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Abstract—This letter proposes two novel algorithms for the
identification of quadrature amplitude modulation (QAM) sig-
nals. The cyclostationarity-based features used by these algo-
rithms are robust with respect to timing, phase, and frequency
offsets, and phase noise. Based on theoretical analysis and simu-
lations, the identification performance of the proposed algorithms
compares favorably with that of alternative approaches.

Index Terms—Quadrature amplitude modulation, Signal cy-
clostationarity, Signal identification.

I. INTRODUCTION

S IGNAL identification, a major task of intelligent receivers,
finds applications in software defined and cognitive radios,

and spectrum surveillance and management. Signal identifi-
cation algorithms can be grouped into two general classes:
likelihood-based and feature-based (see the comprehensive
survey provided in [1] and references therein). The former
tends to be complex to implement and sensitive to model
mismatches, such as timing, phase, and frequency offsets, and
phase noise [1]–[4]. The latter can be simple to implement
and be made robust to some model mismatches through the
careful selection of features [1], [5]–[9]. This letter proposes
two novel algorithms for the identification of quadrature
amplitude modulation (QAM) signals. The cyclostationarity-
based features used by these algorithms are robust with respect
to timing, phase, and frequency offsets, and phase noise. The
rest of the letter is organized as follows. Signal model and its
statistical characterization are presented in Sections II and III,
respectively. Feature selection is explained in Section III, and
the proposed algorithms are described in Section IV. A
comparative performance analysis is presented in Section V,
followed by final remarks in Section VI.

II. SIGNAL MODEL

The baseband received waveform is expressed as

r(t) = αej(2π∆fct+θ+ϕ(t))
∑
k

s
(i)
k p(t−kT−εT )+w(t), (1)

where α is the signal amplitude, ∆fc is the frequency offset,
θ is the phase offset, ϕ(t) is the phase noise (PN), s(i)

k is the
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symbol transmitted within the kth period corresponding to an
Ω(i) QAM modulation, p(t) is the overall pulse shape, T is the
symbol period, ε is the timing offset, and w(t) is additive zero-
mean complex Gaussian noise. The symbol sequence {s(i)

k } is
a zero-mean independent and identically distributed sequence,
with values drawn from an alphabet corresponding to the Ω(i)

signal constellation. Without loss of generality, we consider
unit variance constellations, i.e., c(i)s,2,1 = E{|s(i)

k |2} = 1, with
E{.} as the expectation operator. The PN ϕ(t) is modeled
(asymptotically with time) as a Wiener random process with
mean zero and variance 2πBL| t |, where BL is the full 3 dB
bandwidth of the Lorentzian power spectrum [10].

III. STATISTICAL SIGNAL CHARACTERIZATION AND
FEATURE SELECTION

In the absence of the PN, the received signal r(t) is nth-
order cyclostationary, with the (n, q) (nth-order/ q-conjugate)
cyclic cumulants (CCs) and cycle frequencies (CFs) given
respectively as [5]–[7] 1

cr(γk; τ)n,q = αnc(i)s,n,qT
−1e−j2πβkεT ejθ(n−2q)

× ej2π∆fc
∑n

m=1 (−)mτm

∫ ∞
−∞

n∏
m=1

p(∗)m(t+ τm)

× e−j2πβktdt+ cw(γk; τ)n,q, (2)

γk = βk + (n− 2q)∆fc, βk = kT−1, k integer, (3)

where τ = [τ1, ..., τn−1, τn = 0] is the delay-vector, c(i)s,n,q is
the (n, q) cumulant of the Ω(i) signal constellation, (∗)m is
the optional conjugation of the mth term so that the number
of conjugations equals q, (−)m is the minus sign associated to
the optional conjugation (∗)m,m = 1, ..., n, and cw(γk; τ)n,q
is the (n, q) CC of w(t) at CF γk and delay vector τ. For
examples of c(i)s,n,q , Ω(i) =4-QAM, 16-QAM, 64-QAM, and
V.29 [2], and diverse n and q values, see Table I [5]–[9]. Note
that c(i)s,n,q = c

