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THE v− INVARIANT χ2 SEQUENCE SPACES

N. SUBRAMANIAN1, U. K. MISRA2 §

Abstract. In this paper we define v− invariatness of a double sequence space of χ and
examine the v− invariatness of the double sequence space of χ. Furthermore, we give
duals of double sequence space of χ.
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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single
sequences, respectively. We write w2 for the set of all complex sequences (xmn), where
m,n ∈ N, the set of positive integers. Then, w2 is a linear space under the coordinate
wise addition and scalar multiplication.

Some initial work on double sequence spaces is found in Bromwich [4]. Later on, they
were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan
[2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:
Mu (t) :=

{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞}

,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for somel ∈ C}

,

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|tmn < ∞}

,

Cbp (t) := Cp (t)
⋂Mu (t) and C0bp (t) = C0p (t)

⋂Mu (t);
where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p−limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for all m,n ∈
N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the sets Mu, Cp, C0p,Lu, Cbp

and C0bp, respectively. Now, we may summarize the knowledge given in some docu-
ment related to the double sequence spaces. Gökhan and Colak [21,22] have proved that
Mu (t) and Cp (t) , Cbp (t) are complete paranormed spaces of double sequences and gave the
α−, β−, γ− duals of the spacesMu (t) and Cbp (t) . Quite recently, in her PhD thesis, Zelter
[23] has essentially studied both the theory of topological double sequence spaces and the
theory of summability of double sequences. Mursaleen and Edely [24] have recently intro-
duced the statistical convergence and Cauchy for double sequences and given the relation
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between statistical convergent and strongly Cesàro summable double sequences. Nextly,
Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong regularity
of matrices for double sequences and applied these matrices to establish a core theorem
and introduced the M−core for double sequences and determined those four dimensional
matrices transforming every bounded double sequences x = (xjk) into one whose core is
a subset of the M−core of x. More recently, Altay and Basar [27] have defined the spaces
BS,BS (t) , CSp, CSbp, CSr and BV of double sequences consisting of all double series whose
sequence of partial sums are in the spacesMu,Mu (t) , Cp, Cbp, Cr and Lu, respectively, and
also have examined some properties of those sequence spaces and determined the α− duals
of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of double
series. Quite recently Basar and Sever [28] have introduced the Banach space Lq of double
sequences corresponding to the well-known space `q of single sequences and have examined
some properties of the space Lq. Quite recently Subramanian and Misra [29] have studied
the space χ2

M (p, q, u) of double sequences and have given some inclusion relations.
Spaces are strongly summable sequences was discussed by Kuttner [31], Maddox [32],

and others. The class of sequences which are strongly Cesàro summable with respect to
a modulus was introduced by Maddox [8] as an extension of the definition of strongly
Cesàro summable sequences. Connor [33] further extended this definition to a definition
of strong A− summability with respect to a modulus where A = (an,k) is a nonnegative
regular matrix and established some connections between strong A− summability, strong
A− summability with respect to a modulus, and A− statistical convergence. In [34] the
notion of convergence of double sequences was presented by A. Pringsheim. Also, in [35]-
[38], and [39] the four dimensional matrix transformation (Ax)k,` =

∑∞
m=1

∑∞
n=1 amn

k` xmn

was studied extensively by Robison and Hamilton. In their work and throughout this
paper, the four dimensional matrices and double sequences have real-valued entries unless
specified otherwise. In this paper we extend a few results known in the literature for
ordinary(single) sequence spaces to multiply sequence spaces.

We need the following inequality in the sequel of the paper. For a, b,≥ 0 and 0 < p < 1,
we have

(a + b)p ≤ ap + bp (1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence (smn)
is convergent, where smn =

∑m,n
i,j=1 xij(m,n ∈ N) (see[1]).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n < ∞. The vector
space of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is
called double gai sequence if ((m + n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai
sequences will be denoted by χ2. Let φ = {all finitesequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence is
defined by x[m,n] =

∑ m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the double sequence

whose only non zero term is a 1
(i+j)! in the (i, j)th place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (=mn) is a Schauder
basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable; lo-
cally convex topology under which the coordinate mappings x = (xk) → (xmn)(m,n ∈ N)
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are also continuous.
If X is a sequence space, we give the following definitions:

(i)X
′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for eachx ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, for eachx ∈ X

}
;

(iv)Xγ =
{

a = (amn) : supmn ≥ 1
∣∣∣∑M,N

m,n=1 amnxmn

∣∣∣ < ∞, for eachx ∈ X
}

;

