,    {  ( )}, where 

    ( )   [     |     ]                     

5. The initial state distribution   , where 

        [     ]        

The combination of probability measures A, B and   is denoted by    (     ) 

 

Table 5.3  Characterizing a HMM [6]. 

 

After defining the unknown parameters A, B, M, N and  , the generation of a HMM has 

shown at Table 5.4, by using the observation sequence   (       ), where each    is 

one of M observations and T represents the length of the observation sequence. 
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1. Choose initial state      according to the initial state distribution  . 

2. Set t=1. 

3. Choose       according to the symbol probability distribution in state  , 

i.e.,   ( ). 

4. Transit to a new state          according to the state transition probability 

distribution for state   , i.e.,    . 

5. Set t=t+1; return to step 3 if    ; otherwise exit. 

 

Table 5.4  Generation of a HMM [6]. 

 

In order to obtain a useful model, three main problems [6] should be considered such as 

 

1. Given the observation sequence   (         ) and the model   (     ) how 

the probability of the observation sequence  ( | ) computed efficiently? In this 

task, the goal is to compare the selected model with given observation sequence and 

score the model. In other words, to compute the probability of given observed 

sequence produced by the offered model. 

2. Given the observation sequence   (         ) and the model   (     ) how 

a corresponding optimal state sequence    (       ) is selected which best 

explains the observation? In this task the goal is to estimate the hidden part of the 

model, in other words to estimate the optimal state sequence. 

3. How the parameters   (     ) should be adjusted to maximize  ( | ). The task 

is to train the HMM. In other words the parameters of the models are estimated 

according to the given observations. 

For instance in an Isolated Word Recognition system which is implemented by HMM, at 

first individual word models are built by using solution to problem 3. In second step, to 

understand the physical meaning of the model states, solution to problem 2 is used. In this 

stage, each of the word training sequences are segmented into states and properties of 

spectral vectors are analyzed. And finally an unknown word is recognized by the HMM 
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model by using the solution to problem. There are several algorithms to solve the three 

main problems above. Those algorithms are explained below. 

 

5.2.2.1 Forward-Backward Algorithm 

 

The first problem was to calculate probability of observation sequence  ( | ) for a given 

observation sequence   (         ) and the model   (     ). The straightforward 

calculation is shown at Equation 5.19. 

 

 ( | )=∑  ( |   ) ( | )  ∑       (  )            (    )
 
      (5.19) 

 

Where, there are N
T
 state sequences  (       ), the    (  ) represents statistical 

independent observations,          represents state transition probabilities. According to 

Equation 5.19, the system requires (    )  multiplications and      additions. 

Hence there are too many computations even for a small system. The forward-backward 

algorithm has developed in order to decrease the complexity. 

 

The forward-backward algorithm is divided into two stages such as forward procedure and 

backward procedure. In forward procedure for any time instance t,        the 

probability of partial observation sequence, which is from the beginning to the time 

instance, given the model   is computed. The forward variable is defined in Equation 5.20. 

 

  ( )   (            | ) (5.20) 

 

Where the index t represents the time instance and the index i represent the state. The 

forward procedure is shown at Table 5.5. 

 

The backward procedure is similar with forward procedure. The difference is that, in 

forward procedure it was interested in arrival state j in time instance t+1. In backward 

procedure it is interested in all possible ways from state i at time t to the end given the 
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HMM model. The process is shown at Table 5.6. By using forward-backward processes, 

    calculations are enough in order to find  ( | ). 

 

STEP 1 

Initialization: The joint probability of state i and initial observation    is initialized. 

 

  ( )      (  )        (5.21) 

 

STEP 2 

Induction: In this step, the ways to reach state j in time instance t+1from N states is        calculated. 

In Equation 5.22, the sum of all paths and transition probabilities to state j at time instance t+1 is 

multiplied with observation of state j. 

 

    ( )  [∑   ( )   
 

   
]   (    )            

         

(5.22)       

STEP 3 

Termination: Desired calculation is the sum of terminal forward variables. 

 ( | )  ∑  ( )

 

   

 

 

(5.23) 

Where   ( )   (            | ) 

 

Table 5.5  The forward procedure [6] 
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Backward Variable:   ( )   (           |      ) 

STEP 1  

Initialization: The   ( ) is defined as 1 for all states. 

   ( )             (5.24) 

 

STEP 2 

Induction:  

   ( )  ∑     (    )     ( )

 

   

 
              (5.25) 

1     

 

 

Table 5.6  The backward procedure [6] 

 

 

5.2.2.2 The Viterbi Algorithm 

 

The problem 2 was to find optimal state sequence    (       )associated with given 

observation sequence.One way to perform this task is to choosing states    independently 

for most likely at time instance t. The posteriori probability variable is defined at Equation 

5.26. 

 

  ( )   (    |   ) (5.26) 

 

This is the probability of being in state i in time instance t given, the observed sequence and 

the HMM model. The Equation 5.26 is also written as 

 

  ( )   (    |   )  
 (      | )

 ( | )
 

 (      | )

∑  (      | )
 
   

 
  ( )  ( )

∑   ( )  ( )
 
   

 
(5.27) 

 

At the right side of Equation 5.27, it is seen that the posteriori probability variable depends 

on the forward and backward observation sequences which are explained in forward-

backward algorithm. The most likely state is   
        [  ( )], where       and 
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        However, the probabilities of occurrence of sequences of states are not 

considered while determining the most likely state. 

 

The goal of Viterbi Algorithm is to find single best state sequence   (       ) for the 

given observation sequence   (       ). The algorithm is shown at Table 5.7 

 

 

5.2.2.3 Baum-Welch Algorithm 

 

Baum-Welch method is used to adjust the parameters of the HMM model. The overview of 

Baum-Welch algorithm is follows 

1. For each parameter, initialize locations which are referred as accumulators. 

2. Calculate the forward and backward probabilities for all states j and times t. 

3. For each states j and times t, use the probability   ( ) and current observation vector 

to update accumulators for that state. 

4. To calculate new parameters, use final accumulators. 

5. Until finding the maximum  ( | ) repeat above steps. 

The initialize stage of the algorithm above is performed by HINIT tool of HTK and the rest is 

performed by HREST [54]. 

 

5.3 Acoustic Modeling 

 

The main goal of acoustic modeling is that to by using audio recordings of speech and 

corresponding text transcriptions, obtain statistical representations of the sounds which 

make up a valid word in the spoken language, i.e., word in the used lexicon. Equation 4.3 

and 4.6 represents the Bayesian approach to ASR problem. 

 

In Equation 4.6 we have mentioned that the term   ( | ) was acoustic properties of the 

speech message and this was the first main step of the decoding problem. The overview of 
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the method is that, obtaining the best acoustic HMM models for each sound that composes 

each word by training the system on an independent and orthographically labeled set of 

training data. 

 

In the term   ( | ) the X represents observed acoustic vector sequences and W represents 

word sequences. Hence, the goal of acoustic modeling is to assign probabilities to the 

acoustic realizations of a sequence of acoustic vectors, given the words [2], which has 

shown at Equation 5.35. 

 

  ( | )     ({         }|{         }) (5.35) 

 

STEP 1 

Initialization: The highest probable single path for the first node and following node is initialized. 

  ( ) =     (  )            (5.28) 

  ( )       (5.29) 

 

STEP 2 

Recursion: In this step, by considering state transition probabilities and the probability of being in a 

state in corresponding time instance, the most likely node is found. 

  ( )     
     

[    ( )   ]  (  )        

         

(5.30) 

  ( )        
     

[    ( )   ]        

         

(5.31) 

 

STEP 3 

Termination: In previous step, the algorithm finds the most probable states belongs to previous 

state. However, there may be more than one single path. In this step, the path which has the most 

probability is selected. 

      
     

[  ( )] (5.32) 

  
        

     
[  ( )] (5.33) 

STEP 4 

Path backtracking: From the final state to the initial state, every states are determined in this stage. 

  
      (    

 )                   (5.34) 
 

 

Table 5.7  The Viterbi Algorithm [6] 
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The observation vector sequences X are the Mel Frequency Cepstral Coefficients and the 

main procedure to extract them is to at first pre-emphasizing the sampled speech signal 

according to Equation 5.35, then dividing the speech signal into frames to perform short-

time analysis and applying hamming windowing (see Chapter 3), then performing Cepstral 

analysis to obtain the Cepstrum coefficients. In our work we have used HCopy tool of HTK 

(see section 5.5) to obtain that coefficients. 

 

Before going further to the calculation of Equation 5.35 [2], there are several assumptions 

are done.  

 

1. Each of the frame t has aligned with the word model i, and the HMM model state j.  

2. Each frame is independent from each other.   

3. Each   , i.e. frame of X is an unique word associated with  state   
  

By considering the assumptions above, the Equation 5.35 re-written as 

 

  ( | )  ∏  (  |  
 )

 

   

 

 

(5.36) 

 

Hence the acoustic property of the speech message is expressed by local probabilities given 

the word and state of the corresponding frame. However to express the local probabilities, 

further assumptions are done. 

 

1. Each word model also divided into sub-states                 

2. Feature vectors X is warped onto HMM word sub-states. 

3. Left-Right HMM Model is being used, which has shown at Figure 5.9. 

4. Within each sub-state in each word, there is a probability density which characterizes the 

statistical properties of the feature vectors in that state. Those probability densities are 

learned in the training phase. 
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Figure 5.9  Left-right HMM model 

 

Hence the term   (  |  
 ) is approximately equals to  

 (  ), where   (  ) represents 

density function for each corresponding state. 

 

  (  )  ∑    [          ]

 

   

 

 

(5.37) 

 

 

Where   (  ) represents mixture of Gaussian normal densities, K represents the number of 

mixture components in the density function,     represents the weight of the k
th

 mixture 

component in state j which is always equal or greater than zero, and N represents Gaussian 

density function with mean     and covariance     for each mixture k and state j. In 

addition there are two constraints which are shown at Equation 5.38-39. 

 

1. ∑      
 
    ,       (5.38) 

2. ∫   (  )         
  

  
      (5.39) 

 However in that computation the state transition probabilities     are not considered and 

also it is not specified how to determine the within-word state j in the alignment of word 

and corresponding features.  

 

In this task, HMM models are generated for each word in the dictionary; however for the 

tasks which require large vocabulary, there should be many HMMs should be trained. An 

alternative method is to build acoustic-phonetic models for all phonetic units in the spoken 
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language. For instance, in English it is enough to build 40 acoustic-phonetic models for 

each phonemes of the English language, and in Turkish, it is enough to build 29 acoustic-

phonetic models, where there are 29 phonemes (also letters) in modern Turkish language. 

In this type of systems, a word lexicon, i.e. dictionary is used. In this dictionary, all words 

are listed with corresponding either mono-phones (utterance of corresponding words 

phonetic units) or tri-phones. For instance for a given Turkish word “kelime”, the mono-

phone representation is “k-e-l-i-m-e” and the tri-phone representation is “kel-eli-lim-ime”. 

 

5.4 Language Modeling 

 

Recall that the second main step of building a speech recognizer was the computation of 

  ( )  which was the probability of word sequence associated with the language model of 

the spoken task. Also In section 4.3.4 we have explained the linguistic constraints of speech 

recognition systems. The definition of Language Modeling is that to assign probabilities to 

each possible word strings based on the likelihood of that word string occurred in the task 

performed. In that point, the task is, for small applications such as digit recognition is to 

recognize the sequence of the digits, hence the vocabulary will include only the digits. On 

the other hand in a complex application such as recognizing a spoken language, the 

vocabulary size is much larger than simple applications, i.e. the size of lexical knowledge is 

much larger. In addition the language model should also contain syntactic, semantic and 

pragmatic knowledge depend on the goal of the desired goal of recognition system such as 

either performing only sentence segmentation or going one step further to perform topic 

segmentation and summarization. 

 

Developing a speech recognition system for any spoken language requires large 

vocabulary, and also from the previous discussions, the probability of a word followed by 

another word depends highly on the structure of the spoken language. In other words, for 

instance consider a segment of a speech which contains one or two sentence and includes Q 

words. 
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Hence the probability of word sequence associated with the spoken language model will be 

 

  ( )  (       ) = (  ) (  |  ) (  |    )  (  |         ) (5.40) 

 

In the right side of the Equation 5.40, it becomes impossible to estimate the large terms 

such as  (  |         ) where there are too many word dependencies. To overcome 

that problem, N-gram word models are offered. In this technique, instead of calculating 

such large terms shown above it will be enough to calculate the most effective part, in other 

words, instead of going back to the initial word in the middle of a long speech, it is enough 

to go back only N words. Equation 5.41 expresses the idea in a formal way. 

 

 (  |         )    (  |           ) (5.41) 

 

 

Hence the Equation 5.41 can be re-written as 

 

  ( )  ∏ (  |               )

 

   

 

 

(5.42) 

 

The estimation of conditional probabilities in Equation 5.42 is done applying Equation 5.43 

 

 ̂(  |             )  
 (                )

 (             )
 

 

(5.43) 

 

Where the function F(.) represents the number of occurrences of the word string given the 

training corpus. However if the N is selected large, the value of F(.) goes to zero hence 

Jelinek [55] defined N=3 and used trigram word models. The smoothing has done by 

interpolating trigram, bigram and unigram relative frequencies which shown at Equation 

5.44. 
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 ̂(  |     )    
 (        )

 (     )
   

 (     )

 (  )
   

 (  )

∑  (  ) 
 

(5.44) 

 

Where         non-negative weights and sum of them are 1, and ∑  (  )  is the size of 

the corpus. The weights depends on  (     ) and  (  ) and they obtained by applying 

the principle of cross-validation [6, 55]. 

 

In language modeling, it is also important to know that how well the language model is 

represents the context of the speech [6]. In other words does the semantic knowledge of the 

language model is enough to recognize a speech in any context. This is measured by using 

source of information. The entropy of any given word sequence is shown at Equation 5.45. 

 

      
 → 

(
 

 
) {∑ (       )    {       }} 

 

(5.45) 

 

Where in the Equation 5.45 the term p(.) defines the probability of the given word string 

occurs in a language model which has vocabulary size of Q words. 

 

If the sequences of words are considered as independent, then the term  (       ) 

becomes equal to  (  ) (  )    (  ). Hence; equation 5.45 re-written at below, where 

w represents words and v the vocabulary. 

 

   ∑  ( )     ( )

    

 
 

(5.46) 

 

There may be at total    such word sequences. The entropy of a typical given word 

sequence which is sufficiently large is computed by using equation 5.47. 

 

   (
 

 
)     (          ) 

(5.47) 
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However it is difficult to calculate the term  (          ) in Equation 5.47. Hence the 

estimate of P(W) from N-gram model calculation is used. Thus 

 

    
 

 
∑    (  |                  )   

 

 
    ̂(          )

 

   

 

 

(5.48) 

 

Where  ̂(          ) is an estimate of  (          ).Similarly    is estimated 

entropy of H and it represents average difficulty or uncertainty in each word based on the 

language model [6].where if the source is ergodic and as Q goes to infinity, then     . 

The perplexity of the language model is computed by using Equation 5.49. 

 

       ̂(          )
    

 (5.49) 

 

5.5 Hidden Markov Model Toolkit 

 

In speech recognition and several applications Hidden Markov Toolkit (HTK) is used to 

build Hidden Markov Models (HMMs). There are two main tasks performed by HTK such 

as training the recognizer and use trained recognizer in order to perform recognition 

operation. In this section the four main stages of the HTK toolkit which are data 

preparation, training the recognizer, testing the recognizer and performance analysis of the 

recognizer will be introduced and the usage of HTK in our work will be explained. 

 

The Hidden Markov Toolkit [54] has developed by researchers in Cambridge University. 

By login to the system, one can download this toolkit and the referred HTK tutorial. The 

HTK has sub toolkits, and each toolkit is used for a specific purpose. In our work, I have 

used HTK Turkish speech recognition system which has developed in Boğaziçi University 

BUSIM laboratory [44] in UNIX operating system environment. Figure 5.10 shows the 

architecture of the HTK system. 

 



106 

 

5.5.1 Data Preparation Stage 

 

In Figure 5.9, at the top the process begins with data preparation step. There are two types 

of files to be processed. The speech file and the transcriptions of corresponding speech 

files. At the top of the figure, speech signal processing analysis is performed by the tools 

HSLab, HCopy, HList and HQuant. The HSLab tool can be used in order to record data. 

The HCopy is used to parameterize the data. For instance, in our work HCopy is used to 

obtain Mel Frequency Cepstral Coefficients (MFCC) of the speech signal. 

 

 

Figure 5.10 Architecture of the HTK processing stages. 
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HList is used to view the parameterized data obtained by HCopy, where the output of 

HCopy is a binary file and when it cannot be viewed. The HQuant data is used in order to 

build VQ codebook. On the other hand at the left-side, the files contains the transcriptions 

of the corresponding speech are processed by using HLed and HLstats tools. The HLed is 

works as label editor and constructs the Master Label Files. For instance the segment time 

marks (STM) files are example of Master Label Files, where the timing information of each 

speech segment is shown at those files. The HLStats is used to display statistics on label 

files if it is necessary. 

In our work, we have used VOA Turkish broadcast news [43] and corresponding segment 

time marks (STM) files, which has prepared by the BUSIM [44] group. However, because 

of Prosodic Feature Extraction Tool [31, 35] works speaker based, I have divide the speech 

data and corresponding STM files into speaker based files. In this stage, we have speaker 

based speech files and the corresponding transcriptions STM files.  

At the first step, by using HCopy tool I have extracted the MFCC of the speech signal. The 

procedure of extracting MFCC by using HCopy is explained below. 

In order to extract MFCC by using HCopy tool, at first step there should be a configuration 

file. Such configuration file was already prepared at BUSIM [44], at first this configuration 

file will be explained. 

 

STEP 1: Defining the input/output formats and sampling rates. 

SOURCEFORMAT = WAV  # the input source format. 

SOURCERATE = 625    # 16KHz sampled input waveform. 

TARGETRATE = 100000   # 100 parameters for each output block. 

WINDOWSIZE = 250000   # 25msec window. 

SOURCEKIND = WAVEFORM  # the type of the source. 

TARGETFORMAT = HTK  # the type of the output. 

 

 

Table 5.8  I/O part of the HCopy configuration file 
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In Table 5.8; “SOURCEFORMAT” determinates the input waveform format, 

“SOURCERATE” determines the sample rate of the input waveform file, 

“TARGETRATE” determinates the sample rate of the output file. “WINDOWSIZE” 

determinates the window duration while we are dividing the signal into frames. Those 

parameters are in terms of 100 nanosecond units. So we have divided 16 kHz input speech 

signal into 25 milliseconds long frames. The “SOURCEKIND” is the input parameter kind 

where it is defined as waveform. It could be also LPC (Linear Prediction Coefficients) or 

ANON. The “TARGETFORMAT” is the type of the output. 