(i)
s,n,n−q for n even and c

(i)
s,n,q = 0 for n odd,

q = 0, ..., n.
TABLE I

CUMULANT VALUES FOR QAM SIGNAL CONSTELLATIONS

cs,2,0 cs,2,1 cs,4,1 cs,4,2 cs,6,3
4-QAM 0 1 0 -1 4

16-QAM 0 1 0 -0.68 2.08
64-QAM 0 1 0 -0.619 1.797

V.29 0 1 0 -0.5816 1.4897

1For the definitions of the nth-order cyclostationarity, corresponding time-
varying and cyclic statistics, and their estimators, the reader is referred to
[11], [12].
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By inspection of (2) and (3), for certain values of the
parameters k, q, and τ, specifically k = 0, q = n/2, 2

and
∑n
m=1 (−)mτm = 0, the corresponding CCs are not

dependent on ε, θ, and ∆fc, respectively. Furthermore, from
(2) and Table I, it is clear that the second-order CCs cannot
serve as discriminating features for QAMs, and we need to
resort to higher-order statistics, e.g., n = 4, 6. In such a case,
cw(γk; τ)n,q is zero for any γk and τ , due to the Gaussian
nature of the noise.

Moreover, one can show that choosing q = n/2 and zero
delay-vector does not only cancel the effect of θ and ∆fc,
respectively, but also the effect of the PN. In this case, the
(n, q) CCs, n =4, 6, are practically given by (2). A sketch
of the proof is as follows: - The presence of the PN leads
to the appearance of the multiplicative term e−(n−2q)2πBLt

in the expression for the (n, q) time-varying moments of
the signal component at zero delay vector [13]. Clearly, for
q = n/2, the effect of this multiplicative term vanishes, and
the PN has no effect on these moments; - The (4,2) and (6,3)
time-varying cumulants at zero delay-vector are respectively
expressed as functions of (4,2) and (6,3) and lower-order time-
varying moments through the moment-to-cumulant formula
[11]; - By employing results from the first step, the fact that the
(2,0) and (2,2) time-varying moments and cumulants are equal,
the (2,0) and (2,2) time-varying cumulants are a function of
CCs [11], and the (2,0) and (2,2) cumulants of the QAM signal
constellations vanish, one can further show that the PN has no
effect on the (4,2) and (6,3) time-varying cumulants of QAM
signals at zero delay-vector; - By using the CC expression as
a function of the time-varying cumulant [11], one can finally
conclude that the (4,2) and (6,3) CCs at zero delay-vector are
not affected by the PN.

Hence, we choose the (4,2) and (6,3) CCs at zero CF
and zero delay-vector as discriminating features, due to their
robustness to ε, θ, ∆fc, and ϕ(t).

IV. PROPOSED ALGORITHMS

We formulate QAM signal identification as a multiple
hypothesis testing problem, i.e., under hypothesis Hi we
decide that the modulation is Ω(i), i = 1, ..., NH . Here NH
represents the number of hypotheses, which are equally likely.
We propose two identification algorithms, as follows:
Algorithm I: An estimate of the feature vector is obtained from
data, F̂I = [ĉr(0; 0)4,2, ĉr(0; 0)6,3], and used with an optimum
criterion to make a decision. Based on the asymptotic bivari-
ate Gaussian distribution of this estimate [12], the optimum
decision criterion in the sense that it maximizes the average
probability of correct identification, is

i = argmini=1,...,NH
(F̂I − F(i)

I )Σ−1(F̂I − F(i)
I )T , (4)

where F(i)
I represents the mean of F̂I under hypothesis Hi, Σ

is the covariance matrix of F̂I, and the superscripts −1 and T

represent the inverse and transpose operations, respectively.
Note that equal covariance matrices are considered under

2Note that k = 0 and q = n/2 render CCs at zero CF; however, these are
different from ”stationary” cumulants, as their calculation involves products
of lower-order cyclic moments at non-zero CFs (see eq. (42) in [11]).

all hypotheses, as these depend weakly on the modulation,
and strongly on the observation interval, signal-to-noise ratio
(SNR), CC order, and CF [6]. Moreover, when applying (4),
we use an estimate of the covariance matrix, Σ̂, which is
calculated based on the observed data. For these estimators,
the reader is referred to eq. (118) in [12]; we should mention
that the covariance estimators are expressed as summations of
products of moment and smoothed cross cyclic periodogram
estimators.
Algorithm II: An estimate of the feature vector is obtained
from data, F̂II = [ĉ