(v)letX beanFK − space ⊃ φ; thenXf =
{

f(=mn) : f ∈ X
′
}

;

(vi)Xδ =
{

a = (amn) : supmn |amnxmn|1/m+n < ∞, for eachx ∈ X
}

;

Xα.Xβ, Xγ are called α− (orKöthe−Toeplitz)dual of X, β− (or generalized−Köthe−
Toeplitz)dual ofX, γ− dual of X, δ − dual ofX respectively.Xα is defined by Gupta and
Kamptan [20]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ does not hold, since
the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kiz-
maz [30] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent,null and bounded sclar valued single
sequences respectively. The difference space bvp of the classical space `p is introduced and
studied in the case 1 ≤ p ≤ ∞ by BaŞar and Altay in [42] and in the case 0 < p < 1
by Altay and BaŞar in [43]. The spaces c (∆) , c0 (∆) , `∞ (∆) and bvp are Banach spaces
normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp
= (

∑∞
k=1 |xk|p)1/p , (1 ≤ p < ∞) .

Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn − xmn+1 −
xm+1n + xm+1n+1 for all m,n ∈ N

2. Definitions and Preliminaries

Let v = (vmn) be any fixed sequence of nonzero complex numbers satisfying
Λ2

v =
{

x = (xmn) : supmn |vmnxmn|1/m+n < ∞
}

χ2
v =

{
x = (xmn) : ((m + n)! |vmnxmn|)1/m+n → 0asm, n →∞

}

In this paper Λ2
v and χ2

v will denote the sequence spaces of Pringsheim sense dou-
ble analytic invariant and Pringsheim sense double gai invariant sequences respectively.

The space Λ2
v is a invariant metric space with the metric

d(x, y) = supmn

{
|vmnxmn − vmnymn|1/m+n : m,n : 1, 2, 3, ...

}
(2)
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forall x = {xmn}andy = {ymn}inΛ2
v.

The space χ2
v is a invariant metric space with the metric

d(x, y) = supmn

{
((m + n)! |vmnxmn − vmnymn|)1/m+n : m,n : 1, 2, 3, ...

}
(3)

forallx = {xmn}andy = {ymn}inχ2
v.

Definition 2.1. A sequence X is v− invariant if Xv = X
where Xv = {x = (xmn) : (vmnxmn) ∈ X} , where X = Λ2

v and χ2
v.

In this paper we define v− invariantness of a sequence space X and give necessary and
sufficient conditions for Λ2

v and χ2
v to v− invariant. Now, if X = Λ2

v orχ2
v is v− invariant

sequence spaces then we have the following results.

3. Main Results

Theorem 3.1. Let χ2 be a v−invariant sequence space. Then (i) χ2
v is a Banach invariant

space if and only if χ2
v is a Banach invariant metric space, (ii) χ2

v is separable if and only
if χ2

v is separable.

Proof. Let u = (umn) and v = (vmn) be any fixed sequence of nonzero complex numbers
such that

limm.n→∞sup ((m + n)! |umn − 0|)1/m+n

and
limm.n→∞sup ((m + n)! |vmn − 0|)1/m+n

are positive (may be infinite).
If vmn = λ for every m,n, then obviously χ2 is v−invariant, where λ is a scalar. This
completes the proof. ¤

Theorem 3.2. Let wmn = umnv−1
mn for each m,n ∈ N, where v−1

mn = 1
vmn

. Then (i)
χ2

v ⊂ χ2
u if and only if supmn |wmn| < ∞. (ii) χ2

v = χ2
u if and only if 0 < infmn |wmn| ≤

|wmn| ≤ supmn |smn| < ∞.

Proof. Sufficiency is trivial, since

|umnxmn|1/m+n = |wmn|1/m+n |vmnxmn|1/m+n (4)

For the necessity suppose that χ2
v ⊂ χ2

u but supmn = ∞. Then there exists a strictly
increasing sequence (wmini) > i we put

((m + n)! |xmnvmn|)1/m+n =

{
0 if m,n 6= mini

i
umini

if m,n = mini
(5)

Then we have ((m + n)! |xmnvmn|)1/m+n < 1 and ((m + n)! |xmnumn|)1/m+n = i, where
m,n = mini. When x ∈ χ2

v − χ2
u contrary to the assumption that χ2

v ⊂ χ2
u.