 

STEP 2: Performing pre-processes to extract MFCC 

 

ZMEANSOURCE    = FALSE # Removes the DC mean 

PREEMCOEF      = 0.97 # Pre-emphasizing 

USEHAMMING     = TRUE # Hamming windowing 

 

Table 5.9 Pre-processes to extract MFCC 

 

In Table 5.9, the pre-processing steps are shown before extracting MFCC coefficients of 

the data. The first step is either removing the DC mean or pre-emphasizing the speech 

signal according to Equation 5.50, where   
  are the pre-emphasized signal,    original 

signal and k is the pre-emphasizing coefficient. After pre-emphasizing the signal, hamming 

windowing is used, where it has explained in Chapter 3. 

 

  
            (5.50) 
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STEP 3: Extracting MFCC 

 

TARGETKIND   = MFCC_E_D_A #Energy, delta coefficients and acceleration coefficients will be 

calculated 

DELTAWINDOW    = 2  

ACCWINDOW      = 2  

ENORMALISE     = FALSE # Normalizing energy values inactive. 

SILFLOOR       = 50.0 # Removes minimum energy components under the threshold defined 

in terms of dB 

ESCALE         = 1.0 # Energy scaling factor 

LOFREQ         = 300 # Minimum frequency in the speech signal. 

HIFREQ         = 8000 # Maximum frequency in the speech signal. 

NUMCHANS       = 24 # 24 triangular Mel filters 

NUMCEPS        = 12 # Number of Cepstral coefficient at the output for each frame. 

 

Table 5.10 Extracting MFCC 

 

The “TARGETKIND” will be used by HList tool to view extracted MFCC coefficients. 

The “_E” stands for the energy measure. The energy is computed as the log normal energy 

as shown in the Equation 5.51. 

 

     ∑   
 

 

   

 

 

(5.51) 

 

Energy values can be normalized by setting “ENORMALISE = T” which will normalize 

and give the values in the range of the minimum energy value and 1. This normalization is 

done by subtracting the maximum energy value and adding 1. We cannot use 

“ENORMALIZE” in the live audio applications because of the computational complexity. 

We can also get rid of the minimum energy components by using “SILFLOOR” where we 

can give a ratio in terms of dB between the maximum and minimum energy. The overall 

log energy can be also scaled by the “ESCALE” command. After calculating the energy 

parameter, now we will also put the delta coefficients (first-order regression coefficients) 

by typing “_D.” By using the delta coefficients (the first order differences) our speech 
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recognition system is enhanced. We have also typed “_A” which are acceleration 

coefficients (second order regression coefficients). At the output, there will be 12 Cepstral 

coefficients for each frame, 1 Energy measure, 12 delta Cepstral coefficients, and 1 delta 

energy coefficient and 12 acceleration Cepstral coefficients and 1 energy acceleration 

coefficient, hence for each frame there will be 39 parameters. The calculation of the delta 

coefficients are shown at Equation 5.52. 

 

   
∑  (         )
 
   

 ∑    
   

 
 

(5.52) 

 

Where,    is delta coefficient computed in terms of the corresponding static coefficients 

          . The parameter   represents DELTAWINDOW and ACCWINDOW 

(Acceleration window), where the computation of acceleration coefficients are similar with 

computation of delta coefficients. 

 

As shown in Table 2.1, there are 24 filters according to the bark-scale. The locations of the 

filters are defined by the Equation 2.1. However HTK provides a simple Fourier Transform 

based filterbank design, which has shown at Equation 5.53 and approximately equal to the 

resolution in Mel-scale. 

   ( )           (  
 

   
) 

(5.53) 

We have typed “TARGETKIND = MFCC” at the Table 5.10 to obtain Cepstral parameters. 

The Cepstral parameters are calculated from the log filter bank amplitudes {  } using 

Discrete Cosine Transform as shown in the Equation 5.54. 

 

       √
 

 
∑   
 
      (

  

 
(     ))    (5.54) 

 

At the Equation 5.38 the N is the number of the filter bank channels, which is set by typing 

“NUMCHANS = N”. The number of output Cepstral coefficients are defined by typing 

“NUMCEPS = M”. 
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STEP 4: Outputs 

 

NATURALREADORDER = T 

NATURALWRITERORDER = T 

 

Table 5.11 Output configuration of the file 

 

“NATURALREADORDER” and “NATURALWRITEORDER” commands as shown in 

the Table 5.11 which controls the HTK reading and writing format waveform files. 

The following commands are used to extract and view MFCC coefficients. 

HCopy -C hcopy2.conf inputfile.wav outputfile.mfc 

HList -C mfcc.conf -i 39 -h -o inputfile.wav 

 

Table 5.12 Extracting and viewing MFCC coefficients by using HTK 

 

The corresponding STM files should be also adjusted. In this stage, while dividing speech 

signals in speaker based, also the corresponding STM files are divided. And both speech 

and corresponding STM files are concatenated. By using Perl scripts, we have obtained 

STM files corresponding single speaker speech records. 

 

 

5.5.2 Training Stage 

 

In the training stage, the speech and transcriptions are used in order to obtain HMMs. In 

this stage, the main problem is to build phone models. 
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STEP 1: Initialization 

 

If there are labeled utterances and corresponding speech signals i.e. forced aligned 

utterances are given as input into HINIT tool. The HINIT tool creates initial set of models. The 

time labels of the labeled utterance are used as bootstrap data. Then HREST re-estimates the 

isolated words. The initial set of mean and variance parameters is computed by using 

segmental k-means procedure. Where at the beginning the parameters are initialized 

uniformly and further iterations the parameters are defined by using Viterbi alignments. In 

the re-estimation stage performed by HREST, the segmental k-means procedure is replaced 

by Baum-Welch re-estimation procedure. 

 

In the case of, the forced aligned data is not given, i.e. there are no time labels in the input 

data, phone models are initialized identical and have equal means and variances. This 

initialization is performed by HCompV tool. 

 

 

STEP 2: Embedded Training 

 

Recall that, the goal of Baum-Welch algorithm was to adjust the HMM parameters. Once 

the initialization step is performed, HEREST tool performs a single Baum-Welch re-

estimation of the whole set of HMM phone models. In addition forward-backward 

probabilities are used in order to accumulate the statistics of concatenated phone models. 

 

 

5.5.3 Recognition Stage 

 

The recognition stage is very important for our work. We have used HVITE tool to obtain 

phoneme based and word based labeled segment time marks, where this kind of data is 

required in order to extract prosodic features by using the Prosodic Feature Extraction Tool 

which has explained in detail at Chapter 6. At the beginning there are several inputs to the 

HVITE tool such as; the master label file (MLF) which contains a list of words in a specified 
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time segment, the corresponding MFCC vectors of the word utterances in the MLF file, 

those files were prepared in data preparation stage, a configuration file for the HVITE tool, 

the monograms, i.e. phones in Turkish Language, Turkish language model which has 

trained and prepared by BUSIM researchers and a dictionary which includes the utterance 

of phonemes for each word. The main command to perform forced alignment is shown at 

Table 5.13 

 

HVite -o S -T 1 -C config.hd -a -b "<s>" -m -I test.word.mlf -S test.mfc.list -H htkmono/MODELS -

iout.mlf dictionary htkmono/mono.list 

 

Table 5.13 Performing Forced Alignment 

 

At First, “config.hd” is a configuration file which is similar with the configuration file 

prepared for the HCOPY tool. This file is prepared by BUSIM researchers. 

At Second, the “<s>” is the used silence model.  

At Third, “test.word.mlf” is a master label file, which contains the spoken words in a 

specified time interval. I have used simple Perl scripts in order to convert the segment time 

marks (STM) into such master label files (MLF). One example is shown below at Table 

5.14 

At Fourth, “test.mfc.list” is a list file of the MFCC vectors for each segment time marked 

speech. This file is also obtained by using simple Perl scripts, and shown at Table 5.14 

At fifth, the "MODELS" is the Turkish Language Model developed by BUSIM researchers. 

The required phoneme and word based networks are found inside this file. 

At sixth, the “out.mlf” is the output of the HVite tool, i.e. the forced aligned data, which is 

shown at Table 5.16. 

At seventh, the dictionary is the list of the words with spoken utterance of phonemes, which 

is shown at Table 5.15. 
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At eighth, the mono.list includes the monograms, i.e. phones of Turkish language which are 

shown at Table 3.1. 

STEP 1: Part of an STM file. The first and third column is speaker information, second column is a 

kind of channel information (mono) the fourth and fifth columns are starting times and ending times 

of the segment in terms of seconds, the sixth column is information about the speaker and the 

speech environment. We have a male speaker who has spoken in studio “f0” Each following word 

is placed in a new column, and a new line starts at concatenated segment, where the beginning of 

each line is bolded. Finally the “.” at the end represents silence model between two segments. 

 

AlparslanesmerA 1 AlparslanesmerA 0.00 50.62 <of0maleunknown> amerikanIn en yakIn 

mUttefiklerinden biri olan suudi arabistanIn amerikayI eleStirmesi sUpriz yarattI Ote yandan 

telaferde sUnnilerin oturduGu bir mahalleye giriSilen saldIrIda yetmiS kiSi OldU saGlIk 

gOrevlileri OldUrUlen kiSilerin baSlarIndan vurulduklarInI bildiriyor IraklI yetkililer saldIrIya Sii 

polislerin de katIldIGInI aCIklarken Irak ordusu kentte sokaGa CIkma yasaGI ilan etti saldIrInIn 

birgUn  Once Siileri hedef alan bombalI saldIrIlara misilleme olduGu sanIlIyor bombayUklU iki 

araCla dUzenlenen saldIrIlarda en azaltmIS kiSi hayatInI kaybetmiS yUzU aSkIn kiSi de 

yaralanmIStI Ote yandan fellucede araClarIna zehirli gaz yUkleyen intihar bombacIlarI hUkUmet 

merkezine saldIrdI amerikan ordusu saldIrInIn pUskUrtUldUGUnU ancak CatISmada on beS 

amerikalI ve IraklI askerin yaralandIGInI aCIkladI ayrIca gazdan zehirlenen Cok sayIda IraklI asker 

ve polis tedavi altIna alIndI . 

AlparslanesmerA 1 excluded_region 50.62 50.62 <ounknown> . 
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STEP 2: Converting into MLF files by using a simple Perl script. The output is at below. 

#!MLF!# 

"*/data_excluded_region_0_0.la

b" 

. 

"*/data_AlparslanesmerA_0_50

62.lab" 

amerikanIn 

en 

yakIn 

mUttefiklerinden 

biri 

olan 

suudi 

arabistanIn 

amerikayI 

eleStirmesi 

sUpriz 

yarattI 

Ote 

yandan 

telaferde 

sUnnilerin 

oturduGu 

bir 

mahalleye 

giriSilen 

saldIrIda 

yetmiS 

kiSi 

OldU 

saGlIk 

gOrevlileri 

OldUrUlen 

kiSilerin 

baSlarIndan 

vurulduklar

InI 

bildiriyor 

IraklI 

yetkililer 

saldIrIya 

Sii 

polislerin 

de 

katIldIGInI 

aCIklarken 

Irak 

ordusu 

kentte 

sokaGa 

CIkma 

yasaGI 

ilan 

etti 

saldIrInIn 

bir 

gUn 

Once 

Siileri 

hedef 

alan 

bombalI 

saldIrIlar

a 

misilleme 

olduGu 

sanIlIyor 

bomba 

yUklU 

iki 

araCla 

dUzenlen

en 

saldIrIlar

da 

en 

az 

altmIS 

kiSi 

hayatInI 

kaybetmiS 

yUzU 

aSkIn 

kiSi 

de 

yaralanmIStI 

Ote 

yandan 

fellucede 

araClarIna 

zehirli 

gaz 

yUkleyen 

intihar 

bombacIlarI 

hUkUmet 

merkezine 

saldIrdI 

amerikan 

ordusu 

saldIrInIn 

pUskUrtUldUG

UnU 

ancak 

CatISmada 

on 

beS 

amerikalI 

ve 

IraklI 

askerin 

yaralandIGInI 

aCIkladI 

ayrIca 

gazdan 

zehirlenen 

Cok 

sayIda 

IraklI 

asker 

ve 

polis 

tedavi 

altIna 

alIndI 

. 

"*/data_excluded_region_5062_50

62.lab" 

. 
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STEP 3: Obtaining MFCC list files. Each “.lab” file which is shown above should also have an 

“.list” file which includes corresponding MFCC vectors. 

data_AlparslanesmerA_0_5062.mfc=AlparslanesmerA.mfc[0,5062] 

data_excluded_region_5062_5062.mfc=AlparslanesmerA.mfc[5062,5062] 

data_AlparslanesmerA_5062_6815.mfc=AlparslanesmerA.mfc[5062,6815] 

 

 

The meaning of above three lines is that, the first line addresses that the corresponding MFCC 

vectors form t=0 second to t=50.62 second is the parameters 0 to 5062. Where the TARGETRATE 

in HCopy configuration file was 100, so 100 parameters are constructed for each second. 

 

Table 5.14 MLF and MFCC index files 

 

bookbuksil 

bookbuksp 

cumhuriyetCicumhuriyetC1isil 

cumhuriyetCicumhuriyetC1isp 

ikiikisil 

ikiikisp 

saraysaraysil 

saraysaraysp 

<s>sil 

 

Table 5.15 A part of dictionary is shown for a couple of words. Each word has corresponding 

pronunciations, i.e. phone utterances. 

 

5.5.4 Testing Stage 

The performance of the trained HMMs can be measured by using HResults tool. The 

recognized outputs are compared with reference inputs. The error is evaluated in terms of 

word error rates. 
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#!MLF!# 

"data_AlparslanesmerA_0_5062.rec

" 

0 700000 sil<s> 

700000 1600000 a amerikanIn 

1600000 1900000 m 

1900000 2500000 e 

2500000 2800000 r 

2800000 3100000 i 

3100000 3900000 k 

3900000 4500000 a 

4500000 5100000 n 

5100000 5400000 I1 

5400000 5700000 n 

5700000 5700000 sp 

5700000 

6000000 e en 

6000000 
6600000 n 

6600000 

6600000 sp 

6600000 

7200000 y 
yakIn 

7200000 

7600000 a 

7600000 

8600000 k 

8600000 
9000000 I1 

9000000 

9400000 n 

9400000 

9400000 sp 

9400000 
9900000 m 

mUttefiklerinde

n 

9900000 
10300000 U1 

10300000 

10800000 t 

10800000 
11500000 t 

11500000 

11900000 e 

1190000

0 
1270000

0 f 

1270000

0 
1310000

0 i 

1310000

0 
1410000

0 k 

1410000

0 
1440000

0 l 

1440000

0 
1510000

0 e 

1510000

0 
1540000

0 r 

1540000

0 
1570000

0 i 

1570000
0 

1600000

0 n 

1600000
0 

1630000

0 d 

1630000
0 

1740000

0 e 

1740000
0 

1790000

0 n 

1790000
0 

1790000

0 sp 

1790000
0 

1830000

0 b biri 

1830000

0 
1880000

0 i 

1880000

0 
1910000

0 r 

1910000

0 
1940000

0 i 

1940000

0 
1940000

0 sp 

1940000

0 
2060000

0 o olan 

2060000

0 
2100000

0 l 

2100000

0 
2190000

0 a 

2190000
0 

2220000

0 n 

2220000
0 

2220000

0 sp 

2220000
0 

2370000

0 s suudi 

2370000
0 

2410000

0 u 

2410000
0 

2450000

0 u 

2450000
0 

2510000

0 d 

25100000 

25600000 
i 

25600000 

25600000 

sp 

25600000 
25900000 

a 
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n 

25900000 

26200000 

r 

26200000 
27000000 

a 

27000000 

27300000 
b 

27300000 

27700000 

i 

27700000 
28600000 

s 

28600000 

29200000 

t 

29200000 

29500000 
a 

29500000 

29800000 

n 

29800000 
30100000 

I1 

30100000 

30700000 

n 

30700000 

30700000 
sp 

30700000 

31700000 

a 
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31700000 

32300000 

m 

32300000 
32600000 

e 

32600000 
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r 
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33300000 

i 

33300000 
34400000 

k 

34400000 

34700000 
a 

34700000 

35700000 

y 

35700000 

36000000 

I1 
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sp 
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e 

eleStirmes

i 
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36700000 

l 

3670000

0 
3730000

0 e 

3730000

0 
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0 S1 
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0 
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0 t 
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0 
3940000

0 i 

3940000

0 
3970000

0 r 

3970000

0 
4030000

0 m 

4030000

0 
4070000

0 e 

4070000
0 

4180000

0 s 

4180000
0 

4210000

0 i 

4210000
0 

4210000

0 sp 
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0 

4320000

0 s 
sUpriz 

4320000

0 

4370000
0 U1 

4370000

0 
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0 p 

4460000

0 
4490000

0 r 

4490000

0 
4530000

0 i 

4530000

0 
4640000

0 z 

4640000

0 
4640000

0 sp 

4640000

0 
4680000

0 y 
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4680000
0 
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0 

4740000
0 r 
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0 

4830000
0 a 

4830000

0 
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0 t 
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0 

4960000
0 t 

4960000

0 

5020000
0 I1 

5020000

0 

5510000
0 sil 

 

Table 5.16 Word and Phoneme based timings in terms of 100 Nano seconds. 
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Chapter 6 

 

Prosody and Prosodic Feature Extraction 

 

6.1 The Definition of Prosody 

 

The speech and the speech signal is more than utterance of words in a given transcript of a 

speech [32]. The speech signal contains more information such as structural, semantics, 

functional and emotional information. In addition, prosody includes duration information 

such as pause duration between words, even though between phonemes [32]. Furthermore 

prosody includes also information related changes in pitch range and amplitude, global 

pitch declination, melody and tone distribution and speaking rate variation [33]. By using 

prosodic features with ASR output, we are able to do sentence segmentation, topic 

segmentation and summarization, which will be discussed at Chapter 8. For instance longer 

pause duration between two words is one of the most important clues while detecting 

sentence boundary. The prosodic features and extraction of prosodic features will be 

discussed below. 

 

6.2 The Prosodic Features 

 

There are three main types of features which are basis features, statistical features and 

derived features.  In the following sections, the features corresponding to their types are 
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given below with definitions [31][35]. The used feature sets for event detection is discussed 

at Chapter 8. 

 

 6.2.1 Basic Features 

 

The basis features are divided into three sub classes such as duration, energy and    

features. 

