
İP
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IŞIK UNIVERSITY

2017





AN ASSORTMENT PLANNING PROBLEM WITH AN

EMPIRICAL DEMAND MODEL

Abstract

In retail industry, although the product range increases with a great pace year by

year, the shelf space that products are displayed on does not expand with the same

pace. Accordingly, in recent years, placing products efficiently on a limited shelf

space become an important problem for maximizing sales. Assortment planning

constitutes the product range which is presented for sale in the store and the

inventory amounts of these products.

The goal of this study is generating a mathematical programming model that can

be solved in a reasonable time and maximizes the profit of a retailer. A regression

model for customer demand is formed by using a data which is obtained from a

supermarket chain in Turkey. An empirical demand model is used as an input

for the nonlinear optimization model. The assortment optimization model that is

developed for this study identifies the products which return the maximum profit

on a large product range, and it determines the best facing amounts of these

products.

Keywords: Assortment planning, nonlinear programming, empirical de-

mand model
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DENEYSEL BİR TALEP MODELİ YARDIMIYLA

ÜRÜN ÇEŞİDİ PLANLAMA PROBLEMİ

Özet

Parekende sektöründe ürün çeşitliliği yıldan yıla büyük bir hızla artış gösterirken,

mağazalarda ürünlerin sergilendiği raf alanlarının, kira ve yeni mağaza tasarımı

gibi maliyetlerin fazlalığının etkisiyle, çok az bir miktarda arttığı görülmektedir.

Dolayısıyla, ürünlerin sınırlı raf alanına, satışı ençoklayacak en etkili şekilde

yerleştirilmesi önemli bir problem haline gelmiştir. Mağazada satılacak ürün

çeşitlerinin ve ürünlerin her birinin envanter miktarlarının ayarlanmasını sağlayan

ürün çeşidi planlama yöntemleri günümüzde oldukça önem kazanmıştır.

Bu çalışmanın amacı; raf alanı kısıtı altında satıcının kârını maksimize eden ve

makul bir sürede çözülebilir olan matematiksel programlama modeli oluşturmaktır.

Türkiye’deki bir süpermarket zincirinden alınan veriler kullanılarak müşteri talebi

için regresyon modeli oluşturulmuştur. Elde edilen deneysel model, doğrusal

olmayan bir programlama modelinde girdi olarak kullanılmıştır. Optimizasyon

modeli geniş bir ürün yelpazesi içinden maksimum karlılığı sağlayacak ürünleri ve

bu ürünlere atanacak raf önyüz miktarlarını vermektedir.

Anahtar kelimeler: Ürün çeşidi planlama, doğrusal olmayan programlama,

ampirik talep modeli
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Chapter 1

Introduction

1.1 Problem Statement and Research Objective

It is known that there is huge variety of products in a store that belongs to a

supermarket chain which established in market presence. Supermarkets not only

offer food need of consumers, and they also present extensive product range for

other human needs such as personal care, clothing, technology, hobby, household

goods etc. When it is thought about all products in all categories are supplied

from a lot of different producers and different enterprises, it can be seen that su-

permarkets transmit thousands of products to consumers. Also, consumers tastes

and necessities are highly differentiated, and supermarkets need detailed product

range in order to serve more customers. For instance, in some supermarkets there

are product aisles which are prepared for people who have gluten sensitivity. An-

other example for this support is that there are dozens of varieties of body lotion

for consumers who have different skin types in cosmetics section of a supermarket.

In the past, talking about such a huge variety of products was not possible,

and during the recent years, the advancement of technology and increasingly

globalized world brought a heavy increase of the number of producer firms and

the number of products which are produced. It is known fact that supermarket

chains succumbed to ”more is better” trend and increased the number of goods on

their shelves in order to provide service to a wider variety of customers. According
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to a survey that was done by Food Marketing Institute, in 1998, nearly 47,000

distinct items filled a typical supermarket retailer’s shelving, up more than 50%

from 1996 [1]. Also, according to the study of Quelch and Kenny, the number

of goods in the supermarkets increased by 16% per year between 1985 and 1992,

while shelf space expanded by only 1.5% per year in the same period [2]. The pace

of extension rate of shelf space remain incapable by comparison with the pace of

increasing rate of the number of products, and the shelving of a supermarket

are inadequate for containing all goods. Because of this situation, assortment

planning for an efficient shelf space usage became unavoidable.

Assortment planning is designating the set of products which are presented at

each store and specifying the inventory levels of these products for maximizing

profit subject to shelf space and other possible constraints [3]. Retailers are

obliged to make assortment planning for their stores and make tiny distinctions

for their shelf space management because of the enhancement of products which

competes for restricted shelf space. In our assumption, display spaces or facings

are highly correlated with the demand rate, and more visibility provides additional

demand for each product. More visibility means more attractiveness, and in a

supermarket, consumers psychologically go towards the products which are placed

with more facings.

In consideration of these observations, the main goal of this thesis is to constitute

an assortment optimization model that maximizes revenue for a single store.

In this study, we use real data that belongs to a supermarket chain in Turkey.

There are tens of thousands stock keeping units and hierarchically all the products

are divided into groups, categories and subcategories in this store. Shelving is

divided into facings and in a facing, only one type of product can be placed. The

depth of the shelf and the physical size of one unit of product specify the capacity

of that facing. In our study, there is no storeroom, and all the products are placed

directly on the shelving.
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We aim to develop an assortment planning solution which is based on an empirical

demand model. Therefore, generating the demand model is the first step of our

study, and it can be formed by using regression analysis on real data. After the

demand model is constructed and validated, an assortment optimization model

which gives the optimal facing amounts for maximum revenue are generated by

using the demand model. In order to observe the applicability of the model

and determine solution methods, some analysis and numerical experiments are

performed.

1.2 Motivational Case Study

Shelving of supermarkets should be organized as convenient with demands of

customers for maximizing sales. In retail industry, a product is not positioned

behind the other product on shelf, and the maximum product amount on the

shelf is the function of facing that is reserved for this product and depth of the

shelf. There are thousands of products in every store, so optimizing the facing

amounts to maximize profit is a considerable complex problem. The Figure 1.1

provides a better understanding for the importance of assortment optimization

problem.

Perishable products are displayed in refrigerators in every supermarket. In this

example, a product which is named as “DANONE ACTIVIA KURU KAYISI (4×

110gr)” is presented for sale on the top shelf with the facing amount approximately

fifteen. The average sales of that product was determined as 0.483. The list price

of that product is 4.55 TL, and the average endorsement which is provided by

this product is 2.06 TL. On the other hand, a product which is named as “MIS

AYRAN BARDAK (230ml)” is presented for sale on bottom-right corner of the

refrigerator with the facing amount four. The average sales of this product was

determined as 36. The list price of that product is 0.5 TL, and the average

endorsement which is provided by this product is 18.04 TL. As shown in Figure

3



Figure 1.1: Assortment arrangement of a supermarket for perishable products

1.1, the area that is reserved for the product which bring 2.06 TL in a day is three

times of the area that is reserved for the product which bring 18 TL in a day.

It can be said that this situation can cause some important problems. For in-

stance, “DANONE ACTIVIA KURU KAYISI (4×110gr)” is a perishable product,

and it has ten days shelf life. Although this product has large shelf space capac-

ity, it is not demanded sufficiently. Then, the extinguishment probability of this

product may increase, and the retailer can lose money because of this situation.

Another example for these problems is that “MIS AYRAN BARDAK (230ml)”

can be stock-out long before the replenishment time. Because, this product has a

small shelf capacity, although the demand of this product is high. These examples

show the importance of assortment planning in a supermarket.

Consequently, the assortment optimization is a difficult problem which is vital

for maximizing endorsement and profit of retailers. The facing amounts which

4



are assigned to the products directly influence to marginal costs and stock out

conditions as well as shaping the demand on products.

1.3 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we present a review of the

existing literature which is relevant to the our study. In Chapter 3, the data that

is used in this thesis is described in detail, and the empirical demand model is

generated by regression. In Chapter 4, we present the assortment optimization

model that maximizes the total revenue under the constraint of shelf space and

the application of this model. Finally, we conclude our work in Section 5.

5



Chapter 2

Literature Survey

In recent years, assortment planning became an important subject for service

sector with emergent requirements.

One of the main studies which is about assortment planning was accomplished

by Kök and Fisher [3]. They define a specific methodology to estimate the input

demand and substitution parameters for the assortment planning problem and

assert an optimization algorithm. Their procedure was applied at a leading su-

permarket chain in the Netherlands. Customers who do not find their favorite

product in a store can buy another product which is similar, and this is named as

substitution. If a product, which is normally in assortment, is stocked out when it

is demanded, customers substitute with another similar product. This situation

is called stock-out based substitution. Also, customers may substitute because

of their favorite product is not in assortment of the store, and this substitution

type is called assortment based substitution. They indicate two methodologies

in order to estimate demand and parameters of the substitution model. In the

first method, stock-out based substitution is neglected because of high service

levels, and only assortment based substitution is considered. Substitution rates

and demand are estimated by using sales data from different stores. In the second

method, substitution rates and demand are estimated by using inventory trans-

action data, and it generalizes their approach to the case with stock-out based

substitution. Also, they develop an iterative heuristic which can solve a series of

6



separable nonlinear knapsack problems. The method that was developed by Kök

and Fisher provides more than a 50% increase in profits.

In general, the same assortment is used in all stores of a retailer, and only some

products are eliminated in smaller stores. Fisher and Vaidyanathan [4] state that

the assortment should vary according to local tastes for each store. They provide

improvement of assortment localization, allowing a constraint on the number of

different assortments and quantifying the level of localization effects on revenue.

Also, they estimate the demand for new products which have not been presented

for sale before in any store, and the demand is estimated by using past sales of

products which are currently exist in assortment. They also develop a demand

model that suits a case which some products are more preferable substitutes for

a given product than others.

