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DISTRIBUTIONAL DERIVATIVES ON A REGULAR OPEN SURFACE
WITH PHYSICAL APPLICATIONS

B. POLAT1 §

Abstract. The spatial derivatives of Schwartz-Sobolev distributions which display sin-
gularities of arbitrary order on an arbitrary regular open surface are investigated. The
contributions of the present investigation to literature are i) an approach alternative to
the derivation of the distributional derivatives of multilayers by Estrada and Kanwal; ii)
an extension of the available results for closed surfaces to open surfaces featuring bound-
ary distributions of arbitrary order. The end results are applied in the distributional
investigation of Maxwell equations in presence of single and double layer sources located
on a regular open surface.
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1. Introduction

In this work we provide a systematic investigation of spatial derivatives of field quantities
which display arbitrary singular behavior on a regular open surface in a Schwartz-Sobolev
space setting. Our approach and notation conform to the teachings of Ricardo Estrada and
Ram Kanwal in the area regarding the study of propagation of wavefronts and multilayers,
which go back to year 1980 [1] and are summarized in the textbook [2]. The contributions
of the present investigation to literature are

(1) an approach alternative to the derivation of the distributional derivatives of mul-
tilayers by Estrada and Kanwal [3,Proposition 1];

(2) an extension of the available results for closed surfaces to open surfaces featuring
boundary distributions of arbitrary order.

Following the differentiation of the singular and regular components of arbitrary distri-
butions, the end results are applied in the distributional investigation of Maxwell equations
in presence of single and double layer sources located on a regular open surface. Through-
out the text Rn stands for n dimensional Euclidean space.

In a Schwartz-Sobolev space setting we may assume arbitrary scalar and vector field
quantities to be expressed in the conventional form

V (~r; t) = {V (~r; t)}+ [V (~r; t)]S , ~A(~r; t) =
{

~A(~r; t)
}

+
[
~A(~r; t)

]
S

. (1.1)
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The “regular component” of a distribution given in curly brackets is defined outside
the singularity domain and assumed to be of L1

loc, the class of locally integrable functions
in the Lebesgue sense, in any compact subspace of R3. The “singular component” of a
distribution with representation []S is assumed to be of D′, the class of Schwartz-Sobolev
distributions, in the present case concentrated on a regular open surface S. The singular
components are constructed through the Dirac delta distributions and their spatial and
temporal derivatives of every order which are postulated to represent the source quantities
successfully for all types of polarization (molecular displacement) mechanisms in classical
electromagnetic theory. The spatial derivatives of locally integrable functions in L1

loc may
generate distributions in D′ as addressed in Theorem 4.1.

2. Schwartz-Sobolev Description of Surface Distributions

Let us consider an arbitrary regular open surface S in R3 as depicted in Fig.1., where
Ox1x2x3 is the Cartesian reference frame and (n, v, λ) signifies the local curvilinear coor-
dinate system for S such that the surface is spanned by (v, λ), while n denotes the normal
curve.

Figure 1. Local and Cartesian reference frames of an arbitrary regular open surface

We assume (n̂, v̂, λ̂) constitute a right-handed triple of orthogonal unit vectors such that
λ̂ is the unit tangent to the boundary curve C̄ = ∂S, and v̂ is located in the plane tangent
to S but is normal to C̄.

To ensure the smooth behavior of the regular components in (1.1) in presence of a
surface of singularity S, one requires them to be regular singular functions ([2], Sec. 5.5)
in a subspace E ⊂ L1

loc defined with the properties

(1) {V (~r; t)} and
{

~A(~r; t)
}

have spatial derivatives of all orders outside S, and

(2) {V (~r; t)},
{

~A(~r; t)
}

and all their spatial derivatives have bounded boundary values
as one approaches from both sides of S.

The surface distribution of order k + 1, dk
nδ(S), is described by the inner product

〈
dk

nδ(S), φ(~r; t)
〉

= (−1)k

〈
δ(S),

dk

dnk
φ(~r; t)

〉
= (−1)k

∫ ∞

−∞

∫

S

dk

dnk
φ(~r; t)dS dt,∀k. (2.1)

where φ (~r; t) ∈ D is a test function infinitely differentiable (in C∞) with a compact
support and dS is the surface measure on S. They have the MKSA unit [m−k−1]. In
virtue of the functional spaces mentioned so far we can make the topological remark
C∞

0 = D ⊂ C∞ ⊂ C l ⊂ C ⊂ E ⊂ L1
loc ⊂ D′, where C l represents the space of continuous
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functions which have continuous l > 1 derivatives, and D′ is the dual space of D. For
algebraic purposes we prefer to express an open surface S as a finite section of a closed
surface S̄, which reads

dk
nδ(S) = H[S] dk

nδ(S̄), (2.2)
where

H[S] =
{

1, ~r ∈ S
0, ~r /∈ S

(2.3)

represents the characteristic function of S. Accordingly, the singular component of a
surface distribution of arbitrary order can be constructed through “multilayers” in the
most general form

[V (~r; t)]S = H[S]
∞∑

k=0

Vk(~rS ; t)dk
nδ(S̄),

[
~A(~r; t)

]
S

= H[S]
∞∑

k=0

~Ak(~rS ; t)dk
nδ(S̄) (2.4)

with the definition

〈
~Ak(~rS ; t)dk

nδ(S̄), φ(~r; t)
〉

= (−1)k

〈
δ(S̄),

dk

dnk

(
~̃Ak(~r; t)φ(~r; t)

)〉

= (−1)k

〈
δ(S̄), ~̃Ak(~r; t)

dk

dnk
φ(~r; t)

〉

= (−1)k

∫ ∞

−∞

∫

S̄

~Ak(~rS ; t)
dk

dnk
φ(~r; t)dS dt

Here ~rS is the position vector for any point on S; Vk(~rS ; t), ~Ak(~rS ; t) are smooth, locally

integrable “density functions” with supports defined on S; and ~̃Ak(~r; t) is any extension
of ~Ak(~rS ; t) to a neighborhood of S in R3 with the properties

dk

dnk
~̃Ak(~r; t) = ~0, ~̃Ak(~rS ; t)dk

nδ(S̄) = ~Ak(~rS ; t)dk
nδ(S̄),∀k.

Theorem 2.1. Every distribution that has compact support is of finite order.

This general regularity theorem is quite well known and many alternative approaches to
its proof are available in literature (cf.[4, Ch.3], [5, Ch.3 Sec.6]).

