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ON THE AXIOMATIC STRUCTURE OF HERTZIAN

ELECTRODYNAMICS

B. POLAT † §

Abstract. The mathematical foundation, axiomatic structure and principles of Hertzian
Electrodynamics for moving bodies are reviewed. The feature of the present investigation
is the introduction of a commutative property of the comoving time derivative operator
which provides the Hertzian wave equations for material bodies in rotational motion.
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1. Introduction

The present work is an attempt to review and extend certain aspects of the mathematical
foundation, axiomatic structure and principles of the classical electrodynamic theory of
moving bodies, which is established in literature as Hertzian Electrodynamics (HE).

Following the postulation of electromagnetic field equations of stationary media by
Maxwell [1] in 1865, based on the teaching of his mentor Helmholtz, Hertz has introduced
his celebrated differential field equations of moving media in 1890 [2]. As an exception-
ally gifted professor of mechanics and electromagnetics and the genious experimentalist
of his time (cf.[3]-[5]), Hertz obtained his field equations rigorously from the (differen-
tial) Maxwell equations of stationary media by a direct incorporation of the convective
derivative operator, which is essentially a feature of the well established Material Frame
Indifference Principle1 (MFIP) from continuum mechanics. However, his representation
of field equations of moving media was suffering from the widely accepted different in-
terpretations of matter and aether velocities around the time and Hertz never found the
opportunity to correct and improve them theoretically any further due to a jaw infection
which kept him from studying effectively and eventually led to his death in 1894 at age 36.
On the other hand, Heaviside had been working on the same topic separately since 1885
and it has been him who developed Hertz’s equations into the form that is used ever since

† Electrical and Electronics Engineering Department, Faculty of Engineering and Architecture,
Trakya University, Edirne Turkey,
e-mail: burakpolat@trakya.edu.tr

§ Manuscript received 11.11.2011.
TWMS Journal of Applied and Engineering Mathematics Vol.2 No.1 c⃝ Işık University, Department
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1MFIP and the debates around its alternative interpretations and correct mathematical formulations
throughout the history of continuum mechanics have been reviewed comprehensively in a recent treatise by
Frewer [9]. The common motive behind alternative applications of MFIP is that “the structural form and
physical content of any law of continuum physics when subject to arbitrary coordinate transformations
do not depend on any mathematical quantity which defines the geometrical structure of the underlying
space-time manifold”.
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1893 by replacing the convective derivative with the comoving time derivative, correctly
resolving the matter vs. aether velocity conflict and representing the field equations in
modern vector algebraic notation in his treatise [6]. Hertz is known to have remarked
(cf.[7]) that the priority in the derivation of the classical field equations of moving media
actually belongs to Heaviside.

On the other hand, following the interferometry experiments of Fizeau, Mascart, Michel-
son and Morley in the period 1850-1887, alternative descriptions of electrodynamics of
moving bodies were being shaped mainly in the works of Voigt, Larmor, Cohn, Lorentz,
Wiechert and Poincaré which eventually led to the Special Relativity Theory (SRT) of
Einstein [8] in 1905.2 With the huge impact of SRT, the traditional concepts “general
invariance”, “frame indifference”, “Newtonian space time”, “Euclidean transformations”
of classical continuum physics have been substituted with “general covariance”, “form in-
variance”, “Minkowski space-time” and “Lorentz transformations”, whose reflection onto
classical electromagnetism was first sketched with the so called Maxwell-Minkowski Elec-
trodynamics (MME) in 1908 [12]. Since the Lorentz transformations cannot be generalized
directly for nonuniform velocities while keeping the Maxwell Equations form invariant,
MME was restricted to uniform velocities3 and the early relativistic formulations of elec-
trodynamics of bodies with arbitrary velocities had to wait until Einstein introduced the
principle of general space-time covariance in 1916 [13] in the context of General Relativ-
ity Theory (GRT), which asserts that physical laws are covariant not only under Lorentz
transformations but also under arbitrary space-time transformations. Following the wide
acceptance of SRT and GRT as experimental facts, the scientific efforts in electrodynamics
of moving bodies were mostly concentrated on developing covariant theories (cf.[14]-[22]).

It is obvious that frame indifferent and form invariant field theories belong to two
different worldviews based on the reason that Lorentz transformations are not covering
generalizations of Galilean transformations conceptually4. They incidate different formu-
las and numerical results for any given physical mechanism and therefore they cannot be
valid simultaneously. However, it should be seen that the rise of SRT was not related to
a disproof of the Heaviside version5 of frame indifferent Hertz equations. The argument
in the Introduction part of the 1905 paper [8] regarding an asymmetry in electromagnetic
induction between a magnet and a conductor, which also served as the motivation of in-
troducing SRT, was only addressing a shortcoming of Maxwell equations, which is directly
removed when one considers the material frame indifferent Hertz equations. Based on a
letter6 of Einstein to his lover Mileva Maric in 1899 ([10], p.15) in which he expresses his

2We refer the interested reader to [10] for a concise history of this period with proper references.
3Various heuristic approaches - such as the “instantaneous rest frame” hypothesis of Van Bladel [20]

- have been developed in literature to generalize the field equations of MME for nonuniform velocities to
predict the results of scattering problems without involving GRT.

4The mathematical fact that Lorentz transformations do not exactly coincide with Galilean transfor-
mations on a first order approximation is sometimes overlooked in literature. We refer the reader to [29]
for a detailed examination of this issue.

5While the volumes of works by Heaviside summarizing his contributions to applied mathematics and
electric science and technology were not properly recognized and grasped by his contemporaries (cf.[33])due
to their high scientific level and language, it is a big disappointment to observe that the situation has
continued till date on many occasions where his corrected form of Hertz equations as implemented in all
branches of electrical technology for over a century are still “reinvented” and even authenticity may be
claimed inattentively by certain authors outside electrical engineering community.

6In that letter Einstein criticizes the paper [11] for two specific reasons: the aether assumption (rejected
based on the interpretations of the famous interferometry experiments around the time), and (the intuition)
that the actual equations should be possible to be presented in a simpler way! However, neither of these
critics can be addressed at Heaviside’s 1893 version of improved HE.
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conviction on the invalidity of Hertz’s theories of moving bodies presented in [11], we infer
that he was either unaware of Heaviside’s 1893 version of improved HE or preferred to
ignore frame indifferent formulations categorically while preparing his 1905 paper.

While frame indifferent and form invariant electromagnetic field theories, as two al-
ternative worldviews and mathematical formulations in describing physical phenomena,
were meant to be equally respected on a theoretical ground, 20th century has experienced
an ideological consensus in adopting form invariance as the mainstream physics, where
theoretical works that contradict the accepted “physical facts” are largely avoided by
“respected” journals and contrary experimental evidences are disregarded. This under-
standing is still dominant since “dissident works” –even today– are accepted only by a
few indexed journals and rather heavily by nonindexed but openminded ones as Galilean
Electrodynamics and Apeiron7.

The sole purpose of the paper is to revive interest in the Heaviside version of frame
indifferent Hertz equations. While we are not interested in questioning the logical consis-
tency, mathematical correctness or outlining the continual critism against SRT, GRT or
associated covariant theories in literature in the first place, still some statements should
be done in defense of HE. As a first, considering the never ending discussions till date
on the correct and accurate measurements and interpretations of interferometry and GPS
experiments in scientific communities regarding the aether drift and the constancy of the
speed of light, the declared results of any experiment, by themselves, cannot be accepted
as a disproof of HE, and a proof of SRT and GRT (or opposite) until sufficiently accurate
and objective experimental set ups that both sides would consent on the distinctive abil-
ity of their results are established collectively. It should be reminded that the result of a
physical experiment is usually interpreted as a proof by both opposite claims in literature.
Regarding a comparison of theoretical aspects, it should be stated that the followers of
SRT could actually never manage to present a fully developed (and nonheuristic) alter-
native theory8 with the same analytical capabilities as HE since this requires relativistic
versions of the classical convective derivative and transport theorems in the first place.
Secondly, the application of the principle of general space-time covariance as an alterna-
tive to MFIP in practice requires an extensive background in tensor algebra, group theory,
projective geometry and so forth with unavoidable sophistication even in the most basic
applications9 and puzzling concepts and interpretations of time and clock synchroniza-
tion as opposed to the sound, practical and effective analytical tools of HE adapted from
classical continuum mechanics which cannot be avoided or replaced with alternatives in
undergraduate education.

Our present investigation starts with a short review of the basic analytical tools from
kinematics of deformable bodies, which can be met in many textbooks on the topic (cf.[25]-
[28]), and their incorporation in certain purely mathematical conservation relations in
Sections 2 and 3. A detailed exposition of the comoving time derivative operator and

7In that regard the works by Phipps as mostly collected in his books ([23],[24]) serve as very critical
eye-opener references in defense of HE and have also stimulated the present author enormously.

8It is worthy of commendation that after a century following the ”miracle year” 1905, physicists are still
paying huge effort to develop relativistic versions of Ampere’s and Faraday’s induction laws (cf [30],[31]),
while they are trivial features of HE. In that context if a relativistic theory that is exempt from the
deficiencies of SRT and at the same time applies for arbitrary velocity fields is really required, in the
author’s opinion the most practical and reasonable way is directly sketching a covering theory of HE as
deviced in [24, 32].

