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ON GENERALIZED SARMANOV BIVARIATE DISTRIBUTIONS

I. BAIRAMOV1, B. (YAĞCI) ALTINSOY2, G. JAY KERNS3 §

Abstract. A class of bivariate distributions which generalizes the Sarmanov class is

introduced. This class possesses a simple analytical form and desirable dependence prop-

erties. The admissible range for association parameter for given bivariate distributions

are derived and the range for correlation coefficients are also presented.
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1. Introduction

Let (X, Y ) be a bivariate random vector. Sarmanov (1966) introduced a class of bivariate
distributions for (X, Y ) having a joint probability density function (pdf) of the form

hα(x, y) = fX(x)fY (y) {1 + αψ1(x)ψ2(y)} , (1)

where fX(x) and fY (y) are the marginal pdf’s of X and Y, respectively, ψ1(x) and ψ2(y)
are bounded nonconstant functions such that

∞∫

−∞
fX(t)ψ1(t)d t = 0,

∞∫

−∞
fY (t)ψ2(t)dt = 0.

The association parameter α is a real number which satisfies the condition 1+αψ1(x)ψ2(y) ≥
0 for all x and y. In this paper, we deal with the concept of a copula. A two-dimensional
copula is a function C(x, y) from [0, 1]× [0, 1] to [0, 1] with the properties:

1. C(x, 0) = 0 = C(0, y), C(x, 1) = x and C(1, y) = y;
2. For every x1, x2 and y1, y2 such that 0 ≤ x1 < x2 ≤ 1 and 0 ≤ y1 < y2 ≤ 1, we have

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0.
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According to Sklar’s Theorem, if F (x, y) is a joint distribution function with continuous
marginals FX(x) and FY (y), then there exists a unique copula C such that F (x, y) =
C(FX(x), FY (y)). Theory and applications of copulas are well documented in Nelsen
(1998).

The copula generated by (1) has the form:

C(x, y) = xy +

x∫

0

y∫

0

ψ∗1(t)ψ
∗
2(s) d tds,

where ψ∗1(t) = ψ1(F−1
X (t)) and ψ∗2(s) = ψ2(F−1

Y (s)).
One may note in the special case ψ1(x) = 1− 2FX(x) and ψ2(y) = 1− 2FY (y) that the

classical Farlie-Gumbel-Morgenstern (FGM) distributions are recovered. The range of the
correlation coefficient for the FGM copula is −1/3 ≤ ρ ≤ 1/3. Although the FGM model
is an interesting family constructed from specified marginals, this model cannot be used to
represent the joint distribution of two highly correlated variables. To increase dependence
between variables, Huang and Kotz (1999) considered polynomial-type single parameter
extensions of FGM (with uniform marginals):

Cα (x, y) = xy {1 + α (1− xp) (1− yp)} , p ≥ 1 , 0 ≤ x, y ≤ 1 (2)

and
C

1

α (x, y) = xy {1 + α (1− x)q (1− y)q} , q ≥ 1 , 0 ≤ x, y ≤ 1. (3)

The maximal positive correlation for (2), namely ρ = 3/8, is attained for p = 2, an
improvement over the case p = 1 for which ρ = 1/3. Bairamov and Kotz (2001) provided
several theorems characterizing symmetry and dependence properties of FGM distribu-
tions. They also proposed a modification by introducing additional parameters p and
q:

Fp,q,α (x, y) = xy {1 + α (1− xp)q (1− yp)q} , q > 1 , p ≥ 1 , 0 ≤ x, y ≤ 1. (4)

For (4) the admissible range of α is

−min

{
1
p2

(
1 + pq

p (q − 1)

)2(q−1)

, 1

}
≤ α ≤ 1

p

(
1 + pq

p (q − 1)

)q−1

.

The maximal and minimal values of ρ are within the range

−12t2 (q, p)min

{
1
p2

(
1 + pq

pq − p

)2(q−1)

, 1

}
≤ ρ ≤ 12t2 (q, p)

1
p

(
1 + pq

pq − p

)q−1

, (5)

where t (x, y) =
Γ(x+1)Γ

“
2
y

”

yΓ
“
x+1+ 2

y

” and Γ(x) is the Gamma function. In this case, the maximal

positive correlation is ρmax = 0.5021 attained at q = 1.496 and p = 3. Hence, the extension
(4) can achieve correlation greater than 1/2 compared to the classical FGM where the
correlation cannot be greater than 1/3. Bairamov et al. (2001) considered a modification
of the form

Fp1,p2,q1,q2,α (x, y) = xy [1 + α (1− xp1)q1 (1− yp2)q2 ] , (6)

p1, p2 ≥ 1; q1, q2 > 1 ; 0 ≤ x, y ≤ 1
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which yielded a slight improvement for the correlation coefficient over the case (4). They
also derived recurrence relations between moments of concomitants of order statistics for
this class of bivariate distributions.