 

  6.2.1.1 Base Features 

 

Base features include the basic information about the waveform and phone/word time 

alignments of corresponding waveforms. Before running the program to extract prosodic 

feature, we fill information about the session, speaker, gender and the location of waveform 

which has shown at Table 6.n. Basic features include that information which are shown at 

Table 6.1. The following tables are prepared by considering the definitions of the features 

of the Prosodic Toolkit [31, 35]. 

 

WAV: The location i.e. path of the current audio waveform. 

SPK_ID: Identification label, for instance name of the speaker. 

SPK_GEN: The gender of the speaker. Male/Female. 

Table 6.1  The base features of Praat outputs. 

 

 

  6.2.1.2 Duration Features 

 

The duration features are based on either word and phone alignments of human transcripts 

or ASR output [34] and related with pauses and duration of phone and rhymes. There are 

two types of duration features. The first one is pause features and second is phone and 

rhyme duration features. Firstly, the pause features are related with the elapsed time 

between two word boundaries, which is a very important cue to detect semantic units such 

as sentences or topics [33] which will be discussed more detailed at Chapter 8. Secondly 

the phone and rhyme duration features are related with the phone durations in the last 
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rhyme of a word. Similarly the phone and rhyme features are also other well-known cue in 

sentence segmentation [33], which will be also discussed at Chapter 8. Examples to 

duration features are; word duration, following word duration, last rhyme duration, the 

pause between the current word and the following word and last phoneme duration. The 

following tables are prepared by considering the definitions of the features of the Prosodic 

Toolkit [31, 35].  

 

6.2.1.3    Features 

 

The    feature are related with the pitch, where pitch is defined as the relative highness or 

lowness of a tone as perceived by the ear and depends on the vibrations per second 

produced by the vocal cords [35]. The following tables are prepared by considering the 

definitions of the features of the Prosodic Toolkit [31, 35]. 

 

MIN_F0: The minimum raw    value of the current word. 

MAX_F0: The maximum raw    value of the current word. 

MEAN_F0: The mean raw    value of the current word. 

- MIN_F0_NEXT: Those features are similar with the features which are without 

“_NEXT”. The difference is that, those are computed for the 

following word, i.e. word after a boundary. 

- MAX_F0_NEXT: 

- MEAN_F0_NEXT: 
 

- MIN_F0_WIN: Those features are similar with the features are without 

“_WIN”. The difference is that, those features are computed 

over N frames before a boundary. However if there are not 

enough data, than maximum number of frames are considered. 

- MAX_F0_WIN: 

- MEAN_F0_WIN: 

- MIN_F0_NEXT_WIN: 

- MAX_F0_NEXT_WIN: 

- MEAN_F0_NEXT_WIN: 
 

 

Table 6.2  Features computed using the raw    extracted by Praat. 
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WORD: The word preceding a boundary. 

WORD_START: The start time of the preceding word, i.e. current word. 

WORD_END: The end time of the current word. 

FWORD: The word following a boundary, i.e. next word. 

FWORD_START: The start time of the next word. 

FWORD_END: The end time of the next word. 

PAUSE_START: The start time of the pause between sequences of word. If there are a 

word exists at following boundary, then the value is equal to 

FWORD_END. 

PAUSE_END: The end time of the pause. If there are a following word i.e. FWORD 

then it is set as FWORD_START. If there is no following word then this 

is set to end of the waveform. 

PAUSE_DUR: The duration of the pause between WORD and FWORD. 

WORD_PHONES: The phones in the word with their 

duration.(phone1:duration1_phone2:duration2_...) 

FLAG: It compares the word duration and sum of the phone durations. If the 

durations are not reliable, then the value is set to “SUSP” i.e. suspicious 

word. Furthermore if there are missing phones, then the value is set to 

“?”, else the value is set to zero. 

LAST_VOWEL: The last vowel of the word preceding a boundary, i.e. last vowel of the 

current word. If it doesn’t exist then all of the LAST_VOWEL related 

features will be assigned to “?”. 

LAST_VOWEL_START: The start time of the current words last vowel. 

LAST_VOWEL_END: The end time of the current words last vowel. 

LAST_VOWEL_DUR: The duration of the current words last vowel. 

LAST_RHYME_START: The start time of the current words last rhyme. Where last rhyme is 

defined as the sequence of phones starting with the last vowel to the end 

of the word. 

LAST_RHYME_END: Same as WORD_END. 

NORM_LAST_RHYME_DUR: 
∑

   (     )      (     )

       (     )                   
 

Where dur(phone) is the duration of the phone in current time, 

mean(phone) and std_dev(phone) are average and standard deviation of 

the duration of that phone in the training data. 

PHONES_IN_LAST_RHYME: The total number of phones in the last rhyme. 

 

Table 6.3  The duration features.  
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Stylizing   : 

 

The stylizing    algorithm has described below [35]. 

1. The raw values of    for each frame are obtained by using get_f0 [36], where the 

fundamental frequency (F0) estimated by using the normalized cross correlation 

function and dynamic programming. 

2. Extracting and labeling a sequence of voiced frames which are longer than a certain 

number of frames. 

3. LTM Modeling. (Lognormal tied mixture model of pitch.) Where pitch is modeled 

as combination of three lognormal distributions with tied means and variances [37]. 

The output of Step 1 has two main noise sources which will be minimized in the 

next step [33]. F0 halving and doubling is being estimated by using a Lognormal 

tied mixture model.  

4. By using the LTM parameters, the probability of halving, doubling and integral 

pitch for each frame are computed. 

5. Median filter   in voiced frames. 

6. Stylize    with a piecewise linear model in voiced frames. Use a greedy algorithm 

which detects discontinuities where the mean square error exceeds a normalized 

threshold. 

7. Compute slopes such as rises and falls. 

 

Table 6.4  A brief algorithm to obtain stylized    [35] 
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MIN_STYLFIT_F0: The minimum stylized    value for the current 

word. 

MAX_STYLFIT_F0: The maximum stylized    value for the current 

word. 

MEAN_ STYLFIT_F0: The mean stylized    value for the current 

word. 

FIRST_ STYLFIT_F0: The first stylized    value for the current word. 

LAST_ STYLFIT_F0: The last stylized    value for the current word. 

- MIN_STYLFIT_F0_NEXT:  

Those features are similar as the features 

without “_NEXT”; the difference is that, they 

are computed for the following word, i.e. word 

after a boundary. 

- MAX_STYLFIT_F0_NEXT: 

- MEAN_ STYLFIT_F0_NEXT: 

- FIRST_ STYLFIT_F0_NEXT: 

- LAST_ STYLFIT_F0_NEXT: 

- MIN_STYLFIT_F0_WIN:  

 

Those features are similar as the features 

without “_WIN”; the difference is that, they are 

computed over N frames before a boundary. 

However if there are not enough data, then 

maximum number of frames will be considered. 

- MAX_STYLFIT_F0_WIN: 

- MEAN_ STYLFIT_F0_WIN: 

- FIRST_ STYLFIT_F0_WIN: 

- LAST_ STYLFIT_F0_WIN: 

- MIN_STYLFIT_F0_NEXT_WIN: 

- MAX_STYLFIT_F0_NEXT_NEXT_WIN: 

- MEAN_ STYLFIT_F0_NEXT_WIN: 

- FIRST_ STYLFIT_F0_NEXT_WIN: 

- LAST_ STYLFIT_F0_NEXT_WIN: 

 

Table 6.5  Features computed using stylized    
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PATTERN_WORD:    

This feature detects falling slope, unvoiced section and rising slope in the word preceding a boundary. The 

feature is combinations of “f”, “u” and “r” which represent falling slope, unvoiced section and rising slope 

respectively. 

PATTERN_WORD_COLLAPSED: Similar with PATTERN_WORD, where a 

sequence of f’s or r’s are represented as one f 

or r. 

PATTERN_SLOPE: Similar to PATTERN_WORD, except instead 

of printing f or r’s the slope values are printed. 

(value1:value2:…) 

- PATTERN_WORD_NEXT: Those features are similar with the features 

which are without “_NEXT”. The difference is 

that, those are computed for the following 

word, i.e. word after a boundary. 

- PATTERN_WORD_CALLAPSED_NEXT: 

- PATTERN_SLOPE_NEXT: 

 

- PATTERN_WORD_WIN: Those features are similar as the features 

without “_WIN”; the difference is that, 

they are computed over N frames before 

a boundary. However if there are not 

enough data, then maximum number of 

frames will be considered. 

- PATTERN_WORD_CALLAPSED_WIN: 

- PATTERN_SLOPE_WIN: 

- PATTERN_WORD_NEXT_WIN: 

- PATTERN_WORD_CALLAPSED_NEXT_WIN: 

- PATTERN_SLOPE_NEXT_WIN: 

 

Table 6.6  Stylized    contour slope features. 

 

 

PATTERN_BOUNDARY: 

The value of PATTERN_WORD is combined with the value of PATTERN_NEXT_WORD. 

SLOPE_DIFF: 

The difference between the last non-zero slope of the current word and first non-zero slope of the next word. 

The length of slopes which exceed minimum frame length. If that is not found then a “?” is assigned by 

default. 

 

Table 6.7  Features extracted considering word boundaries.  
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NO_PREVIOUS_SSF: 

Counts number of previous cascade frames which are bigger than minimum frame length  in the current word 

which have the same slope as last voiced frame of previous word. 

NO_PREVIOUS_VF: 

Counts the number of cascade “voiced” frames inside the word. Where, the counting starts at the last voiced 

frame and goes through backwards. 

NO_FRAMES_LS_WE: 

Counts the number of cascade frames between last voiced frame and end of the word. The last voiced frame is 

selected by considering the sequence of voiced frames is bigger than the minimum frame length. 

NO_SUCCESSOR_SSF: 

Counts a group of frames inside the current word, where each group of frames includes cascade frames has 

same slope with the first voiced frame of the current word and the length of each sequence of frame is bigger 

than minimum frame length. 

NO_SUCCESSOR_VF: 

Number of cascade “voiced” frames inside the current word. 

NO_FRAMES_WS_FS: 

Number of cascade frames between the first frame of the current word and the first voiced frame, where 

sequence of voiced frames which are larger than minimum frame length are considered. 

 

The following features are similar with the features which are without “_NEXT”. The difference is that, those 

are computed for the following word, i.e. word after a boundary. 

- NO_PREVIOUS_SSF_NEXT - NO_PREVIOUS_VF_NEXT 

- NO_FRAMES_LS_WE_NEXT - NO_SUCCESSOR_SSF_NEXT 

- NO_SUCCESSOR_VF_NEXT - NO_FRAMES_WS_FS_NEXT 

 

 

The followingfeatures are similar as the features without “_WIN”; the difference is that, they are computed 

over N frames before a boundary. However if there are not enough data, then maximum number of frames 

will be considered. 

- NO_PREVIOUS_SSF_WIN - NO_PREVIOUS_VF_WIN 

- NO_PREVIOUS_LS_WE_WIN - NO_SUCCESSOR_SSF_WIN 

- NO_SUCCESSOR_VF_WIN - NO_FRAMES_WS_FS_WIN 

- NO_PREVIOUS_SSF_NEXT_WIN - NO_PREVIOUS_VF_NEXT_WIN 

- NO_FRAMES_WE_NEXT_WIN - NO_SUCCESSOR_SSF_NEXT_WIN 

- NO_SUCCESSOR_VF_NEXT_WIN - NO_FRAMES_WS_FS_NEXT_WIN 

 

Table 6.8  Features involve counting. 
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6.2.1.4 Energy Features 

 

Short-time energy calculations for each frame is performed in order to extract the Energy 

Features which are shown at Table 6.12 

MIN_ENERGY MIN_ENERGY_WIN 

MAX_ENERGY MAX_ENERGY_WIN 

MEAN_ENERGY MEAN_ENERGY_WIN 

MIN_ENERGY_NEXT MIN_ENERGY_NEXT_WIN 

MAX_ENERGY_NEXT MAX_ENERGY_NEXT_WIN 

MEAN_ENERGY_NEXT MEAN_ENERGY_NEXT_WIN 

Table 6.9  Features computed using the raw Energy extracted by Praat. 

 

MIN_STYLFIT_ENERGY MIN_STYLFIT_ENERGY_WIN 

MAX_STYLFIT_ENERGY MAX_STYLFIT_ENERGY_WIN 

MEAN_STYLFIT_ENERGY MEAN_STYLFIT_ENERGY_WIN 

FIRST_STYLFIT_ENERGY FIRST_STYLFIT_ENERGY_WIN 

LAST_STYLFIT_ENERGY LAST_STYLFIT_ENERGY_WIN 

MIN_STYLFIT_ENERGY_NEXT MIN_STYLFIT_ENERGY_NEXT_WIN 

MAX_STYLFIT_ENERGY_NEXT MAX_STYLFIT_ENERGY_NEXT_WIN 

MEAN_STYLFIT_ENERGY_NEXT MEAN_STYLFIT_ENERGY_NEXT_WIN 

FIRST_STYLFIT_ENERGY_NEXT FIRST_STYLFIT_ENERGY_NEXT_WIN 

LAST_STYLFIT_ENERGY_NEXT LAST_STYLFIT_ENERGY_NEXT_WIN 

Table 6.10 Features computed using stylized Energy 

 

ENERGY_PATTERN_WORD ENERGY_PATTERN_WORD_WIN 

ENERGY_PATTERN_WORD_CALLAPSED ENERGY_PATTERN_WORD_CALLAPSED_WIN 

ENERGY_PATTERN_SLOPE ENERGY_PATTERN_SLOPE_WIN 

ENERGY_PATTERN_WORD_NEXT ENERGY_PATTERN_WORD_NEXT_WIN 

ENERGY_PATTERN_WORD_ 

CALLAPSED_NEXT 

ENERGY_PATTERN_WORD_ 

CALLAPSED_NEXT_WIN 

ENERGY_PATTERN_SLOPE_NEXT ENERGY_PATTERN_SLOPE_NEXT_WIN 

Table 6.11 Features involve counting. 

 

ENERGY_PATTERN_BOUNDARY ENERGY_SLOPE_DIFF 

Table 6.12 Features extracted considering word boundaries.  
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6.2.2 Statistical Tables 

 

The data inside the tables are not output features, but they are used to compute the derived 

features 

a. Phone Duration Statistics (phone_dur.stats): Mean phone duration, the 

standard deviation phone duration, the number of occurrences of that 

phone in training database and phone duration threshold (shown at 

Equation 6.1) is computed for each phone. 

 

             
                   

 

(6.1) 

 

b. Pause Duration Statistics (pause_dur.stats): Mean, standard deviation 

of pauses is listed for each audio. 

 

c. Speaker Feature Statistics (spkr_feat.stats): In this table, statistics 

related with cascade voiced and unvoiced frames   ,    slope, Energy 

and Energy slope. One row is dedicated to one speaker. The values are 

calculated in logarithm (base e). The detailed list has shown at Table 

6.13. 

 

d. Speaker Phone Duration Statistics (spkr_phone_dur.stats): Similar 

with “phone_dur_stats” the difference is considers all of the audio files 

corresponding to the selected speaker. 

 

e. Last Rhyme Duration Statistics (last_rhyme_dur.stats) 

 

f. Last Rhyme Phone Duration Statistics (last_rhyme_phone_dur.stats) 

 

g. Pause Duration Statistics (pause_dur.stats) :Mean and standard 

deviation of duration of the pauses in the audio, logarithm of (base e) 

mean and standard deviation of the durations and number of pauses in the 

audio is counted. 
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Voiced Frames MEAN_VOICED 

 STDEV_VOICED 

 COUNT_VOICED 

Unvoiced Frames MEAN_UNVOICED 

 STDEV_UNVOICED 

 COUNT_UNVOICED 

  Value Related MEAN_PITCH 

 STDEV_PITCH 

 COUNT_PITCH 

  Slope Related MEAN_SLOPE 

 STDEV_SLOPE 

 COUNT_SLOPE 

Energy Related MEAN_ENERGY 

 STDEV_ENERGY 

 COUNT_ENERGY 

Energy Slope Related MEAN_ENERGY_SLOPE 

 STDEV_ENERGY_SLOPE 

 COUNT_ENERGY_SLOPE 

 

TABLE 6.13 Speaker Feature Statistics. 

 

 

6.2.3 Derived Features 

 

By using the basic features which were described in 6.2.1 and statistics which are shown at 

6.2.2 the derived features are computed. Generally derived features are either computed by 

using two basis features or using the computed statistics. There are several derived features 

described below such as normalized durations,    and Energy derived features, average 

phone durations and speaker specific normalization features.  
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6.2.3.1 Normalized Word Duration 

 

 WORD_DUR: The duration of the current word. 

 

WORD_DUR = WORD_END – WORD_START (6.2) 

  

Where WORD_END and WORD_START are basic features. 

 

 WORD_AV_DUR: Average word duration. 

 

WORD_AV_DUR  ∑     (     )                   (6.3) 

  

Where mean(phone) is a statistics which obtained from pause duration statistics and phones are 

obtained from the basic feature WORD_PHONES  

 

 NORM_WORD_DUR: Normalized word duration. 

 

NORM_WORD_DUR = 
        

           
            (6.4) 

 

 

 

6.2.3.2   Normalized Pause 

 

 PAU_DUR_N: Normalized pause duration. 

 

PAU_DUR_N = 
       

          
 

 

(6.5) 

Where PAUSE_MEAN comes from pause duration statistics. 
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  6.2.3.3 Normalized Vowel Duration 

 

 LAST_VOWEL_DUR_Z:  

 

LAST_VOWEL_DUR_Z = 
                                 

                   
 (6.6) 

  

Where LAST_VOWEL_DUR is a basic duration feature, ALL_PHONE_DUR_MEAN and 

ALL_PHONE_DUR_STDEV are statistics taken from phone duration statistics and they are related 

to another basic feature LAST_VOWEL. 

 

 LAST_VOWEL_DUR_N:  

 

LAST_VOWEL_DUR_N = 
              

                  
 (6.7) 

 

 

 LAST_VOWEL_DUR_ZSP:  

 

LAST_VOWEL_DUR_ZSP = 
                                  

                    
 (6.8) 

 

Where SPKR_PHONE_DUR_STDEV and SPKR_PHONE_DUR_MEAN are speaker related 

statistics. The phone duration statistics and the basic features SPKR_ID and LAST_VOWEL are 

considered. 

 

 LAST_VOWEL_DUR_NSP:  

 

LAST_VOWEL_DUR_NSP = 
            

                   
 (6.9) 
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6.2.3.4 Normalized Rhyme Duration 

 

The normalized rhyme features are shown at Table 6.14 with equations. 