9As oppposed to the sophistication in the applications of SRT and GRT, the practical solutions of a
group of 2-D canonical scattering problems in the context of HE are demonstrated in the sequel paper [45].
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its various differential and commutative properties are carried out in Appendix A for flu-
ency. Hertz equations are derived in a straightforward manner in Section 5 by identifying
the purely mathematic fields and conservation relations of Section 3 with electromagnetic
field quantities and laws in virtue of MFIP. Section 6 is devoted to the demonstration of
Hertzian wave equations and Lorentz potentials in simple media for the special cases of
translational and rotational motions utilizing the commutative properties of the comoving
time derivative operator. At this point the specific contribution of the present investiga-
tion to literature can be considered as the introduction of commutative properties of the
comoving time derivative operator in case of rotational motion (Theorems A.3 and A.4),
which are employed in the derivation of the corresponding Hertzian wave equations. We
finally remark on the invariance of wavenumber and reduced field equations for monochro-
matic waves in Section 7. Throughout the text Rn represents n-dimensional Euclidean
space.

2. The Basics of Motion of Material Bodies

Let us consider a material body filling a domain whose material points (or matter par-
ticles) are in arbitrary motion characterized by instantaneous velocity vector field v⃗(r⃗; t),
as observed in Cartesian reference configuration Ox1x2x3t as depicted in Fig.1.

Figure 1. A material body in arbitrary motion with instantaneous velocity

Axiom of Continuity: Let the general coordinate transformations between (primed) cur-
rent and (unprimed) referential coordinates of the points constituting the material medium
be given by the sets

x′i = f ′
i(xj ; t), xi = fi(x

′
j ; t) , i, j = 1, 2, 3, (2.1)

where the maps fi, f
′
i ∈ C2(R3) are assumed bijective, not necessarily linear and provide

an admissible change of coordinates locally in the moving material medium.
Then the Cartesian components of velocity and acceleration fields are expressed by vi =

∂
∂tfi(x

′
j ; t), a

i = ∂2

∂t2
fi(x

′
j ; t); the deformation gradient is defined by ¯̄F (r⃗′; t) = grad′r⃗ =

Fij x̂i ⊗ x̂′j with Fij = ∂xi
∂x′

j
in dyadic notation, and under Axiom of Continuity it has an

inverse ¯̄F−1(r⃗; t) = gradr⃗′ = F−1
ij x̂′i ⊗ x̂j with F−1

ij =
∂x′

i
∂xj

and a nonzero Jacobian J =

det
[
∂xi
∂x′

j

]
. Then the differential arc, surface and volume elements in current configuration

are mapped into reference configuration as

dxi =
∂xi
∂x′j

dx′j or dc⃗ = ¯̄F ·dc⃗′;nidS = J
∂x′j
∂xi

n′
jdS

′ or dS⃗ = JdS⃗′·
(
¯̄F−1

)T
; dϑ = J dϑ′ (2.2)
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In (2.2) and the rest of the paper the superscript T represents the transpose of the dyad
when written in matrix form. These standard kinematical tools also yield the well known
Reynolds and Helmholtz transport theorems

d

dt

∫
ϑ
φdϑ =

∫
ϑ

♢φ

♢t
dϑ,

d

dt

∫
S
A⃗ · dS⃗ =

∫
S

♢A⃗

♢t
· dS⃗ (2.3)

for sufficiently smooth scalar and vector fields. In (2.3) ♢
♢trepresents the comoving time

derivative operator which is expressed for scalar and vector fields by

♢φ

♢t
=

∂φ

∂t
+v⃗ · gradφ+ φ divv⃗ =

Dφ

Dt
+ φdivv⃗ =

∂φ

∂t
+ div (v⃗φ) (2.4)

♢A⃗

♢t
=

∂A⃗

∂t
+div

(
v⃗A⃗
)
−A⃗·grad v⃗ =

DA⃗

Dt
−A⃗·grad v⃗+A⃗ div v⃗ =

∂A⃗

∂t
+v⃗divA⃗−curl

(
v⃗ × A⃗

)
(2.5)

with D
Dt =

∂
∂t+v⃗ ·grad standing for the standard convective derivative operator. The limit

description of the comoving time derivative operator in (2.4) and (2.5) and its various
differential and commutative properties employed in Section 6 are provided in Appendix
A.

In the rest of the paper we will adopt the terms “E-frame” and “L-frame” as abbre-
viations of Eulerian and Lagrangian frames from fluid mechanics for denoting reference
(spatial) and current (material) configurations for brevity.

3. Conservation Relations

Let arbitrary regular open surface and volume regions be denoted by S′, ϑ′ and S, ϑ
in L- and E-frames, respectively. Next, let us describe arbitrary (smooth enough) scalar

and vector valued fields E⃗′(r⃗′; t), B⃗′(r⃗′; t), H⃗ ′(r⃗′; t), D⃗′(r⃗′; t), J⃗ ′
C(r⃗

′; t), ρ′f (r⃗
′; t) which are

assumed purely mathematical and satisfy the set of integral relations∮
∂S′

E⃗′ · dc⃗′ + d

dt

∫
S′
B⃗′ · dS⃗′ = 0⃗,

∮
∂S′

H⃗ ′ · dc⃗′ + d

dt

∫
S′
D⃗′ · dS⃗′ =

∫
S′
J⃗ ′
C · dS⃗′ (3.1a,b)∮

∂ϑ′
D⃗′ · dS⃗′ =

∫
ϑ′
ρ′f dϑ

′,

∮
∂ϑ′

B⃗′ · dS⃗′ = 0 (3.1c,d)∮
∂ϑ′

J⃗ ′
C · dS⃗′ +

d

dt

∫
ϑ′
ρ′fdϑ

′ = 0, (3.2)

or alternatively10, the differential set

curl′E⃗′(r⃗′; t) +
∂

∂t
B⃗′(r⃗′; t) = 0⃗, curl′H⃗ ′(r⃗′; t)− ∂

∂t
D⃗′(r⃗′; t) = J⃗ ′

C(r⃗
′; t) (3.3a,b)

div′D⃗′(r⃗′; t) = ρ′f (r⃗
′; t), div′B⃗′(r⃗′; t) = 0 (3.3c,d)

div′J⃗ ′
C(r⃗

′; t) +
∂

∂t
ρ′f (r⃗

′; t) = 0 (3.4)

Let us assume the map of (3.1)-(3.4) into E-frame under (2.1) are given by∮
∂S

E⃗ · dc⃗+ d

dt

∫
S
B⃗ · dS⃗ = 0⃗,

∮
∂S

H⃗ · dc⃗− d

dt

∫
S
D⃗ · dS⃗ =

∫
S
J⃗C · dS⃗ (3.5a,b)∮

∂ϑ
D⃗ · dS⃗ =

∫
ϑ
ρf dϑ,

∮
∂ϑ

B⃗ · dS⃗ = 0 (3.5c,d)

10A proof for formal equivalences between such differential and integral representations of the same
relation can be seen in many basic textbooks such as [28], p.42 and [34], p.3.
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∂ϑ

J⃗C · dS⃗ +
d

dt

∫
ϑ
ρf dϑ = 0 (3.6)

and

curlE⃗(r⃗; t) +
♢
♢t

B⃗(r⃗; t) = 0⃗, curlH⃗(r⃗; t)− ♢
♢t

D⃗(r⃗; t) = J⃗C(r⃗; t) (3.7a,b)

divD⃗(r⃗; t) = ρf (r⃗; t), divB⃗(r⃗; t) = 0 (3.7c,d)

divJ⃗C(r⃗; t) +
♢
♢t

ρf (r⃗; t) = 0 (3.8)

via Reynolds and Helmholtz transport theorems, while the fields in L-frame are mapped

into E-frame as ρf (r⃗; t), E⃗(r⃗; t), B⃗(r⃗; t), H⃗(r⃗; t), D⃗(r⃗; t), J⃗C(r⃗; t) under the “conservation
relations” ∮

∂S′
E⃗′ · dc⃗′ =

∮
∂S

E⃗ · dc⃗,
∮
∂S′

H⃗ ′ · dc⃗′ =
∮
∂S

H⃗ · dc⃗ (3.9a,b)∫
S′
B⃗′ · dS⃗′ =

∫
S
B⃗ · dS⃗,

∫
S′
D⃗′ · dS⃗′ =

∫
S
D⃗ · dS⃗ (3.9c,d)∫

S′
J⃗ ′
C · dS⃗′ =

∫
S
J⃗C · dS⃗ ,

∫
ϑ′
ρ′fdϑ

′ =

∫
ϑ
ρf dϑ (3.9e,f)

In virtue of (2.2) the conservation relations require the field transformations

E⃗′ = E⃗ · ¯̄F, H⃗ ′ = H⃗ · ¯̄F, B⃗′ = J ¯̄F−1 · B⃗, D⃗′ = J ¯̄F−1 · D⃗, J⃗ ′
C = J ¯̄F−1 · J⃗C , ρ′f = Jρf . (3.10)

Regarding the map of the spatial and temporal derivatives of the fields one may invoke∫
S′
curl′E⃗′ · dS⃗′ =

