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SIGNLESS LAPLACIAN POLYNOMIAL FOR SPLICE AND LINK OF

GRAPHS

H. S. RAMANE1∗, D. PATIL1, B. PARVATHALU2, K. ASHOKA1 §

Abstract. The signless Laplacian matrix of a graph G is Q(G) = A(G) +D(G), where
A(G) is the adjacency matrix and D(G) is the diagonal degree matrix of a graph G. The
characteristic polynomial of the signless Laplacian matrix is called the signless Laplacian
polynomial. The present work is all about the study of signless Laplacian polynomial for
the splice of more than two graphs and the link of such graphs. It is noted that such a
study is easier when we take into account of the vertex set partition being an equitable
partition, because equitable partition of the vertex set reduces the computational steps
and also the quotient matrix polynomial is a part of the polynomial of a graph. In
this paper we consider the splice and links of complete graphs and of complete bipartite
graphs and obtain the signless Laplacian polynomial of these using equitable partition
of the vertex set.
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1. Introduction

The spectra of signless Laplacian matrix perform better when it is compared with the
spectra of other commonly used graph matrices (Laplacian, Seidel matrix). Among the
generalized adjacency matrices, the signless Laplacian appears to be most convenient in
studying graph properties. The study of Q-spectra of graphs got additional motivation
with advancement in the theory of graphs with least eigenvalue −2. Hence, the study of
signless Laplacian matrix is the subject of flurry of recent research. The related research
can be seen in [1, 3, 5, 6, 7, 8, 12, 18].

In [4], the adjacency polynomial of splice and link of complete graph and star have been
obtained. In [13], these results are generalized by taking more copies of the graphs for
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splice and link and using equitable partition on vertex set. Seidel polynomial of splice and
link is reported in [14]. Also the adjacency polynomial of the complement of splice and
link of certain graphs is reported in the same paper. The distance polynomial of the splice
and link is obtained in [15].

The present work is all about the study of signless Laplacian polynomial for the splice
of more than two graphs and the link of such graphs (which involves symmetry in the
graph structure) by applying the concept of equitable partition on the vertex set.

2. Preliminaries

Let G be a simple, connected, undirected, labeled graph on n vertices with vertex set
{v1, v2, . . . , vn}. Two vertices vi and vj are said to be adjacent whenever there is an edge
between them. The degree of a vertex vi is the number of edges incident to it and is denoted
by di = deg(vi). The signless Laplacian matrix Q(G) = A(G) +D(G) where A(G) is the
adjacency matrix and D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of the vertex
degrees in G. The signless Laplacian polynomial is defined as, φ(Q(G) : x) = | xI−Q(G) |,
where I is the identity matrix of order n. The roots of φ

(
Q(G) : x

)
= 0 are the signless

Laplacian eigenvalues constituting its spectrum. If x1, x2, . . . , xk are the distinct roots of
φ(Q(G) : x) = 0 with respective multiplicities m1,m2, . . . ,mk then the signless Laplacian

spectrum of G is written as {x(m1)
1 , x

(m2)
2 , . . . , x

(mk)
k }. Let Kn be the complete graph on n

vertices, Kr,s be the complete bipartite graph on r + s vertices and Sn = K1,n−1 be the
star on n vertices. For other graph theoretical notations we follow the book [2].

Definition 2.1. [16] The joined union (or generalized composition or G-Join) denoted
by G[G1, G2, . . . , Gn], of n arbitrary graphs G1, G2, . . . , Gn with the vertex set labeling
V (G) = {v1, v2, . . . , vn} of a labeled graph G, is the graph obtained from the union of
graphs G1, G2, . . . , Gn by joining every vertex of Gi to each vertex of Gj whenever vi and
vj are adjacent in G.

Definition 2.2. [16] A partition π : V1 ∪ V2 ∪ . . . ∪ Vm of the vertex set V(G) of a graph
G is equitable if the number of neighbors in Vj for a vertex u in Vi is a constant cij,
independent of u for all i, j (1 ≤ i, j ≤ m).
The partition of V (G) into singletons is always equitable. In generalized composition if a
graph G is regular then V (G) can be taken as partite set in an equitable partition.