According to Gilland and Heese [5], the sequence of customer arrivals has an im-

portant effect on profitability. Limited shelf space restricts the number of product

in a store, and the customers who arrive to store sequentially have to make an im-

mediate substitution decision based on the current product availability. They also

emphasize that stock-out based substitution can cause a hidden cost, although a

product is sold. Because, the customers who do not find their favorite product

become disgruntled, and they may decide not to come to the store anymore.

Ulu, Honhon and Alptekinoğlu [6] state that better assortment planning can be

done, if consumer tastes are known. In order to learn consumer tastes, firms

use different methods such as evaluating past sales data and market surveys.

Hotelling, that is locational choice model, is used in their study, and a discrete

set of consumer locations represents consumer preferences. In order to model

data collection process, a Bayesian framework is used, and the firm’s knowledge

on consumer tastes is updated. In order to show consumer tastes, Honhon et al.

[7] use a ranking based consumer choice model. According to this model, every

consumers have rankings of the potential products, and they buy their highest

product offered in the assortment. In a different study which is performed by

7



Honhon and Seshadri [8], tastes of customers are characterized by their type, and

type is a list of products which the customers are willing to buy in decreasing order

of preference. Substitutions are consumer driven, dynamic and stock-out based

in this study. They point out that the optimum profit under fixed proportion

is always greater or equal to the optimum profit under random proportions. In

another study, Golrezaei et al. [9] evaluate the problem that personalizes the

assortment of products for every customer who arrives, and the availability of real

time data about the characteristic of customer is necessary for this procedure. For

example, the product advices, which Amazon.com performs on each customer,

dynamically change depending some factors such as the previous purchases of

customer, recent reviews, purchases of another customer who has similar tastes.

They claim that increment in revenue is possible by personalizing the assortment.

However, this technique can only be performed by online retailers.

Multinomial logit model is commonly used consumer choice model in the litera-

ture. One of these studies, which considers multinomial logit model as demand

model, is completed by Rusmevinhientong et al. [10]. They work on both dy-

namic and static optimization problems, and they assume that the parameters

of multinomial logit model are known for the static problem. However the pa-

rameters are not known and should be estimated in a dynamic problem. A joint

stocking and product offer problem is studied by Topaloglu [11]. Multinomial

logit model is used to determine consumer choice structure. The goal of his study

is deciding which product sets to offer and how many unit of each product is

stocked in order to maximize profit. Then, he develop a nonlinear programming

model, and the decision variables are the stock amount for each product and the

duration of time which each product is offered. In the study of Rusmevichien-

tong et al. [12], an assortment optimization problem is considered under the

multinomial logit model, and the parameters of the multinomial logit model are

random. The reason of randomness is that every consumer has different tastes

for the products. Rushmevichientong et al. state that the problem is nonlinear

even when two customer segments exist. They point out that assortments are

8



composed of the products which provides highest revenue, and this is called as

revenue-ordered assortments.

A consumer choice model is developed by using the nested multinomial logit

framework with two different hierarchical structures by Kök and Xu [13]. One of

these hierarchical structures is brand-primary model in which customers initially

choose a brand, then a product type is chosen from that brand. The other case

is type-primary model in which customers initially choose a product type, then

a brand is chosen for this product type. They indicate that with the brand-

primary model, the most popular product types from the brand constitute the

competitive and the optimal assortments for associated brand. However, the

competitive and the optimal assortments for each brand may not always compose

of the brand’s most popular product for the type-primary model. Feldman and

Topaloglu [14] study about assortment optimization problem, and the customers

demand is learned by the nested logit model. The capacity is limited for the

products in assortment. In the nested logit model, the products are grouped

and organized in nests. A customer, who comes to store, can decide to make a

purchase from one of the nest or leave without purchasing any product. If a nest

is chosen, the customer buys one of the product in that nest. They consider two

types of capacity constraints for the assortment optimization problem. These are

cardinality constraint and space constraint. They develop an algorithm in order

to obtain approximate solution. As differently from previous work, Topaloglu et

al. [15] use d-level nested logit model to learn consumer preferences, and d-level

nested logit model is described as a tree of depth d. They develop an efficient

algorithm in order to find the optimal assortment.

Assortment of products and consumer return policies are generally accepted as

separate fields of the retailing business. However, Alptekinoğlu and Grasas [16]

assert the counter-view by demonstrating that the optimum assortment decisions

are different when consumer returns are considered. Optimum assortment consists

of a mix of the most popular products which have high attractiveness and the

most eccentric products which have low attractiveness, when the consumer returns

9



are considered. The most eccentric products exist in assortment, because they

provide sufficiently high restocking fee with the high probability of return.

A product which exists in a store can be stale and lose its attractiveness over

time. Caro et al. [17] state that products have different preference weights, profit

margins and life cycle patterns. The trade-offs among preference weights, profit

margins and limited life cycle are modeled by the formulation of them. The goal

of their study is determining the optimum time for introducing each product to

store in order to maximize profit.

10



Chapter 3

Data Analysis and Demand Estimation

Data collection and estimating demand by using the data is the first stage for

assortment planning. In this chapter, by making regression analysis, we develop

an empirical demand model which will be used in assortment optimization model,

and the demand model is analyzed for validation and applicability.

3.1 Data Collection and Analysis

In order to plan assortment, we are allowed to access database of a supermarket in

Turkey, and the original data comes from ORACLE database. In this database,

we have the remaining stock, the facing quantities, the sales quantities and the

prices for every product of all product groups for each day.

In the supermarket, products are divided into different groups such as food, non-

food, fruit and vegetable products, personal care products. These product groups

branch out categories, subcategories and stock keeping units hierarchically. As

might be expected, the data that we work on is enormous and consists of 3,421,500

rows. There are 40,009 types of products and 677 product groups in this super-

market. Therefore, in the first stage of our study, a sample that consists of only

ten stock keeping units from four different types of subcategories were used for

examination of the optimization model in conjunction with the demand model.

In that sample, two SKUs from paprika paste, three SKUs from chopped tomato,

11



two SKUs from tomato puree and three SKUs from tomato paste are used as an

example.

In our study, the daily data is grouped as weekly data for convenience in analysis

by reducing the data size. Totally, there are twenty-six weeks in the data, but we

only use the data of thirteen weeks because of missing data problem of the other

thirteen weeks. The weekly averages of remaining stocks and sales quantities for

every product are designated, and the facing quantities and the prices of every

product remain the same, because they are constant values for each product.

3.2 Demand Estimation by Regression

In order to construct the optimization model that maximizes total revenue, we

need to know the prices and demands of the products. The prices of all products

are known in the data, but demands of the products are not known, and they

should be estimated.

In our study, Minitab, which is a statistics software, is used for estimating de-

mands of all products by conducting a regression analysis. Product IDs, product

group IDs, remaining stocks, the facing quantities are accepted as the predictor

values for demand of products. The regression model is one of the constraints of

the optimization model as the demand equation.

Two type of regressions, which are linear regression and log-linear regression,

are compared to understand which one is suitable for this study. Linear regres-

sion assumes a linear functional relationship between a dependent variable Y ,

independent variable xi, i ∈ {1, · · · , I} and a random term ε by fitting a linear

function.

Y = α0 + α1x1 + α2x2 + · · ·+ αIxI + ε (3.1)
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where α0 is the constant term, αi, i ∈ {1, · · · , I} are the regression coefficients of

independent variables [18].

The other regression technique that is considered is log-linear regression, and it

models relationship between a dependent variable Y , independent variable xi, i ∈

{1, · · · , I} and a random term ε by fitting a log-linear model.

lnY = α0 + α1 lnx1 + α2 lnx2 + · · ·+ αI lnxI + ε (3.2)

where α0 is the constant term, αi, i ∈ {1, · · · , I} are the regression coefficients of

independent variable [19].

The linear demand model is prevalent due to its simple functional form. Also,

it is easy to estimate from data by using linear regression techniques. However,

there is a negative feature of the linear regression. It may produce negative

demand values, and this situation can cause numerical difficulties when solving

an optimization problem. Also, it is unrealistic. Unlike the linear demand model,

in the log-linear demand model, demand is always nonnegative. Moreover, it can

be recovered to linear form by taking the logarithm of demand, so it is well suited

to estimation by using linear regression [20].

The log-linear demand model is generally preferred in the existing researches

because of all these reasons, so we decided to use log-linear demand model in this

study. At the next step of our study, different regression analyses are conducted by

using the predictor variables diversely for accurate assessment of which demand

model gives the best fits. In these regression analyses that are performed for

deciding demand model, we use the sample data set which is mentioned in Section

3.1. This sample data set only contains ten products for a time period of thirteen

weeks.
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3.2.1 Analysis of different regression models based on a sample data

In order to determine the demand model which gives the best fits, we try different

regressions on a sample data which contains only ten products, and the results

of these regressions are compared with the coefficient of determination, that is

denoted as R2, values.

R2 values and p-values are significant indicators for reliability of regression. While

R2 closes to a hundred percent and p-values become smaller than 0.05, it can be

said that the regression becomes more reliable. All regression analyses that are

conducted on this sample data are explained in detail in this section.

3.2.1.1 The first regression model for estimating demand

Firstly, a log-linear regression is conducted in order to estimate demand by us-

ing RemainingStock and Facing parameters as predictors. The results of this

regression are shown in Table 3.1, Table 3.2 and Equation 3.3.

Table 3.1: Coefficients of the first regression equation
Term Coefficient P-value

Constant -1.957 0.000
RemainingStock 0.010 0.000
Facing 0.080 0.001

Table 3.2: Model summary of the first regression equation
R-sq R-sq(adj) R-sq(pred)

70.48% 69.75% 66.93%

The first regression equation is

lnDemand = −1.957 + (0.010×RemainingStock) + (0.080× Facing) (3.3)

According to the first regression, p-values of RemainingStock and Facing are

smaller than 0.05, so these predictors are significant for demand estimation. The
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adjusted R2 value is 0.6975, and it demonstrates that the regression model ex-

plains 69.75% of variance of customer demands.

3.2.1.2 The second regression model for estimating demand

Secondly, a log-linear regression is conducted in order to estimate demand by

using IDProduct, IDProductGroup, RemainingStock and Facing parameters as

predictors. The results of this regression are shown in Table 3.3, Table 3.4 and

Equation 3.4.