∫
S
curlE⃗ · dS⃗,

∫
S′
curl′H⃗ ′ · dS⃗′ =

∫
S
curlH⃗ · dS⃗ (3.11a,b)∫

S′

∂B⃗′

∂t
· dS⃗′ =

∫
S

♢B⃗

♢t
· dS⃗,

∫
S′

∂D⃗′

∂t
· dS⃗′ =

∫
S

♢D⃗

♢t
· dS⃗ (3.11c,d)∫

ϑ′
div′D⃗′dϑ′ =

∫
ϑ
divD⃗ dϑ,

∫
ϑ′
div′B⃗′ dϑ′ =

∫
ϑ
divB⃗ dϑ (3.11e,f)∫

ϑ′
div′J⃗ ′

C dϑ′ =

∫
ϑ
divJ⃗C dϑ,

∫
ϑ′

∂ρ′f
∂t

dϑ′ =

∫
ϑ

♢ρf
♢t

dϑ (3.11g,h)

which necessiate

curl′E⃗′ = J ¯̄F−1 · curlE⃗, curl′H⃗ ′ = J ¯̄F−1 · curlH⃗ (3.12a,b)

div′D⃗′ = JdivD⃗, div′B⃗′ = JdivB⃗ (3.12c,d)

∂B⃗′

∂t
= J ¯̄F−1 · ♢B⃗

♢t
,
∂D⃗′

∂t
= J ¯̄F−1 · ♢D⃗

♢t
(3.12e,f)

div′J⃗ ′
C = JdivJ⃗C ,

∂ρ′f
∂t

= J
♢ρf
♢t

(3.12g,h)

Equations (3.7a,b) can also be written in the alternative form

curl
(
E⃗ − v⃗ × B⃗

)
+

∂

∂t
B⃗ = 0⃗, curl

(
H⃗ + v⃗ × D⃗

)
− ∂

∂t
D⃗ = J⃗f (3.13a,b)
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upon inserting

♢
♢t

D⃗ =
∂

∂t
D⃗ + v⃗divD⃗ − curl

(
v⃗ × D⃗

)
=

∂

∂t
D⃗ + v⃗ρf − curl

(
v⃗ × D⃗

)
=

∂

∂t
D⃗ + J⃗V − curl

(
v⃗ × D⃗

) (3.14)

♢
♢t

B⃗ =
∂

∂t
B⃗ + v⃗divB⃗ − curl

(
v⃗ × B⃗

)
=

∂

∂t
B⃗ − curl

(
v⃗ × B⃗

)
(3.15)

where we describe

J⃗V = v⃗ρf , J⃗f = J⃗C+v⃗ρf . (3.16)

The relations (3.9a,b) require∮
∂S′

E⃗′ · dc⃗′ =
∮
∂S

E⃗ · dc⃗ = − d

dt

∫
S
B⃗ · dS⃗

= −
∫
S

♢
♢t

B⃗ · dS⃗ = −
∫
S

∂

∂t
B⃗ · dS⃗ +

∮
∂S

(
v⃗ × B⃗

)
· dc⃗

(3.17a)

∮
∂S′

H⃗ ′ · dc⃗′ =
∮
∂S

H⃗ · dc⃗ = d

dt

∫
S
D⃗ · dS⃗ +

∫
S
J⃗C · dS⃗ =

∫
S

♢
♢t

D⃗ · dS⃗ +

∫
S
J⃗C · dS⃗

=

∫
S

∂

∂t
D⃗ · dS⃗ +

∫
S

(
J⃗C+v⃗ρf

)
· dS⃗ −

∮
∂S

(
v⃗ × D⃗

)
· dc⃗

=

∫
S

∂

∂t
D⃗ · dS⃗ +

∫
S
J⃗f · dS⃗ −

∮
∂S

(
v⃗ × D⃗

)
· dc⃗

(3.17b)

In the special case of Euclidean (aka observer) transformations for rigid bodies in the
form

r⃗′ = c⃗(t) + ¯̄Q(t) · r⃗, r⃗ = ¯̄QT (t) ·
[
r⃗′ − c⃗(t)

]
(3.18)

where ¯̄Q is an arbitrary time dependent tensor characterizing rotation (det
[
¯̄Qij

]
= 1,

¯̄Q−1 = ¯̄QT ) and c⃗(t) represents the translation vector c⃗(t). The orthonormal Cartesian

bases r̂ = (x̂1, x̂2, x̂3) and r̂′ = (x̂′1, x̂
′
2, x̂

′
3) are transformed as r̂′ = ¯̄Q · r̂, r̂ = ¯̄QT · r̂′ and

one has div v⃗ = 0, ¯̄F = ¯̄Q−1, J = 1, J ¯̄F−1 = ¯̄Q, which read

E⃗′ = ¯̄Q · E⃗, H⃗ ′ = ¯̄Q · H⃗, D⃗′ = ¯̄Q · D⃗, B⃗′ = ¯̄Q · B⃗, J⃗ ′
C = ¯̄Q · J⃗C , ρ′f = ρf (3.19a)

curl′E⃗′ = ¯̄Q · curlE⃗, curl′H⃗ ′ = ¯̄Q · curlH⃗, div′D⃗′ = divD⃗, div′B⃗′ = divB⃗ (3.19b)

∂B⃗′

∂t
= ¯̄Q · ♢B⃗

♢t
,
∂D⃗′

∂t
= ¯̄Q · ♢D⃗

♢t
, div′J⃗ ′

C = divJ⃗C ,
∂ρ′f
∂t

=
♢ρf
♢t

(3.19c)

Certain of the important results employed in the present paper for the two special cases
of Euclidean motion are depicted in Table 1.
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Table 1. Certain analytical results for two special types of Euclidean motion.

Type of
Motion

Translational Rotational

Coordinate
Maps

xi = x′i +
∫ t
−∞ vi(ξ) dξ

[
x′1
x′2

]
=

[
cosϕ(t) sinϕ(t)
−sinϕ(t) cosϕ(t)

] [
x1
x2

]
x′3 = x3, ϕ(t) =

∫ t
−∞ ω(ξ)dξ

Velocity v⃗(r⃗; t) = v⃗(t) v⃗(ρ, ϕ, z; t) = ω(t)ρ ϕ̂(t),

ϕ̂(t) = −x̂1sinϕ(t) + x̂2cosϕ(t)

Acceleration a⃗ = dv⃗
dt a⃗ = −ω2(t)ρρ̂(t) + dω

dt ρϕ̂(t),
ρ̂(t) = x̂1cosϕ(t) + x̂2sinϕ(t)

Differential
Properties
of Velocity

divv⃗ = 0
curlv⃗ = 0⃗

divv⃗ = 0
curlv⃗ = 2ω(t)ẑ

Velocity
Gradient

¯̄L = gradv⃗ = ¯̄0 ¯̄L = gradv⃗ = ω(t)
(
ρ̂(t)ϕ̂(t)− ϕ̂(t)ρ̂(t)

)
Deformation
Gradient

¯̄F =
[
∂xi
∂x′

j

]
=

[
1 0
0 1

]
= ¯̄I ¯̄F =

[
∂xi
∂x′

j

]
=

[
cosϕ(t) − sinϕ(t)
sinϕ(t) cosϕ(t)

]
= ¯̄QT

Jacobian of
Deformation
Gradient

J = det
[
∂xi
∂x′

j

]
= 1 J = det

[
∂xi
∂x′

j

]
= 1

Convective
Derivative

D
Dt =

∂
∂t + v⃗(t) · grad D

Dt =
∂
∂t + ω(t) ∂

∂ϕ

Comoving
Time
Derivatives

♢
♢tf = D

Dtf
♢
♢tA⃗ = D

DtA⃗

♢
♢tf = D

Dtf
♢
♢tA⃗ =

(
D
Dt − ω(t)ẑ×

)
A⃗

Certain
Commutative
Properties

div
(

♢
♢tA⃗

)
= ♢

♢t

(
divA⃗

)
♢
♢t

(
gradA⃗

)
= grad

(
♢
♢tA⃗

)
= grad

(
D
DtA⃗

)
♢
♢t

(
curlA⃗

)
= curl

(
♢
♢tA⃗

)
= curl

(
D
DtA⃗

)

div
(

♢
♢tA⃗

)
= ♢

♢t

(
divA⃗

)
♢
♢t

(
gradA⃗

)
= grad

(
D
DtA⃗

)
♢
♢t

(
curlA⃗

)
= curl

(
♢
♢tA⃗

)

4. Maxwell Equations of Stationary Media

Let us associate the L-frame mathematical fields in Section 3 with the material electro-
magnetic field quantities of stationary media in MKSA units as follows:

E⃗′(r⃗′; t): Electrical field vector [V/m]

B⃗′(r⃗′; t): Magnetic induction density field [Wb/m2] (or [T])

H⃗ ′(r⃗′; t): Magnetic field [A/m]

D⃗′(r⃗′; t): Displacement density field [C/m]

J⃗ ′
C(r⃗

′; t): Conduction current density [A/ m2]
ρ′f (r⃗

′; t): Free charge density [C/m3]
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Postulate 1: Macroscopic electromagnetic phenomena of stationary continuous material
media are governed by the Maxwell equations (3.1), or equivalently (3.3)11.

The postulate inherently involves the principle of superposition for sources and fields.
When the Maxwell equations are considered as the fundamental laws of stationary con-
tinuous media, then the continuity relations (3.2) and (3.4) follow as corollaries. It is also
possible to go backwards by postulating the four continuity relations for free and polar-
ized electrical/magnetic currents to derive the four Maxwell equations in symmetric form
([35]).