The reflection of this theorem for a surface type distribution whose support lies on a
regular surface S is that the field quantities in (2.4) have the unique representation

V (~r; t) = {V (~r; t)}+ H[S]
N∑

k=0

Vk(~rS ; t)dk
nδ(S̄),

~A(~r; t) =
{

~A(~r; t)
}

+ H[S]
N∑

k=0

~Ak(~rS ; t)dk
nδ(S̄)

(2.5)

where N is a finite number.
Let (u1, u2) be real valued orthogonal Gaussian curves of S with unit tangent vectors

û1,û2 along the curves u1 = const. and u2 = const. and n̂ is the unit normal of S such
that (û1, û2, n̂)constitute a right handed system.

Definition 2.1. Let ψ(u1, u2; t) and ~A(u1, u2; t) = A1(u1, u2; t)û1 + A2(u1, u2; t)û2 +
An(u1, u2; t)n̂ be regular scalar/vector density functions defined only on the surface S.
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Then Dψ
Dxi

= x̂i ·
(

û1
h1

∂ψ
∂u1

+ û2
h2

∂ψ
∂u2

)
, i = 1, 2, 3 denote the spatial derivatives as computed by

an observer on the surface.

The present notation D
Dxi

is given as δ
δxi

in [2] and the references therein. We have
introduced the new notation intentionally so that it does not mix with the Dirac delta
distribution symbol.

Theorem 2.2. Directional (normal) derivatives of a first order surface distribution δ(S),
namely

δ(k+1)(S̄) ≡ n̂ · gradδ(k)(S̄) =
dk+1

dnk+1
δ(S̄), ∀k, (2.6)

are described by

〈
δ(k)(S̄), φ(~r; t)

〉
= (−1)k

〈
δ(S̄),

(
d

dn
− 2Ω

)k

φ(~r; t)

〉

= (−1)k

∫ ∞

−∞

∫

S̄

(
d

dn
− 2Ω

)k

φ(~r; t)dS̄ dt,∀k
(2.7)

where 2Ω is the first curvature (and Ω, the mean curvature) of S.

Proof. The first order derivative is calculated by using Einstein summation notation as

〈
δ(1)(S̄), φ

〉
=

〈
ni

∂

∂xi
δ(S̄), φ

〉
=

〈
∂

∂xi
δ(S̄), niφ

〉
= −

〈
δ(S̄),

∂

∂xi
(niφ)

〉

= −
〈

δ(S̄), ni
∂φ

∂xi
+ φ

Dni

Dxi

〉
= −

〈
δ(S̄),

dφ

dn
− 2Ωφ

〉
=

〈
2Ωδ(S̄) + dnδ(S̄), φ

〉

i.e.,

δ(1)(S̄) = 2Ωδ(S̄) + dnδ(S̄). (2.8)

Successive applications of the property (2.8) yields the desired result (2.7) since dΩ
dn =

0. ¤

Theorem 2.3. The linear relation between the two sets of distributions δ(k)(S̄) and dk
nδ(S̄)

are given by

δ(k)(S̄) =
k∑

m=0

(
k
m

)
(2Ω)k−m dm

n δ(S̄),

dk
nδ(S̄) =

k∑

m=0

(
k
m

)
(−2Ω)k−m δ(m)(S̄), ∀k

(2.9)
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Proof. From (2.7) one can write

〈
δ(k)(S̄), φ

〉
= (−1)k

〈
δ(S̄),

(
d

dn
− 2Ω

)k

φ

〉

= (−1)k

〈
δ(S̄),

k∑

m=0

(
k
m

)
(−2Ω)k−m dmφ

dnm

〉

= (−1)k

〈
k∑

m=0

(
k
m

)
(−2Ω)k−m(−1)mdn

mδ(S̄), φ

〉

=

〈
k∑

m=0

(
k
m

)
(2Ω)k−mdn

mδ(S̄), φ

〉

A similar binomial expansion yields

〈
dk

nδ(S̄), φ
〉

=

〈(
d

dn
− 2Ω

)k

δ(S̄), φ

〉
=

〈
k∑

m=0

(
k
m

)
(−2Ω)k−mδ(m)(S̄), φ

〉
.

Regarding the unique solutions of the distributional forms of Maxwell equations in Sec.6,
it requires to provide the following theorem. ¤

Theorem 2.4. The unique solution of the relation

{V (~r; t)}+ H[S]
N∑

k=0

Vk(~rS ; t)dk
nδ(S̄) = 0 (2.10)

with Vk(~rS ; t), ∀k being smooth density functions is

{V (~r; t)} = 0 and Vk(~rS ; t) = 0, ∀k (2.11)

Proof. Since the regular and singular components of a distribution, by definition, have
nonintersecting supports, (2.10) is automatically decomposed as {V (~r; t)} = 0 and

H[S]
N∑

k=0

Vk(~rS ; t)dk
nδ(S̄) = 0. (2.12)

Without losing generality, we may consider S̄ as a regular surface with orthogonal Gaussian
curves (u1, u2, n) with metric coefficients (h1, h2, hn) such that S̄ = {(u1, u2, n)|n = α =
const}. Then one has δ(S̄) = 1

hn
δ(n−α). For an arbitrary nonzero constant a let us invoke

a scaling n′ = an, α′ = aα such that S̄ coincides with S̄′ = {(u1, u2, n
′)|n′ = α′ = const},

which requires

H[S′]
N∑

k=0

Vk(~rS′ ; t)dk
n′δ(S̄

′) = 0. (2.13)

On the other hand we have the obvious relations

~rS = ~rS′ ,H[S] = H[S′] (2.14)

and the scaling property

dk
n′δ(S̄

′) =
1

ak+1
dk

nδ(S̄),∀k (2.15)
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to be proved immediately. Inserting (2.14), (2.15) into (2.13) we get

H[S]
N∑

k=0

1
ak+1

Vk(~rS ; t)dk
nδ(S̄) = 0. (2.16)

A comparison of (2.15) and (2.16) reveals that these two equations can be satisfied simul-
taneously for any nonzero constant a iff Vk(~rS ; t) = 0,∀k. This can be seen easily when we
apply a different inner product