LAST_RHYME_DUR_PH= 
              

                    
 (6.10) 

LAST_RHYME_DUR_PH_ND= 
                                   

                         
 (6.11) 

LAST_RHYME_DUR_PH_NR = 
                                     

                         
 (6.12) 

LAST_RHYME_NORM_DUR_PH = 
                   

                    
 (6.13) 

LAST_RHYME_NORM_DUR_PH_ND=
                                          

                              
 (6.14) 

LAST_RHYME_NORM_DUR_PH_NR = 

                                          

                              
 

(6.15) 

LAST_RHYME_DUR_WHOLE_ND =                                           (6.16) 

LAST_RHYME_WHOLE_DUR_ND = 
              

                         
 (6.17) 

LAST_RHYME_WHOLE_DUR_Z = 
                                         

                          
 (6.18) 

 

Table 6.14 Normalized Rhyme Duration features. 

 

In Table 6.14; LAST_RHYME_DUR, PHONES_IN_LAST_RHYME, and 

NORM_LAST_RHYME_DUR are duration features, 

LAST_RHYME_PHONE_DUR_MEAN is a statistics which taken from mean column of 

last rhyme phone duration statistics table, 

NORM_LAST_RHYME_PHONE_DUR_MEAN is a statistics and taken from mean 

column of normalized last rhyme phone duration statistics table, and finally 

LAST_RHYME_WHOLE_DUR_MEAN and LAST_RHYME_WHOLE_DUR_STDEV 

are statistics taken from mean and standard deviation columns and audio rows of last rhyme 

duration statistics table. 
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6.2.3.5    Derived Features 

 

The    characteristics of the speaker, where the related features are shown at Table 6.15, 

are computed by using Praat’s built-in function for stylization and pitch statistics.  

SPKR_FEAT_F0_MODE =     (            ) (6.19) 

SPKR_FEAT_F0_TOPLN =           (            ) (6.20) 

SPKR_FEAT_F0_BASELN =            (            ) (6.21) 

SPKR_FEAT_F0_STDLIN =     (             ) (6.22) 

SPKR_FEAT_F0_RANGE =                       SPKR_FEAT_F0_BASELN (6.23) 

Table 6.15    characteristics of the speaker. 

 

The following features shown at Table 6.16 are computed between previous and next word. 

The log differences of minimum, maximum and mean values of stylized    values of the 

words are used. 

 

F0K_WORD_DIFF_HIHI_N =   

(6.24)    (
              

                   
) 

F0K_WORD_DIFF_HILO_N =  

(6.25)    (
              

                   
) 

F0K_WORD_DIFF_LOLO_N =  

(6.26)    (
              

                   
) 

F0K_WORD_DIFF_LOHI_N =  

(6.27)    (
              

                   
) 

F0K_WORD_DIFF_MNMN_N =  

(6.28)    (
               

                    
) 

Table 6.16 All of the features used in computation are basic    features.  
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The following features shown at Table 6.17 are computed between previous and next word. 

The log differences of minimum, maximum and mean values of normalized pitch range of 

the words are used. 

 

F0K_WORD_DIFF_HIHI_NG =   

(6.29)    (
              

                   
)

                  
 

F0K_WORD_DIFF_HILO_NG =  

(6.30)    (
              

                   
)

                  
 

F0K_WORD_DIFF_LOLO_NG =  

(6.31)    (
              

                   
)

                  
 

F0K_WORD_DIFF_LOHI_NG =  

(6.32)    (
              

                   
)

                  
 

F0K_WORD_DIFF_MNMN_NG =  

(6.33)    (
               

                    
)

                  
 

 

Table 6.17 Formant frequency differences between adjacent words. 

 

 

 The features shown at Table 6.18 are computed between previous and next window. 

The log differences of minimum, maximum and mean values of stylized    values 

of the windows are used. 

 The features shown at Table 6.19 are computed between previous and next window. 

The log differences of minimum, maximum and mean values of normalized pitch 

range of the windows are used. 

 The features shown at Table 6.20 are the difference, log difference between last, 

mean and minimum of the stylized  values in a window and the baseline of    

values.  
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F0K_WIN_DIFF_HIHI_N =   

(6.34)    (
                  

                       
) 

F0K_WIN_DIFF_HILO_N =  

(6.35)    (
                  

                       
) 

F0K_WIN_DIFF_LOLO_N =  

(6.36)    (
                  

                       
) 

F0K_WIN_DIFF_LOHI_N =  

(6.37)    (
                  

                       
) 

F0K_WIN_DIFF_MNMN_N =  

(6.38)    (
                   

                        
) 

Table 6.18 Formant frequency differences between two adjacent windows. 

 

F0K_WIN_DIFF_HIHI_NG =   

(6.39)    (
                  

                       
)

                  
 

F0K_WIN_DIFF_HILO_NG =  

(6.40)    (
                  

                       
)

                  
 

F0K_WIN_DIFF_LOLO_NG =  

(6.41)    (
                  

                       
)

                  
 

F0K_WIN_DIFF_LOHI_NG =  

(6.42)    (
                  

                       
)

                  
 

F0K_WIN_DIFF_MNMN_NG =  

(6.43)    (
                   

                        
)

                  
 

Table 6.19 Normalized formant frequency differences between two adjacent windows.  
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F0K_DIFF_LAST_KBASELN =  

(6.43)                                      

F0K_DIFF_MEAN_KBASELN =  

                                     (6.44) 

F0K_DIFF_WINMIN_KBASELN =  

                                        (6.45) 

F0K_LR_LAST_KBASELN =  

   (
               

                   
) 

(6.46) 

F0K_LR_MEAN_KBASELN =  

   (
               

                   
) 

(6.47) 

F0K_LR_WINMIN_KBASELN =  

   (
                  

                   
) 

 

 

Table 6.20 Differences of stylized f0 frequencies. 

 

 

 The features shown at Table 6.21 are the normalization of the stylized    values in 

the current word and the following word. The baseline, topline and range of    are 

used. 

 The features shown at Table 6.22 are the difference and the log difference between 

mean and maximum stylized    values of next word and the topline of   values.  

 The features shown at Table 6.23 are normalization of the maximum stylized    

values in the current word and next word using the pitch of   values and pitch 

mode. 

 The features shown at Table 6.24 are log differences between the stylized   values 

in the word extremes. 
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F0K_ZRANGE_MEAN_KBASELN =  

                                    

                  
 

(6.48) 

F0K_ZRANGE_MEAN_KTOPLN =  

                                    

                  
 

(6.49) 

F0K_ZRANGE_MEANNEXT_KBASELN =  

                                         

                  
 

(6.50) 

F0K_ZRANGE_MEANNEXT_ KTOPLN =  

                                         

                  
 

(6.51) 

 

Table 6.21 Normalization difference of the stylized f0 frequencies. 

 

 

F0K_DIFF_MEANNEXT_KTOPLN =  

                                         (6.52) 

F0K_DIFF_MAXNEXT_KTOPLN =  

                                        (6.53) 

F0K_DIFF_WINMAXNEXT_KTOPLN =  

                                            (6.54) 

F0K_LR_MEANNEXT_KTOPLN =  

   (
                    

                  
) 

(6.55) 

F0K_LR_MAXNEXT_KTOPLN =  

   (
                   

                  
) 

(6.56) 

F0K_LR_WINMAXNEXT_KTOPLN =  

   (
                       

                  
) 

(6.57) 

 

Table 6.22 Differences of f0 frequencies between current word and next word. 
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F0K_MAXK_MODE_N  

   (
              

                 
) 

(6.58) 

F0K_MAXK_NEXT_MODE_N  

   (
                   

                 
) 

(6.59) 

F0K_MAXK_MODE_Z  

                                 

                  
 

(6.60) 

F0K_MAXK_NEXT_MODE_Z  

                                      

                  
 

(6.61) 

Table 6.23 Normalized differences of f0 frequencies between current word and next word. 

 

F0K_WORD_DIFF_BEGBEG =  

   (
                

                     
) 

(6.62) 

F0K_WORD_DIFF_ENDBEG =  

   (
               

                     
) 

(6.63) 

F0K_INWRD_DIFF =  

   (
                

               
) 

(6.64) 

Table 6.24 Differences of stylized f0 frequencies in word extremes. 

 

 The following features shown at Table 6.25 are slope patterns and the 

normalizations. 

 

LAST_SLOPE:  The last slope “f” or “r” in the PATTERN_SLOPE. 

FIRST_SLOPE_NEXT: The first slope “f” or “r” in the PATTERN_SLOPE_NEXT 

SLOPE_DIFF_N =  
          

                     
 

(6.65) 

LAST_SLOPE_DIFF_N =  
          

               
 

(6.66) 

Table 6.25 Slope patterns and normalizations.  
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6.2.3.6 Energy Derived Features 

 

Energy derived features are derived similarly with    derived features. Table 6.26 shows 

list of the derived energy features. 

 

ENERGY_WORD_DIFF_HIHI_N ENERGY_WORD_DIFF_HILO_N 

ENERGY_WORD_DIFF_LOLO_N ENERGY_WORD_DIFF_LOHI_N 

ENERGY_WORD_DIFF_MNMN_N ENERGY_WORD_DIFF_HIHI_NG 

ENERGY_WORD_DIFF_HILO_NG ENERGY_WORD_DIFF_LOLO_NG 

ENERGY_WORD_DIFF_LOHI_NG ENERGY_WORD_DIFF_MNMN_NG 

ENERGY_WIN_DIFF_HIHI_N ENERGY_WIN_DIFF_HILO_N 

ENERGY_WIN_DIFF_LOLO_N ENERGY_WIN_DIFF_LOHI_N 

ENERGY_WIN_DIFF_MNMN_N ENERGY_WIN_DIFF_HIHI_NG 

ENERGY_WIN_DIFF_HILO_NG ENERGY_WIN_DIFF_LOLO_NG 

ENERGY_WIN_DIFF_LOHI_NG ENERGY_WIN_DIFF_MNMN_NG 

ENERGY_DIFF_LAST_KBASELN ENERGY_DIFF_MEAN_KBASELN 

ENERGY_DIFF_WINMIN_KBASELN ENERGY_LR_LAST_KBASELN 

ENERGY_LR_MEAN_KBASELN ENERGY_LR_WINMIN_KBASELN 

ENERGY_ZRANGE_MEAN_KBASELN ENERGY_ZRANGE_MEAN_KTOPLN 

ENERGY_ZRANGE_MEANNEXT_KBASELN ENERGY_ZRANGE_MEANNEXT_KTOPLN 

ENERGY_DIFF_MEANNEXT_KTOPLN ENERGY_DIFF_MAXNEXT_KTOPLN 

ENERGY_DIFF_WINMAXNEXT_KTOPLN ENERGY_LR_MEANNEXT_KTOPLN 

ENERGY_LR_MAXNEXT_KTOPLN ENERGY_LR_WINMAXNEXT_KTOPLN 

ENERGY_MAXK_MODE_N ENERGY_MAXK_NEXT_MODE_N 

ENERGY_MAXK_MODE_Z ENERGY_MAXK_NEXT_MODE_Z 

ENERGY_WORD_DIFF_BEGBEG ENERGY_WORD_DIFF_ENDBEG 

ENERGY_INWRD_DIFF ENERGY_LAST_SLOPE 

ENERGY_SLOPE_DIFF_N ENERGY_LAST_SLOPE_N 

 

Table 6.26 Energy derived features. 
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6.2.3.7 Average Phone Duration 

 

Average phone duration features are shown at the Table 6.27. 

 

AVG_PHONE_DUR_Z (6.67) 

∑        [     ]                   

                
 

 

MAX_PHONE_DUR_Z (6.68) 

   
                   

       [     ]  

AVG_PHONE_DUR_N (6.69) 

∑       [     ]                   

                
 

 

MAX_PHONE_DUR_N (6.70) 

   
                   

      [     ]  

Where,  

      [     ]   
         [     ]                 [     ]

               [     ]
 

(6.71) 

      [     ]   
         [     ]

              [     ]
 

(6.72) 

phone_dur[phone] is phone duration for phone which has obtained from the feature WORD_PHONES and 

phone_dur_mean[phone] and phone_dur_stdev[phone] are computed at phone duration statistics table. 

 

Table 6.27 Average phone durations 
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6.2.3.8 Speaker Specific Normalization 

 

Speaker specific normalization features are shown at the Table 6.28. 

AVG_PHONE_DUR_ZSP (6.73) 

∑          [     ]                   

                
 

 

MAX_PHONE_DUR_ZSP (6.74) 

   
                   

         [     ]  

AVG_PHONE_DUR_NSP (6.75) 

∑         [     ]                   

                
 

 

MAX_PHONE_DUR_NSP (6.76) 

   
                   

        [     ]  

Where,  

        [     ]   
                   [     ]

                    [     ]
 

(6.77) 

        [     ]   
         [     ]

                   [     ]
 

(6.78) 

phone_dur[phone] is phone duration for phone which has obtained from the feature WORD_PHONES and 

phone_dur_mean[phone] and phone_dur_stdev[phone] are computed at phone duration statistics table. 

 

 

Table 6.28 Speaker specific normalization features 

 

The features below are similar with phone duration features the difference is they are 

computed only over the vowels instead of every phone in the word. 

 

AVG_VOWEL_DUR_Z MAX_VOWEL_DUR_Z 

AVG_VOWEL_DUR_N MAX_VOWEL_DUR_N 

AVG_VOWEL_DUR_ZSP MAX_VOWEL_DUR_ZSP 

AVG_VOWEL_DUR_NSP MAX_VOWEL_DUR_NSP 

 

Table 6.29 Vowel duration features. 
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6.3 Prosodic Feature Extraction 

 

The Praat [6.10] and The Purdue Prosodic Feature Extraction Tool on Praat [31], [34] has 

been used to extract prosodic features. The input/output of that tool, the structure of the tool 

and the manipulations which has done in order to use the tool for Turkish spoken language 

will be discussed. 

 

 

 6.3.1 The Inputs and Outputs of the Prosodic Feature Extraction Tool 

 

The Prosodic Feature Extraction Tool requires us three main inputs such as the audio file, 

phone and word alignments of the corresponding audio files with time labels. Either WAV 

or AIFF audio file formats can be used. We have used 16 bit 16 kHz WAV files. 

Additionally word and phone alignments should be (in Praat’s “.TextGrid” format) in the 

same directory with audio file. The word and phone alignments must be very sensitive, 

because of that the use of an ASR program has offered. We have used HTK, HVite tool 

(Details are at Chapter 5) in order to obtain 100 nanosecond sense alignments. Figure 6.1 

shows either aligned phonemes, words and corresponding audio waveform signal and Table 

6.30 shows the “.TextGrid” format. 

 

 

 

Figure 6.1  Audio waveform and corresponding phone and word alignments. 

 

In phone alignments, one may use a pronunciation dictionary to represent words instead of 

vowel phone sets. By default CMU’s dictionary or ISIP’s dictionary is being used in the 

original file and capitalized phone labels are being supported. However for Turkish spoken 
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language, we have used a different suitable pronunciation dictionary which contains also 

lower phone labels. (See Chapter 5) In order to use our pronunciation dictionary and lower 

phone labels, we have modified the code code/routine.praat. 

 

The pitch tracking and stylization functions of Praat are the most functional properties for 

the Prosodic Feature Extraction tool and pitch information is represented as raw pitch, 

voiced-unvoiced, stylized pitch and pitch slope. Autocorrelation based pitch tracking 

algorithm is being used in Praat in order to extract raw pitch values, using gender 

dependent pitch ranges. Furthermore, the pitch values can be further smoothed, stored and 

accessed to pitch values of each frame. [31] 

 

The Prosodic Feature Extraction tool extracts the prosodic features in word based, i.e. all 

features of all single words. 

 

However some of the features for some of the words cannot be extracted. In that case a 

question mark is printed. The output file seems to be a matrix where each row includes the 

features of the corresponding word, and each column includes the selected feature for all 

words. The detailed list of the features is given at section 6.2 [31].  
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File type = “ooTextFile” 
Object class = “TextGrid” 
 
xmin = 0 
xmax = 7 
tiers? <exists> 
size = 1 
item []: 
    item [1]: 
        class = “IntervalTier” 
        name = “” 
xmin = 0 
xmax = 7 
        intervals: size = 14 
        intervals [1]: 
xmin =  0 
xmax =  0.15 
                text =  “” 
        intervals [2]: 
xmin =  0.15 
xmax =  0.83 
                text =  “amerikan” 
        intervals [3]: 
xmin =  0.83 
xmax =  0.99 
                text =  “ve” 

File type = “ooTextFile” 

Object class = 

“TextGrid” 

 

xmin = 0 

xmax = 7 

tiers? <exists> 

size = 1 

item []: 

    item [1]: 

        class = 

“IntervalTier” 

        name = “” 

xmin = 0 

xmax = 7 

        intervals: size = 76 

        intervals [1]: 

xmin =  0 

xmax =  0.15 

                text =  “” 

         intervals [2]: 

xmin =  0.15 

xmax =  0.25 

                 text =  “a” 

         intervals [3]: 

xmin =  0.25 

xmax =  0.3 

                 text =  “m” 

         intervals [4]: 

xmin =  0.3 

xmax =  0.38 

                 text =  “e” 

         intervals [5]: 

xmin =  0.38 

xmax =  0.41 

                 text =  “r” 

         intervals [6]: 

xmin =  0.41 

xmax =  0.47 

                 text =  “I” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         intervals [7]: 

xmin =  0.47 

xmax =  0.57 

                 text =  “k” 

         intervals [8]: 

xmin =  0.57 

xmax =  0.7 

                 text =  “a” 

         intervals [9]: 

xmin =  0.7 

xmax =  0.83 

                 text =  “n” 

         intervals [10]: 

xmin =  0.83 

xmax =  0.86 

                 text =  “v” 

         intervals [11]: 

xmin =  0.86 

xmax =  0.99 

                 text =  “e” 

 

Table 6.30 “Word.TextGrid” format shown at the left side and “Phone.TextGrid” format shown at 

the right side. Only first two words of figure 6.1 have shown. 
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 6.3.2 Data Preparation 

 

As it mentioned at the previous section, the audio waveform and corresponding TextGrid 

files should be at the same directory. The location of the files is generally ../demo/data/and 

the waveform is saved as demo_exapmle1.wav, and the word and phone aligned files are 

saved as demo_example1-phone.TextGrid for the phoneme based aligned file and 

demo_example1-word.TextGrid for the word based aligned file. The time labels should be 

written instead of seconds. (ASR output has given us time marks in terms of 100 

nanoseconds, so we converted them into seconds and also the ASR output converted into 

Praat TextGrid format by using a Perl script.) Additionally a metadata which is called 

demo_wavinfo-list.txt includes the information about sessions. An example is given at 

Table 6.1. 