Table 3.3: Coefficients of the second regression equation
Term Coefficient P-value

Constant -2.613 0.000
IDProductGroup 1.075 0.002
IDProduct -0.332 0.014
RemainingStock 0.008 0.000
Facing 0.063 0.004

Table 3.4: Model summary of the second regression equation
R-sq R-sq(adj) R-sq(pred)

74.06% 72.82% 70.36%

The second regression equation is

lnDemand = −2.613 + (1.075× IDProductGroup)− (0.332× IDProduct)

+ (0.008×RemainingStock) + (0.063× Facing)

(3.4)

According to the second regression, p-values of all predictor variables are smaller

than 0.05, so these predictors are significant for demand estimation. The adjusted

R2 value is 0.7282, and it demonstrates that the regression model explains 72.82%

of variance of customer demands.

15



3.2.1.3 The third regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using IDProd-

uct, IDProductGroup, lnRemainingStock, lnFacing and lnPricei parameters as

predictors, while Pricei represents the price of product i, i ∈ {1, 2, 3, · · · , 10}.

The results of this regression are shown in Table 3.5, Table 3.6 and Equation 3.5.

Table 3.5: Coefficients of the third regression equation
Term Coefficient P-value

Constant -4.940 0.002
IDProductGroup 1.119 0.039
IDProduct -0.255 0.158
lnRemainingStock 0.191 0.044
lnFacing 1.417 0.000
lnPrice1 -0.365 0.663
lnPrice2 -0.535 0.481
lnPrice3 0.350 0.807
lnPrice4 -1.561 0.034
lnPrice5 0.025 0.954
lnPrice6 0.285 0.672
lnPrice7 -2.750 0.012
lnPrice8 -3.300 0.003

Table 3.6: Model summary of the third regression equation
R-sq R-sq(adj) R-sq(pred)

63.40% 60.33% 56.33%

The third regression equation is

lnDemand = −4.940 + (1.119× IDProductGroup)− (0.255× IDProduct)

+ (0.191× lnRemainingStock) + (1.417× lnFacing)

− (0.365× lnPrice1)− (0.535× lnPrice2) + (0.350× lnPrice3)

− (1.561× lnPrice4) + (0.025× lnPrice5) + (0.285× lnPrice6)

− (2.750× lnPrice7)− (3.300× lnPrice8)

(3.5)
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According to the third regression, p-values of IDProductGroup, lnRemainingStock,

lnFacing, lnPrice4, lnPrice7 and lnPrice8 are smaller than 0.05, so these pre-

dictors are significant for demand estimation. The adjusted R2 value is 0.6033,

and it demonstrates that the regression model explains 60.33% of variance of

customer demands.

3.2.1.4 The fourth regression model for estimating demand

A log-linear regression is conducted to estimate demand by using ln IDProduct,

ln IDProductGroup, lnRemainingStock, lnFacing and lnPricei parameters as

predictors, while Pricei represents the price of product i, i ∈ {1, 2, 3, · · · , 10}.

The results of this regression are shown in Table 3.7, Table 3.8 and Equation 3.6.

Table 3.7: Coefficients of the fourth regression equation
Term Coefficient P-value

Constant -10.260 0.000
lnRemainingStock 0.080 0.250
lnFacing 1.494 0.000
ln IDProductGroup 4.350 0.000
ln IDProduct 0.503 0.082
lnPrice1 4.122 0.000
lnPrice4 2.006 0.000

Table 3.8: Model summary of the fourth regression equation
R-sq R-sq(adj) R-sq(pred)

53.77% 51.90% 49.19%

The fourth regression equation is

lnDemand = −10.260 + (0.080× lnRemainingStock) + (1.494× lnFacing)

+ (4.350× ln IDProductGroup) + (0.503× ln IDProduct)

+ (4.122× lnPrice1) + (2.006× lnPrice4)

(3.6)

According to the fourth regression, p-values of ln IDProductGroup, lnFacing,

lnPrice1 and lnPrice4 are smaller than 0.05, so these predictors are significant
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for demand estimation. The adjusted R2 value is 0.5190, and it demonstrates

that the regression model explains 51.90% of variance of customer demands.

3.2.1.5 The fifth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using ID-

Product, IDProductGroup, RemainingStock, Facing and lnPricei parameters as

predictors, while Pricei represents the price of product i, i ∈ {1, 2, 3, · · · , 10}.

The results of this regression are shown in Table 3.9, Table 3.10 and Equation

3.7.

Table 3.9: Coefficients of the fifth regression equation
Term Coefficient P-value

Constant -3.934 0.000
IDProductGroup 0.525 0.115
IDProduct 0.099 0.257
RemainingStock 0.007 0.000
Facing 0.061 0.000
lnPrice1 1.217 0.002
lnPrice4 0.896 0.004

Table 3.10: Model summary of the fifth regression equation
R-sq R-sq(adj) R-sq(pred)

63.12% 61.63% 59.28%

The fifth regression equation is

lnDemand = −3.934 + (0.525× IDProductGroup) + (0.099× IDProduct)

+ (0.007×RemainingStock) + (0.061× Facing) + (1.217× lnPrice1)

+ (0.896× lnPrice4)

(3.7)

According to the fifth regression, p-values of RemainingStock, Facing, lnPrice1

and lnPrice4 are smaller than 0.05, so these predictors are significant for de-

mand estimation. The adjusted R2 value is 0.6163, and it demonstrates that the

regression model explains 61.63% of variance of customer demands.
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3.2.1.6 The sixth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using IDProd-

uct, IDProductGroup, RemainingStock, Facing and Pricei parameters as predic-

tors, while Pricei represents the price of product i, i ∈ {1, 2, 3, · · · , 10}. The

results of this regression are shown in Table 3.11, Table 3.12 and Equation 3.8.

Table 3.11: Coefficients of the sixth regression equation
Term Coefficient P-value

Constant -3.934 0.000
IDProductGroup 0.525 0.115
IDProduct 0.099 0.257
RemainingStock 0.007 0.000
Facing 0.061 0.000
lnPrice1 0.429 0.002
lnPrice4 0.329 0.004

Table 3.12: Model summary of the sixth regression equation
R-sq R-sq(adj) R-sq(pred)

63.12% 61.63% 59.28%

The sixth regression equation is

lnDemand = −3.934 + (0.525× IDProductGroup) + (0.099× IDProduct)

+ (0.007×RemainingStock) + (0.061× Facing) + (0.429× Price1)

+ (0.329× Price4)
(3.8)

According to the sixth regression, p-values of RemainingStock, Facing, Price1 and

Price4 are smaller than 0.05, so these predictors are significant for demand esti-

mation. The adjusted R2 value is 0.6163, and it demonstrates that the regression

model explains 61.63% of variance of customer demands.
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3.2.1.7 The seventh regression model for estimating demand

A log-linear regression is conducted to estimate demand by using ln IDProduct,

ln IDProductGroup, lnRemainingStock, lnFacing and lnPricei parameters as

predictors, while Pricei represents the price of product i, i ∈ {1, 2, 3, · · · , 10}.

At this stage, the interactions of prices are added to the regression as predictor

variables. The results of this regression are shown in Table 3.13, Table 3.14 and

Equation 3.9.

Table 3.13: Coefficients of the seventh regression equation
Term Coefficient P-value

Constant -9.000 0.000
lnRemaningStock 0.186 0.024
lnFacing 1.535 0.000
ln IDProductGroup 4.050 0.000
ln IDProduct -0.063 0.836
lnPrice1 10.510 0.003
lnPrice4 6.820 0.000
Price1 ∗ Facing -3.100 0.032
Price4 ∗ Facing -1.749 0.002
Price1 ∗RemainingStock 0.016 0.947
Price4 ∗RemainingStock -0.470 0.001

Table 3.14: Model summary of the seventh regression equation
R-sq R-sq(adj) R-sq(pred)

60.25% 57.51% 54.37%

The seventh regression equation is

lnDemand = −9.000 + (0.186× lnRemainingStock) + (1.535× lnFacing)

+ (4.050× ln IDProductGroup)− (0.063× ln IDProduct)

+ (10.510× lnPrice1) + (6.820× lnPrice4)

− (3.100× (Price1 ∗ Facing))− (1.749× (Price4 ∗ Facing))

+ (0.016× (Price1 ∗RemainingStock))− (0.47× (Price4 ∗RemainingStock))

(3.9)
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According to the seventh regression, p-values of lnRemainingStock, lnFacing,

ln IDProductGroup, lnPrice1, lnPrice4, Price1 ∗ Facing, Price4 ∗ Facing and

Price4∗RemainingStock are smaller than 0.05, so these predictors are significant

for demand estimation. The adjusted R2 value is 0.5751, and it demonstrates that

the regression model explains 57.51% of variance of customer demands.

3.2.1.8 The eighth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using IDProd-

uct, IDProductGroup, RemainingStock, Facing, lnPricei and the interactions of

all price parameters as predictors, while Pricei represents the price of product i,

i ∈ {1, 2, 3, · · · , 10}. The results of this regression are shown in Table 3.15, Table

3.16 and Equation 3.10.

Table 3.15: Coefficients of the eighth regression equation
Term Coefficient P-value

Constant -4.104 0.000
IDProductGroup 1.113 0.002
IDProduct -0.095 0.325
RemainingStock 0.007 0.000
Facing 0.066 0.000
lnPrice1 3.640 0.007
lnPrice4 2.273 0.001
Price1 ∗ Facing -0.238 0.039
Price4 ∗ Facing -0.074 0.144
Price1 ∗RemainingStock 0.011 0.355
Price4 ∗RemainingStock -0.035 0.001

Table 3.16: Model summary of the eighth regression equation
R-sq R-sq(adj) R-sq(pred)

67.52% 65.28% 62.36%
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The eighth regression equation is

lnDemand = −4.104 + (1.113× IDProductGroup)− (0.095× IDProduct)

+ (0.007×RemainingStock) + (0.066× Facing) + (3.640× lnPrice1)

+ (2.273× lnPrice4)− (0.238× (Price1 ∗ Facing))

− (0.074× (Price4 ∗ Facing)) + (0.011× (Price1 ∗RemainingStock))

− (0.035× (Price4 ∗RemainingStock))

(3.10)

According to the eighth regression, p-values of RemainingStock, Facing, IDPro-

ductGroup, lnPrice1, lnPrice4, Price1 ∗ Facing and Price4 ∗ RemainingStock

are smaller than 0.05, so these predictors are significant for demand estimation.