〈
Vk(~rS ; t)H[S]dk

nδ(S̄), φ(~r; t)
〉

=
∮

Vk(~rS ; t)H[S]dk
nδ(S̄)φ(~r; t)dn

= (−1)kVk(~rS ; t)
dkφ

dnk
(~rS ; t), ∀k

through which (2.12) and (2.16) can be rewritten as

N∑

k=0

(−1)kVk(~rS ; t)
dkφ

dnk
(~rS ; t) = 0,

N∑

k=0

(−1)k

ak+1
Vk(~rS ; t)

dkφ

dnk
(~rS ; t) = 0, (2.17)

respectively. Since the test function φ(~r; t) and constant a are arbitrary, the linear system
of equations (2.17) can hold iff Vk(~rS ; t) = 0,∀k. To conclude let us also prove the scaling
property (2.15) as follows:

〈
δ(S̄′), φ(~r; t)

〉
=

〈
1
hn

δ(n′ − α′), φ
(

u1, u2,
n′

a
; t

)〉

=
∫ ∞

−∞

∮
δ(n′ − α′)φ

(
u1, u2,

n′

a
; t

)
h1h2

dn′

a
du1du2d

=
1
a

∫ ∞

−∞

∮
φ(u1, u2, α; t)h1h2du1du2dt =

〈
1
a
δ(S̄), φ(~r; t)

〉

and
〈
dk

n′δ(S̄
′), φ(~r; t)

〉
= (−1)k

〈
δ(S̄′),

dk

dn′k
φ(~r; t)

〉
= (−1)k

〈
1
a
δ(S̄),

1
ak

dk

dnk
φ(~r; t)

〉

=
〈

(−1)k

ak+1
dnδ(S̄), φ(~r; t)

〉
.

¤

Corollary 2.1. The unique solution of the relation

{V (~r; t)}+ H[S]
N∑

k=0

Vk(~rS ; t)δ(k)(S̄) = 0 (2.18)

with Vk(~rS ; t) being smooth density functions is

{V (~r; t)} = 0 and Vk(~rS ; t) = 0, ∀k. (2.19)

Corollary 2.1 can be verified in virtue of the linear relation between the two sets of
distributions in Theorem 2.3.
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3. Distributional Derivatives of the Singular Components

3.1. Vector Operators Acting on Density Functions. The surficial gradient, diver-
gence and curl operators acting on arbitray scalar/vector density functions ψ(u1, u2; t)
and ~A(u1, u2; t) in Definition 2.1 are given by the following theorem, a proof of which can
be found in many respected textbooks (cf. [6],[7, Ch.12] as earliest accounts, where the
density functions are termed as “point functions”).

Theorem 3.1.

gradSψ =
û1

h1

∂ψ

∂u1
+

û2

h2

∂ψ

∂u2
(3.1)

divS
~A =

1
h1h2

[
∂

∂u1
(h2A1) +

∂

∂u2
(h1A2)

]
− 2ΩAn (3.2)

curlS ~A =
1

h1h2

[
∂

∂u1
(h2A2)− ∂

∂u2
(h1A1)

]
n̂ +

A2

α2
û1 − A1

α1
û2 + gradSAn × n̂. (3.3)

The metric coefficients h1,h2 of the curves are related to the principle radii of curvature
α1,2 through

1
α1

= − 1
h1

dh1

dn
,

1
α2

= − 1
h2

dh2

dn
(3.4)

and the first curvature of S satisfies

2Ω =
1
α1

+
1
α2

= −divS(n̂). (3.5)

Let us write the tangential component of ~A as ~At. Then for this component one also
has

divS
~At =

1
h1h2

[
∂

∂u1
(h2A1) +

∂

∂u2
(h1A2)

]
(3.6)

curlS ~At =
1

h1h2

[
∂

∂u1
(h2A2)− ∂

∂u2
(h1A1)

]
n̂ +

A2

R2
û1 − A1

R1
û2

= n̂ divS( ~At × n̂) +
A2

α2
û1 − A1

α1
û2

(3.7)

divS( ~At × n̂) = n̂ · curlS ~At (3.8)

curlS

(
n̂× ~At

)
= n̂ divS

~At +
A1

α2
û1 +

A2

α1
û2 (3.9)

divS
~At = n̂ · curlS

(
n̂× ~At

)
(3.10)

3.2. Distributional Derivatives of the Characteristic Function.

Lemma 3.1. On a regular surface S with boundary C̄ = ∂S the characteristic function
H[S] has the property

gradSH[S] = −v̂δ(C̄) (3.11)
where δ(C̄) represents the distribution in R2 with support on the boundary curve C̄ and is
defined by

〈
δ(C̄), φ

〉
=

∮

C̄
φ(~rC̄)dC̄. (3.12)

In (3.12) and the rest of the analysis the bar sign signifies the distributional derivatives
of density functions on a surface, a notation which was first introduced and used in [8].
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Proof. The surficial gradient in (3.1) is related to an adjoint surficial gradient

∇∗Sψ =
1

h1h2

[
∂

∂u1
(û1h2ψ) +

∂

∂u2
(û2h1ψ)

]
, ψ ∈ D′ (3.13)

through
gradSψ = ∇∗Sψ − n̂2Ωψ

or equivalently
〈gradSψ, φ〉 = 〈∇∗Sψ, φ〉 − 〈n̂2Ωψ, φ〉 (3.14)

and the distributional adjoint relation

〈∇∗Sψ, φ〉 = −〈ψ, gradSφ〉 . (3.15)

Combining (3.14) and (3.15) one gets

〈gradSψ, φ〉 = −〈ψ, gradSφ〉 − 〈n̂2Ωψ, φ〉 . (3.16)

Accordingly, for ψ = H[S] we have
〈
gradSH[S], φ

〉
= −〈H[S], gradSφ〉 − 〈n̂2ΩH[S], φ〉 . (3.17)

A direct substitution of the standard surface gradient theorem (cf. [9, p.278, eq.(402)])
∫

S
gradSφdS +

∫

S
n̂2ΩφdS =

∮

C̄=∂S
φv̂dC, (3.18)

which can be written in distributional form in R2 as

〈H[S], gradSφ〉+ 〈n̂2ΩH[S], φ〉 =
〈
v̂δ(C̄), φ

〉
, (3.19)

into (3.17) yields the desired result (3.11). ¤

Lemma 3.2. On an arbitrary regular surface one has the property
(
gradSH[S]

)
δ(S̄) = −v̂δ(C̄), (3.20)

where δ(C̄) represents the distribution in R3 with support on the boundary curve C̄.