1/2
r (0; 0)4,2, ĉ

1/3
r (0; 0)6,3], and used to

make a decision

i = argmini=1,...,NH
‖F̂II − F(i)

II‖2, (5)

where ‖.‖2 represents the vector 2-norm, and F(i)
II is the mean

of F̂II under hypothesis Hi.
When compared with Algorithm I, the features consist of the

(n, q) CCs, n = 4, 6, and q = n/2, raised to the power of 2/n.
This operation renders closer variances of the feature estimates
[6], and we adopt the minimum 2-norm as the decision-making
criterion. Clearly, Algorithm II is simpler than Algorithm I, as
it does not require estimation of the covariance matrix.

The proposed algorithms are formally stated below. Note
that they do not require estimation and compensation for the
timing, phase, and frequency offsets, and phase noise.

Proposed Algorithms
1: INPUT Pool of QAM modulations to be classified,{

Ω(i)
}
, and corresponding c(i)s,4,2, c

(i)
s,6,3, i = 1, ..., NH .

2: Estimate the signal bandwidth [14], and coarsely estimate
the carrier frequency as the middle point of the estimated
bandwidth. Remove the out-of-band noise by filtering, and
down-convert the signal.

3: Oversample the signal and estimate the corresponding
feature vector from data.

4: Calculate F(i)
I for Algorithm I, or F(i)

II for Algorithm II,
i = 1, ..., NH . Based on the fact that the CC estimators are
asymptotically unbiased [11], [12], (2) is used to obtain
the mean of each feature estimate.

5: Make a decision by applying the corresponding criterion:
- For Algorithm I, estimate the covariance matrix from
data, and apply the criterion in (4).
- For Algorithm II, directly apply (5).

6: OUTPUT Selected hypothesis, Hi, and corresponding
QAM modulation, Ω(i).

V. PERFORMANCE EVALUATION

The performance of Algorithm I is investigated through
theoretical analysis and simulations. Additional simulations
are employed to compare the performance of Algorithms I
and II with the algorithms proposed in [3]–[9].

A. Theoretical Performance Analysis: Algorithm I

Following [15], [16], the probability of correct identification
for the case of a binary classification problem (NH = 2) is



3

given by

Pc = 2−1(P (H1|H1) + P (H2|H2))

= 2−1(
∫ −µ(1)/σ

−∞
1√
2π
e−

u2

2 du+
∫∞
−µ(2)/σ

1√
2π
e−

u2

2 du)

= Q(−
√

∆FΣ−1∆FT /2),

(6)

where P (Hi|Hi), i = 1, 2, represents the probability to
decide for the hypothesis Hi when indeed this is true, µ(1) =
−∆FΣ−1∆FT , µ(2) = ∆FΣ−1∆FT , σ2 = 4∆FΣ−1∆FT ,
with ∆F = F(2)

I − F(1)
I , and Q(.) is the Q function, defined

as Q(x) =
∫∞
x

1√
2π
e−

u2

2 du. For a multiple hypothesis testing
problem, a general closed-form expression for the probability
of correct identification is not available, and one usually resorts
to performance bounds [16], [17]. The union bound represents
a commonly used upper bound for the probability of error,
while its pruned versions can yield closer upper bounds or
approximations of this probability [17]. These in turn lead to
lower bounds or approximations for the probability of correct
identification.

B. Simulation and Numerical Results
In order to illustrate the performance of the proposed

algorithms, we consider two modulation pools, η1 = {4-
QAM, 16-QAM } (NH = 2), and η2 ={4-QAM, 16-QAM,
V.29}(NH = 3). A root raised cosine pulse shape with 0.35
roll-off factor is employed at the transmit- and receive-sides.
At the receiver, the signal is oversampled by a factor of 11.
The model mismatches are set as follows: the phase offset θ
is uniformly distributed over [−π, π), the timing offset ε is
uniformly distributed over [0, 1), and the normalized carrier
frequency offset and phase noise bandwidth are respectively
equal to ∆fcT = 10−2 and BLT = 10−3, unless otherwise
mentioned. The in-band SNR is considered, and α = 1 unless
otherwise mentioned. The number of trials used to calculate
P (Hi|Hi), i = 1, ..., NH , is 103.