For a complete description of material media we also involve the closed form constitutive
relations

D⃗′ = f⃗d

(
E⃗′; H⃗ ′

)
= ε0E⃗

′ + P⃗ e
′
, B⃗′ = f⃗b

(
E⃗′; H⃗ ′

)
= µ0H⃗

′ + P⃗m
′
, J⃗ ′

C = f⃗C

(
E⃗′; H⃗ ′

)
(4.1)

with the additional field quantities
ε0 = (1/36π)× 10−9: Dielectric permittivity of free space [F/m]
µ0 = 4π × 10−7: Magnetic permittivity of free space [H/m]

P⃗ e
′
(r⃗′; t): Electrical polarization density field [C/m]

P⃗m
′
(r⃗′; t): Magnetic polarization density field [Wb/m2]

and f⃗d, f⃗b, f⃗C being suitable arbitrary functions that may characterize material media.
The corresponding Lorentz potentials are represented by

B⃗′(r⃗′; t) = curl′A⃗(r⃗′; t), E⃗′(r⃗′; t) = − ∂

∂t
A⃗′(r⃗′; t)− grad′V ′(r⃗′; t) (4.2a,b)

and the Poynting theorem in point form is obtained as

divP⃗ ′ + E⃗′ · J⃗e
d

′
+ H⃗ ′ · J⃗m

d

′
+ E⃗′ · J⃗ ′

C = 0 (4.3a)

where

P⃗ ′(r⃗′; t) = E⃗′(r⃗′; t)× H⃗ ′(r⃗′; t) (4.3b)

J⃗e
d

′
(r⃗′; t) =

∂

∂t
D⃗′(r⃗′; t), J⃗m

d

′
(r⃗′; t) =

∂

∂t
B⃗′(r⃗′; t) (4.3c,d)

stand for the electric and magnetic displacement current densities regardless of the con-
stitutive parameters of the medium involved.

The integral form of Poynting theorem (4.3) in ϑ′ is written as

P ′
in(r⃗

′; t) = P e
d
′(r⃗′; t) + Pm

d
′(r⃗′; t) + P ′

C(r⃗
′; t) (4.4a)

where

P ′
in = −

∮
∂ϑ′

P⃗ ′ · dS⃗′, P e
d
′ =

∫
ϑ′
E⃗′ · J⃗e

d

′
dϑ′ =

∫
ϑ′
E⃗′ · ∂D⃗

′

∂t
dϑ′ (4.4b,c)

Pm
d

′ =

∫
ϑ′
H⃗ ′ · J⃗m

d

′
dϑ′ =

∫
ϑ′
H⃗ ′ · ∂B⃗

′

∂t
dϑ′, P ′

C =

∫
ϑ′
E⃗′ · J⃗ ′

C dϑ′ (4.4d,e)

and can be interpreted as follows:
The total electromagnetic power P ′

in entering (or pumped by external sources to) an
arbitrary stationary material medium ϑ′ is equal to the sum of

(1) the total electrical power P e
d
′ stored in that medium;

11There is a direct analogy between the equivalence of integral and differential forms of any law in
electromagnetics and the well known postulate of localization from continuum mechanics, which tells that
the integral balance laws are valid, not only for the full body, but also for every arbitrary region of the
body.
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(2) the total magnetic power Pm
d

′ stored in that medium;
(3) the total electrical power P ′

C dissipated as heat in that medium.

In a simple medium described by the constitutive relations

D⃗′ = εE⃗′, B⃗′ = µH⃗ ′, J⃗ ′
C = σE⃗′ (4.5)

the well known wave equations read

L′E⃗′(r⃗′; t) = (1/ε) grad′ρ′f (r⃗
′; t), L′H⃗ ′(r⃗′; t) = 0⃗ (4.6)

L′A⃗′(r⃗′; t) = 0⃗, L′V ′(r⃗′; t) = − (1/ε) ρ′f (r⃗
′; t) (4.7)

under the Lorentz gauge relation

div′A⃗′(r⃗′; t) + εµ
∂

∂t
V ′(r⃗′; t) + σµV ′(r⃗′; t) = 0, (4.8)

where L′ = lap′ − εµ ∂2

∂t2
− σµ ∂

∂t is the stationary wave operator.
The Lorentz force law in L-frame is an additional (external) postulate to Maxwell’s field
theory of stationary media given by the following:

Postulate 2: The mechanical force acting on free charges and conduction currents at rest
in Maxwell’s field theory of stationary continuous media is described by the Lorentz force
law, which we express for the force volume density field as

f⃗ ′(r⃗′; t) =
dF⃗ ′

dϑ′ (r⃗
′; t) = ρ′f (r⃗

′; t)E⃗′(r⃗′; t) + J⃗ ′
C(r⃗

′; t)× B⃗′(r⃗′; t) (4.9)

The Lorentz force law is our unique bridge connecting the disciplines of electromagnetism
and mechanics.

We shall also outline the special cases of electrostatic and magnetostatic field equations
in L-frame as

curl′E⃗′(r⃗′) = 0⃗, div′D⃗′(r⃗′) = ρ′f (r⃗
′), E⃗′(r⃗′) = −grad′V ′(r⃗′) (4.10a,b)

lap′V ′(r⃗′) = − (1/ε) ρ′f (r⃗
′) (in a simple medium) (4.10c)

f⃗ ′(r⃗′) =
dF⃗ ′

dϑ′ (r⃗
′) = ρ′f (r⃗

′)E⃗′(r⃗′) (4.10d)

and

curl′H⃗ ′(r⃗′) = J⃗ ′
C(r⃗

′), div′B⃗′(r⃗′) = 0, div′J⃗ ′
C(r⃗

′) = 0, B⃗′(r⃗′) = curl′A⃗(r⃗′) (4.11a-d)

div′A⃗′(r⃗′) = 0 (Coulomb gauge) (4.11e)

lap′A⃗′(r⃗′) = −µJ⃗ ′
C(r⃗

′) (in a simple medium) (4.11f)

Postulate 3: The electromagnetic field equations of stationary continuous media and the
Lorentz force law relation are also valid in the sense of Schwartz-Sobolev distributions.

For a mathematical description of physical phenomena we generally refer to idealized
models. An example for a geometrical idealization could be the assumption that certain
sources or fields are localized in a compact region or concentrated in non-volumetric do-
mains such a surface, a curve or a point. While a field theory in continuum is usually
derived in the space of continuous functions, the presence of (idealized) singularities pose
a much harder problem, the solution of which is usually investigated in the space of gen-
eralized functions first introduced by Sobolev (cf.[36]) and later developed extensively by
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mid 20th century as documented in the reference works by many great mathematicians led
by the pioneers Schwartz [37], Gel’fand and Shilov [38]. The requirement for generalized
functions in a field theory can be realized immediately in an attempt to express analyti-
cally the volume density function of a source quantity concentrated in a non-volumetric
domain. Since the point form field equations in mathematical physics are always given
through density functions in space and time, such equations would otherwise not permit
algebraic operations in non-volumetric domains.

The linear structure of electromagnetic field theory provides a postulate in a Schwartz-
Sobolev space setting possible in terms of the most studied class of generalized functions
called the Dirac delta distributions, which have been an indispensable tool in theoretical
physics ever since the beginning of 20th century. Today we observe (cf.[39]) that distribu-
tional techniques yield physically valid results not only in classical electromagnetism but
in almost all disciplines of natural sciences.

Although the distributional results of Maxwell equations were derived and utilized much
earlier in literature12, to the best of the author’s knowledge, this fact was introduced as a
postulate and treated systematically first by İdemen [40] in 1973 (see also [41]-[43]). Along
with other types of complementary conditions such as radiation condition, periodicity,
boundedness, etc., we can consider the description of the boundary value problem under
investigation formally completed.

5. Hertz Equations of Moving Media

The reflection of MFIP onto the field equations of moving media in the works of Hertz
and Heaviside can be culminated in the following postulate:
Postulate 4: The laws of macroscopic electromagnetism of stationary continuous media
are frame indifferent.

This is another way to saying that E- and L-frame observers are in full agreement with

(1) the nature (or state) of any physical quantity
(2) the structural form and content of any physical law, and
(3) the result of any measurement taken

in the two frames. To open it up, the first item requires that the electromagnetic field
quantities in the laws of stationary media are observed as the same quantities (denoted
without primes) in E-frame linked by the passive transformations (2.1). Accordingly, as
a further requirement by the second item, the Hertzian field equations can be expressed
directly by (3.5)-(3.8). Finally, the third item requires the conservation (balance) relations
(3.9), which impose the invariance of the electromotive force, magnetomotive force, total
electric/magnetic charge and flux, and total conduction current as measured by ideal
devices in the two frames.

These relations also introduce the field transformations (3.10) and (3.12); the alternative

representation of the Hertzian equations in (3.13) where J⃗V and J⃗f denote the convective
current and the total free current as observed in E-frame; and the explicit representations
of electromotive and magnetomotive forces in (3.17) as observed in E-frame.

In the context of HE, Postulates 1 to 4 are sufficient in constructing a material descrip-
tion of macroscopic electromagnetism for arbitrary continuous media in arbitrary motion.