 

SESSION SPEAKER GENDER WAVEFORM 

demo_Speaker1 Speaker1 Female ../demo/data/demo_Speaker1.wav 

demo_Speaker2 Speaker2 Female ../demo/data/demo_Speaker2.wav 

demo_Speaker3 Speaker3 Male ../demo/data/demo_Speaker3.wav 

demo_Speaker4 Speaker4 Male ../demo/data/demo_Speaker4.wav 

 

Table 6.31  The Metadata. demo_wavinfo-list.txt [31] 

 

The working procedure of the Prosodic Feature Extraction tool includes two main steps 

which are called “Global Statistics Computation” and “Feature Extraction”. There are two 

different statistics are computed which are called global and local statistics. There are 

several global statistics such as speaker dependent or independent statistics, specific phone 

duration statistics, pitch energy related statistics and the global phone duration statistics. 

All of the speaker independent statistics are computed for all speakers at all of the sessions 

before feature extraction step. The local statistics are session dependent statistics such as 

means and variances of the last rhyme duration, the last rhyme phone duration, the 

normalized last rhyme duration, and the pause duration. Those statistics are computed at 

feature extraction step. The statistics tables with definitions are shown at section 6.2.2 [31]. 
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Figure 6.2 shows the procedure of feature extraction [34]. At the first step, the basic 

features and statistics are calculated, then by using the combination of the basic features 

and statistics, the derived features are also calculated.  

 

 

 

Figure 6.2  Prosodic Feature Extraction step [34]. 

 

6.3.3 Adapting the Prosodic Feature Extraction Tool for Turkish Spoken Language 

 

The original version of the prosodic feature extracting tool is designed for English spoken 

language. Hence there were 40 phonetic units of the ARPAbet was defined on the prosodic 

feature extracting tool. Because of we have used the Turkish alphabet and phonetic 

representations for Turkish alphabet shown at Table 3.1, which is also used in ASR system, 

we have changed defined ARPAbet with phonetic unit representations shown in Table 3.1. 
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File type = “ooTextFile” 

Object class = “TextGrid” 

 

xmin = 0 

xmax = 7 

tiers? <exists> 

size = 1 

item []: 

    item [1]: 

        class = “IntervalTier” 

        name = “” 

xmin = 0 

xmax = 7 

        intervals: size = 14 

        intervals [1]: 

xmin =  0 

xmax =  0.15 

                text =  “” 

        intervals [2]: 

xmin =  0.15 

xmax =  0.83 

                text =  “amerikan” 

 

 

File type = “ooTextFile” 

Object class = “TextGrid” 

 

xmin = 0 

xmax = 7 

tiers? <exists> 

size = 1 

item []: 

    item [1]: 

        class = “IntervalTier” 

        name = “” 

xmin = 0 

xmax = 7 

        intervals: size = 76 

        intervals [1]: 

xmin =  0 

xmax =  0.15 

                text =  “” 

         intervals [2]: 

xmin =  0.15 

xmax =  0.25 

                 text =  “a” 

         intervals [3]: 

xmin =  0.25 

xmax =  0.3 
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6.3.4 Architecture of the Prosodic Feature Extraction Tool 

 

There are two main steps at prosodic feature extraction procedure of the tool. The first step 

is called Global Statistics Computation, where the basic features (See section 6.2.1.) and 

statistic tables (See section 6.2.2.) are computed. And at the second step prosodic features 

are extracted by using the computed basic features and statistic tables. (See section 6.2.3.) 

The code organization of the tool is given at Table 7.1 and data flow diagram of the tool is 

given at Figure 6.3. 

 

 

Figure 6.3 Data flow diagram of the Prosodic Feature Extraction tool. [31]  
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Scripts for Computing Global Statistics 

The codes below are found at the path: “code/stats/” 

stats_batch.praat: The interface which accepts the inputs and controls the Global Statistics 

Computation operation. 

operations.praat: Highest level of the operation flow. 

io.praat: Controls input/output files. 

table.praat: Controls Praat Table operations, where various intermediate values and 

various operations such as table creation, value updating, etc. are handled. 

stats.praat: Routines for computing statistics. 

routine.praat: Routines for obtaining various basic elements. 

utils.praat: Contains some miscellaneous utility routines. 

config.praat: Configuration of the pre-defined parameter values, such as frame and 

window size. 
 

Scripts for Extracting Prosodic Features 

The codes below are found at the path: “code/” 

main_batch.praat The interface which accepts the inputs and controls the 

Feature Extraction operation. 

operations.praat: Highest level of the operation flow. 

io.praat: Controls input/output files. 

table.praat: Controls Praat Table operations, where various 

intermediate values and various operations such as table 

creation, value updating, etc. are handled. 

fetch.praat Higher level routines for extracting basic prosodic 

features by calling routines in routine.praat. 

routine.praat: Routines for obtaining various basic elements and lower 

level routines that extract prosodic features and supports 

higher level routines. 

derive.praat Routines to compute derived features. 

utils.praat Contains some miscellaneous utility routines. 

config.praat: Configuration of the pre-defined parameter values, such 

as frame and window size. 

pf_list_files/feature_name_table.Tab List of feature names. 
 

 

Table 6.32 Code Organization of the Prosodic Feature Extraction tool. [31] 
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6.3.5 Using the Prosodic Feature Extraction Tool 

 

At the first step, the wave file and corresponding word and phone aligned files which are 

shown at Figure 6.1 (See section 6.3 for details) should be loaded into the path: 

“demo/work_dir/”. Additionally an audio information table which is shown at Table 6.31 

should be prepared which includes names of all of the audio files and corresponding word 

and phone aligned files. After finishing those preparations, the program can be run either by 

using command window or user interface. Table 7.2 shows the steps to run the program. 

The table which includes the extracted prosodic features can be found at the following 

directory. “demo/work_dir/pf_files/” By using notepad, the file can be viewed. The 

structure of the table is; there are rows for each word where each row includes each 

prosodic feature for the given word. One can also view the output table file by using open 

office calcor by using Microsoft office excel programs. Table 6.34 shows an example of an 

output prosodic features table. 

Table 6.33 shows the structure of the output Prosodic Feature Table. There are 266 features 

are extracted, the definition of the features are given at Chapter 6, at each word boundary. 

 

WORD WAV SPKR_ID GEN WORD_START Feature 

Names 

Last 

Feature 

Word 1 location ID gender feature feature feature 

Word 2 location ID gender feature feature feature 

Word 3 location ID gender feature feature feature 

Word n location ID gender feature feature feature 

 

Table 6.33 Prosodic Feature Table 
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 Global Statistics Computation 

Code:  

praatstats_batch.praat ../demo-wavinfo_list.txt ../demo/work_dir yes 

Using Interface 

1. Run Praat 

2. Praat Objects / Read / Read from file / select stats_batch.praat 

3. Click Run on the menu of Script Editor. 

4. Type ../demo-wavinfo_list.txt and ../demo/work_dir into the boxes and click yes if 

you want to use existing parameter files, no to generate parameter files from the 

beginning. 

5. Click OK 

6. Process is displayed in the Praat Info Window. 

 Prosodic Feature Extraction 

Code:  

praatmain_batch.praat ../demo-wavinfo_list.txt user_pf_name_table.Tab\ 

../demo/work_dir/stats_files ../demo/work_dir yes 

1. Run Praat 

2. Praat Objects / Read / Read from file / select main_batch.praat 

3. Click Run on the menu of Script Editor. 

4. Type ../demo-wavinfo_list.txt, user_pf_name_table.Tab, 

../demo_work_dir/stats_files, and ../demo/work_dirrespectively into dour boxes. 

5. Click OK 

6. Process is displayed in the Praat Info Window. 

 

Table 6.34 The use of theProsodic Feature ExtractionTool [31] 
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Chapter 7 

 

Sentence Boundary Detection  

By  

Using Prosodic Features and Learning Algorithms 

 

7.1 Sentence Segmentation Problem 

 

The output of the Automatic Speech Recognizer system is just the utterance of the words. 

Even for humans, it is very hard to understand a long message which includes only 

utterance of words. However when there is punctuation at the written text, it is easier to 

understand the meaning of the written text. For instance two examples below with and 

without sentence boundary signs are given for English written language. Without denoting 

sentence boundaries it is hard to understand the message but with sentence boundary 

notations it is easier to understand the meaning of the written text. 

 

Because of that reasons sentence segmentation is the fundamental steps of the speech 

processing applications such that topic segmentation and summarizing applications. 

 

In the previous chapter, the prosodic feature extraction procedure and the structure of the 

output data which is called prosodic feature table (Table 6.33) has briefly explained. At 

table 6.33, the first column shows the words and the rest columns show the corresponding 

prosodic feature sets. Suppose that we have N words. We can denote each of the words as 
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“wi”, where “i=1,…,N”, and each of corresponding feature sets i.e. feature observations 

“fi”, where “i=1,…,N”. The sentence segmentation problem is at each word boundary “bi” 

,which is between the words wi and wi+1 , to estimate if the boundary is a sentence boundary 

or not, given feature observation sets. A posterior probability of the word is either sentence 

or non-sentence given feature sets are computed and compared to obtain final decision. 

Table 7.1 formulizes the sentence segmentation problem.  

 

Example 1:  Without sentence boundaries. 

the curta is a small hand cranked mechanical calculator introduced in nineteen forty eight it has an extremely 

compact design a small cylinder that fits in the palm of the hand it can be used to perform addition subtraction 

multiplication division and with more difficulty square roots and other operations this little article taken from 

wikipedia in this article the calculator curta is described 

 

Example 1: With sentence boundaries. 

the curta is a small hand cranked mechanical calculator introduced in nineteen forty eight (s) it has an 

extremely compact design (s) a small cylinder that fits in the palm of the hand (s) it can be used to perform 

addition subtraction multiplication division and with more difficulty square roots and other operations (s) this 

little article taken from wikipedia(s) in this article the calculator curta is described (s) 

 

 

 

7.2 Supervised and Semi-Supervised Learning Algorithms 

  

The sentence segmentation approach has introduced at the previous section. The aim is to 

detect the sentence boundaries i.e. automatically label each word boundaries whether they 

are sentence boundary or not. For each word, the posterior probabilities of either if it is a 

word boundary or not are computed and compared. Hence basically at that point a binary 

classification has performed. Nevertheless we have only one classifier and unless it is built 

with a high accurate prediction rule, which is a very difficult task, it outperforms alone.  

 

On the other hand the main idea of using learning algorithm is that, obtaining a strong 

classifier by combining several classifiers each performs a little better than random 
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guessing will be easier and perform better. In other words, this is called a weak learning 

algorithm. During many rounds at each round, different subsets of training examples are 

taken and a new prediction rule is generated. At the end those weak rules are combined to 

obtain a single and strong prediction rule [40]. Figure 7.1 shows the idea very basically.  

 

wi i=1,…,N The word sequence. 

fij i=1,…,N and j=1,…,M “fi” denotes the feature set of the corresponding 

word and “fj” denotes a feature for all words. 

bi i=1,…,N b1,…,bN-1 is the word boundary between wi and 

wi+1 and bN  is the last word boundary. 

yi yi  {     } When k = 1, it is a sentence boundary. It is  

labeled by “s” and k = -1 is not a sentence 

boundary and it is labeled  by “n”. 

 (     |   ) Posterior probability of sentence boundary/non sentence boundary where 

y = 1 / y = -1. 

bi = s   (     |  )    (     |  ) Sentence Boundary 

bi = n  (     |  )    (     |  ) Non-sentence Boundary. 

 

Table 7.1  Sentence Segmentation Approach[38] 

 

At below, at first the method of dividing whole data set into three main subsets such as 

training set, development set i.e. validation set and test set. Then several weak learning 

algorithms will be discussed and different techniques will be used about how to select a 

subset of training examples and how to combine weak prediction rules. 

 

 

7.2.1 Dividing the Data into Subsets 

 

At the beginning, we should divide all of our data sets into three main subsets; such as 

training set, development set i.e. validation set and test set. All of three main subsets have 

their own purposes. The training set is used to optimize the parameters such as weights of 

used learning algorithm. The validation set is used to optimize the hyper parameters such as 
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number deciding number of iteration and finally test set is used to measure final score of 

the optimized model [42]. To divide whole dataset into three main subsets, classification 

algorithms are being used. Classification algorithms are divided into two categories such as 

cross-validation and resampling methods.  

 

 

 

Figure 7.1  Basically the idea of a Learning Algorithm [39]. 

 

At the first step, we obtain the train set and development set. In our dataset we have P 

speakers. For each speaker we have N words and for each word we have M features. At the 

beginning, we are dividing our dataset into the speaker based sub datasets and we obtain P 

sub datasets. Then for each P sub datasets we select training/development set 

pairs,{     }   
 , where L≤N. Furthermore while selecting the training/development set 

pairs, we do not spoil order of the words in a complete sentence. Hence we obtain 

independent and identical distributed train and development sets at the end. For speaker 

based tests, we do not combine train, development and test sets belongs to each speaker at 

the end, but for non-speaker based tests we will combine them.  

There are some other techniques to select the train set and test set such as K-Fold Cross-

Validation, 5 2 Cross-Validation, which are Cross-Validation techniques and 

Bootstrapping which is a resampling method.  

K-Fold Cross-Validation method offers to divide whole dataset into K subsets at first. 

   {     }        . Then select   as development set Di, and combine rest of subsets 
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as training set Ti. This method has two disadvantages such as this method keeps the 

development set small and causes overlap between training and development sets. 

 

5 2 Cross-Validation method Dietterich, et. al. similar with K-Fold Cross-Validation 

method. The data is divided into K subsets at first such that each subset has a sequence of 

word features and corresponding labels.    {     }          However selecting 

training and development set differs. 5 2 Cross-Validation method offers to divide    into 

two groups such as   
( )and   

( ). For each i th fold   
( ) becomes the test set and   

( ) 

becomes the development set. Then those sets changes roles for each i+1 th fold where 

  
( ) becomes the development set and   

( ) becomes the training set. Dietterich points that 

it would be enough to perform 5 folds because after 5 folds there would be overlap between 

the sets and error rates will become dependent. Hence no further information will be added 

[42]. 

 

 

7.2.2 Boosting Algorithm 

 

The boosting algorithm was first proposed in 1989 by Freund and Schapire. The algorithm 

has three main steps and a final evaluation step as follows. At the first step a subset of the 

training set is selected randomly and first weak learner is trained. At the second step, the 

samples which were not selected in the first subset and half of the misclassified samples of 

first weak learner are selected and second weak learned trained. At third step, all samples 

that first and second weak learners disagree on are selected and third weak classifier is 

trained. Finally at last step, those three weak learners vote equally to obtain final classifier. 

Table 7.2 shows the algorithm. 
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 Boosting Algorithm 

Input:    {         }             (      )as training set. 

Output:  ( ) , final strong classifier. 

      samples are selected randomly from X to obtain X1. 

 Train weak learner h1on X1. 

 N2 < N samples with half of misclassifies samples by h1 are selected to obtain X2. 

 Train weak learner h2 on X2. 

 Select all samples X that h1 and h2disagree on to obtain X3. 

 Train weak learner h3on X3. 

 Final classifier is obtained by equal voting of three classifiers as shown in Equation 

7.1 

 ( )      (∑   
 

   
) 

(7.1) 

 

Table 7.2: Boosting Algorithm [39] 

 

 

7.2.3 AdaBoost Algorithm 

 

The Adaptive Boosting (AdaBoost) algorithm has developed by Freund and Schapire in 

1996 [40], shown at Table 7.3. There are two major differences from the first boosting 

algorithm such as choosing samples for the next iteration and weighted combination of 

weak classifiers are combined to obtain final strong classifier. 

 

 

  7.2.3.1 The Algorithm 

 

At the beginning we assume that all of the samples are equally important. Hence as shown 

at first step of the algorithm we have a uniform distribution of weights corresponding to the 

samples at the beginning. At the second step of the algorithm, we train a weak classifier 



157 

 

which performs a little bit better than random guessing.  The maximum error of the first 

and all classifiers are shown at Equation 7.2 which is calculated at the third step. 

 

          ,             ,             →   (7.2) 

 

At the fourth step, Equation 7.6 and Equation 7.4,5 are performed respectively. At Equation 

7.4,5, the weight of the weak classifier is being calculated. Figure 7.2 shows the relation 

between the weight and error based on Equation 7.5 

 

Figure 7.2  The weights versus errors where      
  . 

 

At Equation 7.7 we see that while final strong classifier is obtained, the weak classifiers 

which performs better gets higher scores than the weak classifiers which outperforms. On 

the other hand, at the each iteration the importance i.e. weights of correctly classified 

samples decreases and the weights of misclassified samples are increased. Equation 7.4,5 

shows the weights of the samples for the next iteration. The reason of that, once a set of 

sample is classified correctly, at the next iteration instead of those samples, hardest samples 

which were misclassified should be considered and following weak learner should focus on 

to classify that samples. 
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 AdaBoost Algorithm 

Input:     {         }             (      )as training set. 

Output: 

Index “i” 

Index “t” 

 ( ) , final strong classifier. 

Index of samples, i.e. subset of words in training set. 

Index of iteration, i.e. number of combined weak classifiers. 

 For t=1,…,T Do: 

1.   ( )= 
 

 
 ,  where     is current distribution.  

      At the beginning all of the samples weights are uniformly distributed. 

2. Train weak learner ht on X. 

      {      } 

3. Calculate the error probability, i.e. the probability of a sample has misclassified. 

      (  (  )      ) (7.3) 

4. Update distribution of the next weak learner. Reduce the weight of correctly 

classified samples and increase the weight of misclassified samples. 

      
  ( )

  
   {

             (  )

            (  )
 

 

  
  ( )   (       (  ))

  
 

(7.4) 

 

 

(7.5) 

 

Where  

     
 

 
  (

    
  

) 

And   is normalization constant. 

(7.6) 

5. Repeat steps 2, 3, 4 until t = T. 

6. Obtain the final strong classifier. 

 ( )      (∑        ( )
 

   
) 

(7.7) 

 

Table 7.3  AdaBoost Algorithm [40]  
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While doing more and more iterations on boosting algorithm, we observe two types of 

errors such as train error and test error, i.e. generalization error. The main difference 

between the train and test error is that, while increasing the number of iterations, train error 

will decrease and after certain iteration it will be always zero. But test error is different. 