Definition 2.3. [17] Let π : V1 ∪ V2 ∪ . . . ∪ Vm be an equitable partition with parameters
cij and Q(G/π) = [qij ]m×m be the matrix defined as,

qij =


cij , if i 6= j

m∑
j=1

cij , if i = j.

The matrix Q(G/π) is called the quotient matrix.

Theorem 2.1. [17] If π : V1, V2, . . . , Vm is an equitable partition of a graph G, then
φ(Q(G/π) : x) divides φ(Q(G) : x).

Došlić [10], defined splice and link of two graphs. Ramane et al. [13], gave following
definitions of the concept of splice of two graphs for more than two graphs and the link
of two copies of such a structure. Moreover, the concept of splice and link for more than
two graphs was first time generalized by Došlić and Sharafdini [11].
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Definition 2.4. [13] Let G1, G2, . . . , Gp be p disjoint graphs and let us label p vertices,
one in each V (Gi) for i = 1, 2, . . . , p, by v. The vertex joining graph at v or the splice of
these graphs, denoted as ∨v[G1, G2, . . . , Gp], is obtained by identifying the vertices v of the
p graphs (see Figure 1).

Figure 1. ∨v[K5,K5,K5,K5]

Definition 2.5. [13] Let G1, G2, . . . , G2p be 2p graphs and let us label p vertices, one
in each V (Gi) for i = 1, 2, . . . , p, by v and other p vertices, one in each V (Gi) for i =
p + 1, p + 2, . . . , 2p, by v′. The edge joining graph at vv′ or the link of these graphs
be denoted as ∨evv′ [G1, G2, . . . , G2p] which is obtained by adding a new edge between the
identified vertices v and v′ of 2p graphs (see Figure 2).

Figure 2. ∨evv′ [K5,K5,K5,K5]

Definition 2.6. [13] Let G1, G2, . . . , Gp be p graphs and let us label p vertices, one in
each of V (Gi) for i = 1, 2, . . . , p, by v. The edge joining graphs at v or the link of these
graphs be denoted as ∨ev[G1, G2, . . . , Gp] which is obtained by adding new edges between the
vertices labeled by v of p graphs (see Figure 3).

Lemma 2.1. (Schur Complement [2]) Suppose that the order of all four matrices B11, B12,
B21 and B22 satisfy the rules of operations on matrices. Then we have,∣∣∣∣B11 B12

B21 B22

∣∣∣∣ =

|B22| |B11 −B12B
−1
22 B21|, if B22 is a non-singular matrix,

|B11| |B22 −B21B
−1
11 B12|, if B11 is a non-singular matrix.
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Figure 3. ∨ev[K5,K5,K5,K5]

3. Signless Laplacian polynomial of splice of graphs

Theorem 3.1. The signless Laplacian polynomial of G = ∨v[ Kn,Kn, . . . ,Kn︸ ︷︷ ︸
p-copies

] is

φ(Q(G) : x) = (x−2n+3)p−1(x−n+2)p(n−2)
(
x2 − (np+ 2n− p− 3)x+ 2p(n− 1)(n− 2)

)
.

Proof. The graph structure of G = ∨v[ Kn,Kn, . . . ,Kn︸ ︷︷ ︸
p-copies

] involves p copies of Kn identified

at v, is embedded with the structure of joined union, which can be viewed with the proper
partition of the vertex set. Making the (np − p + 1) vertices of G into two partite sets:
V1 = {v} and V2 = {u : u is adjacent to v}, these two partite sets lead to the quotient
matrix

Q(G/π) =

[
p(n− 1) p(n− 1)

1 2n− 3

]
.

The polynomial associated with Q(G/π) is

φ (Q(G/π : x)) = x2 − (np+ 2n− p− 3)x+ 2p(n− 1)(n− 2).