The adjusted R2 value is 0.6528, and it demonstrates that the regression model

explains 65.28% of variance of customer demands.

3.2.1.9 The ninth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using ID-

Product, IDProductGroup, RemainingStock, Facing, Pricei and the interactions

of all price parameters as predictors, while Pricei represents the price of product

i, i ∈ {1, 2, 3, · · · , 10}. The results of this regression are shown in Table 3.17,

Table 3.18 and Equation 3.11.

The ninth regression equation is

lnDemand = −4.104 + (1.113× IDProductGroup)− (0.095× IDProduct)

+ (0.007×RemainingStock) + (0.066× Facing) + (1.286× Price1)

+ (0.836× Price4)− (0.084× (Price1 ∗ Facing))

− (0.027× (Price4 ∗ Facing)) + (0.004× (Price1 ∗RemainingStock))

− (0.013× (Price4 ∗RemainingStock))

(3.11)
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Table 3.17: Coefficients of the ninth regression equation
Term Coefficient P-value

Constant -4.104 0.000
IDProductGroup 1.113 0.002
IDProduct -0.095 0.325
RemainingStock 0.007 0.000
Facing 0.066 0.000
Price1 1.286 0.007
Price4 0.836 0.001
Price1 ∗ Facing -0.084 0.039
Price4 ∗ Facing -0.027 0.144
Price1 ∗RemainingStock 0.004 0.355
Price4 ∗RemainingStock -0.013 0.001

Table 3.18: Model summary of the ninth regression equation
R-sq R-sq(adj) R-sq(pred)

67.52% 65.28% 62.36%

According to the ninth regression, p-values of RemainingStock, Facing, IDPro-

ductGroup, Price1, Price4, Price1 ∗ Facing and Price4 ∗ RemainingStock are

smaller than 0.05, so these predictors are significant for demand estimation. The

adjusted R2 value is 0.6528, and it demonstrates that the regression model ex-

plains 65.28% of variance of customer demands.

3.2.1.10 The tenth regression model for estimating demand

A log-linear regression is conducted to estimate demand by using ln IDProduct,

ln IDProductGroup, lnRemainingStock, lnFacing, lnPricei and the interac-

tions of all price parameters as predictors, while Pricei represents the price of

product i, i ∈ {1, 2, 3, · · · , 10}. The results of this regression are shown in Table

3.19, Table 3.20 and Equation 3.12.
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Table 3.19: Coefficients of the tenth regression equation
Term Coefficient P-value

Constant 1.260 0.797
lnRemainingStock 0.848 0.000
lnFacing 0.278 0.421
ln IDProductGroup -2.920 0.423
ln IDProduct -0.097 0.719
lnPrice1 2.880 0.537
lnPrice4 1.690 0.495
lnPrice1 ∗ lnFacing -2.210 0.089
lnPrice4 ∗ lnFacing -0.557 0.336
lnPrice7 ∗ lnFacing 1.220 0.277
lnPrice1 ∗ lnRemainingStock -0.483 0.037
lnPrice4 ∗ lnRemainingStock -1.110 0.000
lnPrice7 ∗ lnRemainingStock -2.756 0.000

Table 3.20: Model summary of the tenth regression equation
R-sq R-sq(adj) R-sq(pred)

69.56% 67.00% 64.10%

The tenth regression equation is

lnDemand = 1.260 + (0.848× lnRemainingStock) + (0.278× lnFacing)

− (2.920× ln IDProductGroup)− (0.097× ln IDProduct) + (2.880× lnPrice1)

+ (1.690× lnPrice4)− (2.210× (lnPrice1 ∗ lnFacing))

− (0.557× (lnPrice4 ∗ lnFacing)) + (1.220× (lnPrice7 ∗ lnFacing))

− (0.483× (lnPrice1 ∗ lnRemainingStock))

− (1.110× (lnPrice4 ∗ lnRemainingStock))

− (2.756× (lnPrice7 ∗ lnRemainingStock))

(3.12)

According to the tenth regression, p-values of lnRemainingStock, lnPrice1 ∗

lnRemainingStock, lnPrice4∗lnRemainingStock, lnPrice7∗lnRemainingStock

are smaller than 0.05, so these predictors are significant for demand estimation.

The adjusted R2 value is 0.67, and it demonstrates that the regression model

explains 67.00% of variance of customer demands.
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3.2.1.11 The eleventh regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using IDProd-

uct, IDProductGroup, RemainingStock, Facing, lnPricei and the interactions of

all price parameters as predictors, while Pricei represents the price of product i,

i ∈ {1, 2, 3, · · · , 10}. The results of this regression are shown in Table 3.21, Table

3.22 and Equation 3.13.

Table 3.21: Coefficients of the eleventh regression equation
Term Coefficient P-value

Constant -1.040 0.571
IDProductGroup 0.464 0.344
IDProduct -0.129 0.191
RemainingStock 0.007 0.000
Facing 0.058 0.003
lnPrice1 1.990 0.201
lnPrice4 0.854 0.367
lnPrice1 ∗ Facing -0.244 0.031
lnPrice4 ∗ Facing -0.075 0.152
lnPrice7 ∗ Facing -0.038 0.628
lnPrice1 ∗RemainingStock 0.012 0.322
lnPrice4 ∗RemainingStock -0.036 0.000
lnPrice7 ∗RemainingStock -0.206 0.000

Table 3.22: Model summary of the eleventh regression equation
R-sq R-sq(adj) R-sq(pred)

70.25% 67.75% 64.60%
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The eleventh regression equation is

lnDemand = −1.040 + (0.464× IDProductGroup)− (0.129× IDProduct)

+ (0.007×RemainingStock) + (0.058× Facing) + (1.990× lnPrice1)

+ (0.854× lnPrice4)− (0.244× (lnPrice1 ∗ Facing))

− (0.075× (lnPrice4 ∗ Facing))− (0.038× (lnPrice7 ∗ Facing))

+ (0.012× (lnPrice1 ∗RemainingStock))

− (0.036× (lnPrice4 ∗RemainingStock))

− (0.206× (lnPrice7 ∗RemainingStock))

(3.13)

According to the eleventh regression, p-values of RemainingStock, Facing, lnPrice1∗

Facing, lnPrice4∗RemainingStock and lnPrice7∗RemainingStock are smaller

than 0.05, so these predictors are significant for demand estimation. The adjusted

R2 value is 0.6775, and it demonstrates that the regression model explains 67.75%

of variance of customer demands.

3.2.1.12 The twelfth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using ID-

Product, IDProductGroup, RemainingStock, Facing, Pricei and the interactions

of all price parameters as predictors, while Pricei represents the price of product

i, i ∈ {1, 2, 3, · · · , 10}. The results of this regression are shown in Table 3.23,

Table 3.24 and Equation 3.14.
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Table 3.23: Coefficients of the twelfth regression equation
Term Coefficient P-value

Constant -1.040 0.571
IDProductGroup 0.464 0.344
IDProduct -0.129 0.191
RemainingStock 0.007 0.000
Facing 0.058 0.003
Price1 0.703 0.201
Price4 0.314 0.367
Price1 ∗ Facing -0.086 0.031
Price4 ∗ Facing -0.028 0.152
Price7 ∗ Facing -0.011 0.628
Price1 ∗RemainingStock 0.004 0.322
Price4 ∗RemainingStock -0.013 0.000
Price7 ∗RemainingStock -0.058 0.000

Table 3.24: Model summary of the twelfth regression equation
R-sq R-sq(adj) R-sq(pred)

70.25% 67.75% 64.60%

The twelfth regression equation is

lnDemand = −1.040 + (0.464× IDProductGroup)− (0.129× IDProduct)

+ (0.007×RemainingStock) + (0.058× Facing) + (0.703× Price1)

+ (0.314× Price4)− (0.086× (Price1 ∗ Facing))

− (0.028× (Price4 ∗ Facing))− (0.011× (Price7 ∗ Facing))

+ (0.004× (Price1 ∗RemainingStock))

− (0.013× (Price4 ∗RemainingStock))

− (0.058× (Price7 ∗RemainingStock))

(3.14)

According to the twelfth regression, p-values of RemainingStock, Facing, Price1 ∗

Facing, Price4∗RemainingStock and Price7∗RemainingStock are smaller than

0.05, so these predictors are significant for demand estimation. The adjusted R2

value is 0.6775, and it demonstrates that the regression model explains 67.75%

of variance of customer demands.
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3.2.1.13 The thirteenth regression model for estimating demand

A log-linear regression is conducted to estimate demand by using ln IDProduct,

ln IDProductGroup, lnRemainingStock, lnFacing, lnPrice which is organized

data in one column at this time and the interactions of all price parameters as

predictors. The results of this regression are shown in Table 3.25, Table 3.26 and

Equation 3.15.