While increasing the number of iteration actually we are combining same number of weak 

classifiers. After a certain number of classifiers, i.e. T classifiers, adding more iteration, i.e. 

combining T + t classifiers causes overtraining, i.e. we have too complex classifier. Hence 

the test error starts to increase after that certain number of iterations.  

 

 

7.2.3.2 Analyzing the Training Error 

 

AdaBoost has ability to reduce its training error [40], i.e. the mistakes on the training set 

reduced while adding more iteration. At Equation 7.4 and 7.5 we have defined the Zt as a 

constant. The value Zt shown at Equation 7.8 stands for an upper bound, which assumes at 

the current iteration all of the samples are misclassified. 

 

    ∑   ( )
 

   
    (       (  )) 

where 

   (       (  ))             (  ) 

 

(7.8) 

 

The training error of final classifier is shown with an upper bound at Equation 7.9. The left 

side of the equation shows the actual error and right side of the equation bounds the actual 

error.  

 

 

 
|   (  )      |    

 

 
∑    (    (  ))

 

   
  ∏  

 

 

where 

 (  )  ∑     
 

   
 

 

(7.9) 

 

(7.10) 
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When we consider the Equation 7.8, we see that adding more iteration will decrease the 

value of  . Hence while adding more iteration the right side of the Equation 7.9 will 

converge to zero. Moreover the product of    values is bounded by combining equations 

7.2, 7.6, 7.9 and 7.10 which is shown at Equation 7.11 [40]. 

∏    ∏[ √  (    )]  ∏√     
 

 

    (  ∑  
 

 

)

  

 
 

(7.11) 

 

 

7.2.3.3Analyzing the Test Error (Generalization Error) 

 

While adding more iteration, it is shown above that the train error increases and finally goes 

to zero. However, test error i.e. generalization error behaves different. The reason is that, 

the complexity of the final classifier increases while increasing number of iteration. After a 

certain point the final classifier becomes a too complex classifier and it causes more errors. 

Robert Schapire, et al. described the generalization error based on margins and an upper 

bound based on VC-dimension (Vapnik Chernonenkis Dimension) of generalized error. 

 

The margins are defined as the difference between the weighted sum of hypotheses voting 

for the right label and weighed sum of hypotheses voting for the wrong label as shown in 

the Equation 7.12. The left side of the final subtraction is the sum of hypotheses for the 

right label and right side of the subtraction is the sum of hypotheses for the wrong label. 

      (   )     ( )    ∑    ( )  ∑     ( )

 

   

 

   

 ∑   
    ( )  

  ∑   
    ( )  

 

 

 

 

(7.12) 

 

Schapire, et. al. showed an upper bound of generalization error based on VC-dimension. 

The final classifier is constructed by weighted votes of weak classifiers.  

 

Let Ȟ = {                          (∑     ( )
 
   )} 
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If final classifier  ( ) is consistent and | | finite, then with probability     

 

   ( ( ))     ̂( ( ))   (√
  ∏ (  )     (   ) 

 
) 

 

(7.13) 

 

 

Where the left side of the inequality represents the generalization error of the final classifier 

and right side represents a bound. The first term of the bound is defined as the upper bound 

of the training error which has shown at Equation 7.11. The second term in the bound 

related with the complexity of the final classifier. As shown in that expression, number of 

features in each sample which has denoted by m, and number of iteration which has 

represented by   affect the complexity of the final classifier.  

 

The complexity expression of Equation 7.13 derived as follows. It is assumed that the value 

of weak hypothesis space  does not diverges and all of either feature sets xt or weak 

classifiers ht are fixed. The final strong classifier is defined as follows. 

 

 (  ) =     (    ) 

where    〈         〉        〈  ( )   ( )     ( )〉 

 

(7.14) 

 

Since there are m different inputs, i.e. features, and     (    ) has VC-dimension T, by 

Sauer’s Lemma, the number of conflicts between weak classifiers are bounded as follows. 

 

                      ∑(
 
 
)

 

   

   (
  

 
)
 

 

 

(7.15) 

 

According to the Equation 7.15, T weak classifiers have no more than (
  

 
)
 

conflicts and 

there are  | |  choices for all of the weak classifiers. Hence, 

 

∏ ( )   
 

| | (
  

 
)
 

 
(7.16) 
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By combining Equations 7.13 and 7.16 the boundary expression in Equation 7.17 is 

obtained. 

 

   ( ( ))     ̂( ( ))   (√
   | ( )|    (

 

 
)   (

 

 
)

 
)    ( )   Ȟ 

With probability at least     

 

(7.17) 

 

In Equation 7.17 it is clearly shown that while T increases, the complexity of H(x) is also 

increasing.  

 

7.3 Model Training Procedure 

 

There are four input files of Icsiboost [41] such as training set, development set, test set and 

a file which points the features. The key idea is, at the first step training a model by using 

the test set, then testing the trained model at development set to find optimum iteration 

number by doing and comparing performance evaluations and finally using the trained 

model with optimum number of iteration and evaluating the performance at test set. The 

details of the given procedure will be discussed with details but first the inputs outputs and 

usage of Icsiboost will be explained. 

 

7.3.1 Labeling the Sentence Boundaries 

 

As mentioned above at the beginning we must have a train set, development set and test set 

which includes the selected features according to the test and corresponding sentence 

boundary labels. To obtain those data sets at the first step we are labeling the word 

boundaries of prosodic feature output table (Table 6.33). We are adding one more column 

to Table 6.33 at first, then we are putting “n” to word boundaries and “s” to sentence 

boundaries while listening the original audio file and we obtain Table 7.4.  
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Words Feature Names  (fij) 

Columns 1 to M 

Label (bi) 

Column M+1  

Word 1 Features f1j      where j=1,…,M n 

Word 2 

… 

Features f2j      where j=1,…,M 

… 

n 

… 

Word i 

… 

Features fijwhere j=1,…,M 

... 

n 

… 

Word n Features fnjwhere j=1,…,M s 

 

Table 7.4  Labeled Prosodic Feature Table 

 

At the second step we are removing the first column which includes the words and we 

obtain our data by taking only interested features, i.e. the columns corresponding to 

interested features and word labels. At the third step we are dividing our new data into three 

parts such as train set, development set and test set respectively. Furthermore we also 

divide the train set into subsets.  

 

Finally we save those three data sets as follows. Suppose for the first test we have given the 

name of the test as “example1”. So we save the training, development at test sets as 

“example1.data”, “example1.dev” and “example1.test” respectively which shown at Table 

7.5 

 

 

7.3.2 Addressing the Features 

 

In previous section, it is mentioned that one could train a model by using only interested 

features. However the train, development and test sets are not only enough to train a model 

at Icsiboost but also a file which includes the names of the features and possible values of 

the corresponding features.  
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Selected Features  (fij) 

Columns 1 to M 

Labels (bi) 

Column M+1 

Data Sets 

Features fij 

where j=1,…,M and i=1,…,q 

 

s or n 

Training set 

Size = (q, M+1) 

Example1.data 

Features fij 

where j=1,…,M 

and i=q,…,q+p 

 

s or n 

Development set 

Size = (p, M+1) 

Example1.dev 

Features fij 

where j=1,…,M 

and i=q+p,…,q+p+r 

 

s or n 

Test set 

Size = (r, M+1) 

Example1.test 

 

Table 7.5  Icsiboost input data formats. 

 

  

There are three types of features such as continuous valued features, label valued features 

such as pointing a rising slope or falling slope in energy and a sequence of features. In our 

tests, generally we are considering either continuous valued features or label valued 

features. Hence we are preparing a file which guides the features and we save it as 

“Example1.names” to the same directory with data sets of that experiment. The structure of 

the guide file is shown at Table 7.6. 

 

s,n. 

Feature1: ,continuous. 

Feature2: ,continuous. 

Feature3: f,r. 

… 

 

Table 7.6  Structure of Experiment1.names. 

 

The first line of the “.names” (Table 7.6) file is the bi where it is an “s” if the word is a 

sentence boundary or an “n” if the word is a non-sentence i.e. only word boundary. In this 

line we define trainer to label what. At the following lines, we are listing the features 
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according to the actual order in data sets and if a feature is continuous valued, we define it 

as continuous and if it is discrete or choices of some labels, we put all possible outcomes. 

 

 

7.3.3 Training a Model by Using Icsiboost 

 

In previous sections we have defined the inputs of Icsiboost. At this section training a 

model by using Icsiboost will be described. The input files should be in the same directory 

and model is trained by typing the code shown at the upper part of Table 7.7. Once the code 

has run, the following lines with similar parameters will appear in the “parameters.txt” file. 

In the lines after command shown at Table 7.7 there are five types of parameters such as 

weighted error, theoretical error, development error, test error and train error. At the first 

column, weighted error is stands for the weights of each trained weak classifier. The 

calculations of weights are shown at Equation 7.4 and 7.5. At the second column there is 

theoretical error which is calculated by using Equation 7.6. The third and fourth columns 

are the results of analyzing test error on development set and test set respectively and 

finally the last column is the result of analyzing the train error.  

 

 icsiboost –S Example1 –n #iteration> parameters.txt 

rnd 1: wh-err= 0.274495 th-err= 0.274495 dev= 0.032311 test= 0.041042 train= 0.034448 

rnd 2: wh-err= 0.767378 th-err= 0.210641 dev= 0.031609 test= 0.030899 train= 0.024963 

rnd 3: wh-err= 0.820982 th-err= 0.172933 dev= 0.031609 test= 0.030899 train= 0.024963 

rnd 4: wh-err= 0.883527 th-err= 0.152791 dev= 0.041676 test= 0.033084 train= 0.024963 

rnd 5: wh-err= 0.923448 th-err= 0.141094 dev= 0.030906 test= 0.029806 train= 0.020469 

rnd 6: wh-err= 0.930887 th-err= 0.131343 dev= 0.030204 test= 0.029338 train= 0.020469 

rnd 7: wh-err= 0.947551 th-err= 0.124454 dev= 0.030204 test= 0.029338 train= 0.020469 

rnd 8: wh-err= 0.942822 th-err= 0.117338 dev= 0.029267 test= 0.029806 train= 0.020469 

rnd 9: wh-err= 0.959168 th-err= 0.112547 dev= 0.033013 test= 0.029806 train= 0.018472 

rnd 10: wh-err= 0.960902 th-err= 0.108146 dev= 0.033013 test= 0.029963 train= 0.017973 

… 

 

Table 7.7  Training a model by using Icsiboost. 
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In the lines after command shown at Table 7.7 there are five types of parameters such as 

weighted error, theoretical error, development error, test error and train error. At the first 

column, weighted error is stands for the weights of each trained weak classifier. The 

calculations of weights are shown at Equation 7.4 and 7.5. At the second column there is 

theoretical error which is calculated by using Equation 7.6. The third and fourth columns 

are the results of analyzing test error on development set and test set respectively and 

finally the last column is the result of analyzing the train error.  

 

As it mentioned previous sections, while adding more iterations we expect that the weights 

will increase, and either theoretical or train error will decrease. On the other hand we have 

test error and development error. After a certain number of iteration, the model will become 

too complex i.e. over-train. While adding more iteration the development and test error 

decrease until an optimum number of iteration, after that number that errors will start to 

increase. 

 

 

7.3.4 Testing Performance of the Trained Model  

 

Once a model has trained by typing the command shown at Table 7.8 the results of each 

word in the either development or test set according to your command will be appear in the 

“results.txt” file. 

 

There are four columns shown at Table 7.8 where each row stands for one word in either 

development or test set. The first two columns are written according to human labels bi 

such as “s” i.e. a sentence boundary and “n” i.e. non-sentence boundary. The sequence {0 

1} stands for human labeled “n” and {1 0} stands for human labeled “s”. While showing 

human labels Icsiboost uses [0, 1] instead of using [-1, 1]. The following two columns 

stand for the results of the binary classifier. The sign of the parameters are the decision of 

the classifier and magnitude of the parameters stands for the confidence measure. In those 

two columns {-0,xxx 0.xxx} stands for a non-sentence boundary decision of the classifier 
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and {0.xxx, -0.xxx} stands for sentence boundary decision. At the following step we will 

compare those two pairs and do performance evaluations. 

 

 icsiboost –S Example1 –C < Example1.dev > results.txt 

 icsiboost –S Example1 –C < Example1.test > results.txt 

0 1 -0.601237747037 0.601237747037 

0 1 -0.505622123388 0.505622123388 

0 1 -0.505622123388 0.505622123388 

0 1 -0.283534787175 0.283534787175 

0 1 -0.899572923912 0.899572923912 

0 1 -0.280858442462 0.280858442462 

0 1 -0.505622123388 0.505622123388 

0 1 -0.516929451725 0.516929451725 

0 1 -0.601237747037 0.601237747037 

0 1 -0.505622123388 0.505622123388 

0 1 -1.014745536400 1.014745536400 

0 1 -0.781723966712 0.781723966712 

0 1 -0.559636630500 0.559636630500 

0 1 -0.899572923912 0.899572923912 

0 1 -0.283534787175 0.283534787175 

0 1 -0.674809242987 0.674809242987 

1 0 0.155911534538 -0.155911534538 

 

Table 7.8  Results of binary classification on either development or test set. 

 

 

7.3.5 Analyzing Performance of the Trained Model  

 

In the previous section we have explained that the “result.txt” includes a list of actual class 

of the word (sentence boundary or non-sentence boundary) and estimated boundaries by the 

classifier. According to the comparisons at each line there are four outcomes. Either 

estimator result or human label may agree that the word is a sentence boundary or non-

sentence boundary. On the other hand, they may disagree. All of the four probable 
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outcomes have their own terms such as True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN), which are shown at Table 7.9. 

 

Decision 

Table 

yi = 1 i.e. yi = s 

{1, 0} 

yi = 0 i.e. yi = n 

{0, 1} 

 ( )         bi = S 

{0.xxx, -0.xxx} 

True 

Positive 

False 

Positive 

 ( )          bi = n 

{-0.xxx, 0.xxx} 

False 

Negative 

True 

Negative 

 True Positive (TP): Represents correctly labeled sentence boundary. 

 True Negative (TN): Represents correctly labeled non-sentence boundary. 

 False Positive (FP): Unexpected sentence boundary, i.e. it is actual a non-sentence 

boundary but classifier recognized it as a sentence boundary. 

 False Negative (FN): Missing sentence boundary, i.e. it is actual a sentence 

boundary but classifier recognized it as a non-sentence boundary. 

 

Table 7.9  Four outcomes of each boundary are explained. 

 

 

Before starting to do the performance evaluations we count number of TN, TP, FN and FP, 

where sum of them is the number of all words in the development/test set. In performance 

evaluation we will consider two scores which are F-measure score and Nist Error Rate. 

However to calculate F-measure, also Precision and Recall should calculated. All of the 

performance evaluation metrics with formulas are given below. 

 

 Precision 

Precision is one of the most commonly used and well known performance evaluation 

measure which implies repeatability of the system. As shown in Equation 7.16, precision 

measures the ratio between correctly labeled sentence boundaries and all sentence boundary 

decisions of the classifier. The calculation of Precision has shown at Equation 7.16. The 

minimum value of precision is zero when there is no correctly detected sentence boundary 
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and the maximum value of precision is one when there is no unexpected sentence 

boundary. 

 

           
  

     
 ,                  [   ] (7.16) 

  

 Recall 

Recall is also one of the most commonly used and well known performance measure, which is the 

ratio of correctly labeled sentence boundaries by the classifier over all of the actual sentence 

boundaries. As shown at Equation 7.17 the minimum value of Recall is 0 in the case absence of 

correctly labeled sentence boundaries and the maximum value of Recall is 1 when there is no 

missing actual sentence boundary by the classifier. 

 

        
  

     
,             [   ] (7.17) 

  

 

 True Negative Rate 

True negative rate measures the performance of classifying non-sentence boundaries. The minimum 

value of True Negative Rate is zero in the case absence of correctly classified non-sentence 

boundaries and the maximum value of True Negative Rate is 1 when there are no unexpected 

sentence boundaries.  

                    
  

     
 ,                         [   ] (7.18) 

  

 Accuracy 

Accuracy is one of the most commonly used and well known performance evaluation measure, 

which measures the ratio of classifiers true decisions over all of the decisions given by the 

classifier.  The minimum value of Accuracy is 0 when there are no correct decisions given by the 

classifier and the maximum value of Accuracy is 1 when there are no wrong decisions given by the 

classifier. 

 

          
     

           
 ,                [   ] (7.19) 
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 F-measure Score 

F-measure score is one of the most commonly used and well known performance evaluation 

measures. It is a measure of test’s accuracy in terms of harmonic mean of precision and recall. The 

minimum value of F-measure approaches to 0 when the limit of sum of the Precision and Recall 

values approaches to zero from positive. The maximum value of F-measure is 1 when either 

precision or recall is 1. The advantage of using F-measure is that it is a combination of precision 

and recall. 

 

           
                   

                
 ,               [   ] (7.20) 

  

 Nist Error Rate 

Nist (National Institute of Standards and Technology) error rate is one of the most commonly used 

and well known performance evaluation measures. The most significant difference between 

previous given performance evaluations is that, Nist Error Rate is aimed to minimize while other 

measures are aimed to maximize. The Nist Error Rate is the ratio of all misclassified samples i.e. all 

of the misclassified either sentence or non-sentence boundaries, over all of the actual sentence 

boundaries. The minimum value of Nist Error Rate is zero when there is no mistake done by the 

classifier and maximum value is the ratio sum of all mistakes done by the classifier over number of 

missing sentence boundaries, where in the worst case we assumed that there are no correctly labeled 

actual sentence boundaries.  

 

            
     

     
,               [   ] ,        (7.21) 

 

 

7.3.6 Maximizing the Performance 

 

In previous sections, the use of icsiboost and analysis of outputs has mentioned. One should 

note that, while increasing iteration number either train error or test error varies hence it 

implies that the performance will also vary while iteration number is varying. Indeed, the 

performance will be maximized in optimum number of iterations. Below, the procedure of 

finding optimum number of iterations will be described. 
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As shown in Table 7.5, the whole data set has divided into three subsets such as training 

set, development set and test set. To find the optimum number of iteration, we are training 

the model by using the training set, testing the trained model by using the development set 

and we record F-measure score and Nist error, for each number of iteration. Then each 

iteration scores are compared. Maximum F-measure score and minimum Nist error is 

required for the highest performance. After doing comparisons the training set is trained by 

using the optimum number of iteration and performance is tested and evaluated by using 

the test set. Table 7.11 shows whole procedure. 

 

For i =1,…,N  

Where we are sure that model will over train with N iterations. 

1. Train the model. 

icsiboost –S Example1 –n i> parameters.txt 

2. Test the performance on development set for “i” iterations. 

icsiboost –S Example1 –C < Example1.dev> results.txt 

3. Record current test results into a log file. 

End For 

 

Finding optimum number of iteration. 