12As one of the comprehensive papers on the distributional investigation of Maxwell equations the
reader may refer to [44]. Many works on the distributional investigation of the balance laws of nonlinear
electromagnetic continua were also available at the time.
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One does not require an additional postulate on the distributional behavior of Hertz equa-
tions as observed in E-frame since they coincide with the passive transformations of the
corresponding distributional relations obtained via Postulate 3 in L-frame.

The constitutive relations in E-frame can always be expressed in closed form as

D⃗ = f⃗d

(
E⃗; H⃗

)
= ε0E⃗ + P⃗ e, B⃗ = f⃗b

(
E⃗; H⃗

)
= µ0H⃗ + P⃗m, J⃗C = f⃗C

(
E⃗; H⃗

)
(5.1)

Regarding the Lorentz potentials, from (3.7d) and (3.13a) one can directly write

B⃗(r⃗; t) = curlA⃗(r⃗; t) (5.2)

E⃗(r⃗; t) = v⃗(r⃗; t)× B⃗(r⃗; t)− ∂
∂tA⃗(r⃗; t)− gradV (r⃗; t)

= v⃗(r⃗; t)× curlA⃗(r⃗; t)− ∂
∂tA⃗(r⃗; t)− gradV (r⃗; t)

(5.3)

regardless of the constitutive parameters of the medium involved. In his book ([24], Ch.5)

Phipps defines the last two terms at the r.h.s. of (5.3) as ‘the Maxwell E⃗- field’

E⃗Max(r⃗; t) = − ∂

∂t
A⃗(r⃗; t)− gradV (r⃗; t) (5.4)

in the context of HE based on its structural similarity with (4.2b).
The introduction of the comoving time derivative requires us to describe the elec-

tric/magnetic displacement current density of the medium in E-frame as

J⃗e
d(r⃗; t) =

♢
♢t

D⃗(r⃗; t), J⃗m
d (r⃗; t) =

♢
♢t

B⃗(r⃗; t). (5.5)

Then the Poynting theorem in the moving medium can be written as

divP⃗ + E⃗ · ♢
♢t

D⃗ + H⃗ · ♢
♢t

B⃗ + E⃗ · J⃗C + E⃗ · J⃗V = 0 (5.6)

while the Poynting vector in E-frame is defined in the usual form

P⃗ (r⃗; t) = E⃗(r⃗; t)× H⃗(r⃗; t). (5.7)

The integral form of Poynting theorem in E-frame is expressed by

Pin(r⃗; t) = P e
d (r⃗; t) + Pm

d (r⃗; t) + PC(r⃗; t) (5.8a)

Pin = −
∮
∂ϑ

P⃗ · dS⃗ (5.8b)

P e
d =

∫
ϑ
E⃗ · J⃗e

d dϑ =

∫
ϑ
E⃗ · ♢

♢t
D⃗ dϑ

=

∫
ϑ
E⃗ · ∂

∂t
D⃗ dϑ+

∫
ϑ
E⃗Max · J⃗V dϑ−

∫
ϑ
E⃗ · curl

(
v⃗ × D⃗

)
dϑ

(5.8c)

Pm
d =

∫
ϑ
H⃗ · J⃗m

d dϑ =

∫
ϑ
H⃗ · ♢

♢t
B⃗ dϑ

=

∫
ϑ
H⃗ · ∂

∂t
B⃗ dϑ−

∫
ϑ
H⃗ · curl

(
v⃗ × B⃗

)
dϑ

(5.8d)

PC =

∫
ϑ
E⃗ · J⃗C dϑ (5.8e)
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In a simple medium the first integrals at the r.h.s. of (5.8c,d) can also be written as∫
ϑ
E⃗ · ∂

∂t
D⃗ dϑ =

∫
ϑ
εE⃗ · ∂

∂t
E⃗ dϑ =

∫
ϑ

∂

∂t

(
1

2
εE⃗2

)
dϑ

=
d

dt

∫
ϑ

1

2
εE⃗2 dϑ−

∮
∂ϑ

1

2
εE⃗2 v⃗ · dS⃗

(5.9a)

∫
ϑ
H⃗ · ∂

∂t
B⃗ dϑ =

∫
ϑ
µH⃗ · ∂

∂t
H⃗ dϑ =

∫
ϑ

∂

∂t

(
1

2
µH⃗2

)
dϑ

=
d

dt

∫
ϑ

1

2
µH⃗2 dϑ−

∮
∂ϑ

1

2
µH⃗2 v⃗ · dS⃗

(5.9b)

In the final steps of calculation in (5.9) we employed the scalar Reynolds theorem.
The Lorentz force law in E-frame takes the form

f⃗(r⃗; t) =
dF⃗

dϑ
(r⃗; t) = ρf (r⃗; t)E⃗(r⃗; t) + J⃗C(r⃗; t)× B⃗(r⃗; t). (5.10)

Substituting (5.3) and (5.4) into (5.10) gives

f⃗(r⃗; t) =
dF⃗

dϑ
(r⃗; t) = ρf (r⃗; t)E⃗Max(r⃗; t) + J⃗f (r⃗; t)× B⃗(r⃗; t). (5.11)

The resultant expression (5.11) is the map of the Lorentz force law (4.9) of stationary
media, regardless of the choice of Lorentz gauge. Detailed discussion around (5.11) can
be found at [24], Ch.5).

The map of the electrostatic and magnetostatic field equations of stationary media in
(4.10) and (4.11) into E-frame can be written respectively as

curlE⃗(r⃗; t) = 0⃗,
♢
♢t

D⃗(r⃗; t) = 0⃗, divD⃗(r⃗; t) = ρf (r⃗; t) (5.12a-c)

E⃗(r⃗; t) = −gradV (r⃗; t),
♢
♢t

ρf (r⃗; t) = 0 (5.12d,e)

lapV (r⃗; t) = − (1/ε) ρf (r⃗; t) (in a simple medium) (5.12f)

f⃗(r⃗; t) =
dF⃗

dϑ
(r⃗; t) = ρf (r⃗; t)E⃗(r⃗; t) (5.12g)

and
♢
♢t

B⃗(r⃗; t) = 0⃗, curlH⃗(r⃗; t) = J⃗C(r⃗; t), divB⃗(r⃗; t) = 0 (5.13a-c)

divJ⃗C(r⃗; t) = 0, B⃗(r⃗; t) = curlA⃗(r⃗; t) (5.13d,e)

lapA⃗(r⃗; t) = −µJ⃗C(r⃗; t) (in a simple medium) (5.13f)

f⃗(r⃗; t) =
dF⃗

dϑ
(r⃗; t) = J⃗C(r⃗; t)× B⃗(r⃗; t) (5.13g)

It should be emphasized that while the electrostatic field quantities in L-frame are
observed as time dependent in E-frame as in (5.12), this does not imply a presence of an
additional magnetic field. What happens is that the field lines follow the arbitrary motion
of the source as a whole, without any deformation in shape. Therefore it should not be
mixed with any type of radiation mechanism specific to time varying sources where the field
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lines actually change their shape in L-frame. In that regard HE puts it very clearly that
“stationary (time independent) sources with arbitrary velocity do not radiate”. Similar
considerations hold for magnetostatic media in (5.13).

Based on the balance laws, the transformations for Lorentz potentials of a rigid medium
read

V ′ = V,
∂V ′

∂t
=

♢V

♢t
, grad′V ′ = ¯̄Q · gradV, lap′V ′ = lapV (5.14a)

A⃗′ = ¯̄Q · A⃗, ∂A⃗′

∂t
= ¯̄Q · ♢A⃗

♢t
, div′A⃗′ = divA⃗, lap′A⃗′ = ¯̄Q · lapA⃗ (5.14b)

Next we shall seek the wave equations and Lorentz potentials in simple media for the
two special cases of Euclidean motion summarized in Table 1.

6. Hertzian Wave Equations and Lorentz Potentials in Simple Media

6.1. Special Case of Translational Motion. In this case it is sufficient to replace the
partial time derivative ∂

∂t in the Maxwell equations in L-frame with convective derivative

as ♢
♢t =

D
Dt =

∂
∂t + v⃗(t) · grad, which shapes (3.7a,b) and (3.8) into

curlE⃗(r⃗; t) +
D

Dt
B⃗(r⃗; t) = 0⃗, curlH⃗(r⃗; t)− D

Dt
D⃗(r⃗; t) = J⃗C(r⃗; t) (6.1a,b)

divJ⃗C(r⃗; t) +
D

Dt
ρf (r⃗; t) = 0 (6.2)

In virtue of the commutative properties of the convective derivative, the wave equations
for fields and Lorentz potentials satisfy

LDE⃗(r⃗; t) = (1/ε) gradρf (r⃗; t), LDH⃗(r⃗; t) = 0⃗ (6.3a,b)

LDA⃗(r⃗; t) = 0⃗, LDV (r⃗; t) = − (1/ε) ρf (r⃗; t) (6.3c,d)

divA⃗(r⃗; t) + εµ
D

Dt
V (r⃗; t) + σµV (r⃗; t) = 0 (6.3e)

E⃗ = v⃗(t)× curlA⃗− ∂

∂t
A⃗− gradV = grad

(
v⃗(t) · A⃗

)
− D

Dt
A⃗− gradV (6.3f)

where

LD = lap− εµ
D2

Dt2
− σµ

D

Dt
(6.3g)

is the “convective wave operator”. To understand the nature of (6.3g) let us consider the
special case of R1 where

v⃗(t) = x̂1v(t),
D

Dt
=

∂

∂t
+v(t)

∂

∂x1
(6.4a,b)

In this case each field component satisfies the scalar convective wave operator

LD =
[
1− εµv2(t)

] ∂2

∂x21
+ 2εµv(t)

∂2

∂x1∂t
− εµ

∂2

∂t2
+ [σµv(t)− εµa(t)]

∂

∂x1
− σµ

∂

∂t
(6.4c)

where a(t) = dv
dt is the acceleration.
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The discriminant of the partial differential operator in (6.4c) reads

∆ = 4ε2µ2v2(t)− 4
[
1− εµv2(t)

]
(−εµ) = 4εµ > 0 (6.4d)

which altogether provide the following evidences:

(1) The discriminant values of the wave operators in L- and E-frames are the same
(invariant). Therefore the vector operator LD in E-frame is of hyperbolic type
regardless of the instantaneous value of the velocity of the material points.