Table 3.25: Coefficients of the thirteenth regression equation
Term Coefficient P-value

Constant 2.780 0.570
lnRemainingStock 0.870 0.000
lnFacing 0.505 0.165
ln IDProductGroup -5.190 0.174
ln IDProduct -0.057 0.833
lnPrice 0.447 0.060
lnPrice1 ∗ lnFacing -3.540 0.017
lnPrice4 ∗ lnFacing -0.919 0.129
lnPrice7 ∗ lnFacing 1.140 0.308
lnPrice1 ∗ lnRemainingStock -0.489 0.033
lnPrice4 ∗ lnRemainingStock -1.064 0.000
lnPrice7 ∗ lnRemainingStock -2.655 0.000
lnPrice1 ∗ lnPrice2 3.030 0.384
lnPrice4 ∗ lnPrice5 0.980 0.574

Table 3.26: Model summary of the thirteenth regression equation
R-sq R-sq(adj) R-sq(pred)

70.31% 67.59% 64.57%
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The thirteenth regression equation is

lnDemand = 2.780 + (0.870× lnRemainingStock) + (0.505× lnFacing)

− (5.190× ln IDProductGroup)− (0.057× ln IDProduct) + (0.447× lnPrice)

− (3.540× (lnPrice1 ∗ lnFacing))− (0.919× (lnPrice4 ∗ lnFacing))

+ (1.14× (lnPrice7 ∗ lnFacing))− (0.489× (lnPrice1 ∗ lnRemainingStock))

− (1.604× (lnPrice4 ∗ lnRemainingStock))

− (2.655× (lnPrice7 ∗ lnRemainingStock)) + (3.030× (lnPrice1 ∗ lnPrice2))

+ (0.980× (lnPrice4 ∗ lnPrice5))

(3.15)

According to the thirteenth regression, p-values of lnRemainingStock, lnPrice1∗

lnFacing, lnPrice1 ∗ lnRemainingStock, lnPrice4 ∗ lnRemainingStock and

lnPrice7∗lnRemainingStock are smaller than 0.05, so these predictors are signifi-

cant for demand estimation. The adjusted R2 value is 0.6759, and it demonstrates

that the regression model explains 67.59% of variance of customer demands.

3.2.1.14 The fourteenth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using ID-

Product, IDProductGroup, RemainingStock, Facing, lnPrice which is organized

data in one column at this time and the interactions of all price parameters as

predictors. The results of this regression are shown in Table 3.27, Table 3.28 and

Equation 3.16.
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Table 3.27: Coefficients of the fourteenth regression equation
Term Coefficient P-value

Constant 0.590 0.770
IDProductGroup 0.063 0.905
IDProduct -0.241 0.036
RemainingStock 0.007 0.000
Facing 0.074 0.000
lnPrice 0.500 0.056
lnPrice1 ∗ lnPrice2 1.890 0.107
lnPrice4 ∗ lnPrice5 0.439 0.513
lnPrice1 ∗ Facing -0.419 0.004
lnPrice4 ∗ Facing -0.145 0.023
lnPrice7 ∗ Facing -0.068 0.385
lnPrice1 ∗RemainingStock 0.016 0.196
lnPrice4 ∗RemainingStock -0.032 0.002
lnPrice7 ∗RemainingStock -0.179 0.003

Table 3.28: Model summary of the fourteenth regression equation
R-sq R-sq(adj) R-sq(pred)

71.01% 68.35% 65.06%

The fourteenth regression equation is

lnDemand = 0.590 + (0.063× IDProductGroup)− (0.241× IDProduct)

+ (0.007×RemainingStock) + (0.0734× Facing) + (0.500× lnPrice)

+ (1.890× (lnPrice1 ∗ lnPrice2)) + (0.439× (lnPrice4 ∗ lnPrice5))

− (0.419× (lnPrice1 ∗ Facing))− (0.145× (lnPrice4 ∗ Facing))

− (0.068× (lnPrice7 ∗ Facing)) + (0.016× (lnPrice1 ∗RemainingStock))

− (0.032× (lnPrice4 ∗RemainingStock))

− (0.179× (lnPrice7 ∗RemainingStock))

(3.16)

According to the fourteenth regression, p-values of IDProduct, RemainingStock,

Facing, lnPrice1 ∗ Facing, lnPrice4 ∗ Facing, lnPrice4 ∗RemainingStock and

lnPrice7 ∗RemainingStock are smaller than 0.05, so these predictors are signifi-

cant for demand estimation. The adjusted R2 value is 0.6835, and it demonstrates

that the regression model explains 68.35% of variance of customer demands.
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3.2.1.15 The fifteenth regression model for estimating demand

A log-linear regression is conducted in order to estimate demand by using IDProd-

uct, IDProductGroup, RemainingStock, Facing, Price which is organized data in

one column at this time and the interactions of all price parameters as predictors.

The results of this regression are shown in Table 3.29, Table 3.30 and Equation

3.17.

Table 3.29: Coefficients of the fifteenth regression equation
Term Coefficient P-value

Constant -1.230 0487
IDProductGroup 0.644 0.176
IDProduct -0.165 0.086
RemainingStock 0.003 0.015
Facing 0.052 0.005
Price 0.039 0.001
Price1 ∗ Facing -0.089 0.021
Price4 ∗ Facing -0.029 0.118
Price7 ∗ Facing -0.010 0.624
Price1 ∗RemainingStock 0.005 0.184
Price4 ∗RemainingStock -0.013 0.000
Price7 ∗RemainingStock -0.057 0.000
Price1 ∗ Price2 0.200 0.150
Price4 ∗ Price5 0.088 0.284

Table 3.30: Model summary of the fifteenth regression equation
R-sq R-sq(adj) R-sq(pred)

72.55% 70.03% 67.15%
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The fifteenth regression equation is

lnDemand = −1.230 + (0.644× IDProductGroup)− (0.165× IDProduct)

+ (0.003×RemainingStock) + (0.052× Facing) + (0.039× Price)

− (0.089× (Price1 ∗ Facing))− (0.029× (Price4 ∗ Facing))

− (0.010× (Price7 ∗ Facing)) + (0.005× (Price1 ∗RemainingStock))

− (0.013× (Price4 ∗RemainingStock))

− (0.057× (Price7 ∗RemainingStock)) + (0.200× (Price1 ∗ Price2))

+ (0.088× (Price4 ∗ Price5))
(3.17)

According to the fifteenth regression, p-values ofRemainingStock, Facing, Price,

Price1 ∗ Facing, Price4 ∗ RemainingStock and Price7 ∗ RemainingStock are

smaller than 0.05, so these predictors are significant for demand estimation. The

adjusted R2 value is 0.7003, and it demonstrates that the regression model ex-

plains 70.03% of variance of customer demands.

3.2.1.16 Comparison between regression models

After all of these regressions are conducted on the sample data which consists of

only ten products, the outcomes of them are compared in order to decide which

demand model gives the best fits. The comparison is made according to R2 values,

and all these R2 values are shown in Table 3.31.

The R2 values of the second model is greater than others (Table 3.31). Conse-

quently, we chose the second model as demand model of this sample data, and this

type of regression can be performed on all data group for more reliable results.

Then, the general demand model of this thesis is shown in Equation 3.18.

Demand = e−α0+α1IDProductGroup−α2IDProduct+α3RemainingStock+α4Facing (3.18)
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Table 3.31: The R2 outcomes of the regressions
R-sq R-sq(adj) R-sq(pred)

Model 1 70.48% 69.75% 66.93%
Model 2 74.06% 72.82% 70.36%
Model 3 63.40% 60.33% 56.33%
Model 4 53.77% 51.90% 49.19%
Model 5 63.12% 61.63% 59.28%
Model 6 63.12% 61.63% 59.28%
Model 7 60.25% 57.51% 54.37%
Model 8 67.52% 65.28% 62.36%
Model 9 67.52% 65.28% 62.36%
Model 10 69.56% 67.00% 64.10%
Model 11 70.25% 67.75% 64.60%
Model 12 70.25% 67.75% 64.60%
Model 13 70.31% 67.59% 64.57%
Model 14 71.01% 68.35% 65.06%
Model 15 72.55% 70.03% 67.15%

In Section 3.2.4, demands of all the products which exist in the assortment of

the supermarket is estimated according to the demand model (3.18). IDProduct-

Group, IDProduct, RemainingStock and Facing parameters must be used in the

regression analyses as the predictors for more acceptable results.

3.2.2 Analysis of Regression Assumptions for the Selected Demand

Model

In the previous sections, we provide discussion for all regression models, and we

decided to use the second regression model. Because, R2 values of the second

model is greater than the R2 values of the other models.

According to the second regression equation (3.4), demand is a function of IDPro-

ductGroup, IDProduct, RemainingStock and Facing parameters, and all these pa-

rameters are significant to determine the demand because of their small p-values.

The coefficients of these parameters show that demand increases in direct propor-

tion to the increase of IDProductGroup, RemainingStock and Facing parameters,

and IDProduct affects the demand negatively.
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Figure 3.1: The normal probability plot of residuals

Figure 3.2: The plot of residuals versus fits
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Residuals are normally distributed as shown in the Figure 3.1, and the residuals

have a nearly constant variance as shown in the Figure 3.2, but there are two

outliers. As a result, the residual plots justify our regression assumptions.

3.2.3 Validation of the Regression Model

In order to measure the performance of regression models, estimation of prediction

accuracy is necessary. Cross-validation is a model validation technique which is

widely used for estimation of the prediction accuracy [21]. In cross-validation

test, a training dataset is chosen from the whole data in order to run training on

that known dataset, and a testing dataset is chosen against the model which is

tested [22].

In other words, the cross-validation divides a sample of data into complemen-

tary subsets, implementing the analysis on one subset which is training set, and

validating the analysis on the other subset which is test set. Multiple runs of

cross-validation are performed by using different subsets in order to reduce vari-

ability, and the cross-validation results are averaged over the runs [22].

The prevalent types of cross-validation are exhaustive and non-exhaustive cross-

validation. The type of cross validation is determined by the proportion of data set

utilized in the validation test. If the original data is entirely used and divided into

training and test sets for cross-validation, exhaustive cross-validation methods

are used. If only a sample from the original data is used, non-exhaustive cross-

validation methods are used.

The data that we used so far for generating the empirical demand model includes

only ten products, and it does not contain the assortment data entirely. The

cross-validation test is performed on this sample data, so non-exhaustive cross-

validation techniques are used. k-fold cross validation is one of the non-exhaustive

cross-validation technique, and we decide to use it for validation of the demand

35



model. All the steps of k-fold cross-validation are described in details in this

section.