Fig. 1 plots the average probability of correct identification
Pc (for the modulation pool η1) versus SNR, when using 1,000
and 2,000 symbols for estimation, respectively. The simulation
and theoretical results for Algorithm I are in agreement. Note
that the performance of Algorithms I and II converges as the
SNR increases. For higher values of Pc (Pc ≥ 0.9), which are
of most practical interest, the two algorithms compare closely
in performance. As expected, a better performance is achieved
with a larger observation interval.

For the same model mismatches, number of symbols, and
SNRs, simulations demonstrated that the algorithms developed
in [3], [4], [6]–[9] fail (Pc below 0.6) for diverse reasons: the
algorithm in [3] is affected by timing and frequency offsets,
and phase noise, the algorithms in [4], [6], [7] are affected
by frequency offset and phase noise, the algorithm in [8] is
affected by timing offset, and the one in [9] is affected by
timing and frequency offsets, as well as phase noise. The
effectiveness of the proposed algorithms is further confirmed
by additional performance comparisons with the algorithm in
[6]. While the algorithm in [6] requires ∆fcT = 10−5 and
BLT = 10−6 to achieve a probability of correct classification
approaching 1 for 1,000 symbols and 10 dB SNR, the proposed
algorithms achieve such a performance for ∆fcT = 10−2 and

BLT = 10−3. These results clearly show the effectiveness of
the proposed algorithms.
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Fig. 1. Performance of the proposed algorithms for the modulation pool η1.

Fig. 2 shows the average probability of correct identification
Pc versus SNR achieved with Algorithms I and II for the
modulation pool η2, when using 3,000 and 5,000 symbols for
estimation, respectively. A lower bound on the performance of
Algorithm I is also depicted, which is obtained by truncating
the union bound. Based on the fact that the constellation points
are approximately co-linear in the feature space, we retain
those terms in the union bound which correspond to such a
particular geometry. Note that this yields a tight lower bound
for the average probability of classification of Algorithm I
at lower SNR, while it provides a good approximation at
higher SNR. Furthermore, the performance of Algorithms I
and II converges as the SNR increases. As it was observed for
η1, the two algorithms compare closely in performance for
Pc ≥ 0.9, which is of most practical interest. When compared
to the results obtained for η1, a larger number of symbols is
needed to achieve a Pc approaching 1 for the same SNR. For
example, 3,800 symbols were required with Algorithm II to
approach a Pc of 1 at 10 dB SNR. A Pc of 0.982, 0.955,
and 0.858 was respectively achieved for 3,000, 2,000, and
1,000 symbols and 10 dB SNR. It is worth noting that 4-
QAM was perfectly identified in all cases, and the performance
degradation resulted from the mis-identification of 16-QAM
and V.29. Moreover, it was observed that, regardless of the
SNR, the ability of Pc to approach 1 was adversely affected
when the number of symbols was reduced. This phenomenon
can be explained as follows: the distance between 16-QAM
and V.29 in the feature space is smaller, and thus, the correct
decision between these two modulation types is particularly
sensitive to the accuracy of the feature estimates. Clearly, for
the observation intervals of 1,000 and 2,000 symbols, the effect
of the estimation errors dominates and leads to an irreducible
error floor, irrespective of the SNR.

The proposed algorithms are also applicable under block
fading channel conditions. For example, a Pc of 0.962 is
obtained for 1,000 symbols and 10 dB (average) SNR with
Algorithm II for the modulation pool η1 (NH = 2). This
performance can be further enhanced by exploiting spatial
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receive diversity [7]. For example, using two receive antennas
and selection combining, a Pc approaching 1 is achieved under
the above conditions.
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Fig. 2. Performance of the proposed algorithms for the modulation pool η2.

VI. CONCLUSION

Two cyclostationarity-based algorithms have been proposed
and evaluated for the identification of QAM signals. These
algorithms are robust with respect to timing, phase, and
frequency offsets, and phase noise. Furthermore, the version
using the minimum 2-norm criterion has the advantage of
implementation simplicity. Simulation results demonstrate that
they compare favorably with other algorithms described in the
literature.
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