The remaining part of the spectrum of ∨v[Kn,Kn, . . . ,Kn], is due to the partition V2 and

is, {(2n− 3)(p−1), (n− 2)(p(n−2))}.
Hence, by Theorem 2.1, result follows. �

Theorem 3.2. The signless Laplacian polynomial of G = ∨v[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

], where

v is selected among r vertices is

φ(Q(G) : x) = x(x− r)p(s−1)(x− s)p(r−2)
(
x2 − (ps+ r + s)x+ s(pr + ps− p+ 1)

)(
x2 − (r + s)x+ s

)p−1
.

Proof. The graph structure G = ∨v[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

] involves p copies of Kr,s identified

at v, is embedded with the structure of joined union, which can be viewed with the proper
partition of the vertex set. Making the (rp+ sp− p+ 1) vertices into 2p+ 1 partite sets:
V1 = {v}, Vi = {w : w is not adjacent to v in a copy of Kr,s } for i = 2, 3, . . . , p + 1 and
Vj = {u : u is adjacent to v in a copy of Kr,s } for j = p + 2, p + 3, . . . , 2p + 1. These
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partite sets lead to the quotient matrix

Q(G/π) =



ps 0 0 . . . 0 s s . . . s
0 s 0 . . . 0 s 0 . . . 0
0 0 s . . . 0 0 s . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . s 0 0 . . . s
1 r − 1 0 . . . 0 r 0 . . . 0
1 0 r − 1 . . . 0 0 r . . . 0
...

...
...

. . .
...

...
...

. . .
...

1 0 0 . . . r − 1 0 0 . . . r


.

By Lemma 2.1, polynomial associated with Q(G/π) is

φ(Q(G/π) : x) = x
(
x2 − (ps+ r + s)x+ s(pr + ps− p+ 1)

) (
x2 − (r + s)x+ s

)p−1
.

The remaining part of the spectrum of G is due to the partitions Vi, Vj which is:

{r(p(s−1)), s(p(r−2))}.
Hence, by Theorem 2.1, the result follows. �

Interchanging r and s in Theorem 3.2 we get following remark.

Remark 3.1. If v is selected among s vertices in G = ∨v[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

], then the

signless Laplacian polynomial of G = ∨v[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

] is

φ(Q(G) : x) = x(x− s)p(r−1)(x− r)p(s−2)
(
x2 − (pr + r + s)x+ r(pr + ps− p+ 1)

)(
x2 − (r + s)x+ r

)p−1
.

Taking s = r in Theorem 3.2 we get following remark.

Remark 3.2. If s = r in G = ∨v[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

], then the signless Laplacian

polynomial of G = ∨v[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

] is

φ(Q(G) : x) = x(x− r)p(2r−3)
(
x2 − r(p+ 2)x+ r(2pr − p+ 1)

)
(x2 − 2rx+ r)p−1.

Corollary 3.1. The signless Laplacian polynomial of G = ∨v[ Sn, Sn, . . . , Sn︸ ︷︷ ︸
p copies

] is

φ(Q(G) : x) =


x(x− 1)pn−p−1 (x− (np− p+ 1)) ,

if v is the central vertex of the star Sn

x(x2 − nx+ 1)(x− 1)p(n−3)
(
x2 − (n+ p)x+ (np− p+ 1)

)
,

if v is a non-central vertex of the star Sn.

Proof. If v is the central vertex of the star Sn, then result directly follows by taking r = 1
and s = n − 1 in Theorem 3.2. If v is a non-central vertex of the star Sn, then result is
obtained by taking r = n− 1 and s = 1 in Theorem 3.2. �
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4. Signless Laplacian polynomial of link of graphs

Theorem 4.1. The signless Laplacian polynomial of G = ∨evv′ [ Kn,Kn, . . . ,Kn︸ ︷︷ ︸
2p-copies

] is

φ(Q(G) : x) = (x− 2n+ 3)2(p−1) (x− n+ 2))2p(n−2) f(x), where

f(x) = x4 − 2(n− 1)(p+ 2)x3

+(n2p2 + 8n2p− 2np2 + 4n2 + p2 − 20np+ 12p− 4n− 3)x2

−2[2n3p(p+ 2)− np2(8n− 10)− 14n2p+ 4n2 − 4p2 + 15np− 12n− 5p+ 9]x

+4p(n4p− 6n3p+ 2n3 + 13n2p− 9n2 − 12np+ 13n+ 4p− 6).