(2) 1 − εµv2(t) = 0, which also describes the speed of light in a simple medium, is a
critical value for the velocity of material points in a simple medium, for which the
wave propagation phenomenon breaks down.

It should be noticed that the investigation so far does not introduce any upper limit for
the speeds of material points; meaning that 1 − εµv2(t) can also take negative values in
(6.4c), which might address a possibility of speeds of material points faster than the speed
of light in the same simple medium.

6.2. Special Case of Rotational Motion. Via the commutative properties of the co-
moving time derivative provided in Theorem A.4, the wave equations and Lorentz po-
tentials for the fields in a simple medium in rotational motion can be written directly
as

L♢E⃗(r⃗; t) = (1/ε) gradρf (r⃗; t), L♢H⃗(r⃗; t) = 0⃗ (6.5a,b)

L♢A⃗(r⃗; t) = 0⃗, L♢V (r⃗; t) = LDV (r⃗; t) = − (1/ε) ρf (r⃗; t) (6.5c,d)

divA⃗(r⃗; t) + εµ
D

Dt
V (r⃗; t) + σµV (r⃗; t) = 0 (6.5e)

E⃗ = v⃗ × curlA⃗− ∂

∂t
A⃗− gradV = grad

(
v⃗ · A⃗

)
− ♢

♢t
A⃗− gradV (6.5f)

where

L♢ = lap− εµ
♢2

♢t2
− σµ

♢
♢t

(6.5g)

is the corresponding “progressive wave operator”.
In the special case of R1 where ∂

∂ρ ≡ 0, ∂
∂z ≡ 0, each field component satisfies the

reduced form

L♢ =

(
1

ρ2
− εµω2(t)

)
∂2

∂ϕ2
+ 2εµω(t)

∂2

∂ϕ∂t
− εµ

∂2

∂t2
+ lower order terms (6.6a)

of the progressive wave operator for which the discriminant reads

∆ = 4εµ
/
ρ2 > 0 (6.6b)

and therefore similar physical arguments as for translational motion hold.
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7. Invariance of Wavenumber and Reduced Field Equations

Let us consider the field equations of an arbitrarily moving medium given by (3.3) and
(3.7). In particular let us confine our interest to monochromatic waves, where the solu-
tion (or representation) of any scalar/vector field or source quantity is given by u′(r⃗′; t) =

g′(k⃗′ · r⃗′ − ω′t) and u(r⃗; t) = g(k⃗ · r⃗ − ωt) in L- and E-frames, respectively. These phys-
ical quantities are connected by the field transformations (3.10), which necessitate phase
invariance expressed by

k⃗′ · dr⃗′ − ω′dt = k⃗ · dr⃗ − ωdt = 0 (7.1)

for arbitrary observation point and time. When rigid bodies are involved, this condition
can be met iff

(1) k⃗ = k⃗′, ω = ω′ + k⃗ · v⃗ for uniform translational motion with dr⃗ = dr⃗′ + v⃗dt

(2) k⃗ = ¯̄QT · k⃗′, ω = ω′ for uniform rotational motion with dr⃗ = ¯̄QT · dr⃗′.
In each case it is seen that one observes the same wavenumber (k = k′) in L- and E-
frames, while for uniform translational motion one also observes a first order Doppler
effect.

Let us express the scalar/vector field quantities in E-frame in phasor form as

u(r⃗; t) = Re
{
u(r⃗)e−iωt

}
, u(r⃗) = U0e

ik⃗·r⃗. (7.2)

One can easily check the relation

♢
♢t

u(r⃗; t) = Re

{
♢
♢t

(
u(r⃗)e−iωt

)}
= Re

{
−iω′u(r⃗)e−iωt

}
,

for uniform translational and rotational motions respectively as follows: Set U(r⃗; t) ≡
u(r⃗)e−iωt for brevity. For uniform translational motion one can write

♢
♢t

U(r⃗; t) =

(
∂

∂t
+ v⃗ · grad

)
U(r⃗; t) =

(
−iω + v⃗ · (ik⃗)

)
U(r⃗; t)

= −i
(
ω − v⃗ · k⃗

)
U(r⃗; t) = −iω′U(r⃗; t),

while for uniform rotational motion one has

♢
♢t

U(r⃗; t) =

(
∂

∂t
+ v⃗ · grad

)
U(r⃗; t) =

(
−iω + i

∂k⃗

∂t
· r⃗ + i⃗v · k⃗

)
U(r⃗; t)

=

(
−iω + i

∂

∂t
(k⃗ · r⃗)

)
U(r⃗; t)

=

(
−iω + i

∂

∂t
(k⃗′ · r⃗′)

)
U(r⃗; t) = −iωU(r⃗; t) = −iω′U(r⃗; t)

where we incorporated k⃗ · r⃗ = ( ¯̄QT · k⃗′) ·( ¯̄QT · r⃗′) = (k⃗′ · ¯̄Q) ·( ¯̄QT · r⃗′) = k⃗′ ·( ¯̄Q · ¯̄QT ) · r⃗′ = k⃗′ · r⃗′.
As a result one reaches the reduced field equations

curlE⃗(r⃗)− iω′B⃗(r⃗) = 0⃗, curlH⃗(r⃗) + iω′D⃗(r⃗) = J⃗C(r⃗) (7.3a,b)

divD⃗(r⃗) = ρf (r⃗), divB⃗(r⃗) = 0 (7.3c,d)

divJ⃗C(r⃗)− iω′ρf (r⃗) = 0 (7.4)

as well as Helmholtz equations of the form(
lap+ k2

)
u(r⃗) = f(r⃗) (7.5)
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in E-frame, which are similar to the corresponding reduced field equations L-frame. The
field equations (7.3)-(7.5) also apply for arbitrary waveforms which can be expressed as
superpositions of sinusoids via Fourier series or integral representations.

8. Concluding Remarks

In this work we reviewed the mathematical foundation, axiomatic structure and princi-
ples of Hertzian Electrodynamics for moving bodies, also introducing a commutative prop-
erty of the comoving time derivative operator which provides the Hertzian wave equations
for material bodies in rotational motion. A similar investigation of Hertzian wave equa-
tions for material media in non-Euclidean motion characterizing expansion or contraction
mechanisms with specific applications in electromagnetic theory, are left as the subject
of a separate work. The prediction of HE for canonical scattering problems of practical
interest are examined in the sequel works [45], [46]. To conclude, recent research ([47]-[49])
has revealed that it is also possible to postulate a direct correspondence between the laws
of HE and continuum mechanics, which might be of interest in the context of unification
of the frame indifferent laws of continuum physics.
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[41] İdemen, M., (2011), Discontinuities in the Electromagnetic Field, Wiley-IEEE Press.
[42] Polat, B., (2011), Approximate boundary relations on anisotropic sheets, Progress in Electromagnetics

Research-B, Vol. 29, 355-392.
[43] Polat, B., (2011), Distributional derivatives on a regular open surface with physical applications,

TWMS J. App. & Eng. Math, Vol.1 No.2, 203-222.
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Appendix A. The Comoving Time Derivative

In this appendix we provide a short review of the limit description and various differ-
ential properties of the comoving time derivative operator for scalar and vector fields as
used in the text.

Theorem A.1. Consider an arbitrary scalar or vector field quantity g(r⃗; t) in an arbitrary
material medium traveling with an instantaneous velocity field v⃗(r⃗; t) w.r.t. E-frame in R3.
The time rate of change experienced in L-frame is called the ‘convective’ (aka substantial,
total time, Euler’s material) derivative, and has the form

D

Dt
g(r⃗; t) =

∂

∂t
g(r⃗; t) + v⃗(r⃗; t) · gradg(r⃗; t) (A.1)

In particular, setting g(r⃗; t) = v⃗(r⃗; t) yields the expression of the acceleration field a⃗ = Dv⃗
Dt .