Lee (1996) considered, for the Sarmanov model, “kernels” of the type ψ1(x) = x− µX

and ψ2(y) = y−µY , where µX = E(X) and µY = E(Y ). Lee showed that the range of the
correlation coefficient for this family of distributions is determined by both the marginals
as

max
{
− 1

µXµY
,

1
(1− µX)(1− µY )

}
≤ α ≤ min

{
1

µX(1− µY )
,

1
(1− µX)µY

}
. (7)

For selected distributions, one can obtain from (7) the maximum positive (negative) cor-
relation. However, for uniform marginals, the range for the correlation coefficient is the
same as the FGM copula, i.e. [−1/3, 1/3]. Bairamov et al. (2001) considered kernels
ψ1(x) = ψ2(x) = xpe−nxq −(1−x)pe−n(1−x)q

, where n, p, and q are positive real numbers.
In this case, the maximal correlation coefficient ρmax = 0.59 is achieved for n = 2, p = 3,
and q = 2.

Yue et al. (2001) reviewed various bivariate models constructed from gamma marginals
and applied them to hydrological frequency analysis. They noticed that many bivariate
models have mainly remained in the form of theoretical developments and seldom suc-
ceeded in gaining popularity among practitioners in the field of hydrological frequency
analysis. The main reason for this is that the mathematical expressions of some of these
models are complex and therefore have computational limitations. Recently, Lin and
Huang (2011) consider a generalized version of Sarmanov family introduced earlier by
Bairamov et al. (2001) and show that unlike the traditional Sarmanov the generalized
one always has a correlation approaching one regardless of the marginals, as long as the
marginals are of the same type.

In this paper, we construct classes of bivariate distributions which are generalizations
of Sarmanov and Sarmanov-Lee models. These distributions have a simple analytical
form like the FGM models and, as in the “normal” case, the correlation coefficient ρ

totally governs the dependence between the variables. Some dependence properties of
these distributions are also discussed.

2. The generalized Sarmanov copula

Consider a class of bivariate distributions with absolutely continuous marginals FX , FY

given by the joint density

fX,Y (x, y) = fX(x)fY (y) {1 + αH[F (x), FY (y)]} , (8)

where fX(x), fY (y) are specified marginal densities, H(x, y) is an integrable function de-
fined on [0, 1] satisfying

1∫

0

H(x, y) dx = 0,

1∫

0

H(x, y)dy = 0, (9)
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and α is a real number satisfying the condition that 1 + αH(x, y) ≥ 0 for all 0 ≤ x, y ≤ 1.

The corresponding bivariate distribution function has the form

FX,Y (x, y) = FX(x)FY (y) + α

FX(x)∫

0

FY (y)∫

0

H(t, s)dtds, −∞ < x, y < ∞

and the copula is

CX,Y (x, y) = xy + α

x∫

0

y∫

0

H(t, s) dtds, 0 ≤ x, y ≤ 1. (10)

Define the positive and negative domains D+ and D− by

D+ = {(x, y) : 0 ≤ x, y ≤ 1, H(x, y) > 0}
and

D− = {(x, y) : 0 ≤ x, y ≤ 1,H(x, y) < 0} ,

respectively. The admissible range for α ensuring that (8) is a joint density can be ex-
pressed as

− 1
max {H(x, y) | (x, y) ∈ D+} ≤ α ≤ 1

max {−H(x, y) | (x, y) ∈ D−}

− 1
max

(x, y) ∈ D+

(H(x, y))
≤ α ≤ 1

max
(x, y) ∈ D−

(−H(x, y))
. (11)

The correlation coefficient of X and Y, if it exists, is given by

ρ =
α

σXσY

1∫

0

1∫

0

F−1
X (x)F−1

Y (y)H(x, y)dxdy, (12)

where F−1
X (x) = inf {y : FX(x) ≥ y} is the inverse cumulative distribution function for

FX .
Therefore in family (8), as in the “normal” case, the correlation coefficient ρ totally

governs the dependence. Using the Cauchy-Schwarz inequality, we have

|ρ| ≤ |α|
(

1 +
µ2

X

σ2
X

)1/2 (
1 +

µ2
Y

σ2
Y

)1/2



1∫

0

1∫

0

H2(x, y) dxdy




1/2

.