Proof. C̄ in R2 corresponds to a cylinder S⊥ with cross section C̄ and unit normal v̂ in
R3. If we denote the distribution for this cylinder by δ(S⊥), C̄ in R3 can be considered as
the intersection of the surfaces S and S⊥; namely, δ(C̄) = δ(S)δ(S⊥), which also verifies
(3.20). ¤

3.3. Distributional Derivatives of Dirac Delta Singularities of Arbitrary Order.

Theorem 3.2. The surface distribution δ(k)(S̄), ∀k has zero local spatial partial deriva-
tives:

D

Dxi
δ(k)(S̄) = 0, i = 1, 2, 3 or gradSδ(k)(S̄) = ~0. (3.21)

Proof. One can directly employ (3.16) as
〈
gradSδ(k)(S̄), φ

〉
= −

〈
δ(k)(S̄), gradSφ

〉
−

〈
n̂2Ωδ(k)(S̄), φ

〉

= −(−1)k

〈
δ(S̄), gradS

(
d

dn
− 2Ω

)k

φ

〉
− (−1)k

〈
δ(S̄), n̂2Ω

(
d

dn
− 2Ω

)k

φ

〉
,
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which, upon substituting the surface gradient theorem for
(

d
dn − 2Ω

)k
φ on a closed surface;

namely, 〈
δ(S̄), gradS

(
d

dn
− 2Ω

)k

φ

〉
= −

〈
n̂2Ωδ(S̄),

(
d

dn
− 2Ω

)k

φ

〉
,

provides the desired result (3.21). For the particular case k = 0, an alternative proof for
the surface gradient theorem

〈
δ(S̄), gradSφ

〉
= − 〈

n̂2Ωδ(S̄), φ
〉

is available in ([2, Sec. 5.5, Theorem 2]). ¤

Theorem 3.3.
∂

∂xi
δ(k)(S̄) = niδ

(k+1)(S̄),∀k (3.22)

Proof.

0 =
〈

D
Dxi

δ(k)(S̄), φ
〉

= −
〈
δ(k)(S̄), Dφ

Dxi

〉
= −

〈
δ(k)(S̄),

(
∂

∂xi
− ni

d
dn

)
φ
〉

=
〈(

∂
∂xi

− ni
d
dn

)
δ(k)(S̄), φ

〉
=

〈
∂

∂xi
δ(k)(S̄)− niδ

(k+1)(S̄), φ
〉

¤

Corollary 3.1.
gradδ(k)(S̄) = n̂δ(k+1)(S̄), ∀k. (3.23)

Lemma 3.3. On an arbitrary regular surface with boundary C̄ = ∂S one has the property
(
gradSH[S]

)
δ(k)(S̄) = −v̂δ(k)

n (C̄), ∀k (3.24)

with boundary distributions of arbitrary order δ
(k)
n (C̄) = dk

dnk δ(C̄).

Corollary 3.2.

grad(VS(~rS ; t)H[S]δ(S̄)) = (gradSVS) H[S]δ(S̄) + n̂VSH[S]δ(1)(S̄)− v̂VSδ(C̄)

= (gradSVS + 2Ωn̂VS) H[S]δ(S̄) + n̂VSH[S]dnδ(S̄)− v̂VSδ(C̄)
(3.25)

div( ~AS(~rS ; t)H[S]δ(S̄)) =
(
divS

~AS

)
H[S]δ(S̄) + n̂ · ~ASH[S]δ(1)(S̄)− v̂ · ~ASδ(C̄)

=
(
divS

~AS + 2Ωn̂ · ~AS

)
H[S]δ(S̄) + n̂ · ~ASH[S]dnδ(S̄)− v̂ · ~ASδ(C̄)

= n̂ · curlS(n̂× ~AS)H[S]δ(S̄) + n̂ · ~ASH[S]dnδ(S̄) + ( ~AS × n̂) · λ̂δ(C̄)

(3.26)

curl( ~AS(~rS ; t)H[S]δ(S̄))

=
(
curlS ~AS

)
H[S]δ(S̄) + n̂× ~ASH[S]δ(1)(S̄)− v̂ × ~ASδ(C̄)

=
(
curlS ~AS + 2Ωn̂× ~AS

)
H[S]δ(S̄) + n̂× ~ASH[S]dnδ(S̄)− v̂ × ~ASδ(C̄

=
(
gradS( ~AS · n̂)× n̂ + n̂(n̂ · curlS ~AS) + gradS(n̂) · ( ~AS × n̂)

)
H[S]δ(S̄)

+ n̂× ~ASH[S]dnδ(S̄) +
(
(n̂ · ~AS)λ̂− (λ̂ · ~AS)n̂

)
δ(C̄)

(3.27)

where

gradS(n̂) =
û1

h1

∂n̂

∂u1
+

û2

h2

∂n̂

∂u2
= − 1

α1
û1û1 − 1

α2
û2û2.
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The validity of the results (3.25)-(3.27) can also be checked from the end results in [10,
eq.(8-10)] derived based on differential geometrical methods. The notational correspon-
dence between the two papers is as δ(S̄) = δS̄ , δ(C̄) = δ∂S̄ , λ̂ = l̂; and since a vector test
function ~w is employed in [10] as opposed to our scalar φ, we also have the equivalence
∇n̂(·)δS̄ = −dnδ(S̄) and ∇n̂(n̂·)δS̄ = −dnδ(S̄).

Corollary 3.3. A combination of (2.8) and (3.22) reads

∂

∂xi
dnδ(S̄) = ni2Ωδ(S̄) + nidnδ(S̄). (3.28)

The spatial derivatives of dk
nδ(S̄) were introduced for the first time in [3] in a closed form

utilizing mathematical induction method and “the fundamental magnitudes of arbitrary
order” of a surface, a concept which was introduced in the same paper. For an explicit
representation of these derivatives we provide the following theorem.

Theorem 3.4.