(ii) To prove this, it is enough to show that χ2
u ⊂ χ2

v if and only if infmn |wmn| > 0. It is
obvious that infmn |wmn| > 0 if and only if supmn

∣∣∣ 1
wmn

∣∣∣ < ∞. Hence the result follows
from proof (i). ¤

Theorem 3.3. (i) χ2 ⊂ χ2
v if and only if supmn |vmn| < ∞, (ii) χ2

v ⊂ χ2 if and only if
infmn |vmn| > 0, (iii)χ2

v = χ2 if and only if 0 < infmn |vmn| ≤ vmn ≤ ∞ ≤ supmn |vmn| <
∞.
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Proof. Taking v =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
1 1 1 · · · 1 1


 upto (m,n)th term and replacing u by v in

Theorem 3.2 (i).
It is trivial that infmn |vmn| > 0 if and only if supmn

∣∣∣ 1
vmn

∣∣∣ < ∞.

Hence taking u =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
1 1 1 · · · 1 1


 upto (m,n)th term in Theorem 3.2 (i), we get

Theorem 3.3(ii).

Finally, taking Taking u =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
1 1 1 · · · 1 1


 upto (m,n)th term in Theorem 3.2 (ii),

since clearly infmn
1

vmn
> 0 if and only if supmn |vmn| < ∞, we get (iii). ¤

Corollary 3.1. If χ2 is v− invariant if and only if 0 < infmn |vmn| ≤ |vmn| ≤ supmn |vmn| <
∞.

Proof. Follows from Theorem 3.3 (iii). ¤

Theorem 3.4. (i) χ2
v ⊂ χ2

u if and only if w = (wmn) ∈ χ2, (ii) χ2
v = χ2

u if and only if
w /∈ χ2.

Proof. (i) The sufficiency is trivial by an equation (4). For the necessity suppose that
χ2

v ⊂ χ2
u but w /∈ χ2. Then, either w ∈ Λ2

v (or)w /∈ Λ2
v Now we put ((m + n)! |xmn|)1/m+n =(

wmn × 1

(umn)1/m+n

)
= 1

(vmn)1/m+n . Then

((m + n)! |xmnvmn|)1/m+n =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
1 1 1 · · · 1 1


 and

((m + n)! |xmnumn|)1/m+n = (wmn) . Whence x ∈ χ2
v − χ2

u, contrary to the assumption
that χ2

v ⊂ χ2
u. Hence we obtain the necessity.

(ii) Sufficiency, let w ∈ χ2
v ⊂ χ2

u by (i).
Let x ∈ χ2

u, so that ((m + n)! |xmnumn|)1/m+n ∈ χ2. Now, since w ∈ χ2,
limmn

1
wmn

= 0. Therefore, from the equality

((m + n)! |xmnvmn|)1/m+n =
(
(m + n)!

∣∣∣xmnumn
1

wmn

∣∣∣
)1/m+n

, we have

((m + n)! |xmnvmn|)1/m+n ∈ χ2 and hence χ2
u ⊂ χ2

v.
Necessity: Suppose that χ2

v = χ2
u, that is χ2

v ⊂ χ2
u and χ2

u ⊂ χ2
v. Then

limmnwmn = limmnumn × 1
vmn

and limmn
1

wmn
= limmn

1
umn

· 1
vmn

= 0. It is trivial that
limmn

1
wmn

= 0 if and only if limmnwmn 6= 0. Hence w /∈ χ2. ¤

Theorem 3.5. (i) χ2 ⊂ χ2
v if and only if v ∈ χ2 (ii) χ2

v = χ2 if and only if v /∈ χ2 and
limmnvmn 6= 0.
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Proof. Taking v =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
1 1 1 · · · 1 1


 and replacing u by v in Theorem 3.4 (i), we

obtain (i). Theorem 3.4 (ii) gives us (ii) for u =




1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
1 1 1 · · · 1 1


 . ¤

Remark 3.1. If v ∈ χ2 and limmnvmn = 0 that is v ∈ χ2, then χ2 ⊂ χ2
v.

Proposition 3.1. χ2
v ⊂ Γ2

v.

Proof. Let x ∈ χ2
v.

Then we have ((m + n)! |xmnvmn|)1/m+n → 0asm, n →∞.

Here, we get |xmnvmn|1/m+n → 0asm, n →∞. Thus we have x ∈ Γ2
v and so χ2 ⊂ Γ2

v. ¤

Proposition 3.2.
(
Γ2

v

)β ⊂
6= Λ2

v.