Definition A.1. The comoving time derivative of an arbitrary (smooth enough) scalar or
vector density field g(r⃗; t) as observed in E-frame is described by

♢
♢t

g(r⃗; t) = lim
∆t→0

1

∆t

[
g′(r⃗′; t+∆t)− g′(r⃗′; t)

]
(A.2)

with the assumption g(r⃗; t) = g′(r⃗′; t) at time t.
The comoving time derivative is also known as ‘the upper convected material derivative’

or ‘Oldroyd derivative’ in continuum mechanics when tensor density fields are concerned
and is the only member of a family of invariant time derivatives (cf.[50]) that correctly
postulates field equations not only in continuum mechanics but also in HE of moving
bodies. The Oldroyd derivative was introduced in [51] for establishing invariant forms
of rheological equations of state for a homogeneous continuum, suitable for application
to all conditions of motion and stress, particularly when the frame of reference is a co-
ordinate system convected with the material. In that sense the comoving time derivative
of scalar/vector density fields can be interpreted as the Oldroyd derivative of a tensor of
rank zero/one. In the context of electrical engineering we prefer the terminology ‘comov-
ing time derivative’ (cf.[52]) to ‘Oldroyd derivative’ since the latter is rather established in
continuum mechanics and essentially related with tensor quantities. For more information
and geometrical interpretations of the comoving time derivative one may refer to [53].

A.1. A Proof of the Representation of Scalar and Vector Comoving Time De-
rivative Operators. A derivation of (2.5) based on Definition A.1 can be found in [54]
and in sufficient detail in ([55], Sec.4.4). In this section we will provide the proofs of both
(2.4) and (2.5) in a unified manner with our own notation.

Consider a scalar or vector density field whose volume integral in an arbitrarily moving
material medium describes a field quantity (such as total charge or mass), the physical
nature and quantity of which is assumed the same for all observers in Euclidean space.
To be specific let D(t), D′(t) and g, g′ be the representations of the same moving material
medium and the density field in E- and L-frames at time t, respectively. Furthermore, let
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the Cartesian E-coordinates {xi} coincide with the general curvilinear L-coordinates {x′i}
at time t, which requires the field quantities and the differential volume elements to be
the same at that instant:

dϑ = dϑ′, g(r⃗; t) = g′(r⃗′; t) (at time t) (A.3)

Then, after an infinitesimal period ∆t, the medium and the density fields are denoted by
D(t+∆t), D′(t+∆t) and g(r⃗; t+∆t), g′(r⃗′; t+∆t) as depicted in Figure 2.

Figure 2. E- and L- frames of the moving material medium at times t and t+∆t

At time t + ∆t the coordinate transformations between the two systems can be given
by first order as

xj = x′j+vj(xi; t)∆t, x′i = xi − vi(xj ; t)∆t, i, j = 1, 2, 3 (A.4)

Spatial partial differentiations in (A.4) read

∂xj
∂x′i

= δji +∆t
∂vj

∂xi
+ o(∆t),

∂x′i
∂xj

= δij −∆t
∂vi

∂xj
+ o(∆t) (A.5)

where δji =

{
1, i = j
0, i ̸= j

denotes the Kronecker delta. Since the medium is dynamic, we

cannot talk about the validity of (A.3) also at time t + ∆t. Instead, the only conclusive
statement one can do at time t+∆t is the invariance (or conservation) of the integral∫

D(t+∆t)
g(r⃗; t+∆t)dϑ =

∫
D′(t+∆t)

g′(r⃗′; t+∆t)dϑ′ (A.6)

An application of the property (A.6) can be found at ([56], Ch.2). At time t + ∆t, the
differential volume elements are connected by

dϑ = J dϑ′ (A.7)

where

J = det

[
∂xi
∂x′j

]
= 1 +∆t

∂vi

∂xi
+ o(∆t) = 1 + (∆t)divv⃗ + o(∆t) (A.8)

denotes the nonzero Jacobian of the transformation matrix (aka the deformation gradient).
Substituting (A.7) into (A.6) yields∫

D′(t+∆t)
g(r⃗; t+∆t)J dϑ′ =

∫
D′(t+∆t)

g′(r⃗′; t+∆t)dϑ (A.9)

which, due to postulate of localization, necessitates the transformation rule

g′(r⃗′; t+∆t) = Jg(r⃗; t+∆t) (A.10)

We further consider the Taylor series expansion of g (r⃗; t+∆t) around time t as

g(r⃗; t+∆t) = g(r⃗; t) + ∆t
D

Dt
g(r⃗; t) + o(∆t) (A.11)
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When g(r⃗; t) is a scalar field, substituting (A.11) and (A.3) into (A.10) one gets

g′(r⃗′; t+∆t)− g′(r⃗′; t) = (J − 1)g′(r⃗′; t) + J (∆t) D
Dtg(r⃗; t) + o(∆t)

= (∆t)
[
(divv⃗)g (r⃗; t) + D

Dtg(r⃗; t)
]
+ o(∆t)

(A.12)

and its comoving time derivative (A.2) can be obtained in virtue of (A.12) directly as
(2.4).

When g (r⃗; t) is a (contravariant) vector field as A⃗(r⃗; t), the relation (A.10) can be
written in terms of its contravariant components as

Ai′ (r⃗′; t+∆t) = J
∂x′

i
∂xj

Aj (r⃗; t+∆t)

= (1 + (∆t)divv⃗ + o(∆t))
(
δij −∆t ∂v

i

∂xj
+ o(∆t)

)
Aj (r⃗; t+∆t)

= Ai (r⃗; t+∆t) + (∆t)
[
(divv⃗)Ai (r⃗; t)− ∂vi

∂xj
Aj (r⃗; t)

]
+ o(∆t)

= Ai (r⃗; t) + (∆t)
[
D
DtA

i(r⃗; t) + (divv⃗)Ai(r⃗; t)−
(
gradvi

)
· A⃗(r⃗; t)

]
+ o(∆t)

(A.13)
The relation (A.13) provides the connection between the contravariant components of

A⃗ at times t and t + ∆t. Multiplying each side by the unit vectors x̂′i and x̂i and using
(A.3), it can be arranged as

A⃗′ (r⃗′; t+∆t
)
− A⃗′ (r⃗′; t) = (∆t)

[
D

Dt
A⃗ (r⃗; t) + (divv⃗) A⃗ (r⃗; t)− A⃗ (r⃗; t) · gradv⃗

]
+ o(∆t)

(A.14)
Finally, (A.14) can be placed into (A.2) to get the desired relation (2.5).

A.2. Certain Differential Properties of the Comoving Time Derivative. For con-

stant quantities c, C⃗ and the scalar/vector fields f(r⃗; t), g(r⃗; t), A⃗(r⃗; t), B⃗(r⃗; t) of C1(R3)
one can observe the following properties.

Property 1: ♢
♢tc = c (div v⃗) , ♢

♢t C⃗ = −C⃗ · grad v⃗ + C⃗ (div v⃗) = curl
(
C⃗ × v⃗

)
Property 2: ♢

♢t (cf) = c♢f
♢t , ♢

♢t

(
cA⃗
)
= c♢A⃗

♢t

Property 3: ♢
♢t (f ± g) = ♢f

♢t ±
♢g
♢t , ♢

♢t

(
A⃗± B⃗

)
= ♢A⃗

♢t ± ♢B⃗
♢t

Property 4: ♢
♢t (fg) =

♢f
♢t g + f ♢g

♢t − fg (div v⃗)
Property 5:

♢
♢t

(
fA⃗
)
=

∂

∂t

(
fA⃗
)
+ v⃗ · grad

(
fA⃗
)
− fA⃗ · gradv⃗+fA⃗ (div v⃗)

=

[
∂

∂t
f+v⃗ · gradf + f (divv⃗)

]
A⃗+ f

[
∂

∂t
A⃗+ v⃗ · gradA⃗− A⃗ · grad v⃗ + A⃗ (div v⃗)

]
− fA⃗ (div v⃗)

=
♢f

♢t
A⃗+ f

♢A⃗

♢t
− fA⃗ (div v⃗)

Property 6: ♢
♢t

(
A⃗ · B⃗

)
= D

Dt

(
A⃗ · B⃗

)
+ A⃗ · B⃗ (div v⃗)
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Property 7:

♢
♢t

(
A⃗× B⃗

)
=

DA⃗

Dt
× B⃗ + A⃗× DB⃗

Dt
+ A⃗× B⃗ (div v⃗)−

(
A⃗× B⃗

)
· gradv⃗

=
♢A⃗

♢t
× B⃗ + A⃗× ♢B⃗

♢t
− A⃗× B⃗ (div v⃗)−

(
A⃗× B⃗

)
· gradv⃗

+ A⃗×
(
B⃗ · gradv⃗

)
+
(
A⃗ · gradv⃗

)
× B⃗

Property 8: For n ∈ R
♢
♢t

fn = nfn−1♢f

♢t
−(n−1)fn (div v⃗) = nfn−1Df

Dt
+fn (div v⃗) = fn−1

[
♢f

♢t
+ (n− 1)

Df

Dt

]
A.3. Certain Commutative Properties of the Comoving Time Derivative. For
the purpose of deriving the progressive wave equations in Section 6 we provide below
three theorems investigating certain commutative properties between the comoving time
and spatial (nabla) derivative operators

Theorem A.2. In an arbitrarily moving material medium a density field vector A⃗(r⃗; t) of
C2(R3) provides the commutative property

div

(
♢
♢t

A⃗

)
=

♢
♢t

(
divA⃗

)
(A.15)