∂

∂xi
dk

nδ(S̄) = kΛid
k−1
n δ(S̄) + 2Ωnid

k
nδ(S̄) + nid

k+1
n δ(S̄), k ≥ 1 (3.29)

where we define

Λi =
D

Dxi
(−2Ω) . (3.30)

Proof. We insert (3.22) in (2.9) as

∂

∂xi
dk

nδ(S̄) =
k∑

m=0

(
k
m

)
∂

∂xi

[
(−2Ω)k−m δ(m)(S̄)

]

=
k∑

m=0

(
k
m

)[(
D

Dxi
(−2Ω)k−m

)
δ(m)(S̄) + (−2Ω)k−m niδ

(m+1)(S̄)
]

=
k∑

m=0

(
k
m

) [(
D

Dxi
(−2Ω)k−m

) m∑

r=0

(
m
r

)
(2Ω)m−r dr

nδ(S̄)

+ (−2Ω)k−m ni

m+1∑

r=0

(
m + 1

r

)
(2Ω)m−r+1 dr

nδ(S̄)

]

= Λ
k−1∑

m=0

m∑

r=0

(
k
m

)(
m
r

)
(k −m) (−2Ω)k−m−1 (2Ω)m−r dr

nδ(S̄)

+ ni

k∑

m=0

m+1∑

r=0

(
k
m

)(
m + 1

r

)
(−2Ω)k−m (2Ω)m−r+1 dr

nδ(S̄)

and change the order of summation to get
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∂

∂xi
dk

nδ(S̄) = Λi (−2Ω)k−1
k−1∑

r=0

dr
nδ(S̄) (2Ω)−r

k−1∑
m=r

(−1)m

(
k
m

)(
m
r

)
(k −m)

− ni (−2Ω)k+1 δ(S̄)
k∑

m=0

(−1)m

(
k
m

)

− ni (−2Ω)k+1
k+1∑

r=1

dr
nδ(S̄) (2Ω)−r

k∑

m=r−1

(−1)m

(
k
m

)(
m + 1

r

)

Incorporting the property
k∑

m=0
(−1)m

(
k
m

)
= 0 trivializes the second term at r.h.s.

and one gets
∂

∂xi
dk

nδ(S̄) = nid
k+1
n δ(S̄)

+ Λi (−2Ω)k−1
k−1∑

r=0

dr
nδ(S̄) (2Ω)−r

k−1∑
m=r

(−1)m

(
k
m

)(
m
r

)
(k −m)

− ni (−2Ω)k+1
k∑

r=1

dr
nδ(S̄) (2Ω)−r

k∑

m=r−1

(−1)m

(
k
m

) (
m + 1

r

)
(3.31)

On the other hand we have the easily verifiable binomial relations
k−1∑
m=r

(−1)m

(
k
m

)(
m
r

)
(k −m) =

{
0, r ≤ k − 2
(−1)k−1k, r = k − 1 ,

k∑

m=r−1

(−1)m

(
k
m

)(
m + 1

r

)
=

{
0, r ≤ k − 1
(−1)k, r = k

which, upon substitution into (3.31), yield the end result (3.29). ¤

Corollary 3.4.

grad
(
dk

nδ(S̄)
)

= k~Λdk−1
n δ(S̄) + 2Ωn̂dk

nδ(S̄) + n̂dk+1
n δ(S̄), k ≥ 1 (3.32)

where we define
~Λ = gradS (−2Ω) . (3.33)

In Table 1 we present the mentioned fundamental magnitudes of certain canonical sur-
faces.

Table 1. An illustration of the fundamental magnitudes of certain canon-
ical surfaces.

(u1, u2, n) Geometry δ(S̄) n̂ 2Ω ~Λ
(ϕ, z, ρ) cylinder ρ = ρ0 δ (ρ− ρ0) ρ̂ − 1

ρ0
~0

(θ, ϕ, r) sphere r = r0 δ (r − r0) r̂ − 2
r0

~0
(ϕ, r, θ) cone θ = θ0

1
r δ (θ − θ0) θ̂ − cos θ0

r sin θ0
− cos θ0

r2 sin θ0
r̂



214 TWMS J. APP. ENG. MATH. V.1, N.2, 2011

Lemma 3.4. On an arbitrary regular surface with boundary C̄ = ∂S one has the property
(
gradSH[S]

)
dk

nδ(S̄) = −v̂dk
nδ(C̄),∀k (3.34)

with boundary distributions of arbitrary order defined by
〈
dk

nδ(C̄), φ
〉

= (−1)k

〈
δ(C̄),

dkφ

dnk

〉
= (−1)k

∫ ∞

−∞

∫

C̄

dk

dnk
φ(~r; t)dC̄ dt,∀k (3.35)

Corollary 3.5.

grad
(
H[S]dk

nδ(S̄)
)

=− v̂dk
nδ(C̄)

+ H[S]
(
k~Λdk−1

n δ(S̄) + 2Ωn̂dk
nδ(S̄) + n̂dk+1

n δ(S̄)
)

, k ≥ 1.
(3.36)

The generalized derivatives of multilayers of arbitrary order were obtained in closed
form in [11]. In what follows we provide an explicit expression of the second order partial
derivatives of dk

nδ(S̄). Higher order partial derivatives can also be obtained in a straight-
forward manner by successive applications of the recursive relation (3.29).

Theorem 3.5.
∂2

∂xj∂xi
dnδ(S̄) = [Λij + 2Ω (Λinj + Λjni)] δ(S̄)

+ [(Λinj + Λjni) + 2Ω (µij + 2Ωninj)] dnδ(S̄)

+ (µij + 4Ωninj) d2
nδ(S̄) + ninjd

3
nδ(S̄)

(3.37)

∂2

∂xj∂xi
dk

nδ(S̄) = k(k − 1)ΛiΛjd
k−2
n δ(S̄) + k [Λij + 2Ω (Λinj + Λjni)] dk−1

n δ(S̄)
+ [k (Λinj + Λjni) + 2Ω (µij + 2Ωninj)] dk

nδ(S̄)
+ (µij + 4Ωninj) dk+1

n δ(S̄) + ninjd
k+2
n δ(S̄)

, k ≥ 2

(3.38)
where

Λij =
DΛi

Dxj
=

D2

DxjDxi
(−2Ω) , µij =

Dni

Dxj
(3.39)

The surface quantities µij , called the second fundamental forms of a surface in Cartesian
notation, were first introduced in [3].