First of all, data set is divided into k equal parts. In the literature, k is generally

chosen as 5 or 10 depending on the size of the data. In our study, the sample

data consists of thirteen weeks data of ten products, so there are 130 rows data

initially. We decide k to be 5, and it means that the data set which consisted

from 130 rows are divided into 5 equal parts. Thus, the test set consists of 26

rows data.

Secondly, the first part is stated as the test set, and the union of the other parts is

stated as the training set. A regression is conducted on the training set, and the

regression equation and the coefficients are kept in order to estimate demands

in testing data. The estimated demand values are calculated according to the

regression equation which is formed by using training set. Finally, the MAPE of

the first part is calculated by using the Equation 3.19 [23].

MAPE =
1

n

n∑
t=1

| Yt − Ŷt |
| Yt |

(3.19)

These steps are repeated five times by using a different test set at each time. As a

result of the cross-validation test, all MAPE values which are found for five parts

are averaged, and the average MAPE value demonstrates estimating accuracy of

the demand model. The MAPE values are shown in Table 3.32.

Table 3.32: The result of cross-validation test on a sample data
MAPE

First part 60.35%
Second part 302.9%
Third part 87.75%
Fourth part 116.4%
Fifth part 210.9%
Average 155.7%

The mean absolute percentage error (MAPE) for cross-validation tests is 155.65%,

and the error rate is excessive. Thus, it can be said that the demand model on
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this data set might estimate demands wrongly. According to our assessments,

the high deviation on these data sets that are grouped in the cross-variation test

caused to this situation.

3.2.4 Demand Estimation of All Candidate Products with Different

Data Sizes

In this study, we aim to suggest an assortment plan of a supermarket. Therefore,

an assortment optimization model is set. The assortment optimization model

which will be explained in Chapter 4 determines the facing of every product

in the assortment. The best demand equation which is an important part of the

optimization model is found by conducting different regressions on a sample data.

However, we discoursed the demand model for only ten products until now, and

the demands of all candidate products should be known in order to solve the

model and obtain the optimum solution.

In order to set demand model and estimate the demands of all products which

are counted as 5004, a log-linear regression was done by using IDProduct, IDPro-

ductGroup, RemainingStock and Facing parameters as predictors. The results of

this regression are shown in Table 3.33, Table 3.34 and Equation 3.20.

Table 3.33: Coefficients of the regression equation for all products in assorment
Term Coefficient P-value

Constant -0.432 0.000
IDProductGroup 0.025 0.000
IDProduct -0.001 0.000
RemainingStock 0.001 0.000
Facing 0.002 0.000

Table 3.34: Model summary of the regression equation for all products in assort-
ment

R-sq R-sq(adj) R-sq(pred)

19.32% 19.31% 19.06%
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The regression equation for all data is

lnDemand = −0.432 + (0.025× IDProductGroup)− (0.001× IDProduct)

+ (0.001×RemainingStock) + (0.002× Facing)

(3.20)

According to the regression for all product, p-values of RemainingStock, Facing,

IDProduct and IDProductGroup are smaller than 0.05, so these predictors are

significant for demand estimation. The adjusted R2 value is 19.31 percent, and it

demonstrates that the regression model explains 19.31% of data. It can be seen

that the R2 value decreases considerably, but this situation is expected because

of increasing the size of data.

The Equation 3.20 is the demand model of all products, and this demand model is

used for assortment planning of the supermarket. Additionally, we conduct some

more regressions on different size of datasets to use in the computational efficiency

analysis that will be explained in Chapter 4. The results of these regressions are

shown below.

Table 3.35: Coefficients of the regression equation for 4000 products
Term Coefficient P-value

Constant -0.331 0.000
IDProductGroup 0.025 0.000
IDProduct -0.001 0.000
RemainingStock 0.001 0.000
Facing 0.002 0.000

Table 3.36: Model summary of the regression equation for 4000 products
R-sq R-sq(adj) R-sq(pred)

13.39% 13.38% 13.10%

The regression equation for 4000 products

lnDemand = −0.3301 + (0.025× IDProductGroup)− (0.001× IDProduct)

+ (0.001×RemainingStock) + (0.002× Facing)

(3.21)
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Table 3.37: Coefficients of the regression equation for 3000 products
Term Coefficient P-value

Constant -0.943 0.000
IDProductGroup 0.009 0.000
IDProduct -0.001 0.000
RemainingStock 0.004 0.000
Facing 0.027 0.000

Table 3.38: Model summary of the regression equation for 3000 products
R-sq R-sq(adj) R-sq(pred)

25.41% 25.40% 25.34%

The regression equation for 3000 products

lnDemand = −0.943 + (0.009× IDProductGroup)− (0.001× IDProduct)

+ (0.004×RemainingStock) + (0.027× Facing)

(3.22)

Table 3.39: Coefficients of the regression equation for 2000 products
Term Coefficient P-value

Constant -0.973 0.000
IDProductGroup 0.008 0.000
IDProduct -0.001 0.000
RemainingStock 0.005 0.000
Facing 0.027 0.000

Table 3.40: Model summary of the regression equation for 2000 products
R-sq R-sq(adj) R-sq(pred)

26.59% 26.57% 26.44%

The regression equation for 2000 products

lnDemand = −0.973 + (0.008× IDProductGroup)− (0.001× IDProduct)

+ (0.005×RemainingStock) + (0.027× Facing)

(3.23)
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Table 3.41: Coefficients of the regression equation for 1000 products
Term Coefficient P-value

Constant -0.954 0.000
IDProductGroup -0.024 0.000
IDProduct 0.001 0.000
RemainingStock 0.004 0.000
Facing 0.031 0.000

Table 3.42: Model summary of the regression equation for 1000 products
R-sq R-sq(adj) R-sq(pred)

22.45% 22.42% 22.11%

The regression equation for 1000 products

lnDemand = −0.954− (0.024× IDProductGroup) + (0.001× IDProduct)

+ (0.004×RemainingStock) + (0.031× Facing)

(3.24)

To conclude, the log-linear regressions are conducted by using different predictor

parameters and different models in order to find the demand equation that gives

the best fits. After the best demand model is determined, cross-validation tests

are performed for validating the model accuracy. Finally, the demand model is

applied by using the all products data for planning assortment of the supermarket

entirely. In the next chapter, an assortment optimization model will be formed

by consisting of the demand model.
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Chapter 4

Assortment Optimization Problem

Assortment optimization problem came into prominence with the claim that is

arranging a wide variety of products on shelving which have limited area as the

most profitably. In this chapter, an assortment optimization model is developed

in order to maximize total revenue of a supermarket under limited shelf space

constraint.

The optimization model provides optimum facing amounts for all candidate prod-

ucts of assortment. Facing is defined as the number of products that are visible

in front of the shelf, and the facing amounts are directly related to the total shelf

space capacity, width and length of the products. The difference between width

and length can be explained as that width is the dimension of a product while the

products line up side by side along the shelf length, and length is the dimension

of a product while the products line up in tandem along the shelf depth. The

multiplication of shelf depth and shelf length indicates the total shelf space ca-

pacity. The units of shelf depth, shelf length, product width and product length

are assumed as centimeters. The Figure 4.1 and the Figure 4.2 illustrate these

terms.

We assume that there is no backroom for the products, and all products, which

are in the assortment, are displayed on the shelving. The inventory level of a

product is fully loaded on the shelf, and the stock of this product decreases when

it is sold.

41



Figure 4.1: The illustration of shelf depth, shelf length and facing on an example
shelf arrangement

We also assume that all products are only placed alongside. If the products are

placed as one on the top of the other as shown in Figure 4.2, we also need to

consider height of the products and the height between two shelving in order to

find optimum facing amounts. For instance, in the Figure 4.2, the product which

is packaged with a light blue box is placed as one on the top of the other. The

height between two shelving is more than the height of the product at least three

times, thus three packages of this product can be placed as one on the top of the

other.
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Figure 4.2: The illustration of product width and product length on an example
shelf arrangement

The limit of shelf length (LSL) is determined by taking into consideration of all

shelving in the store, and it contains the length of a lot of different shelving

which are located alongside or one on the top of the other. We designate the shelf

depth (SD) as 60cm, and it is a reasonable number according to shelf standards

of supermarkets. We assign artificially large amounts for the upper limit of facing

(ULF) such as 50.

In our assumption, the candidate products are not perishable, and it can be

stay on the shelf during a long time if it is not sold. The inventory control of

perishable products is more complicated, so our optimization model is not suitable

for perishable products.

In this chapter, we conduct a convexity analysis of the model, and we prove that

the model finds the global optimum solution. Also, we show the solution by using

Karush Kuhn Tucker conditions.

43



As a numerical work, the problem is solved for the data sets which consist of 5004,

4000, 3000, 2000 and 1000 products differently, and GAMS (General Algebraic

Modeling System) is used in order to solve the nonlinear model. The solution time

for all these data sets is compared for the computational complexity analysis.

This chapter is organized as follows. We first present the mathematical model

and explain the constraints in Section 4.1. Secondly, the complexity analysis of

the model is made with a proof, and the model is solved by using Karush Kuhn

Tucker conditions in Section 4.2. Finally, the model is solved for some data sets,

and computational complexity analysis is performed in Section 4.3.

4.1 The Mathematical Model for Assortment Optimization

The mathematical formulation of the model can be written as follows.

max
∑
j∈J

pjdj (4.1a)

subject to

ln dj = −α0 + α1grj − α2prj + α3sj + α4fj, ∀j ∈ J, (4.1b)∑
j∈J

fjwj ≤ LSL, (4.1c)

fj ≤ ULF, ∀j ∈ J, (4.1d)

(SD/lj)fj − dj ≥ sj, ∀j ∈ J, (4.1e)

fj ≥ 0, ∀j ∈ J, (4.1f)

sj ≥ 0, ∀j ∈ J. (4.1g)

J is the set including all candidate products that are evaluated in the model, and

j ∈ J is the index of candidate products that are evaluated for the assortment.
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The objective function (4.1a) maximizes the total revenue of the supermarket.

The price of product j ∈ J is defined by the parameter pj, and the decision

variable dj identifies the demand of product j ∈ J .