Proof. The proof requires demonstration of the equality

div
(
v⃗ · gradA⃗− A⃗ · grad v⃗ + A⃗div v⃗

)
= v⃗ · grad

(
divA⃗

)
+
(
divA⃗

)
(div v⃗) (A.16)

For this purpose we shall introduce the following tensor identities cf.[57], Ch. 7

A⃗ · ¯̄Φ = ¯̄ΦT · A⃗, div
(
¯̄Φ · A⃗

)
=
(
div ¯̄Φ

)
· A⃗+ ¯̄Φ : gradA⃗ (A.17)

where A⃗ is a vector, ¯̄Φ is a tensor of rank two ( a dyad), and ‘:’ is the tensor inner product

defined as A⃗ : B⃗ = AijBij . From (A.17) one can write

div
(
A⃗ · ¯̄Φ

)
= div

(
¯̄ΦT · A⃗

)
=
(
div ¯̄ΦT

)
· A⃗+ ¯̄ΦT : gradA⃗

and use this property to calculate

div
(
v⃗ · gradA⃗

)
= div

((
gradA⃗

)T
· v⃗
)

=

[
div
(
gradA⃗

)T]
· v⃗ +

(
gradA⃗

)T
: gradv⃗

= v⃗ · grad
(
divA⃗

)
+ gradv⃗ :

(
gradA⃗

)T
div
(
A⃗ · gradv⃗

)
= div

(
(gradv⃗)T · A⃗

)
=
[
div (gradv⃗)T

]
· A⃗+ (gradv⃗)T : gradA⃗

= A⃗ · grad (divv⃗) + gradA⃗ : (gradv⃗)T

We also have the tensor properties

gradv⃗ :
(
gradA⃗

)T
= gradA⃗ : (gradv⃗)T

div
(
A⃗div v⃗

)
=
(
divA⃗

)
(div v⃗) + [grad (div v⃗)] · A⃗

which altogether verify the desired equality (A.16) upon a direct substitution. �
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A similar proof is available in the investigation in [58], Sec. 3.1 for the Maxwell -
Cattaneo wave equation in heat conduction.

From Theorem A.2 we observe that the commutative property between the comoving
time derivative and divergence operators applies regardless of the type of motion.

Theorem A.3.

curl

(
♢
♢t

A⃗

)
=

∂

∂t
curlA⃗+ v⃗ · grad

(
curlA⃗

)
+
(
curlA⃗

)
(div v⃗) + [grad (div v⃗)]× A⃗

− A⃗ · grad (curlv⃗) + (gradv⃗)×
·

(
gradA⃗

)T
−
(
gradA⃗

)
×
·
(gradv⃗)T

=
♢
♢t

(
curlA⃗

)
− A⃗ · grad (curlv⃗)−

(
curlA⃗

)
· (gradv⃗)

+ (gradv⃗)×
·

(
gradA⃗

)T
−
(
gradA⃗

)
×
·
(gradv⃗)T

(A.18)

where ×
·
stands for the cross-dot product in dyadic algebra defined by(

a⃗⃗b
)
×
·

(
c⃗d⃗
)
= (⃗a× c⃗)

(⃗
b · d⃗

)
,

which also satisfies

(grada⃗)×
·

(
grad⃗b

)
= [grad (ai)× grad (bj)] (x̂i · x̂j) .

Proof. For our purpose let us consider the tensor identity

curl
(
¯̄Φ · A⃗

)
=
(
curl ¯̄Φ

)
· A⃗+ gradA⃗×

·
¯̄Φ.

Accordingly, one can write

curl
(
v⃗ · gradA⃗

)
= curl

((
gradA⃗

)T
· v⃗
)

=

[
curl

(
gradA⃗

)T]
· v⃗ + (gradv⃗)×

·

(
gradA⃗

)T
= v⃗ · grad

(
curlA⃗

)
+ (gradv⃗)×

·

(
gradA⃗

)T
curl

(
A⃗ · gradv⃗

)
= curl

[
(gradv⃗)T · A⃗

]
=
[
curl (gradv⃗)T

]
· A⃗+

(
gradA⃗

)
×
·
(gradv⃗)T

= A⃗ · grad (curlv⃗) +
(
gradA⃗

)
×
·
(gradv⃗)T

and also invoke the property

curl
(
A⃗div v⃗

)
=
(
curlA⃗

)
(div v⃗) + [grad (div v⃗)]× A⃗,

which altogether yield the desired relation (A.18). (A.18) also signifies that there does
not exist a simple commutative property between curl and the comoving time derivative
operators similar in form to the case in Theorem A.2 for arbitrary velocity fields. The
sophisticated structure of (A.18) for arbitrary velocity fields renders it impractical in
obtaining Hertzian wave equations in the most general (non-Euclidean) case. However,
for any rigid body in arbitrary Euclidean motion as in (3.18) one can obtain the desired
simple commutative property as follows: �
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Theorem A.4. In an arbitrary material medium in Euclidean motion a density field

vector A⃗(r⃗; t) of C2(R3) provides the commutative property

curl

(
♢
♢t

A⃗

)
=

♢
♢t

(
curlA⃗

)
(A.19)

Proof. It satisfies to look into the two special cases of Euclidean motion described in Table
1 separately.
Special Case 1: Translational Motion

In this special case the comoving time derivative reduces into the classical convective
derivative directly as

♢
♢t

A⃗ =
D

Dt
A⃗ =

(
∂

∂t
+ v⃗(t) · grad

)
A⃗ =

∂A⃗

∂t
+ grad

(
v⃗(t) · A⃗

)
− v⃗(t)× curlA⃗

and the desired result (A.19) is seen directly upon setting the spatial derivatives of the

velocity vector to zero. If we invoke the special case v⃗=v⃗(t) and substitute gradA⃗ in place

of A⃗ in the general vector identity

grad
(
v⃗ · A⃗

)
= v⃗ · gradA⃗+ A⃗ · grad v⃗ + A⃗× curl v⃗ + v⃗ × curlA⃗

one gets

grad
(
v⃗(t) · gradA⃗

)
= v⃗(t) · grad

(
gradA⃗

)
,

through which one obtains an additional commutative property

grad

(
♢
♢t

A⃗

)
=

♢
♢t

(
gradA⃗

)
(A.20)

required in deriving the potential wave operators.
Special Case 2: Rotational Motion

In this special case the velocity vector has the differential properties given in Table 1,
which also introduce

(gradv⃗)T = −gradv⃗, grad (div v⃗) = 0⃗, grad (curlv⃗) = ¯̄0.

Then, for a general vector field quantity in the form

A⃗(ρ, ϕ, z; t) = ρ̂Aρ(ρ, ϕ, z; t) + ϕ̂Aϕ(ρ, ϕ, z; t) + ẑAz(ρ, ϕ, z; t),

one obtains(
curlA⃗

)
· (gradv⃗) = (gradv⃗)T ·

(
curlA⃗

)
= − (gradv⃗) ·

(
curlA⃗

)
(1/ω) (gradv⃗)×

·

(
gradA⃗

)T
= −ρ̂

∂Az

∂ρ
− ϕ̂

ρ

∂Az

∂ϕ
+ ẑ

(
∂Aρ

∂ρ
+

1

ρ

(
Aρ +

∂Aϕ

∂ϕ

))
(1/ω)

(
gradA⃗

)
×
·
(gradv⃗)T = − (1/ω)

(
gradA⃗

)
×
·
(gradv⃗)

= −ρ̂
∂Aρ

∂z
− ϕ̂

∂Aϕ

∂z
+ ẑ

[
∂Aρ

∂ρ
+

1

ρ

(
Aρ +

∂Aϕ

∂ϕ

)]
(gradv⃗)

×
·

(
gradA⃗

)T
−
(
gradA⃗

)
×
·
(gradv⃗)T

= −ω(t)ẑ × curlA⃗,
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which read the desired result

curl

(
♢
♢t

A⃗

)
=

♢
♢t

(
curlA⃗

)
−
(
curlA⃗

)
· (gradv⃗) + (gradv⃗)×

·

(
gradA⃗

)T
−
(
gradA⃗

)
×
·
(gradv⃗)T

=
♢
♢t

(
curlA⃗

)
+ [gradv⃗ · −ω(t)ẑ×]

(
curlA⃗

)
=

(
D

Dt
− ω(t)ẑ×

)(
curlA⃗

)
=

♢
♢t

(
curlA⃗

)
since

D

Dt

(
curlA⃗

)
=

(
∂

∂t
+ v⃗ · grad

)(
curlA⃗

)
=

(
∂

∂t
+ ω(t)

∂

∂ϕ

)(
curlA⃗

)
=

(
♢
♢t

+ ω(t)ẑ×
)(

curlA⃗
)
.

�
One also observes

♢
♢t

(
gradA⃗

)
= grad

((
♢
♢t

+ ω(t)ẑ×
)
A⃗

)
= grad

(
♢
♢t

A⃗

)
− ω(t)

(
gradA⃗

)
× ẑ = grad

(
D

Dt
A⃗

) (A.21)

Similarly, for a general scalar field f = f(ρ, ϕ, z; t) one gets

♢
♢t

f =
D

Dt
f =

(
∂

∂t
+ ω(t)

∂

∂ϕ

)
f,

♢
♢t

(gradf) =

(
D

Dt
− ω(t)ẑ×

)
(gradf) = grad

(
D

Dt
f

) (A.22)
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