The main justification for the interest in the family (8) is the constructive approach
involved in its definition and the transparent manner in which the dependence is created.
It can be shown that the family possesses the TP2 property, which is the strongest among
the dependence properties; see, for example, Shaked and Shantikumar (1994).

The pair of variables (X, Y ) is said to be totally positive dependent (TP2) if its joint
density f(x, y) satisfies the condition

f(x1, y1)f(x2, y2)− f(x2, y1)f(x1, y2) ≥ 0

for all x1 < x2 and y1 < y2. It is well known that – for more details on dependence
properties see Barlow and Proschan (1981) and Joe (1990) – the TP2 property implies the
following important dependence properties:
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(1) Stochastically increasing positive dependence, SI(X | Y ) : (X is stochastically
increasing in Y if P {X > x | Y = y} is a nondecreasing function of y for all x);

(2) Right-tail increasing - RTI(X | Y ) (X is right-tail increasing in Y if P {X > x |
Y > y} is increasing in y for each x);

(3) A(X, Y )−association: (the random vector (X,Y ) is associated if the inequality

E [g1(X, Y )g2(X, Y )] ≥ E [g1(X, Y )]E [g2(X, Y )]

holds for all real-valued functions g1, g2 which are increasing in each component
and such that the expectations exist);

(4) Positive quadrant dependence - PQD (the random vector (X, Y ) is positive quad-
rant dependent if P {X ≤ x, Y ≤ y} ≥ P {X ≤ x}P {Y ≤ y}).

For the points 0 ≤ x1 < x2 ≤ 1 and 0 ≤ y1 < y2 ≤ 1, denote A(x1, x2, y1, y2) =
H(x2, y2)−H(x2, y1)−H(x1, y2)+H(x1, y1) and B(x1, x2, y1, y2) = H(x1, y1)−H(x2, y2)−
H(x1, y2) + H(x2, y1).

Theorem 2.1. The following holds:

(1) For α ≥ 0, if A(x1, x2, y1, y2) ≥ 0 and B(x1, x2, y1, y2) ≥ 0, then copula (10)
satisfies the TP2 property;

(2) For α ≤ 0, if A(x1, x2, y1, y2) ≤ 0 and B(x1, x2, y1, y2) ≥ 0, then copula (10)
satisfies the TP2 property.

Proof. The assertion of the theorem is a direct consequence of the equalities

f(x1, y1)f(x2, y2)− f(x2, y1)f(x1, y2)

= [1 + αH(x1, y1)] [1 + αH(x2, y2)]− [1 + αH(x1, y2)] [1 + αH(x2, y1)]

= αA(x1, x2, y1, y2) + α2B(x1, x2, y1, y2).

¤

Example 2.1. Consider the function

H(x, y) = xp + yp − (p + 1)xpyp − 1
p + 1

, 0 ≤ x, y ≤ 1, p > 0. (13)

It is easy to verify that H(x, y) satisfies conditions (9). The corresponding bivariate density
is of the form

f(x, y) = 1 + α

{
xp + yp − (p + 1)xpyp − 1

p + 1

}
, 0 ≤ x, y ≤ 1, p > 0. (14)

Lemma 2.1. For p ≥ 1 and for α satisfying

−p + 1
p

≤ α ≤ p + 1
2(p + 1)− (p + 1)2 − 1

,

and for 0 < p < 1 and for α satisfying

−p + 1
p

≤ α ≤ p + 1 ,

(13) represents a joint probability density of two uniform random variables.
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Proof. We will use the inequalities in (11). It can be verified that

∂H(x, y)
∂x

= pxp−1 − (p + 1)pxp−1yp,
∂H(x, y)

∂y
= pyp−1 − (p + 1)pxpyp−1,

Hxx =
∂2H(x, y)

∂x2
= p(p− 1)xp−2 − (p + 1)p(p− 1)xp−2yp,

Hxy =
∂2H(x, y)

∂x∂y
= −(p + 1)p2xp−1yp−1,

Hyy =
∂2H(x, y)

∂y2
= p(p− 1)yp−2 − (p + 1)p(p− 1)xpyp−2.