The first constraint (4.1b) is the demand function which is developed by log-linear

regression in Minitab, and we explained how the demand function is formed in

Chapter 3. The coefficient values which are α0, α1, α2, α3 and α4 are greater than

zero, and they are provided by the regression equation. We define the parameter

grj which indicates the group ID of the product j ∈ J and the parameter prj

which indicates the product ID of the product j ∈ J . We also define the decision

variable sj which states the remaining stock of product j ∈ J and the decision

variable fj which is the facing quantities of product j ∈ J .

The second constraint (4.1c) limits the shelf length, denoted by LSL, and the

products, which are positioned alongside on shelving, are restricted by this con-

straint. The parameter wj indicates the width of the product j ∈ J .

The third constraint (4.1d) determines the maximum facing amount which can

be assigned to a product, and it is denoted by ULF.

The fourth constraint (4.1e) shows that the value which is remained when the

demand is extracted from the total capacity of the product on shelf must always

be greater than or equal to the remaining stock of product j ∈ J . Because, we

assume that there is no backroom in the store, and all the inventory of products

is kept on the shelf. In this constraint, SD states the shelf depth, and it equals

to 60. Also, we define the parameter lj which states the length of product j.

In the constraints (4.1f) and (4.1g), we state that the facing and the remaining

stock are always greater than or equal to zero for the product j ∈ J .
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Table 4.1: Notation Chart
J the set of candidate products
j the index of candidate products in the set J
pj the price of the product j ∈ J
dj the demand of the product j ∈ J
grj the group ID of the product j ∈ J
prj the product ID of the product j ∈ J
sj the remaining stock of the product j ∈ J
fj the facing of the product j ∈ J
wj the width of the product j ∈ J
lj the length of the product j ∈ J

4.2 The Mathematical Analysis of the Model

In order to understand the model and determine the solution method, we make

some detailed analyses. Initially, the convexity of the model is investigated in

order to understand whether or not the solution of the model is global optimum.

After the convexity analysis, the model is solved by using Karush Kuhn Tucker

conditions, and the results are evaluated.

4.2.1 Convexity Analysis

A set C is convex set, if the line segment which is located between any two points

in C lies in C. Thus, for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1,

θx1 + (1− θ)x2 ∈ C.

The intersection of two convex sets is convex, and convexity is always preserved

under intersection. A is defined as a set of convex sets. While Sα is convex set

for every α ∈ A,
⋂
α∈A Sα is convex [24].

In the study of nonlinear programming problems, convex and concave functions

have an important place.
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f(x) is exemplified as a function which is indicated for all points (x1, x2, · · · , xn)

in a convex set S. The function f(x) is a convex function on S if for any x′ ∈ S

and x′′ ∈ S,

f(cx′ + (1− c)x′′) ≤ cf(x′) + (1− c)f(x′′), (4.2)

holds for 0 ≤ c ≤ 1 [25].

The function f(x) is a concave function, if −f(x) is a convex function.

Consider a nonlinear maximization problem. Suppose the feasible region S is a

convex set. If the objective function is concave on S, then any local maximum is

the global optimum solution to this problem [25]. In this thesis, the assortment

optimization model is nonlinear maximization problem. Thus, the solution of this

problem is the optimal solution, if the objective function is concave on a convex

set.

For multivariate functions, the Hessian matrix can be used in order to determine

whether the function is a convex or concave function on a convex set. If this

function is convex, all principal minors of the Hessian matrix are nonnegative,

and the Hessian matrix should be positive semi-definite [25].

In our study, the objective function of the Model 4.1 is concave function on a

convex set.

Lemma 4.1. If the objective function is concave on a convex set, there exist an

unique optimum solution.

Proof. We know that all constraints except the Constraint 4.1e are convex, and

demonstration of convexity for the Constraint 4.1e is sufficient to notice that the

solution of this model finds the global optimum.

The Constraint 4.1e is shown below,
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(SD/lj)fj − dj ≥ sj.

The analysis is made for only one product, and the results are generalized for

the model. Because, the Constraint 4.1e is seperable linear constraint, and if the

convexity is proved for only one product j, the intersections of all product j is

convex anyway. Then, the j indicator can be removed for convenience in analysis.

c1f − eln d ≥ s

c1f − eα3s+α4f−c2 ≥ s

c1f −
eα3seα4f

ec2
− s ≥ 0

In these formulations, c1, c2, α3 and α4 are constant, and there are two variables

in this function. Thus, the Hessian matrix can be applied to this function in order

to learn the convexity.

g(f, s) = s− c1f +
eα3seα4f

ec2

∂2g

∂f 2
= α2

4e
α3s+α4f−c2

∂2g

∂s∂f
= α4α3e

α3s+α4f−c2

∂2g

∂f∂s
= α4α3e

α3s+α4f−c2

∂2g

∂s2
= α2

3e
α3s+α4f−c2
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The first principal minors of the Hessian matrix (α2
4e
α3s+α4f−c2 and α2

3e
α3s+α4f−c2)

are greater than zero, and the Hessian matrix is positive semi-definite. Due to

these non-negativities, the function is convex, and the graph of the convex func-

tion constitutes a convex set.

�

As a consequence of this analysis, the objective function is concave function on a

convex set, and the model finds the global optimum solution.

4.2.2 Analysis of the Model by KKT Conditions

Given the general problem,

max f(x) (4.5a)

subject to

hi(x) ≤ 0 , i=1, · · · , m, (4.5b)

lj(x) = 0 , j=1, · · · , n. (4.5c)

The Karush Kuhn Tucker (KKT) conditions are:

• ∂f(x)−
∑m

i=1 λi∂hi(x) +
∑n

j=1 υj∂lj(x) = 0 (stationarity)

• λi.hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0 , lj(x) = 0 for all i,j (primal feasibility)

• λi ≥ 0 for all i (dual feasibility)
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For an optimization problem with differentiable and concave objective function

on a convex set and constraints for which strong duality exist, any pair of pri-

mal and dual optimal points has to satisfy the Karush Kuhn Tucker conditions.

Optimization problems can be solved by the KKT conditions analytically [24].

In our study, the KKT analysis is made by using the data of two products which

are in assortment, and the consideration of this analysis is generalized for all

products. In order to analyze KKT conditions, the mathematical formulation of

the optimization model (4.1) is rewritten as shown in Equation 4.6.

max p1(e
β0+β1s1+β2f1) + p2(e

α0+α1s2+α2f2) (4.6a)

subject to

w1f1 + w2f2 ≤ LSL, (4.6b)

f1 ≤ UFL, (4.6c)

f2 ≤ UFL, (4.6d)

eβ0+β1s1+β2f1 − γ1f1 + s1 ≤ 0, (4.6e)

eα0+α1s2+α2f2 − γ2f2 + s2 ≤ 0, (4.6f)

s1, s2, f1, f2 ≥ 0. (4.6g)

The Lagrangian Function (4.7) is written as shown,

L = p1(e
β0+β1s1+β2f1) + p2(e

α0+α1s2+α2f2)− λ1(w1f1 + w2f2 − LSL)− λ2(f1 − UFL)

− λ3(f2 − UFL)− λ4(eβ0+β1s1+β2f1 − γ1f1 + s1)− λ5(eα0+α1s2+α2f2 − γ2f2 + s2).

(4.7)

Stationarity condition

By taking the first partial derivatives;
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∂L

∂s1
= (p1 − λ4)(β1eβ0+β1s1+β2f1)− λ4 = 0, (4.8)

∂L

∂s2
= (p2 − λ5)(α1e

α0+α1s2+α2f2)− λ5 = 0, (4.9)

∂L

∂f1
= (p1 − λ4)(β2eβ0+β1s1+β2f1)− λ1w1 − λ2 + λ4γ1 = 0, (4.10)

∂L

∂f2
= (p2 − λ5)(α2e

α0+α1s2+α2f2)− λ1w2 − λ3 + λ5γ2 = 0. (4.11)

Complementary slackness conditions

The optimum values must satisfy the complementary slackness conditions.

λ1(w1f1 + w2f2 − LSL) = 0, (4.12)

λ2(f1 − UFL) = 0, (4.13)

λ3(f2 − UFL) = 0, (4.14)

λ4(s1 − γ1f1 + eβ0+β1s1+β2f1) = 0, (4.15)

λ5(s2 − γ2f2 + eα0+α1s2+α2f2) = 0. (4.16)

Primal feasibility conditions

The optimum values must satisfy primal feasibility conditions.

w1f1 + w2f2 − LSL ≤ 0, (4.17)

f1 − UFL ≤ 0, (4.18)

f2 − UFL ≤ 0, (4.19)

eβ0+β1s1+β2f1 − γ1f1 + s1 ≤ 0, (4.20)

eα0+α1s2+α2f2 − γ2f2 + s2 ≤ 0. (4.21)
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Dual feasibility conditions

All lagrange multipliers must be greater than zero according to dual feasibility

conditions.

λ1, λ2, λ3, λ4, λ5 ≥ 0. (4.22)

We solve these set of equations and inequalities in order to find the optimum

points which give the maximum solution. The solution of the model is infeasible

except two cases, and these cases are shown below.

In the case when λ1, λ4 and λ5 are greater than zero, and λ2 and λ3 equal to

zero, if the conditions which are (ULF )w1 + (ULF )w2 > LSL, w1β1
β2+γ1β1

> 0 and

w2α1

α2+γ2α1
> 0 are satisfied, the analytical formulations of facing and remaining

stock are shown below for two situations.

If m(p1, w1, β1, β2) > m(p2, w2, α1, α2),

f1 = ULF and f2 = LSL−(ULF )w1

w2
.

Then,

ln(γ1(ULF )− s1) = β0 + β1s1 + β2(ULF ), (4.23a)

ln(γ2(
LSL− (ULF )w1

w2

)− s2) = α0 + α1s2 + α2(
LSL− (ULF )w1

w2

). (4.23b)

If m(p1, w1, β1, β2) < m(p2, w2, α1, α2),

f2 = ULF and f1 = LSL−(ULF )w2

w1
.
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Then,

ln(γ1(
LSL− (ULF )w2

w1

)− s1) = β0 + β1s1 + β2(
LSL− (ULF )w2

w1

), (4.24a)

ln(γ2(ULF )− s2) = α0 + α1s2 + α2(ULF ), (4.24b)

when the functions m(p1, w1, β1, β2) and m(p2, w2, α1, α2) can be defined from the

Equations 4.8 to 4.11.