Proof. Let y = (ymn) be an arbitrary point in
(
Γ2

v

)β
. If y is not in Λ2

v, then for each
natural number p, we can find an index mpnp such that

∣∣ympnp

∣∣1/mp+np > pvmn, (p = 1, 2, 3, · · · ) (6)

Define x = {xmn} by

xmn =

{
1

pm+nvmn
, for (m,n) = (mp, np) for somep ∈ N

0, otherwise
(7)

Then x is in Γ2
v, but for infinitely mn,

|ymnxmn| > 1. (8)

Consider the sequence z = {zmn} , where z11 = x11v11 − s with

s =
∞∑

m=1

∞∑

n=1

xmnvmn, zmn = xmnvmn. (9)

Then z is a point of Γ2
v. Also,

∑∑
zmn = 0. Hence, z is in Γ2

v; but, by (8),
∑∑

zmnymn

does not converge:
⇒

∑∑
xmnymn diverges. (10)

Thus, the sequence y would not be in
(
Γ2

v

)β
. This contradiction proves that

(
Γ2

v

)β ⊂ Λ2
v. (11)

Let y1nv1n = x1nv1n = 1 and ymnvmn = xmnvmn = 0 (m > 1) for all n, then obviously
x ∈ Γ2

v and y ∈ Λ2
v, but

∞∑

m=1

∞∑

n=1

xmnymn = ∞.Hence, y /∈ (
Γ2

v

)β (12)

From (11) and (12), we are granted
(
Γ2

v

)β ⊂
6= Λ2

v. ¤

Proposition 3.3. The β− dual space of χ2
v is Λ2.
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Proof. First, we observe that χ2
v ⊂ Γ2

v, by Proposition 3.1. Therefore
(
Γ2

v

)β ⊂ (
χ2

v

)β
. But

(
Γ2

v

)β ⊂
6= Λ2

v, by Proposition 3.2. Hence

Λ2
v ⊂

(
χ2

v

)β (13)

Next we show that
(
χ2

v

)β ⊂ Λ2
v. Let y = (ymn) ∈ (

χ2
v

)β
. Consider f (x) =

∑∞
m=1

∑∞
n=1 xmnymn

with x = (xmn) ∈ χ2
v

x = [(=mn −=mn+1)− (=m+1n −=m+1n+1)]

=




0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)!(vmn)1/m+n , −1

(m+n)!(vmn)1/m+n , ... 0

0, 0, ...0, 0, ... 0




−




0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)!(vmn)1/m+n , −1

(m+n)!(vmn)1/m+n , ... 0

0, 0, ...0, 0, ... 0




{
((m + n)! |xmnvmn|)1/m+n

}
=




0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)!(vmn)1/m+n , −1

(m+n)!(vmn)1/m+n , ... 0

0, 0, ... −1

(m+n)!(vmn)1/m+n , 1

(m+n)!(vmn)1/m+n , ... 0

0, 0, ...0, 0, ... 0




.

Hence converges to zero.

Therefore [(=mn −=mn+1)− (=m+1n −=m+1n+1)] ∈ χ2
v.

Hence d ((=mn −=mn+1)− (=m+1n −=m+1n+1) , 0) = 1. But

|ymnvmn|1/m+n ≤ ‖f‖ d ((=mn −=mn+1)− (=m+1n −=m+1n+1) , 0) ≤ ‖f‖ · 1 < ∞ for
each m,n. Thus (ymn) is a double invariant bounded sequence and hence an invariant
analytic sequence. In other words y ∈ Λ2

v. But y = (ymn) is arbitrary in
(
χ2

v

)β
. Therefore

(
χ2

v

)β ⊂ Λ2
v (14)

From (13) and (14) we get
(
χ2

v

)β = Λ2
v. ¤
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Proposition 3.4. Λ− dual of χ2
v is Λ2

v.

Proof. Let y ∈ Λ− dual of χ2
v. Then |xmnymn| ≤ Mm+n

vmn
for some constant M > 0 and for

each x ∈ χ2
v. Therefore |ymnvmn| ≤ Mm+n for each m,n by taking

x = =mn =




0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)!(vmn)1/m+n , 0, ... 0

0, 0, ...0, 0, ... 0




.