4. Find the iteration number where F-measure is maximized. (Let it happens at M ≤ N 

iteration.) 

5. Find the iteration number where Nist error rate is minimized. (Let it happens at K ≤ 

N iteration.) 

 

Performance evaluation by using optimum number of iteration. 

6. icsiboost –S Example1 –n M > parameters.txt 

7. icsiboost –S Example1 –C < Example1.test> results_for_fmeasure_max.txt 

8. icsiboost –S Example1 –n K > parameters.txt 

9. icsiboost –S Example1 –C < Example1.test> results_for_nist_min.txt 

 

Table 7.10 The procedure of finding maximum performance for given feature set.  
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Chapter 8 

 

Conclusion and Test Results 

 

There are several tests performed on sentence boundary detection ability of extracted 

prosodic features. The F-measure score and Nist error rate evaluation metrics, where they 

have been defined at Chapter 7, has been used in order to measure the performance of 

trained model at icsiboost. Chapter 7 also includes the procedure of model training and 

testing. In this chapter, at first the overview of the method and second the performance 

evaluations of single-speaker based tests and multi-speaker based tests will be shown. 

 

8.1 Data Sets and Overview of the Used Method 

 

In this work, I have used Voice of America (VOA) Turkish broadcast news [43]records and 

segment time marks (STM) which includes the transcription of spoken words in defined 

time segments, information about the speaker such as gender, native non-native and 

speaker-id, which are recorded and prepared by BUSIM speech group [44] in Boğaziçi 

University. In addition the STM files also contain all punctuation signs. Those STM files 

are used as reference files. Each broadcast new program is 30 minutes long, and 16 kHz, 16 

bit PCM sampled in audio (wav) format. Those records are also contains the speech of 

several speakers. 
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In whole procedure we have worked on UNIX operation system. Because of the Mary 

Harper’s Prosodic Feature Extraction Tool operates in speaker based, in the first step I have 

re-organized the audio files and corresponding time-segment marks. The main procedure 

was to detect the selected speaker in each segment-time mark files and concatenate them 

without impair the time labels, and also performing same procedure for the corresponding 

audio files. In re-organizing segment-time mark files, several Perl scripts are used and in re-

organizing audio files, Sox tool has been used.  

 

In the second step, the HCopy tool of HTK used in order to extract Mel-Frequency Cepstral 

Coefficients and Energy of short-time segments. Then by using MFCC vectors, speaker-

based re-organized segment-time marks and the Turkish Language Model developed by the 

BUSIM speech group, the word and phoneme based CTM files are obtained by using HVite 

tool of HTK. 

 

The size of whole collected data is shown at Table 8.1. 

 

Speaker ID Gender Number of Words 

VOA Speaker 1 

 (Main Speaker) 

Male 13381 

VOA Speaker 2 

(Main Speaker) 

Female 17831 

VOA Speaker 3 Male 3547 

VOA Speaker 4 Female 2296 

VOA Speaker 5 Male 1211 

VOA Speaker 6 Male 1840 

 

Table 8.1  The whole data set, the size of the whole data set is 40106 words. 

 

Afterwards, the prosodic feature extraction performed by using Mary Harper’s Prosodic 

Feature Extraction Tool, and finally the sentence boundaries are labeled in order to obtain 

the references of sentence boundaries. 
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In the last step, the data is divided into three sets such as training set, development set and 

test set, according to the task for each test a model is trained by using icsiboost and training 

set (see Chapter 7 for whole procedure) and performance evaluation is performed in both 

development and test sets in corresponding to either speaker based and non-speaker based 

performance evaluation tasks. In single speaker performance evaluations, the data collected 

from main speakers are used and in multi-speaker tasks whole data set has been used. For 

the each performance evaluation tables below, the used subset of the whole data will be 

explained. 

 

 

8.2 Single-Speaker Based Tests 

 

The single-speaker based tests are performed the data corresponding to main speakers who 

are the first two speakers in Table 8.1. In those tests I have used several classes of features 

such as all continuous features, formant frequency and formant frequency derived features, 

and energy and energy derived features and also a feature set which will be denotes as 

Model 1. 

  

In the first case, we have trained models by using all of the features extracted by using 

Praat corresponding the VOA Speaker 1 and VOA Speaker 2 respectively. Table 8.2 shows 

the test results of models trained by using approximately 250 to 2K words with increment 

of 250 words, in training set, 4271 words on development set and 6408 words on test set. 
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8.2.1 All of the continuous variable features on VOA speaker 1. 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

259Words 1 0.708180708180 0.804713804713  

0.8004158004 

 

0.460431654 7 0.777931034482 0.542087542087 

501Words 1 0.671280276816 0.959595959595  

0.892485549132 

 

0.22302158 44 0.915422885579 0.171717171717 

751Words 1 0.671280276816 0.95959595959  

0.896 

 

0.218225419 52 0.913738019169 0.181818181818 

999Words 1 0.671280276816 0.95959595959   

17 0.892744479495 0.228956228956 0.907621247113 0.191846522 

1254Words 1 0.604938271604 1,292929292929   

773 0.912396694214 0.178451178451 0.880630630630 0.254196642 

1492Words 1 0.604938271604938 1.29292929292929   

136 0.90625 0.181818181818182 0.89281507656 0.218225419 

1749Words 1 0.604938271604938 1.29292929292929   

232 0.928925619834711 0.144781144781145 0.916568742655 0.170263788 

2003Words 1 0.580690627202255 1,4268585131894   

 195 0.937293729372937 0.127946127946128 0.900692840646651 0.206235011 

 

Table 8.2  Performance measurements on all continuous features set. The speaker is VOA Speaker 1. 

 

This feature set includes 242 features which are duration, energy, F0 (fundamental 

frequency) basilar and derived features. In addition it includes rhyme features. When we 

look at the results in general, we see acceptable F-measure scores and Nist error rates. The 

best maximum performance is achieved by using all continuous features both for VOA 

Speaker 1 and VOA Speaker 2 (See Table 8.9). However, using 242 features in both 

training and testing stages increases the complexity of the system, where recall that all of 

the features are extracted on each word boundary and lots of weak learners are trained in 

order to find the best strong learner. 
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Figure 8.1  F-measure scores of all continuous feature set on development set (red color) and test set 

(blue color) of VOA Speaker 1. 

 

 

Figure 8.2  Nist error rates of all continuous feature set on development set (red color) and test set 

(blue color) of VOA Speaker 1. 
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8.2.2 The feature set used in Model 1 

 

PAUSE_DUR: continuous. 

PATTERN_BOUNDARY: X, ff, fr, rf, rr. 

ENERGY_PATTERN_BOUNDARY: X, ff, fr, rf, rr. 

SLOPE_DIFF: continuous. 

ENERGY_SLOPE_DIFF: continuous. 

LAST_SLOPE: continuous. 

ENERGY_LAST_SLOPE: continuous. 

LAST_SLOPE_N: continuous. 

ENERGY_LAST_SLOPE_N: continuous. 

F0K_WORD_DIFF_HIHI_N: continuous. 

ENERGY_WORD_DIFF_HIHI_N: continuous. 

F0K_WORD_DIFF_HILO_N: continuous. 

ENERGY_WORD_DIFF_HILO_N: continuous. 

F0K_WORD_DIFF_LOLO_N: continuous. 

F0K_WORD_DIFF_ENDBEG: continuous. 

ENERGY_INWORD_DIFF: continuous. 

ENERGY_WORD_DIFF_LOLO_N: continuous. 

F0K_WORD_DIFF_LOHI_N: continuous. 

ENERGY_WORD_DIFF_LOHI_N: continuous. 

F0K_WIN_DIFF_HIHI_N: continuous. 

ENERGY_WIN_DIFF_HIHI_N: continuous. 

F0K_WIN_DIFF_HILO_N: continuous. 

ENERGY_WIN_DIFF_HILO_N: continuous. 

F0K_WIN_DIFF_LOLO_N: continuous. 

ENERGY_WIN_DIFF_LOLO_N: continuous. 

F0K_WIN_DIFF_LOHI_N: continuous. 

ENERGY_WIN_DIFF_LOHI_N: continuous. 

F0K_WORD_DIFF_MNMN_N: continuous. 

ENERGY_WORD_DIFF_MNMN_N: continuous. 

F0K_WORD_DIFF_BEGBEG: continuous. 

ENERGY_WORD_DIFF_BEGBEG: continuous. 

ENERGY_WORD_DIFF_ENDBEG: continuous. 

F0K_INWORD_DIFF: continuous. 

 

Table 8.3  List of the used features in Model 1. 

 

Model 1 [38] features includes several information such as pause duration between the 

word preceding a boundary and after that boundary, pattern slope and pattern slope energy 

values, log differences of minimum, maximum, and mean values of stylized F0 and energy 

features between adjacent words, frames and word extremes [38]. 

 

Instead of using all of 242 continuous valued features in that set only 33 features are used. 

Those feature set includes the most specific information to detect the sentence boundaries. 

When the results with all continuous feature set are compared, there is a little decrease in 

the performance of the maximized model, however in general the performance is increased. 

Using too much features may add redundant information and may cause reduced 

performance in different training sets.   
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Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

259Words 1 0.6925880923 0.8518518518518  

0.8473372781065 

 

0.3093525179856 11 0.9154228857 0.1919191919191 

501Words 1 0.6478632478 0.9880095923261  

0.8342989571263 

 

0.3429256594724 7 0.8756218905 0.2525252525252 

751Words 1 0.686346231 0.900764354345  

0.856097560975 

 

0.2829736211031 94 0.9047619047 0.1885521885521 

999Words 1 0.7170294494 0.7441077441077   

184 

1149 

0.9319727891 

0.9326599326 

0.1346801346801 

0.1346801346801 

0.8805790108564 

0.8841099163679 

0.2374100719424 

0.2326139088729 

1254Words 1 0.6322580645 1,151515151515   

106 0.9169435215 0.1683501683501 0.8723897911832 0.2637889688249 

1492Words 1 0.6322580645 1,151515151515   

1024 0.9259896729 0.144781144781 0.867924528301 0.2685851318944 

1749Words 1 0.6322580645 1,151515151515   

235 

467 

0.9305555555 

0.9310344827 

0.1346801346801 

0.1346801346801 

0.8857142857142 

0.8757396449704 

0.2302158273381 

0.2517985611510 

2003Words 1 0.2517985611 1.1515151515151   

 1708 0.9331046312 0.1313131313131 0.8752997601918 0.2494004796163 

 

Table 8.4  Performance measurements on the Model 1 features set. The speaker is VOA Speaker 1. 
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Figure 8.3  F-measure scores of model 1 feature set on development set (red color) and test set (blue 

color) of VOA Speaker 1. 

 

 

 

 

 

Figure 8.4  Nist error rate of model 1 feature set on development set (red color) and test set (blue 

color) of VOA Speaker 1. 
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8.2.3 The tests performed by using F0 derived features on VOA Speaker 1. 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

259Words 1 0.4270749395 2  

0.727509778357 

 

0.5011990407673 15 0.7761194029 0.40404040404040 

501Words 1 0.7538200339 0.48821548821548  

0.7462686567164 

 

0.4892086330935 1549 0.7540983606 0.45454545454545 

751Words 1 0.7774193548 0.46464646464646  

0.760693641618 

 

0.496402877697 12 0.796019900 0.41414141414141 

999Words 1 0.777419354 0.46464646464646   

596 0.7789473684 0.42424242424242 0.7404580152671 0.4579124579124 

1254Words 1 0.7774193548 0.46464646464646 0.7119386637458 0.6306954436450 

4 0.7731397459 0.42087542087542 0.7717528373266 0.4340527577937 

1492Words 1 0.7774193548 0.46464646464646 0.7119386637458 0.6306954436450 

2 0.7593582887 0.45454545454545 0.7717528373266 0.4340527577937 

1749Words 1 0.7774193548 0.46464646464646 0.7119386637458 0.630695443645 

2 0.7593582887 0.45454545454545 0.7543424317617 0.4748201438848 

2003Words 1 0.7774193544 0.46464646464646   

 8 0.7810858143 0.42087542087542 0.7701564380264 0.4580335731414 

 

Table 8.5  Performance measurements on the F0 derived features set for VOA Speaker 1. 

 

This feature set includes only the derived fundamental frequency features in order to 

observe the role of using F0 derived features. We got reduced performance but still 

acceptable results. In the next stage we have also added the basilar F0 features. We have 

observed a little increase when we have added also basilar F0 features. So those results 

gave us the idea that, while making a combined feature set, several F0 features should be 

included.  
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Figure 8.5  F-measure score of F0 derived feature set on development set (red color) and test set 

(blue color) of VOA Speaker 1. 

 

 

 

Figure 8.6  Nist error rate of F0 derived feature set on development set (red color) and test set (blue 

color) of VOA Speaker 1. 
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8.2.4 Using both formant frequency and formant frequency derived features on 

VOA_speaker 1. 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

259 Words 1 0.4270749395648 0.23939393939393  

0.7182587666263 

0.6889714993804 

 

0.71825876662 

0.60191846522 

14 

17 

0.7705479452054 

0.7673179396092 

0.45117845117845 

0.44107744107744 

501 Words 1 0.7538200339558 0.48821548821548  

0.7528809218950 

 

0.46282973621 2 0.7686832740213 0.43771043771043 

751Words 1 0.7774193544838 0.46464646464646  

0.77015643802647 

 

0.45803357314 2 0.7810858143607 0.42087542087542 

999Words 1 0.7774193548387 0.46464646464646   

2 0.7925801011804 0.41414141414141 0.75630252100840 0.48681055155 

1254Words 1 0.7774193548387 0.46464646464646   

4 0.8027444253859 0.38720538720538 0.78303030303030 0.42925659472 

1492Words 1 0.7774193548387 0.46464646464646   

2 0.7918781725888 0.41414141414141 0.75030156815440 0.49640287769 

1749Words 1 0.7774193548387 0.46464646464646   

2 0.7918781725888 0.41414141414141 0.75030156815440 0.49640287769 

2003Words 1 0.7774193548387 0.46464646464646   

 6 0.7959183673469 0.404040404040404 0.760765550239234 0.479616306954 

 

Table 8.6 Performance measurements on f0 and f0 derived features. The speaker is VOA Speaker 1. 
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Figure 8.7  F-measure score of F0 and F0 derived feature set on development set (red color) and test 

set (blue color) of VOA Speaker 1. 

 

 

 

 

 

 

Figure 8.8  Nist error rate of F0 and F0 derived feature set on development set (red color) and test 

set (blue color) of VOA Speaker 1. 
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8.2.5 Using energy and energy derived features on VOA speaker 1. 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

259 Words 1 0 1  

0.54696132596685 

0.57468354430379 

 

0.79036144578313 

0.80575539568345 

6 

673 

0.4598698481 

0.5618915159 

0.83838383838383 

1.06060606060606 

501 Words 1 0 1  

0.59595959595959 

0.58751529987760 

 

0.76738609112709 

0.80815347721822 

58 

2900 

0.5245202558 

0.6187290969 

0.75084175084175 

0.76738609112709 

751Words 1 0 1  

0.62913096695226 

0.63093788063337 

 

0.72661870503597 

0.72661870503597 

2191 

3114 

0.6159420289 

0.6136783733 

0.71380471380471 

0.70370370370370 

999Words 1 0 1   

477 

491 

0.6747404844 

0.6654676258 

0.63299663299663 

0.62626262626262 

0.63940520446096 

0.64267990074441 

0.69784172661870 

0.69064748201438 

1254Words 1 0 1   

153 

881 

0.6309751434 

0.6395759717 

0.64983164983165 

0.68686868686868 

0.63080684596577 

0.60838323353293 

0.72422062350119 

0.78417266187050 

1492Words 1 0 1   

128 0.6264591439 0.64646464646464 0.64233576642335 0.70503597122302 

1749Words 1 0 1   

6381 0.5350877192 0.71380471380471 0.61887694145758 0.76498800959232 

2003Words 1 0 1   

 2371 0.5267857142 0.713804713804714 0.636150234741784 0.743405275779377 

 

Table 8.7  Performance measurements on energy and energy derived features. The speaker is VOA 

Speaker 1. 
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Figure 8.9  F-measure score of energy and energy derived feature set on development set (red color) 

and test set (blue color) of VOA Speaker 1. 

 

 

 

 

Figure 8.10 Nist error rate of energy and energy derived feature set on development set (red color) 

and test set (blue color) of VOA Speaker 1.  
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8.2.6 Using energy derived features on VOA speaker 1. 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

259 Words 1 0 1  

0.51923076923076 

 

0.72289156626506 2 0.472727272 0.78378378378378 

501 Words 1 0 1  

0.58259773013871 

 

0.793764988009592 81 0.490566037 0.81818181818181 

751Words 1 0 1  

0.62195121951219 

 

0.743405275779377 233 0.590998043 0.70370370370370 

999Words 1 0 1   

56 0.652908067 0.62289562289562 0.62295081967213 0.717026378896882 

1254Words 1 0 1   

923 0.617424242 0.68013468013468 0.61975308641975 0.738609112709832 

1492Words 1 0 1   

220 0.564102564 0.68686868686868 0.64259927797833 0.712230215827338 

1749Words 1 0 1   

46 0.5517241379 0.7003367003367 0.61090909090909 0.76978417266187 

2003Words 1 0 1   

 8 0.3864229765 0.79124579124579 0.57142857142857 0.949640287769784 

 

Table 8.8 Performance measurements on energy derived features. The speaker is VOA Speaker 1. 

 

When we use only energy features to train a model, we get unacceptable results. However we 

should not conclude that the energy features are useless. The combination of energy and F0 features 

provides high performance as we have observed at Model 1 feature set. 
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Figure 8.11 F-measure score of energy derived feature set on development set (red color) and test 

set (blue color) of VOA Speaker 1. 