Proof. The graph structure G = ∨evv′ [ Kn,Kn, . . . ,Kn︸ ︷︷ ︸
2p-copies

] involves 2p copies of Kn among

which p copies are identified at v and other p copies at v′ to have e = vv′, is embedded with
the structure of joined union, which can be viewed with the proper partition of the vertex
set. Making the 2(np − p + 1) vertices of G into four partite sets: V1 = {v}, V2 = {v′},
V3 = {u : u is adjacent to v with u 6= v′} and V4 = {u′ : u′ is adjacent to v′ with u′ 6= v},
these four partite sets lead to the quotient matrix

Q(G/π) =


p(n− 1) + 1 1 p(n− 1) 0

1 p(n− 1) + 1 0 p(n− 1)
1 0 2n− 3 0
0 1 0 2n− 3

 .
The polynomial associated with Q(G/π) is

φ(Q(G/π) : x) = x4 − 2(n− 1)(p+ 2)x3 + (n2p2 + 8n2p− 2np2 + 4n2 + p2

−20np+ 12p− 4n− 3)x2 − 2(2n3p2 + 4n3p− 8n2p2 + 10np2

−14n2p+ 4n2 − 4p2 + 15np− 12n− 5p+ 9)x+ 4p(n4p− 6n3p

+2n3 + 13n2p− 9n2 − 12np+ 13n+ 4p− 6).

The remaining part of the spectrum of G is due to the partitions V3, V4 which is:
{(2n− 3)(2(p−1)), (n− 2)(2p(n−2))}.
Hence, by Theorem 2.1, result follows. �

Theorem 4.2. The signless Laplacian polynomial of G = ∨evv′ [ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
2p-copies

],

where v and v′ are selected among r vertices is

φ(Q(G) : x) = x(x− r)2p(s−1)(x− s)2p(r−2)
(
x2 − (ps+ r + s)x+ s(pr + ps− p+ 1)

)(
x3 − (ps+ r + s+ 2)x2 + (rps+ ps2 − ps+ 2r + 3s)x− 2s

)(
x2 − (r + s)x+ s

)2p−2
.

Proof. Let v and v′ are selected among the r vertices.
The graph structure G = ∨evv′ [ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸

2p-copies

] involves 2p copies of Kr,s among which

p copies are identified at v and other p copies at v′ to have e = vv′, is embedded with the
structure of joined union, which can be viewed with the proper partition of the vertex set.
Making the 2(pr + ps− p+ 1) vertices of G into 4p+ 2 partite sets: V1 = {v}, V2 = {v′},
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Vi = {u : u is adjacent to v in a copy of Kr,s} for i = 3, 4, . . . , p + 2, Vj = {u′ : u′ is
adjacent to v′ in a copy of Kr,s} for j = p+3, p+4, . . . , 2p+2, Vk = {w : w is not adjacent
to v in a copy of Kr,s} for k = 2p+ 3, 2p+ 4, . . . , 3p+ 2 and Vl = {w′ : w′ is not adjacent
to v′ in a copy of Kr,s} for l = 3p + 3, 3p + 4, . . . , 4p + 2. These partite sets lead to the
quotient matrix

Q(G/π) =


(1 + ps)I1 I1 sJ1×p O1×p O1×p O1×p

I1 (1 + ps)I1 O1×p sJ1×p O1×p O1×p
Jp×1 Op×1 rIp Op (r − 1)Ip Op

Op×1 Jp×1 Op rIp Op (r − 1)Ip
Op×1 Op×1 sIp Op sIp Op

Op×1 Op×1 Op sIp Op sIp

 ,
where J is the matrix with all entries 1, O is the null matrix and I is the identity matrix.
By Lemma 2.1, the polynomial associated with Q(G/π) is

φ(Q(G/π) : x) = x
(
x2 − (ps+ r + s) + s(pr + ps− p+ 1)

)(
x3 − (ps+ r + s+ 2)x2 + (rps+ ps2 − ps+ 2r + 3s)x− 2s

)(
x2 − (r + s)x+ s

)2p−2
.