In the case when λ2, λ3, λ4, λ5 are greater than zero, and λ1 equals to zero, if the

conditions which are (ULF )w1 + (ULF )w2 ≤ LSL, β1
β2+γ1β1

> 0 and α1

α2+γ2α1
> 0

are satisfied, the analytical formulation of facing and remaining stock is shown

as,

β0 + β1s1 + β2(ULF ) = ln(γ1(ULF )− s1), (4.25a)

α0 + α1s2 + α2(ULF ) = ln(γ2(ULF )− s2). (4.25b)

Consequently, the relation between remaining stock and facing is represented.

The model has unique optimum solution, because the objective function is differ-

entiable and concave, and the constraints are convex and differentiable.

4.3 Application of the Model and Computational Experiments

Previously, we explained the assortment optimization problem, and the mathe-

matical analyses were conducted. In this section, a numerical experiment will be

demonstrated in order to present applicability of the model.

Initially, a product group is chosen, and the total number of products of this

group is 5004. We eliminate perishable products, since the Model (4.1) is not

suitable for perishable products. Perishable products have limited shelf lives, and
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this feature is not considered in our study. In this direction, for an exemplary

study, see Onal et al. [26].

First, we formed a demand function (3.20) which is given in the Chapter 3.

Then, the upper limits which are generalized in the formulation of model (4.1)

are set to solve the model for this data group. LSL, ULF and SD are designated

respectively as 14000, 50, 60, and these artificial values are assigned according to

our approximations.

The model is solved by the BARON solver of GAMS, and the objective value

is found as 27901.84. The main goal of this study is finding the optimal facing

values for all products in order to plan assortment with maximum total revenue.

The Model (4.1) provides achieving to this goal, and the facings of all products

are found logically. A small part of the results are shown with the corresponding

width and price parameters in Table 4.2.

As is seen in Table 4.2, for some products, the model assigns the maximum limit

of facing which is denoted with ULF, and the facing of other products are very

small values because of having no more shelf space available. According to our

assessments, the reason of this situation is that the model assigns the maximum

facing to the products which have less width and high price, and by this way,

the model exhibits a behavior as if it targets to earn more revenue on a small

shelf area. Consequently, the facing of a product is highly related with price of

the product and width of the product, and this relation is shown in the Figure

4.3. When the facing equals to the maximum limit (ULF), that is assigned as 50

for this experiment, price of the products are high and width of the products are

small simultaneously.

4.3.1 Computational Complexity Analysis

In this section, numerical experiments are performed with the product groups

which have different numbers of products in order to analyze the effect of data
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Figure 4.3: The scatter plot of facing with the parameters width and price

size on computational complexity of the model.

All experiments are performed on an Intel(R) Core i5 (4200U) 2.3GHz machine

with 8192 MB RAM, and they are performed by using GAMS 24.1.3 that runs

with BARON solver. BARON performs deterministic global optimization algo-

rithms of the branch-and-bound type which are guaranteed to find the global

optima under general assumption [27].

Previously, we solved the Model (4.1) by using a product group which contains

5004 products, and it was solved in 12 minutes and 35 seconds.

In the other experiments, we obtain new product groups by selecting subsets

from the set of all products including 5004 randomly, and the sets of candidate

products for these experiments contain 4000, 3000, 2000 and 1000 products. The

demand functions for these product groups are conducted by the form of the

demand function (3.18).

The upper limits which are generalized in the formulation of the model (4.1)

are set to solve the model for all these product groups. The upper limits of shelf

length (LSL) are designated as 12000, 10000, 8000, 7000 respectively, and the unit
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of LSL is centimeter. These artificial values are specified according to data sizes

of the experiments. In our assumption, the required shelf length for the products

decreases, while the number of candidate products decrease. The upper limit of

facing (ULF) is designated as 50 for all experiments, and this is artificially large

upper bound for facing amount of a product. The shelf depth is specified as 60cm

in all experiments, and this is a reasonable value according to shelf standards of

supermarkets.

The objective values are found as 21294.95, 18225.25, 13606.99, 9731.83 respec-

tively, and the model solution time for all product groups is shown in Table 4.3.

Table 4.3 shows that total time for solving the model generally decreases, while

the data size decreases. As a consequence, solution time of the model is directly

proportional with the size of product group because the model becomes more

complex to solve while the data size increases.

In this chapter, the assortment optimization model was conducted, and the model

assumptions were explained in detail. We analyzed the convexity of the model,

and we proved that the objective function is concave on a convex set. Thus, the

model finds the global optimum solution. The model was solved by using Karush

Kuhn Tucker conditions, and the relation between facing and remaining stock is

presented with analytical formulations. Finally, computational experiments were

demonstrated to present applicability of the model, and computational complexity

analysis was made on these experiments.
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Table 4.2: The outcomes of GAMS for facing of products with the corresponding
width and price parameters

# of product Facing Width Price

1 0.122 14 11.60
...

...
...

...
369 0.052 7 18.75
370 50 5 28.77
371 0.166 19 19.07

...
...

...
...

2911 0.164 19 34.15
2912 50 6 65.37
2913 0.100 5 2.42

...
...

...
...

3073 0.281 9 1.94
3074 50 9 42.81
3075 0.198 13 1.23

...
...

...
...

3085 0.163 11 25.90
3086 50 5 26.00
3087 0.244 20 24.41

...
...

...
...

3534 0.141 12 6.50
3535 50 5 19.37
3536 0.424 5 19.87

...
...

...
...

4314 0.115 15 18.52
4315 50 10 51.92
4316 0.306 11 18.17

...
...

...
...

4321 0.445 15 29.45
4322 50 5 50.95
4323 0.444 6 4.81

...
...

...
...

4876 0.211 18 9.64
4877 50 6 43.25
4878 0.249 19 77.06

...
...

...
...

4989 0.174 7 5.23
4990 50 8 21.92
4991 0.109 7 8.59

...
...

...
...

5004 0.385 10 16.41
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Table 4.3: Total time for solving the model
Number of candidate products Total solution time

5004 12min, 35sec
4000 4min, 1sec
3000 4min, 7sec
2000 3min, 58sec
1000 47sec
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Chapter 5

Conclusion

In recent years, the number of products which are carried by supermarkets in-

crease expeditiously, while the number of shelving and shelf spaces remain almost

same. Limited and constricted shelf space necessitates organizing shelving most

effectively, and assortment planning becomes necessity for all retailers. Assort-

ment planning is the determination of the set of products which are presented at

each store and specification of the inventory levels of these products for maximiz-

ing profit subject to shelf space and other possible constraints.

The main goal of this thesis was to plan assortment of a supermarket in order to

maximize total revenue under the constraint of limited shelf space. First of all,

we collected the data that contains information about remaining stocks, facings,

product IDs, group IDs, sales amounts and prices of products for a time period

of thirteen weeks. A sample that includes only ten products was chosen in order

to determine the best demand model. At this stage, the log-linear regression was

conducted because it always provides nonnegative demand values. After fifteen

different regressions were completed, we decided that the second regression model

is the best demand model because of its higher R2 values. In order to validate

the regression model, cross-validation tests were performed on the sample data,

and the mean absolute percentage error (MAPE) of the cross validation tests was

calculated as 155.65%. This value shows that the demand model on this dataset

might estimates demands wrongly with the high probability. According to our
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considerations, inaccuracy of dataset that was used in these tests caused to this

situation. After determining the demand model and testing it, a regression was

conducted on all products in order to plan assortment of the store entirely. At

the next stage, the assortment optimization model was developed to maximize

total revenue under some constraints, and the solution of this model gives the

optimum facing amounts for all products. Convexity analysis was performed

for investigating that the solution of model is local optimum or global optimum,

and it ensured that the solution is always global optimum. Because, the objective

function is concave function on a convex set, and all of the constraints of model are

convex. After that, the model was solved by Karush Kuhn Tucker conditions, and

the relationship between decision variables was demonstrated with an analytical

formulation. Finally, the model was solved for all products in the store, and some

computational examples with different sized data sets were performed in order to

measure computational complexity of the model. As a result, the model found

feasible solutions and assigned the maximum facing to the products which have

less width and high price because of claim that is earning more revenue on a

small shelf area. The facing of other products became very small values because

of having no more shelf space available. Then, facing is highly related with price

and width of product simultaneously. Also, computational complexity analysis

shows that running time of the model is directly proportional with the size of

data group, and solving the model becomes more complex and requires more

computational effort while the data size increases.

To conclude, we formed an assortment optimization model which consists of an

empirical demand model by using real data. However, the empirical demand

model does not correspond to the data completely, because some data can be

missing or recorded wrongly. We developed a heuristic approach by solving model

as continuous, and we reached the optimum results by this way.

One of the contribution of our study is that the optimization model consists of

a justified empirical demand model. We know that the empirical demand model

is not used in the most of the studies which are about assortment planning. The
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other contribution is developing a heuristic approach which can solve the con-

tinuous model as optimal. According to our assessments, the continues solution

does not deviate too much from the integer solution.

This study provides a large domain for the future studies about the assortment

planning. In our study, some data is missing, and a solution approach can be de-

veloped for this problem. Also, we neglected the substitution effect. In our regres-

sion model, there is no interaction between the products although the probability

of having an interaction between the products which are in the same subcategory

is high. Thus, in a different work, the interactions between products can be con-

sidered in the regression model. Furthermore, we do not consider the height of

the products and the height between two shelving, and in this study, the products

are only placed alongside on the shelf. A study can be done by considering the

effect of the height of products and shelving. Also, the assortment optimization

model is suitable for only non-perishable products because the inventory control

of perishable products is more complicated. For a future work, the model can be

modified and improved for assortment planning of perishable products.
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