From the equations ∂H(x,y)
∂x = 0 and ∂H(x,y)

∂y = 0, we find the critical points of H(x, y) to
be x∗ = 1

(p+1)1/p and y∗ = 1
(p+1)1/p . Since

Hxx(x∗, y∗)Hyy(x∗, y∗)− [Hxy(x∗, y∗)]2 = − p4

(p + 1)2(p−2)/p
< 0,

(x∗, y∗) is a saddle point of H(x, y). It is also true that f(x∗, y) = f(x, y∗) = f(x∗, y∗) = 1
for every 0 ≤ x, y ≤ 1. The points (0, 1) and (1, 0) are local maxima of H(x, y) in D+ and

H(0, 1) = H(1, 0) =
p

p + 1
. (15)

The local minima of H(x, y) in D− are (0, 0) and (1, 1). For p ≥ 1,

H(1, 1) = 2− (p + 1)2 + 1
(p + 1)

< − 1
p + 1

= H(0, 0). (16a)

For 0 < p < 1,

H(1, 1) = 2− (p + 1)2 + 1
(p + 1)

> − 1
p + 1

= H(0, 0). (17)

The proof is completed by using (11), (15), (16a), and (17). ¤

The corresponding copula can be written as follows:

C1(x, y) = xy +
α

p + 1
{
xp+1y − xp+1yp+1 − xy + xyp+1

}
, 0 ≤ x, y ≤ 1. (18)

From (12), we then have

ρ = 12α

1∫

0

1∫

0

xy

(
xp + yp − (p + 1)xpyp − 1

p + 1

)
dxdy = − 3αp2

(p + 1)(p + 2)2
.

For p ≥ 1, the range for the correlation coefficient is

− 3
(p + 2)2

≤ ρ ≤ 3p

(p + 2)2
;

for 0 < p < 1, the range for the correlation coefficient is

− p2

(p + 2)2
≤ ρ ≤ 3p

(p + 2)2
.

The maximum positive correlation is 3/8 = 0.375 which is achieved at the point p = 2.

The maximum negative correlation is −1/3 and it is achieved at the point p = 1.

Corollary 2.1. For α < 0, copula (18) has the TP2 property.
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Proof. For copula (18),

A(x1, x2, y1, y2) = (p + 1)(yp
2 − yp

1)(x
p
1 − xp

2)

and

B(x1, x2, y1, y2) =
(

xp
1 + yp

1 − (p + 1)xp
1y

p
1 −

1
p + 1

)(
xp

2 + yp
2 − (p + 1)xp

2y
p
2 −

1
p + 1

)

−
(

xp
1 + yp

2 − (p + 1)xp
1y

p
2 −

1
p + 1

)(
xp

2 + yp
1 − (p + 1)xp

2y
p
1 −

1
p + 1

)

= 0.

And since (yp
2 − yp

1)(x
p
1 − xp

2) ≤ 0, we have A(x1, x2, y1, y2) ≤ 0. Therefore, it follows from
Theorem 1 that if α < 0, (18) has the TP2 property. ¤

Remark 2.1. One may consider the kernel

H1(x, y) = −H(x, y).

Then the admissible range for the association parameter α is
−(p + 1)

2(p + 1)− (p + 1)2 − 1
≤ α ≤ p + 1

p
for p ≥ 1,

and
−(p + 1) ≤ α ≤ p + 1

p
for 0 < p < 1.

The corresponding copula is

C2(x, y) = xy − α

p + 1
{
xp+1y − xp+1yp+1 − xy + xyp+1

}
, 0 ≤ x, y ≤ 1. (19)

The range for the correlation coefficient is

− 3p

(p + 2)2
≤ ρ ≤ 3

(p + 2)2
for p ≥ 1

and

− 3p

(p + 2)2
≤ ρ ≤ p2

(p + 2)2
for 0 < p < 1.

The maximum negative correlation is −0.375 and the maximum positive correlation is 1/3.

Corollary 2.2. For α > 0, copula (19) has the TP2 property.

Example 2.2. Consider the kernel

H2(x, y) = pxp−1 + pyp−1 − p2xp−1yp−1 − 1, 0 ≤ x, y ≤ 1.

The corresponding bivariate pdf is

f2(x, y) = 1 + α
{
pxp−1 + pyp−1 − p2xp−1yp−1 − 1

}
, 0 ≤ x, y ≤ 1.