 

 

 

Figure 8.12 Nist error rate of energy derived feature set on development set (red color) and test set 

(blue color) of VOA Speaker 1. 
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8.2.7 All of the continuous variable features on VOA speaker 2 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

249 Words 1 0 1  

0.853994490358 

 

0.28042328042328 5 0.860759493670 0.268839103869 

503 Words 1 0 1  

0.904135338345 

 

0.17989417989418 256 0.922246220302 0.146639511201 

749Words 1 0 1  

0.906787330316 

 

0.18165784832451 40 0.930526315789 0.134419551934 

1009Words 1 0 1   

561 0.92713833157 0.140529531568 0.911737943585 0.171075837742 

1246Words 1 0 1   

1609 0.93736951983 0.122199592668 0.91109074243813 0.1710758377425 

1508Words 1 0 1   

2505 0.93782929399 0.1201629327902 0.9085872576177 0.1746031746031 

1748Words 1 0 1   

208 0.93993677555 0.1160896130346 0.9288928892889 0.1393298059964 

1997Words 1 0 1   

 994 0.94363256784 0.1099796334012 0.929856115107 0.137566137566 

2253Words 

 

1 

139 

0 

0.9468196037 

1 

0.103869653767 

 

0.934163701067 

 

0.13051146384475 

2520Words 

 

1 

704 

0 

0.9446185997 

1 

0.10794297352 

 

0.92735426008 

 

0.14285714285567 

2707Words 

 

1 

212 

0 

0.94375 

1 

0.109979633 

 

0.932263814 

 

0.13403880075646 

 

Table 8.9  Performance measurements on all continuous features. The speaker is VOA Speaker 2. 
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Figure 8.13 F-measure score of all continuous feature set on development set (red color) and test set 

(blue color) of VOA Speaker 2. 

 

 

 

 

Figure 8.14 Nist error rate of all continuous feature set on development set (red color) and test set 

(blue color) of VOA Speaker 2. 

  



190 

 

8.2.8 Model 1 features on VOA speaker 2 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

249 Words 1 0 1  

0.882196634189 

 

0.234567901234 30 0.875776397515 0.244399185336 

503 Words 1 0 1  

0.905357142857 

 

0.18694885361552 1394 0.907407407407 0.183299389002 

749Words 1 0 1  

0.905357142857 

 

0.18694885361552 33 0.906414300736 0.18126272912 

1009Words 1 0 1   

58 0.91806722689 0.158859470468 0.91992882562 0.158730158730 

1246Words 1 0 1   

123 0.92387904066 0.14867617107943 0.91829484902 0.16225749559 

1508Words 1 0 1   

37 0.91869060190 0.15682281059 0.91823899371 0.160493827160 

1748Words 1 0 1   

147 0.9196617336 0.154786150712 0.916890080428 0.164021164021 

1997Words 1 0 1   

 1767 0.9186906019 0.156822810590 0.907161803713 0.1851851851851 

2253Words 

 

1 

74 

0 

0.92323869610 

1 

0.14867617107943 

 

0.915467625899 

 

0.165784832451 

2520Words 

 

1 

37 

0 

0.9175475687 

1 

0.15885947046 

 

0.918918918918 

 

0.15873015873 

2707Words 

 

1 

51 

0 

0.92096944151 

1 

0.15274949083 

 

0.9111900532859 

 

0.17636684303351 

 

Table 8.10 Performance measurements on Model 1 features. The speaker is VOA Speaker 2. 
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Figure 8.15 F-measure score of Model 1 feature set on development set (red color) and test set (blue 

color) of VOA Speaker 2. 

 

 

 

Figure 8.16 Nist error of Model 1 feature set on development set (red color) and test set (blue color) 

of VOA Speaker 2. 
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8.2.9 F0 derived features on VOA speaker 2 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

249 Words 1 0 1  

0.723529411764 

 

0.497354497354 308 0.7570754716 0.419551934826 

503 Words 1 0 1  

0.74157303370 

 

0.486772486772 619 0.789053591 0.3767820773 

749Words 1 0 1  

0.74102079395 

 

0.48324514991 712 0.786697247 0.378818737270 

1009Words 1 0 1   

58 0.7871116225 0.37678207739 0.75023386342376 0.470899470899 

1246Words 1 0 1   

55 0.793721973 0.374745417515 0.767730496453 0.462081128747 

1508Words 1 0 1   

43 0.814238042 0.340122199592 0.7603305785123 0.46031746031746 

1748Words 1 0 1   

34 0.806167400 0.358452184928 0.7594254937163 0.472663139329 

1997Words 1 0 1   

 14 0.8247863247 0.334012219959 0.75996457041 0.477954144620 

2253Words 

 

1 

39 

0 

0.8048511576 

1 

0.360488798370 

 

0.74270072992 

 

0.47878365832 

2520Words 

 

1 

88 

0 

0.821585903 

1 

0.32993890020 

 

0.769230769230 

 

0.460317460317 

2707Words 

 

1 

87 

0 

0.826985854 

1 

0.32382892057 

 

0.78141135972 

 

0.447971781305 

 

Table 8.11 Performance measurements on F0 derived features. The speaker is VOA Speaker 2. 
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Figure 8.17 F-measure score of F0 derived feature set on development set (red color) and test set 

(blue color) of VOA Speaker 2. 

 

 

 

Figure 8.18 Nist error rate of F0 derived feature set on development set (red color) and test set (blue 

color) of VOA Speaker 2. 
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8.2.10 F0 and F0 derived features on VOA speaker 2 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

249 Words 1 0 1  

0.686807653575 

 

0.548500881834 8 0.7323290845 0.470468431771 

503 Words 1 0 1  

0.743127962085 

 

0.477954144620 144 0.782022471 0.395112016293 

749Words 1 0 1  

0.722772277227 

 

0.493827160493 2068 0.768166089 0.409368635437 

1009Words 1 0 1   

239 0.7968217934 0.364562118126 0.755725190839 0.451499118165 

1246Words 1 0 1   

669 0.8120133481 0.344195519348 0.7762039660056 0.4179894179894 

1508Words 1 0 1   

43 0.7982261640 0.3706720977596 0.752380952380 0.4585537918871 

1748Words 1 0 1   

156 0.803591470 0.356415478615 0.771668219944 0.432098765432 

1997Words 1 0 1   

 89 0.808189655 0.362525458248 0.780487804878 0.412698412698 

2253Words 

 

1 

232 

0 

0.8030803080 

1 

0.364562118126 

 

0.772258669165 

 

0.42857142857 

2520Words 

 

1 

94 

0 

0.8217391304 

1 

0.334012219959 

 

0.767657992565 

 

0.440917107583 

2707Words 

 

1 

161 

0 

0.8190682556 

1 

0.34012219959 

 

0.790235081374 

 

0.409171075837 

 

Table 8.12 Performance measurements on F0 and F0 derived features for VOA Speaker 2. 
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Figure 8.19 F-measure score of F0 and F0 derived feature set on development set (red color) and 

test set (blue color) of VOA Speaker 2. 

 

 

 

Figure 8.20 Nist error rate of F0 and F0 derived feature set on development set (red color) and test 

set (blue color) of VOA Speaker 2. 
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8.2.11 Energy and energy derived features on VOA speaker 2 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

249 Words 1 0 1  

0 

 

1 1 0 1 

503 Words 1 0 1  

0.2586206896551 

 

0.91005291005291 13 0.24749163879 0.916496945010 

749Words 1 0 1  

0.3915211970074 

 

0.8606701940035 43 0.39595375722 0.85132382892057 

1009Words 1 0 1   

91 0.4846938775 0.822810590631 0.471508379888 0.8342151675485 

1246Words 1 0 1   

80 0.53531598513 0.7637474541751 0.50755939524838 0.8042328042328 

1508Words 1 0 1   

197 0.52131546894 0.80040733197556 0.486064659777 0.81305114638448 

1748Words 1 0 1   

950 0.54373522458 0.786150712830 0.514631685166 0.8483245149911 

1997Words 1 0 1   

 113 0.52088452088 0.7942973523421 0.5174973488865 0.8024691358024 

2253Words 

 

1 

338 

0 

0.52450980392 

1 

0.790224032586 

 

0.544761904761 

 

0.8430335097001 

2520Words 1 

127 

0 

0.54312354312 

1 

0.79837067209776 

 

0.5072164948453 

 

0.8430335097001 

2707Words 1 

162 

0 

0.55359246171 

1 

0.771894093686 

 

0.5342601787487 

 

0.8271604938271 

 

Table 8.13 Performance measurements on energy and energy derived features. The speaker is VOA 

Speaker 2. 
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Figure 8.21 F-measure score of energy and energy derived feature set on development set (red 

color) and test set (blue color) of VOA Speaker 2. 

 

 

 

 

Figure 8.22 Nist error rate of energy and energy derived feature set on development set (red color) 

and test set (blue color) of VOA Speaker 2. 
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8.2.12 Energy derived features on VOA speaker 2 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

249 Words 1 0 1  

0.2113821138211 

 

1.02645502645503 10 0.1839464882 0.9938900203665 

503 Words 1 0 1  

0 

 

1 1 0 1 

749Words 1 0 1  

0.246771879483 

 

0.9259259259259 5 0.3042836041 0.9592668024439 

1009Words 1 0 1   

94 0.3656207366 0.947046843177 0.455958549222 0.925925925925 

1246Words 1 0 1   

19 0.41551246537 0.8594704684317 0.4425531914893 0.9241622574955 

1508Words 2 0 1   

236 0.4189189189 0.875763747454 0.431289640591 0.9488536155202 

1748Words 1 0 1   

179 0.3977746870 0.881873727087 0.4667349027635 0.9188712522045 

1997Words 1 0 1   

 239 0.397183098 0.871690427698 0.438614900314 0.943562610229 

2253Words 1 

648 

0 

0.4137022397 

1 

0.906313645621 

 

0.4386129334582 

 

1.05643738977072 

2520Words 1 

20 

0 

0.4183168316 

1 

0.95723014256 

 

0.359813084112 

 

0.966490299823 

2707Words 1 

22 

0 

0.3834482758 

1 

0.910386965376 

 

0.371929824561 

 

0.947089947089 

 

Table 8.14 Performance measurements on energy derived features. The speaker is VOA Speaker 2. 
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Figure 8.23 F-measure score of energy derived feature set on development set (red color) and test 

set (blue color) of VOA Speaker 2. 

 

 

 

Figure 8.24 Nist error rate of energy derived feature set on development set (red color) and test set 

(blue color) of VOA Speaker 2. 
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In the tests above, several feature sets are tested by using both speeches of VOA speaker 1 

and VOA speaker 2, such as a feature set contains all continuous prosodic features, model 1 

features, which is mostly combination of formant frequency and corresponding (similar) 

energy features, basilar F0 and F0 derived features together, formant frequencies alone, 

energy and energy features together and finally energy derived features alone. 

Above we have observed that, most succeed results are occurred in the models which are 

trained by using either all continuous features or the model 1 features. However, in all 

continuous feature set there are approximately 200 features and in model 1 feature set there 

are approximately 35 features. As it has mentioned before, N features are extracted and 

trained for each word. While designing a system, the computational complexity should be 

also considered. In this sight of view, using model 1 feature set is much more efficient 

when compared with using all continuous features. 

 

8.3 Multi-Speaker Based Tests 

 

In this step, speaker-independent tests will be performed. Hence, all of the data sets which 

are train sets, test sets and development sets will include features of more than one person. 

The tests are divided into two steps. At the first step, a model is trained by using features of 

VOA speaker 1 and VOA speaker 2. Then the performance of that models are evaluated in 

development sets and test sets respectively where the development sets and test sets 

includes only those speakers. In the second step, the trained models in step 1 are used in 

order to perform sentence segmentation only on features belongs to VOA Speakers 3-4-5-6. 

Hence the test set has changed. In the new test set, there is no any features belongs to either 

VOA speaker 1 or 2. 

 

In this test, two models are used. The first one is model 1 which has explained before, and 

the second one is model 2, where in that model similar with [33], the duration features, F0 

and corresponding energy features are used, in addition the gender information is also used. 
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8.3.1 Tests performed with model 1 feature set 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

508Words 1 0.60632411067 1.26395939086294 0.8873239436619 0.2276422764227 

324 0.90542244640 0.1903553299492 0.8263959390862 0.33011583011583 

1004Words 1 0.60632411067 1.26395939086294 0.8964813870474 0.20630081300813 

1987 0.91923076923 0.15989847715736 0.82962962962963 0.3108108108108 

1500Words 1 0 1 0.8849467815509 0.2306910569105 

1987 0.9070063694 0.185279187817 0.8121085594989 0.3474903474903 

2008Words 1 0 1 0.8967280163599 0.2052845528455 

1987 0.9102730819 0.175126903553 0.7683741648106 0.4015444015444 

2500Words 1 0 1 0.89963973237262 0.19817073170731 

256 0.9216710182 0.152284263959 0.8139281828073 0.33011583011583 

3000Words 1 0 1 0.8881922675026 0.2174796747967 

256 0.9184210526 0.1573604060913 0.8216216216216 0.3185328185328 

3493Words 1 0 1 0.89723526343244 0.20020325203252 

256 0.9098090849 0.173857868020 0.8083242059145 0.3378378378378 

4000Words 1 0 1 0.9034589571502 0.1900406504065 

 256 0.9125326370 0.17005076142132 0.8079034028540 0.3378378378378 

 

Table 8.15 Performance measurements on model 1 set of features. In the test column, bold results 

are correspond to tests VOA Speakers 3-6. 
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Figure 8.25 F-measure score on model 1 feature set on development set belongs to main speakers 

(red color), test set belongs to main speakers (blue color), and test set belongs to other speakers 

(green color). 

 

 

 

Figure 8.26 Nist error rate on model 1 feature set on development set belongs to main speakers (red 

color), test set belongs to main speakers (blue color), and test set belongs to other speakers (green 

color). 
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8.3.2 Tests performed with model 2 feature set 

 

Training 

Set Size 

Iteration 

Number 

F-measure on 

Development 

Set 

Nist on 

Development Set 

F-measure on 

Test Set 

Nist on 

Test Set 

508Words 1 0.6063241106 1.26395939086294 0.8403730115194 0.2957317073170 

15 0.8438356164 0.2893401015228 0.6418835192069 0.5579150579150 

1004Words 1 0.6063241106 1.26395939086294 0.8699360341151 0.2479674796747 

172 0.86320109439 0.2538071065989 0.7235023041474 0.46332043320463 

1500Words 1 0 1 0.8639744952178 0.2601626016260 

1148 0.85733695652 0.2664974619289 0.710495963091 0.4845559845559 

2008Words 1 0 1 0.881663113006 0.2256097560975 

172 0.8869448183 0.213197969543 0.735260115606 0.4420849420849 

2500Words 1 0 1 0.8815165876777 0.2286585365853 

219 0.8797297297 0.22588832487 0.7697368421052 0.4054054054054 

3000Words 1 0 1 0.879957127545 0.2276422764227 

165 0.888432580 0.20685279187 0.7556561085972 0.4169884169884 

3493Words 1 0 1 0.881720430107 0.2235772357723 

154 0.8852005532 0.2106598984771  0.71864406779661 0.4806949806949 

4000Words 1 0 1 0.894764674775 0.2022357723577 

 2518 0.8943089430 0.19796954314 0.7360178970917 0.4555984555984 

 

Table 8.16 Performance measurements on model 2 set of features. In the test column, bold results 

are corresponds to tests VOA Speakers 3-6. 
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Figure 8.27 F-measure score on model 2 feature set on development set belongs to main speakers 

(red color), test set belongs to main speakers (blue color), and test set belongs to other speakers 

(green color). 

 

 

 

Figure 8.28  Nist error rate on model 2 feature set on development set belongs to main speakers (red 

color), test set belongs to main speakers (blue color), and test set belongs to other speakers (green 

color). 
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GEN$: male, female. 

PAUSE_DUR: continuous. 

FLAG$: 0, SUSP. 

LAST_VOWEL_DUR: continuous. 

NORM_LAST_RHYME_DUR: continuous. 

MEAN_F0: continuous. 

MEAN_STYLFIT_F0: continuous. 

MEAN_STYLFIT_F0_WIN: continuous. 

MEAN_F0_NEXT: continuous. 

MEAN_STYLFIT_F0_NEXT: continuous. 

MEAN_F0_NEXT_WIN: continuous. 

MEAN_STYLFIT_F0_NEXT_WIN: continuous. 

PATTERN_BOUNDARY$: X, ff, fr, rf, rr. 

WORD_DUR: continuous. 

WORD_AV_DUR: continuous. 

NORM_WORD_DUR: continuous. 

LAST_VOWEL_DUR_Z: continuous. 

LAST_VOWEL_DUR_N: continuous. 

LAST_VOWEL_DUR_ZSP: continuous. 

LAST_VOWEL_DUR_NSP: continuous. 

LAST_RHYME_DUR_PH_ND: continuous. 

LAST_RHYME_DUR_PH_NR: continuous. 

LAST_RHYME_NORM_DUR_PH_ND: continuous. 

LAST_RHYME_NORM_DUR_PH_NR: continuous. 

F0K_WORD_DIFF_HIHI_NG: continuous. 

F0K_WORD_DIFF_HILO_NG: continuous. 

F0K_WORD_DIFF_LOLO_NG: continuous. 

F0K_WORD_DIFF_LOHI_NG: continuous. 

F0K_WORD_DIFF_MNMN_NG: continuous. 

F0K_WIN_DIFF_HIHI_NG: continuous. 

F0K_WIN_DIFF_HILO_NG: continuous. 

F0K_WIN_DIFF_LOLO_NG: continuous. 

F0K_WIN_DIFF_LOHI_NG: continuous. 

F0K_WIN_DIFF_MNMN_NG: continuous. 

ENERGY_WORD_DIFF_HIHI_NG: continuous. 

ENERGY_WORD_DIFF_HILO_NG: continuous. 

ENERGY_WORD_DIFF_LOLO_NG: continuous. 

ENERGY_WORD_DIFF_LOHI_NG: continuous. 

ENERGY_WORD_DIFF_MNMN_NG: continuous. 

ENERGY_WIN_DIFF_HIHI_NG: continuous. 

ENERGY_WIN_DIFF_HILO_NG: continuous. 

ENERGY_WIN_DIFF_LOLO_NG: continuous. 

ENERGY_WIN_DIFF_LOHI_NG: continuous. 

ENERGY_WIN_DIFF_MNMN_NG: continuous. 

AVG_PHONE_DUR_Z: continuous. 

MAX_PHONE_DUR_Z: continuous. 

AVG_PHONE_DUR_N: continuous. 

MAX_PHONE_DUR_N: continuous. 

 

Table 8.17 Model 2 feature set. 
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The experiment results in section 8.3 shows that, model 1 features succeed better than 

model 2 features. Especially, in the sentence segmentation for unknown speaker task, 

model 1 performs much better. 

To conclude, in this work we have added sentence segmentation property to the output of 

the ASR system. We have used strong learners which are trained by using several set of 

prosodic features. All of the used computer programs in this work are open source and 

similar systems can be developed for not only Turkish language but also the other 

languages. We have observed that, using F0, duration and energy features together, 

performs maximum performance. This work can be considered as the first step of further 

ASR applications such as topic segmentation and summarization. This work can also be 

used at online applications such as online subtitles with punctuation signs in a television 

show.  
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