The remaining part of the spectrum of G is due to the partitions Vi, Vj , Vk and Vl which

is: {r(2p(s−1)), s(2p(r−2))}.
Hence, by Theorem 2.1, result follows. �

Interchanging r and s in Theorem 4.2 we get following remark.

Remark 4.1. If v and v′ are selected among s vertices in G = ∨evv′ [ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
2p-copies

],

then the signless Laplacian polynomial of G = ∨evv′ [ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
2p-copies

] is

φ(Q(G) : x) = x(x− s)2p(r−1)(x− r)2p(s−2)
(
x2 − (pr + r + s)x+ r(pr + ps− p+ 1)

)(
x3 − (pr + r + s+ 2)x2 + (rps+ pr2 − pr + 2s+ 3r)x− 2r

)(
x2 − (r + s)x+ r

)2p−2
.

Taking s = r in Theorem 4.2 we get following remark.

Remark 4.2. If s = r in G = ∨evv′ [ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
2p-copies

], then the signless Laplacian

polynomial of G = ∨evv′ [ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
2p-copies

] is

φ(Q(G) : x) = x(x− r)2p(2r−3)
(
x2 − r(p+ 2)x+ r(2pr − p+ 1)

)(
x3 − (pr + 2r + 2)x2 + r(2pr − p+ 5)x− 2r

)
(x2 − 2rx+ r)2p−2.

Theorem 4.3. The signless Laplacian polynomial of G = ∨ev[ Kn,Kn, . . . ,Kn︸ ︷︷ ︸
p-copies

] is

φ(Q(G) : x) = (x− n+ 2)p(n−2)
(
x2 − (3n+ 2p− 6)x+ 2n2 + 4np− 10n− 6p+ 10

)(
x2 − (3n+ p− 6)x+ 2n2 + 2np− 10n− 3p+ 10

)p−1
.
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Proof. The graph structure G = ∨ev[Kn,Kn, . . . ,Kn] involves p copies of Kn each having
a labeled vertex v. These v’s are joined among them, is embedded with the structure of
joined union, which can be viewed with the proper partition of the vertex set. Making the
2n vertices of G into 2p partite sets: Vi = {v} and Vj = {u : u is adjacent to v in a copy
of Kn} for i = 1, 2, 3, . . . , p and j = p + 1, p + 2, p + 3, . . . , 2p ( here Vi is a singleton set
for the vertex v in Kn ). These 2p partite sets lead to the quotient matrix

Q(G/π) =

[
(n+ p− 2)Ip + (J − I)p (n− 1)Ip

Ip (2n− 3)Ip

]
,

where J is the matrix with all entries 1 and Ip is the identity matrix of order p.
By Lemma 2.1, the polynomial associated with Q(G/π) is

φ(Q(G/π) : x) =
(
x2 − (3n+ 2p− 6)x+ 2n2 + 4np− 10n− 6p+ 10

)(
x2 − (3n+ p− 6)x+ 2n2 + 2np− 10n− 3p+ 10

)p−1
.

The remaining part of the spectrum of G is due to the partitions Vj which is:

{(n− 2)(p(n−2))}.
Hence, by Theorem 2.1, result follows. �

Theorem 4.4. The signless Laplacian polynomial of G = ∨ev[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

], where

v is selected among r vertices is
φ(Q(G) : x) =(

x3 − (2s+ 2p+ r − 2)x2 + (s2 + 2sp+ 2rp+ rs− 2r − 2s)x− 2s(p− 1)
)(

x3 − (2s+ p+ r − 2)x2 + (s2 + rs+ rp+ ps− 2r − 2s)x− s(p− 2)
)p−1

(x− r)p(s−1)(x− s)p(r−2).

