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GENERALIZED (2+1)-DIMENSIONAL BREAKING SOLITON
EQUATION

A. M. WAZWAZ1 §

Abstract. In this work, a general (2+1)-dimensional breaking soliton equation is inves-

tigated. The Hereman’s simplified method is applied to derive multiple soliton solutions,

hence to confirm the model integrability.
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1. Introduction

Many reliable methods are used in the literature to investigate completely integrable
equations that admit multiple soliton solutions [1–6]. The algebraic-geometric method
[2–4], the inverse scattering method, the Bäcklund transformation method, the Darboux
transformation method, the Hirota bilinear method [7–14], and other methods are used to
make progress and new developments in this filed. The Hirota’s bilinear method is rather
heuristic and possesses significant features that make it practical for the determination
of multiple soliton solutions, and for multiple singular soliton solutions [15–23] for a wide
class of nonlinear evolution equations in a direct method. Hereman et. al [10] developed
a modified form of the Hirota’s method that facilitates the computational work. The
computer symbolic systems such as Maple, Mathematica can be used to overcome the
tedious calculations.

In this work, we will study a generalized (2+1)-dimensional breaking soliton equation
[1]

(uxt − β(4uxyux + 2uxxuy − uxxxy)− γ(6uxuxx − uxxxx))x = −α2(βuyyy + 3γuxyy). (1)

For α = 0, we obtain the (2+1)-dimensional equation

uxt − β(4uxyux + 2uxxuy − uxxxy)− γ(6uxuxx − uxxxx) = 0, (2)
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which describes the interaction between the Riemann wave propagation along the y-axis
and the long wave propagating along the x-axis [1–3]. For α = 0 and γ = 0, Eq. (1)
reduces to the (2+1)-dimensional breaking soliton equation

uxt − β(4uxyux + 2uxxuy − uxxxy) = 0. (3)

Eq. (3) was proved in [2] to be completely integrable equation.
Our aim from this work is to derive multiple regular soliton solutions and multiple

singular soliton solutions for the (2+1)-dimensional equation (1). The modified form of
the Hirota’s bilinear method, that was established by Hereman et. al. [11] will be used
to achieve the goal set for this work. The Hereman’s method is now well-known in the
literature, for more details see [2,10–23].

2. Multiple soliton solutions

In this section we will apply the Hereman’s method which is a simplified form of the Hi-
rota’s bilinear method to study a generalized (2+1)-dimensional breaking soliton equation
[1]

(uxt − β(4uxyux + 2uxxuy − uxxxy)− γ(6uxuxx − uxxxx))x = −α2(βuyyy + 3γuxyy). (4)

To determine the dispersion relation we substitute

u(x, y, t) = eθi , θi = kix + riy − ωi t, (5)

into the linear terms of (4), and solving the resulting equation for ωi, we find the dispersion
relation is defined by

ωi =
k4

i (βri + γki) + α2r2
i (βri + 3γki)

k2
i

, i = 1, 2, · · ·N, (6)

and hence θi becomes

θi(x, y, t) = kix + riy − k4
i (βri + γki) + α2r2

i (βri + 3γki)
k2

i

t, i = 1, 2, · · ·N. (7)

We next substitute

u(x, y, t) = R
∂ ln f(x, y, t)

∂x
= R

fx(x, y, t)
f(x, y, t)

, (8)

where R is a constant that should be determined, and the auxiliary function f(x, y, t)
reads

f(x, y, t) = 1 + e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t
, (9)

into Eq. (4) and solve to find that
R = −2. (10)

Substituting (9) and (10) into (8) gives the single soliton solution

u(x, y, t) = − 2k1e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t

1 + e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t

. (11)

For the two soliton solutions, we substitute

u(x, y, t) = −2
∂ ln f(x, y, t)

∂x
, (12)
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where the auxiliary function f(x, y, t) for the two soliton solutions reads

f(x, y, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (13)

into Eq. (4), where θ1 and θ2 are given above in (7) to obtain the phase shift a12 by

a12 =
k2

1k
2
2(k1 − k2)2 − α2(k1r2 − k2r1)2

k2
1k

2
2(k1 + k2)2 − α2(k1r2 − k2r1)2

, (14)

and this can be generalized for the phase shifts by

aij =
k2

i k
2
j (ki − kj)2 − α2(kirj − kjri)2

k2
i k

2
j (ki + kj)2 − α2(kirj − kjri)2

, 1 ≤ i < j ≤ 3. (15)

It is interesting to point out that the phase shifts do not depend on the parameters β and
γ. Only the parameter α affects these phase shifts. Moreover, for α = 0, the phase shifts
reduce to

aij =
(ki − kj)2

(ki + kj)2
, 1 ≤ i < j ≤ 3, (16)

that is consistent with the result obtained in [2]. The last result depends only on the
coefficients of the space variable x only.

The auxiliary function f(x, y, t) for the two soliton solutions is given by

f(x, y, t) = 1 + e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t
+ e

k2x+r2y−k4
2(βr2+γk2)+α2r2

2(βr2+3γk2)

k2
2

t

+ k2
1k2

2(k1−k2)2−α2(k1r2−k2r1)2

k2
1k2

2(k1+k2)2−α2(k1r2−k2r1)2

× e
(k1+k2)x+(k1+k2)y−(

k4
1(βr1+γk1)+α2r2

1(βr1+3γk1)

k2
1

+
k4
2(βr2+γk2)+α2r2

2(βr2+3γk2)

k2
2

) t
.