Corollary 3.6. For i = j one has
∂2

∂x2
i
dnδ(S̄) = (Λii + 4ΩΛini) δ(S̄) +

[
2Λini + 2Ω

(
µii + 2Ωn2

i

)]
dnδ(S̄)

+
(
µii + 4Ωn2

i

)
d2

nδ(S̄) + n2
i d

3
nδ(S̄)

(3.40)

lap
(
dnδ(S̄)

)
=

(
divS

~Λ
)

δ(S̄) + 2Ωd2
nδ(S̄) + d3

nδ(S̄) (3.41)

∂2

∂x2
i

dk
nδ(S̄) = k(k − 1)Λ2

i d
k−2
n δ(S̄) + k (Λii + 4ΩΛini) dk−1

n δ(S̄)

+
[
2kΛini + 2Ω

(
µii + 2Ωn2

i

)]
dk

nδ(S̄) +
(
µii + 4Ωn2

i

)
dk+1

n δ(S̄)

+ n2
i d

k+2
n δ(S̄), k ≥ 2

(3.42)

lap
(
dk

nδ(S̄)
)

= k(k − 1)
∣∣∣~Λ

∣∣∣
2
dk−2

n δ(S̄) + k
(
divS

~Λ
)

dk−1
n δ(S̄)

+ 2Ωdk+1
n δ(S̄) + dk+2

n δ(S̄), k ≥ 2
(3.43)

where we have incorporated ~Λ · n̂ = 0 and lapS(−2Ω) = divSgradS(−2Ω) = divS
~Λ.
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4. Distributional Derivatives of the Regular Components

Theorem 4.1. The spatial derivatives of the regular components of scalar/vector distri-
butions {V (~r; t)},

{
~A(~r; t)

}
∈ E have the general form

∂

∂xi
{V (~r; t)} =

{
∂

∂xi
V (~r; t)

}
+ x̂i · n̂ ∆[V ]δ(S),

∂

∂xi

{
~A (~r; t)

}
=

{
∂

∂xi

~A (~r; t)
}

+ x̂i · n̂ ∆[ ~A]δ(S)
(4.1)

where

∆[V ] , V (~r+
S ; t)− V (~r−S ; t),∆[ ~A] , ~A(~r+

S ; t)− ~A(~r−S ; t). (4.2)

A proof is available in [2, Sec.5.5]. The smooth behaviors of ∆[V ] and ∆[ ~A] are
guaranteed in E.

Corollary 4.1. If {V (~r; t)},
{

~A(~r; t)
}
∈ E,

grad {V (~r; t)} = {gradV (~r; t)}+ n̂ ∆[V ]H[S]δ(S̄) (4.3)

div
{

~A (~r; t)
}

=
{

div ~A (~r; t)
}

+ n̂ ·∆[ ~A]H[S]δ(S̄) (4.4)

curl
{

~A (~r; t)
}

=
{

curl ~A (~r; t)
}

+ n̂×∆[ ~A]H[S]δ(S̄) (4.5)

The results obtained so far can serve to calculate the scalar and vector Laplacian oper-
ators in E as follows.

Theorem 4.2. If {V (~r; t)},
{

~A(~r; t)
}
∈ E,

lap {V (~r; t)} = {lapV (~r; t)}+
(

∆
[
dV

dn

]
− 2Ω∆[V ]

)
H[S]δ(S̄) + ∆[V ]H[S]δ(1)(S̄) (4.6)

lap
{

~A(~r; t)
}

=
{

lap ~A(~r; t)
}

+
[
n̂∆[div ~A]− n̂×∆[curl ~A] + gradS

(
n̂ ·∆[ ~A]

)
− curlS

(
n̂×∆[ ~A]

)]
H[S]δ(S̄)

+ ∆[ ~A]H[S]δ(1)(S̄)−
[
v̂

(
n̂ ·∆[ ~A]

)
+ n̂

(
v̂ ·∆[ ~A]

)]
δ(C̄)

(4.7)

(4.6) also holds with the end result [2, Sec.5.6, eq.(8)]. The action of vector operators
on arbitrary scalar/vector field quantities expressed by (2.5) is obtained as follows:

Corollary 4.2.

grad

(
{V (~r; t)}+ H[S]

N∑

k=0

Vk(~rS ; t)δ(k)(S̄)

)
=

{gradV (~r; t)}+ (n̂∆[V ] + gradSV0) H[S]δ(S̄)

+ H[S]
N∑

k=1

(
gradSVk + n̂Vk−1

)
δ(k)(S̄) + n̂VNH[S]δ(N+1)(S̄)− v̂

N∑

k=0

Vkδ
(k)
n (C̄)

(4.8)
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div

({
~A(~r; t)

}
+ H[S]

N∑

k=0

~Ak(~rS ; t)δ(k)(S̄)

)
=

{
div ~A(~r; t)

}

+
(
n̂ ·∆[ ~A] + divS

~A0

)
H[S]δ(S̄) + H[S]

N∑

k=1

(
divS

~Ak + n̂ · ~Ak−1

)
δ(k)(S̄)

+ n̂ · ~ANH[S]δ(N+1)(S̄)− v̂ ·
N∑

k=0

~Akδ
(k)
n (C̄)

(4.9)

curl

({
~A(~r; t)

}
+ H[S]

N∑

k=0

~Ak(~rS ; t)δ(k)(S̄)

)
=

{
curl ~A(~r; t)

}

+
(
n̂×∆[ ~A] + curlS ~A0

)
H[S]δ(S̄) + H[S]

N∑

k=1

(
curlS ~Ak + n̂× ~Ak−1

)
δ(k)(S̄)

+ n̂× ~ANH[S]δ(N+1)(S̄)− v̂ ×
N∑

k=0

~Akδ
(k)
n (C̄)

(4.10)

In virtue of (3.36), similar results for the field quantities expressed in terms of the other
set of distributions dk

nδ(S̄) can also be derived.

5. Boundary Relations in Presence of Second Order Singularities

For certain practical results to be employed in the distributional investigation of the
equations of mathematical physics including the Maxwell equations in Sec.6, we outline
the jump and compatibility relations (based on Theorem 2.4 and Corollary 2.1) for the
five basic field equations in Table 2 for two alternative sets of sources given by

Set1 : ~f =
{

~f
}

+ ~f0H[S]δ(S̄) + ~f1H[S]δ(1)(S̄) + ~α0δ(C̄),

g = {g}+ g0H[S]δ(S̄) + g1H[S]δ(1)(S̄) + β0δ(C̄)
(5.1)

Set2 : ~f =
{

~f
}

+ ~f0H[S]δ(S̄) + ~f1H[S]dnδ(S̄) + ~α0δ(C̄),

g = {g}+ g0H[S]δ(S̄) + g1H[S]dnδ(S̄) + β0δ(C̄)
(5.2)

In virtue of Theorem 2.1, the corresponding field quantities for both sets of sources have
the same general form

F = {F}+ F0H[S]δ(S̄), ~A =
{

~A
}

+ ~A0H[S]δ(S̄),

~B =
{

~B
}

+ ~B0H[S]δ(S̄), G = {G} , ~C =
{

~C
}

.
(5.3)

6. Some Applications in Electromagnetic Theory

The macroscopic electromagnetic phenomena of stationary media are governed by the
Maxwell equations

curl ~E(~r; t) +
∂

∂t
~B(~r; t) = ~0, curl ~H(~r; t)− ∂

∂t
~D(~r; t) = ~JC(~r; t) (6.1)

div ~D(~r; t) = ρf (~r; t), div ~B(~r; t) = 0 (6.2)
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Table 2. Boundary relations for fundamental field equations in presence
of second order singularities.