Proof. Let v be selected among the r vertices.
The graph structure G = ∨ev[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸

p-copies

] involves p copies of Kr,s each having a la-

beled vertex v. These v’s are joined among them, is embedded with the structure of joined
union, which can be viewed with the proper partition of the vertex set. Making the rp+sp
vertices of G into 3p partite sets: Vi = {u : u is not adjacent to v in a copy of Kr,s},
Vj = {v}, Vt = {w : w is adjacent to v in a copy of Kr,s } for i = 1, 2, 3, . . . , p,
j = p + 1, p + 2, . . . , 2p and t = 2p + 1, 2p + 2, . . . , 3p. These 3p partite sets lead to
the quotient matrix

Q(G/π) =

 sIp Op sIp
Op (s+ p− 1)Ip + (J − I)p sIp

(r − 1)Ip Ip rIp

 ,
where J is the matrix with all entries 1, O is the null matrix and Ip is the identity matrix
of order p.
By Lemma 2.1, the polynomial associated with Q(G/π) is
φ(Q(G/π) : x) =(

x3 − (2s+ 2p+ r − 2)x2 + (s2 + 2sp+ 2rp+ rs− 2r − 2s)x− 2s(p− 1)
)(

x3 − (2s+ p+ r − 2)x2 + (s2 + rs+ rp+ ps− 2r − 2s)x− s(p− 2)
)p−1

.
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The remaining part of the spectrum of G is due to the partitions Vi and Vt which is:
{r(p(s−1)), s(p(r−2))}.
Hence, by Theorem 2.1, result follows. �

Interchanging r and s in Theorem 4.4 we get following remark.

Remark 4.3. If v is selected among s vertices in G = ∨ev[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

], then the

signless Laplacian polynomial of G = ∨ev[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

] is

φ(Q(G) : x) =(
x3 − (2r + 2p+ s− 2)x2 + (r2 + 2rp+ 2sp+ rs− 2r − 2s)x− 2r(p− 1)

)(
x3 − (2r + p+ s− 2)x2 + (r2 + rs+ sp+ rp− 2r − 2s)x− r(p− 2)

)p−1
(x− s)p(r−1)(x− r)p(s−2).

Taking s = r in Theorem 4.4 we get following remark.

Remark 4.4. If s = r in G = ∨ev[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

], then the signless Laplacian

polynomial of G = ∨ev[ Kr,s,Kr,s, . . . ,Kr,s︸ ︷︷ ︸
p-copies

] is

φ(Q(G) : x) = (x− r)p(2r−3)
(
x3 − (3r + p− 2)x2 + 2r(r + p− 2)x− r(p− 2)

)p−1(
x3 − (3r + 2p− 2)x2 + 2r(r + 2p− 2)x− 2r(p− 1)

)
.

Remark 4.5. When we put, r = 1 and s = n− 1 in Theorem 4.4, we get
G = ∨ev[ K1,n−1,K1,n−1, . . . ,K1,n−1︸ ︷︷ ︸

p-copies

] which is same as, ∨ev[ Sn, Sn, . . . , Sn︸ ︷︷ ︸
p-copies

], where v is a

central vertex. Hence,
φ(Q(G) : x) =

(x− 1)p(n−2)
(
x2 − (n+ 2p− 2)x+ 2(p− 1)

) (
x2 − (n+ p− 2)x+ (p− 2)

)p−1
.

5. Conclusions

The study of signless Laplacian polynomial for the splice of more than two graphs and
the link of such graphs become easier when we take into account of the vertex set partition
being an equitable partition, because equitable partition of the vertex set reduces the
computational steps and also the quotient matrix polynomial is a part of the polynomial
of a graph.

In [9] the relation between adjacency polynomial of subdivision graph and signless
Laplacian polynomial of underlying graph is given as

φ(A(S(G)) : x) = xm−nφ(Q(G) : x2),

where S(G) is the subdivision graph of G, A(G) is the adjacency matrix of G, n is the
number of vertices of G and m is the number of edges of G. Using this result and the
results of this paper, it is easy to obtain adjaceny polynomial of the subdivison graphs of
splice and link considered in this paper.
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[8] Cvetković, D., Rawlinson, P. and Simić, S. K., (2007), Signless Laplacians of finite graphs, Linear

Algebra Appl., 423, pp. 155–171.
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