A similar analysis shows that the admissible range for α is

− 1
p− 1

≤ α ≤ 1 for 1 < p ≤ 2, (20)

and
− 1

p− 1
≤ α ≤ 1

(p− 1)2
for p > 2. (21)
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The corresponding copula is

C3(x, y) = xy
{
1 + α

[
xp−1 + yp−1 − xp−1yp−1 − 1

]}
, 0 ≤ x, y ≤ 1. (22)

The range for the correlation coefficient is

−3(p− 1)2

(p + 1)2
≤ ρ ≤ 3(p− 1)

(p + 1)2
for 1 < p ≤ 2 (23)

and

− 3
(p + 1)2

≤ ρ ≤ 3(p− 1)
(p + 1)2

for p > 2. (24)

Remark 2.2. As before, one may consider the kernel H3(x, y) = −H2(x, y). The copula
has the form

C4(x, y) = xy
{
1− α

[
xp−1 + yp−1 − xp−1yp−1 − 1

]}
, 0 ≤ x, y ≤ 1. (25)

Then the inequalities (20) and (21) for α and the inequalities (23) and (24) for the corre-
lation coefficient will be reversed.

Corollary 2.3. For α < 0, copula (22) has the TP2 property.

Corollary 2.4. For α > 0, copula (25) has the TP2 property.

The proofs are similar to the proof of Corollary 2.1.

Example 2.3. Now consider the following kernel which is different from those considered
previously:

H4(x, y) = min(x, y)− x− y +
3
2
x2y2 +

1
2
, 0 ≤ x, y ≤ 1. (26)

It can be verified that the function (26) satisfies conditions (9). It is evident that

max
(x, y) ∈ D−

[−H4(x, y)] = − min
(x, y) ∈ D−

H4(x, y) = −H4(1, 0) = −H4(0, 1) =
1
2
,

(27)

maxH4(x, y)
(x, y) ∈ D+

= H4(1, 1) = 1. (28)

The inequalities (11) along with equations (27) and (28) give the admissible range for the
association parameter α as

−1 ≤ α ≤ 2.

From formula (12), the correlation coefficient is given by the quantity

ρ = 12α

1∫

0

1∫

0

xy

{
min(x, y)− x− y +

3
2
x2y2 +

1
2

}
dx dy =

9
40

α

and the range for the correlation coefficient is

− 9
40
≤ ρ ≤ 9

20
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(or −0.225 ≤ ρ ≤ 0.45). The corresponding copula has the form

C5(x, y) = xy + α

{
xy

2
+

x3y3

6
− xy

2
max(x, y)− {min(x, y)}3

6

}
,

=





xy + α
{

xy
2 + x3y3

6 − xy2

2 − x3

6

}
, x < y

xy + α
{

xy
2 + x3y3

6 − x2y
2 − y3

6

}
, x ≥ y.

Remark 2.3. Just as before, one may consider the kernel H5(x, y) = −H4(x, y). Then
the admissible range for the association parameter α is −2 ≤ α ≤ 1 and the range for the
correlation coefficient is

− 9
20
≤ ρ ≤ 9

40
.

The simple analytical form of the presented copulas is sufficiently robust to allow appli-
cations in many practical problems. But even more flexibility may be added by introducing
additional parameters to model (26).

3. Multivariate extension

One can extend the generalized Sarmanov family of copulas to the multivariate case.
Let Hk(x1, x2, ..., xk), k = 2, 3, ..., n, be a family of symmetric functions which have the
following recurrence properties:

1∫

0

Hk(xi1 , xi2 , ..., xik−1
, xik) xik = Hk−1(xi1 , xi2 , ..., xik−1

), (29)

and
1∫

0

1∫

0

(n−1)...

1∫

0

Hn (xi1 , xi2 , ..., xin) dxi1dxi2 · · · dxin−1 = 0, (30)

for any k = 2, 3, ..., n; i1, i2, ..., ik ∈ {1, 2, ..., k} and 0 ≤ xi1 , xi2 , ..., xik−1
≤ 1. Define now

the following n−variate pdf with marginal distribution functions Fi(xi) and marginal pdfs
fi(xi):

fα(xi1 , xi2 , ..., xin) = fi1(xi1)fi2(xi2)...fin(xin)

×{1 + αnHn (Fi1(xi2), Fi2(xi2), ..., Fin(xin))} , (31)

where the association parameter αn satisfies the condition 1+αnHn (x1, x2, ..., xn) ≥ 0 for
any 0 ≤ x1, x2, ..., xn ≤ 1.