Field
Equation

Boundary Relations
for 1st Set of Sources

Boundary Relations
for 2nd Set of Sources

gradF = ~f n̂∆[F ] + gradSF0 = ~f0

n̂F0 = ~f1, ν̂F0 + ~α0|C̄ = 0
n̂∆[F ] + gradSF0 + 2Ωn̂F0 = ~f0

n̂F0 = ~f1, ν̂F0 + ~α0|C̄ = 0
div ~A = g n̂ ·∆[ ~A] + divS

~A0 = g0

n̂ · ~A0 = g1, v̂ · ~A0 + β0

∣∣∣
C̄

= 0
n̂ ·∆[ ~A] + divS

~A0 + 2Ωn̂ · ~A0 = g0

n̂ · ~A0 = g1, v̂ · ~A0 + β0

∣∣∣
C̄

= 0

curl ~B = ~f n̂×∆[ ~B] + curlS ~B0 = ~f0

n̂× ~B0 = ~f1, v̂ × ~B0 + ~α0

∣∣∣
C̄

= ~0
n̂×∆[ ~B] + curlS ~B0 + 2Ωn̂× ~B0 = ~f0

n̂× ~B0 = ~f1, v̂ × ~B0 + ~α0

∣∣∣
C̄

= ~0

lapG = g ∆
[

dG
dn

]− 2Ω∆[G] = g0,
∆[G] = g1,β0 = 0

∆
[

dG
dn

]
= g0,∆[G] = g1,β0 = 0

lap ~C = ~f n̂∆[div ~C]− n̂×∆[curl ~C]
+gradS

(
n̂ ·∆[~C]

)

−curlS

(
n̂×∆[~C]

)
= ~f0

n̂∆[div ~C]− n̂×∆[curl ~C]
+gradS

(
n̂ ·∆[~C]

)

−curlS

(
n̂×∆[~C]

)

+2Ω∆[~C] = ~f0,∆[~C] = ~f1,

v̂
(
n̂ ·∆[ ~A]

)
+ n̂

(
v̂ ·∆[ ~A]

)
+ ~α0

∣∣∣
C̄

= ~0

as well as the continuity equation

div ~JC(~r; t) +
∂

∂t
ρf (~r; t) = 0 (6.3)

and the Lorentz potentials described by

~B(~r; t) = curl ~A(~r; t), ~E(~r; t) = − ∂

∂t
~A(~r; t)− gradV (~r; t) (6.4)

Without losing generality, let us assume the ambient medium as free space where the
field equations are accompanied by the constitutive relations

~D(~r; t) = ε0
~E(~r; t), ~B(~r; t) = µ0

~H(~r; t) (6.5)

as well as the Lorentz gauge and the wave equations

div ~A(~r; t) + ε0µ0
∂

∂t
V (~r; t) = 0 (6.6)

(
lap− ε0µ0

∂2

∂t2

)
V (~r; t) = − (1/ε0) ρf (~r; t),

(
lap− ε0µ0

∂2

∂t2

)
~A(~r; t) = −µ0

~JC(~r; t).

(6.7)
The Poynting theorem in point form is given by

div ~P + ~E · ~Je
d + ~H · ~Jm

d + ~E · ~JC = 0 (6.8)

where
~P (~r; t) = ~E(~r; t)× ~H(~r; t) (6.9)

is the usual Poynting vector and

~Je
d(~r; t) =

∂

∂t
~D(~r; t), ~Jm

d (~r; t) =
∂

∂t
~B(~r; t) (6.10)
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stand for the electric and magnetic displacement current densities.

6.1. A Single Layer Supporting Dynamic Current. Let us assume the surface S
with enclosure C̄ supports first order sources with free charge and conduction current
density functions represented by

ρf (~r; t) = ρS(~rS ; t)H[S]δ(S̄), ~JC(~r; t) = ~JS (~rS ; t)H[S]δ(S̄). (6.11)

Then the distributional form of the continuity equation (6.3) reads

divS
~JS +

∂ρS

∂t
= 0 (6.12)

n̂ · ~JS = 0, v̂ · ~JS

∣∣∣
C̄

= 0. (6.13)

(6.12) describes the conservation of current flowing on the surface, while (6.13) signify
that the current cannot support a component flowing normal to the surface as well as its
v̂-component directed outward from the surface is zero on the boundary points.

The distributional form of the rest of the field equations yield the well known jump
conditions

n̂×∆[ ~E] = ~0, n̂ ·∆[ ~D] = ρS , n̂×∆[ ~H] = ~JS , n̂ ·∆[ ~B] = 0 (6.14)

∆[V ] = 0, ∆[ ~A] = ~0 (6.15)
The distributional form of Poynting’s theorem reads

−n̂ ·∆[~P ] = ~JS · ~E = ~JS ·
(
−∂ ~A

∂t
− gradV

)
(6.16)

which can be interpreted as “the total instantaneous electromagnetic power density (gen-
erated by external sources) entering into any point on the surface is converted to heat at
that point”.
Since the relation (6.8) does not involve a point type singularity, on an arbitrary point on
the surface one also has

lim
∆Σ→0

∮

∆Σ

{
~P (~r; t)

}
· d~Σ = 0 (6.17)

where ∆Σ signifies the enclosure of an infinitely small region ∆ϑ that shrinks onto an
arbitrary point on S. When the point is taken on C̄, the condition (6.17) is known as the
“edge condition” in electromagnetic theory, which addresses the asymptotic field behavior
at edge points of a single layer based on the principle of power conservation. The results
(6.16) and (6.17) can be visualized in Fig.2.

Figure 2. An illustration of the distributional interpretation of the Poynting theorem on
a single layer
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6.2. A Double Layer Supporting Dynamic Currents. A dynamic double layer cur-
rent source is as an isolated system of two identical surfaces S, Sh separated by a fixed
infinitesimal normal distance h in free space supporting nonuniform and opposite directed
surface current and charge densities − ~JS ,+ ~JSh

and −ρS ,+ρSh
, respectively (see Fig.3).