This shows that y ∈ Λ2
v. Then

(
χ2

v

)Λ ⊂ Λ2
v (15)

On the other hand, let y ∈ Λ2
v. Let ε > 0 be given. Then |ymnvmn| < Mm+n for each m,n

and for some constant M > 0. But x ∈ χ2
v. Hence ((m + n)! |xmnvmn|) < εm+n for each

m,n and for each ε > 0. i.e |xmn| < εm+n

(m+n)!(vmn)1/m+n . Hence

|xmnymn| = |xmn| |ymn| < εm+n

(m+n)!(vmn)1/m+n Mm+n = (εM)m+n

(m+n)!(vmn)1/m+n

⇒ y ∈ (
χ2

v

)Λ

Λ2
v ⊂

(
χ2

v

)Λ (16)

From (15) and (16) we get
(
χ2

v

)Λ = Λ2
v. ¤

Proposition 3.5. Let
(
χ2

v

)∗ denote the dual space of χ2
v. Then we have

(
χ2

v

)∗ = Λ2
v.

Proof. We recall that

x = =mn =




0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)!(vmn)1/m+n , 0, ... 0

0, 0, ...0, 0, ... 0




.

with 1

(m+n)!(vmn)1/m+n in the (m,n)th position and zero otherwise, with

x = =mn,
{

((m + n)! |xmnvmn|)1/m+n
}
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=




01/2, 0, ...0, 0, ... 01/1+n

.

.

.

01/m+1, 0, ...
(

(m+n)!vmn

(m+n)!vmn

)1/m+n
, 0, ... 01/m+n+1

01/m+2, 0, ...0, 0, ... 01/m+n+2




.

=




0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.

0, 0, ...11/m+n, 0, ... 0
0, 0, ...0, 0, ... 0




.

which is a double χ sequence. Hence =mn ∈ χ2
v. Let us take f (x) =

∑∞
m=1

∑∞
n=1 xmnymn

with x ∈ χ2
v and f ∈ (

χ2
v

)∗
. Take x = (xmn) = =mn ∈ χ2

v. Then

|ymnvmn|1/m+n ≤ ‖f‖ d (=mn, 0) < ∞ for each m,n

Thus (ymn) is a bounded invariant sequence and hence an double analytic invariant se-
quence. In other words y ∈ Λ2

v. Therefore
(
χ2

v

)∗ = Λ2
v. ¤

Proposition 3.6.
(
Λ2

v

)β = Λ2
v.

Proof. Step 1: Let (xmn) ∈ Λ2
v and let (ymn) ∈ Λ2

v. Then we get |ymnvmn|1/m+n ≤ M for
some constant M > 0.
Also (xmnvmn) ∈ Λ2

v ⇒ (|xmnvmn|)1/m+n ≤ ε = 1
2M

⇒ |xmn| ≤ 1
2m+nMm+nvmn

.

Hence
∑∞

m=1

∑∞
n=1 |xmnymn| ≤

∑∞
m=1

∑∞
n=1 |xmn| |ymn|

<
∑∞

m=1

∑∞
n=1

1
2m+n

1
Mm+n Mm+n 1

(vmn)2

<
∑∞

m=1

∑∞
n=1

1
2m+n

1
(vmn)2

< ∞.

Therefore, we get that (xmn) ∈ (
Λ2

v

)β and so we have

Λ2
v ⊂

(
Λ2

v

)β (17)

Step 2: Let (xmn) ∈ (
Λ2

v

)β
. This says that

⇒
∞∑

m=1

∞∑

n=1

|xmnymn| < ∞for each (ymn) ∈ Λ2
v (18)

Assume that (xmn) /∈ Λ2
v, then there exists a sequence of positive integers (mp + np)

strictly increasing such that
∣∣xmp+np

∣∣ > 1
(2v)mp+np (p = 1, 2, 3, · · · )

Take

ymp,np = (2v)mp+np (p = 1, 2, 3, · · · )
and
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ymn = 0 otherwise

Then (ymn) ∈ Λ2
v. But

∑∞
m=1

∑∞
n=1 |xmnymn| =

∑∑∞
p=1

∣∣xmpnpympnp

∣∣ > 1 + 1 + 1 + · · · .

We know that the infinite series 1 + 1 + 1 + · · · diverges. Hence
∑∞

m=1

∑∞
n=1 |xmnymn|

diverges. This contradicts (18). Hence (xmn) ∈ Λ2
v. Therefore

(
Λ2

v

)β ⊂ Λ2
v (19)

From (17) and (19) we get
(
Λ2

v

)β = Λ2
v. ¤
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