Denote
D+

n = {(x1, x2, ..., xn) : Hn(x1, x2, ..., xn) ≥ 0}
and

D−
n = {(x1, x2, ..., xn) : Hn(x1, x2, ..., xn) ≤ 0} .

Then, as in the bivariate case, the function given in (31) is a pdf of n−variate random
vector (X1, X2, ..., Xn) if

− 1
max

(x1, x2, ..., xn) ∈ D+
n

Hn(x1, x2, ..., xn)
≤ αn ≤ 1

max
(x1, x2, ..., xn) ∈ D−

n

(−Hn(x1, x2, ..., xn))
.

(32)
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For uniform marginals, we have

cα(x1, x2, ..., xn) = 1 + αnHn(x1, x2, ..., xn), 0 ≤ x1, x2, ..., xn ≤ 1.

The corresponding n−variate copula is

C(x1, x2, ..., xn) = x1x2...xn + αn

xn∫

0

xn−1∫

0

· · ·
x1∫

0

Hn(t1, t2, ..., tn) dt1dt2 · · · dtn,

0 ≤ x1, x2, ..., xn ≤ 1.

Consider for example a kernel

Hn(x1, x2, ..., xn) = xp
1 + xp

2 + · · ·+ xp
n − (p + 1)n−1xp

1x
p
2 · · ·xp

n −
n− 1
p + 1

. (33)

It can be checked easily that the kernel satisfies conditions (29) and (30). Therefore, one
can consider the n− variate pdf

fn(x1, x2, ..., xn) = f1(x1)f2(x2) · · · fn(xn)

×{1 + αn [F p
1 (x1) + F p

2 (x2) + · · ·+ F p
n(xn)

−(p + 1)n−1 (F1(x1)F2(x2) · · ·Fn(xn))p − n− 1
p + 1

]}
,

−∞ < x1, x2, ..., xn < ∞.

For uniform (0, 1) marginals, we have

cα(x1, x2, ..., xn) = 1 + αn

{
xp

1 + xp
2 + · · ·+ xp

n − (p + 1)n−1xp
1x

p
2 · · ·xp

n −
n− 1
p + 1

}

and the n− variate copula is

Cα(x1, x2, ..., xn) = x1x2 · · ·xn

{
1 +

αn

p + 1

[
n∑

i=1

xp
i −

n∏

i=1

xp
i − (n− 1)

]}
. (34)

Theorem 3.1. The admissible range for αn allowing (34) to be n−variate copula is

− p + 1
(n− 1)p

≤ αn ≤ p + 1
(p + 1)n − n(p + 1) + (n− 1)

for p ≥ n
1

n−1 − 1,

and
− p + 1

(n− 1)p
≤ αn ≤ p + 1

n− 1
for 0 < p < n

1
n−1 − 1.

Proof. We will use (32). It can be seen that in D−
n the function (33) takes its minimum

value at the point x1 = x2 = ... = xn = 1, i.e.,

Hn(1, 1, ..., 1) = n− (p + 1)n−1 − n− 1
p + 1

. (35)

In fact, if at least one of the coordinates is equal to 0 and the others are equal to 1, then
the second term in (33) is equal to 0. In this case the minimum value is obtained when
one of the xi ’s is equal to 1, and all others are equal to 0, i.e.,

Hn(0, 0, ..., 0, 1) = 1− n− 1
p + 1

. (36)
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Compare (35) with (36). If n−(p+1)n−1 < 1, i.e. p > (n−1)
1

n−1−1, then Hn(1, 1, ..., 1) <

Hn(0, 0, ..., 0, 1). Now when all of xi ’s are equal to zero, then

Hn(0, 0, ...., 0) = −n− 1
p + 1

. (37)

Compare (37) with (35). If n − (p + 1)n−1 < 0, i.e. p > n
1

n−1 − 1, then Hn(1, 1, ..., 1) <

Hn(0, 0, ..., 0). Therefore, if
p > n

1
n−1 − 1,

then
αn ≤ p + 1

(p + 1)n − n(p + 1) + (n− 1)
.

Now in D+
n the function (33) has its maximum when one of the xi ’s is equal to 0 and all

others are equal to 1. This value is H(1, 1, ..., 1, 0) = (n−1)p
p+1 . Therefore, if p > n

1
n−1 − 1,

then
− p + 1

(n− 1)p
≤ αn ≤ p + 1

(p + 1)n − n(p + 1) + (n− 1)
.

¤
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