(17)
To determine the two soliton solutions explicitly, we substitute (17) into (8).

To determine the three soliton solutions, we use the auxiliary function

f(x, y, t) = 1 + exp(θ1) + exp(θ2) + exp(θ3)
+ a12exp(θ1 + θ2) + a23exp(θ2 + θ3) + a13exp(θ1 + θ3)
+ b123exp (θ1 + θ2 + θ3),

(18)

and proceed as before to find that

b123 = a12a13a23, (19)

where the phase shifts aij are defined in (15). To determine the three soliton solutions
explicitly, we substitute the last result for f(x, y, t) into (8). The higher level soliton
solutions, for N ≥ 4 can be obtained in a parallel manner. This confirms the fact that the
(2+1)-dimensional breaking soliton equation (4) is completely integrable and gives rise to
multiple soliton solutions of any order.

3. Multiple singular soliton solutions

In this section we will proceed as before study the multiple singular soliton solutions
for a generalized (2+1)-dimensional breaking soliton equation

(uxt − β(4uxyux + 2uxxuy − uxxxy)− γ(6uxuxx − uxxxx))x = −α2(βuyyy + 3γuxyy). (20)
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The dispersion relation is the same as derived before, hence we set

ωi =
k4

i (βri + γki) + α2r2
i (βri + 3γki)

k2
i

, i = 1, 2, · · ·N, (21)

and θi becomes

θi(x, y, t) = kix + riy − k4
i (βri + γki) + α2r2

i (βri + 3γki)
k2

i

t, i = 1, 2, · · ·N. (22)

We next substitute

u(x, y, t) = R
∂ ln f(x, y, t)

∂x
= R

fx(x, y, t)
f(x, y, t)

, (23)

where R is a constant that should be determined, and the auxiliary function f(x, y, t) for
the singular case reads

f(x, y, t) = 1− e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t
, (24)

into Eq. (20) and solve to find that
R = −2. (25)

Substituting (24) and (25) into (23) gives the single singular soliton solution

u(x, y, t) =
2k1e

k1x+r1y− k4
1(βr1+γk1)+α2r2

1(βr1+3γk1)

k2
1

t

1− e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t

. (26)

For the two soliton solutions, we substitute

u(x, y, t) = −2
∂ ln f(x, y, t)

∂x
, (27)

where the auxiliary function f(x, y, t) for the two soliton solutions is given by

f(x, y, t) = 1− eθ1 − eθ2 + a12e
θ1+θ2 , (28)

into Eq. (20), where θ1 and θ2 are given above in (22) to obtain the phase shift a12 by

a12 =
k2

1k
2
2(k1 − k2)2 − α2(k1r2 − k2r1)2

k2
1k

2
2(k1 + k2)2 − α2(k1r2 − k2r1)2

, (29)

and this can be generalized for the phase shifts by

aij =
k2

i k
2
j (ki − kj)2 − α2(kirj − kjri)2

k2
i k

2
j (ki + kj)2 − α2(kirj − kjri)2

, 1 ≤ i < j ≤ 3. (30)

The phase shifts do not depend on the parameters β and γ, but depend on α only.
The auxiliary function f(x, y, t) for the two soliton solutions is given by

f(x, y, t) = 1− e
k1x+r1y− k4

1(βr1+γk1)+α2r2
1(βr1+3γk1)

k2
1

t − e
k2x+r2y−k4

2(βr2+γk2)+α2r2
2(βr2+3γk2)

k2
2

t

+ k2
1k2

2(k1−k2)2−α2(k1r2−k2r1)2

k2
1k2

2(k1+k2)2−α2(k1r2−k2r1)2

× e
(k1+k2)x+(k1+k2)y−(

k4
1(βr1+γk1)+α2r2

1(βr1+3γk1)

k2
1

+
k4
2(βr2+γk2)+α2r2

2(βr2+3γk2)

k2
2

) t
.

(31)
To determine the two singular soliton solutions explicitly, we substitute (31) into (23).
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To determine the three soliton solutions, we use the auxiliary function

f(x, y, t) = 1− exp(θ1)− exp(θ2)− exp(θ3)
+ a12exp(θ1 + θ2) + a23exp(θ2 + θ3) + a13exp(θ1 + θ3)
+ b123exp (θ1 + θ2 + θ3),

(32)

and proceed as before to find that

b123 = −a12a13a23, (33)

where the phase shifts aij are defined in (30). To determine the three singular soliton
solutions explicitly, we substitute the last result for f(x, y, t) into (23). The higher level
singular soliton solutions, for N ≥ 4 can be obtained in a parallel manner.

4. Discussion

In this work we proved the integrability of a generalized (2+1)-dimensional breaking
soliton equation. Multiple soliton solutions were formally derived for this equation. More-
over, multiple singular soliton solutions were derived as well. The Hereman’s method
shows effectiveness and reliability in handling nonlinear evolution equations.
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