Figure 3. A Double Layer Current Configuration

While the volume charge and conduction current densities of the actual physical system
are written as

ρf (~r) = −ρSH[S]δ (~r − ~rS) + ρSh
H[Sh]δ (~r − (~rS + hn̂)) , ~JC(~r)

= − ~JSδ (~r − ~rS) + ~JSh
δ (~r − (~rS + hn̂)) ,

(6.18)

the hypothetical double layer source is described by multiplying (6.18) by h/h and taking
the limit as ρS , ρSh

→∞,JS , JSh
→∞ and h → 0 to get

ρf (~r; t) = −~PS(~rS ; t)H[S] δ(1)(S̄), ~JC(~r; t) = −~CS(~rS ; t)H[S] δ(1)(S̄) (6.19)

with
~PS(~rS ; t) = PS(~rS ; t) n̂ (6.20)

and the limits
~CS(~rS ; t) = lim

Js→∞
h→0

~JS (~rS ; t)h, PS(~rS ; t) = lim
ρs→∞
h→0

ρS(~rS ; t)h (6.21)

describing the dipole moment densities are assumed to remain finite. Such a mathematical
idealization is only suitable for an investigation of far field patterns and bound to corrupt
when an observer approaches close enough to the system. Therefore the distributional
investigation of the field equations should not be expected to demonstrate the actual
physical picture on such systems in general.

Based on Theorem 2.1 the electromagnetic fields on the source may possess first order
singular components[

~E(~r; t)
]
S

= ~E0(~rS ; t) H[S] δ(S̄),
[
~D(~r; t)

]
S

= ~D0(~rS ; t) H[S] δ(S̄) (6.22)
[
~H(~r; t)

]
S

= ~H0(~rS ; t) H[S] δ(S̄),
[
~B(~r; t)

]
S

= ~B0(~rS ; t) H[S] δ(S̄) (6.23)

with
~D0 = ε0

~E0, ~B0 = µ0
~H0 (6.24)

while
[V (~r; t)]S = 0,

[
~A(~r; t)

]
S

= ~0. (6.25)

The distributional investigation of the field equations yields the jump and compatibility
relations

n̂×∆[ ~E] = −curlS ~E0 − ∂ ~B0

∂t
, n̂× ~E0 = ~0, v̂ × ~E0

∣∣∣
C̄

= ~0 (6.26)
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n̂×∆[ ~H] = −curlS ~H0 +
∂ ~D0

∂t
, n̂× ~H0 = ~0, v̂ × ~H0

∣∣∣
C̄

= ~0 (6.27)

n̂ ·∆[ ~D] = −divS
~D0, n̂ · ~D0 = −PS , v̂ · ~D0

∣∣∣
C̄

= 0 (6.28)

n̂ ·∆[ ~B] = −divS
~B0, n̂ · ~B0 = 0, v̂ · ~B0

∣∣∣
C̄

= 0 (6.29)

divS
~CS +

∂PS

∂t
= 0, n̂ · ~CS = 0, v̂ · ~CS

∣∣∣
C̄

= 0 (6.30)

∆
[
dV

dn

]
− 2Ω∆[V ] = 0, ∆[V ] = PS/ε0 (6.31)

n̂×∆[ ~A] = ~B0, n̂ ·∆[ ~A] = 0 (6.32)

∆[ ~A] = µ0
~CS , n̂ ·∆[ ~A]

∣∣∣
C̄

= 0, v̂ ·∆[ ~A]
∣∣∣
C̄

= 0 (6.33)

from which the density (aka contact) fields are obtained as

~E0 = −~PS

/
ε
0
, ~D0 = − ~PS , ~H0 = n̂× ~CS , ~B0 = µ0n̂× ~CS (6.34)

while they vanish on the boundary:

~E0

∣∣∣
C̄

= ~0, ~D0

∣∣∣
C̄

= ~0, ~H0

∣∣∣
C̄

= ~0, ~B0

∣∣∣
C̄

= ~0. (6.35)

Next we substitute the density fields (6.34) into the jump relations to reach to their
resultant forms

n̂×∆[ ~E] = − 1
ε0

curlS ~PS − µ0n̂× ∂ ~CS

∂t
=

1
ε0

(gradSPS)× n̂− µ0n̂× ∂ ~CS

∂t
(6.36)

n̂ ·∆[ ~D] = −2ΩPS (6.37)

n̂×∆[ ~H] = curlS

(
~CS × n̂

)
− ∂ ~PS

∂t
= n̂ · gradS

~CS + ~CS (divSn̂)

− ~CS · gradSn̂− n̂
(
divS

~CS

)
− ∂ ~PS

∂t

= −2Ω~CS − ~CS · gradSn̂

(6.38)

n̂ ·∆[ ~B] = µ0 divS

(
~CS × n̂

)
= µ0 n̂ · curlS ~CS . (6.39)

Applying partial time differentiation in (6.36) and incorporating (6.30), the end relation

n̂×∆

[
∂ ~E

∂t

]
= − 1

ε0

(
gradSdivS

~CS

)
× n̂− µ0n̂× ∂2 ~CS

∂t2

can be verified with [12, (A.37)] for monochromatic case ∂
∂t → jω.
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7. Conclusion

The present work is a tutorial review of the theory of generalized derivatives of surface
distributions of arbitrary order in a Schwartz-Sobolev space setting based on the pioneer-
ing works of Estrada and Kanwal through 1980’s on the propagation of wavefronts and
multilayers. The essential contributions of the present investigation to literature can be
considered as Theorem 3.4, Theorem 3.5, Corollary 3.6 and equations (4.7)-(4.10) by which
we introduce an explicit representation of the first and second distributional derivatives
of multilayers as well as an extension of the available results for vector operators from
closed to open surfaces featuring boundary distributions of arbitrary order. Our results
also conform with those obtained by Betounes [10] using distributional tensor analysis for
the special case of first order boundary distributions including Corollary 3.2, Table 2 as
well as the boundary relations on the enclosure of a double layer. While the applications
to single and double layers in Sec.6 utilize only certain of the analytical tools devised in the
manuscript, it is expected that these tools find important applications in many branches
of mathematical physics.
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Dr. Polat’s research interests include analytical, asymptotic and computa-
tional methods in electromagnetic theory (http://burakpolat.trakya.edu.tr).


