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In this work, we extended the application of “the modified reductive perturbation method” to long
water waves and obtained the governing equations of Korteweg – de Vries (KdV) hierarchy. Seeking
localized travelling wave solutions to these evolution equations we have determined the scale param-
eter g1 so as to remove the possible secularities that might occur. To indicate the effectiveness and
the elegance of the present method, we studied the problem of the “dressed solitary wave method”
and obtained exactly the same result. The present method seems to be fairly simple and practical
as compared to the renormalization method and the multiple scale expansion method existing in the
current literature.
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1. Introduction

In collisionless cold plasma, in fluid-filled elastic
tubes and in shallow-water waves, due to nonlinear-
ity of the governing equations, for the weakly disper-
sive case one obtains the Korteweg – de Vries (KdV)
equation for the lowest-order term in the perturbation
expansion, the solution of which may be described by
solitons [1]. To study the higher-order terms in the per-
turbation expansion, the reductive perturbation method
has been introduced by use of the stretched time and
space variables [2]. However, in such an approach
some secular terms appear in the solution and they can
be eliminated by introducing some slow scale variables
[3] or by a renormalization procedure of the velocity
of the KdV soliton [4]). Nevertheless, this approach
remains somewhat artificial, since there is no reason-
able connection between the smallness parameters of
the stretched variables and the one used in the perturba-
tion expansion of the field variables. The choice of the
former parameter is based on the linear wave analysis
of the concerned problem, and the wave number or the
frequency is taken as the perturbation parameter [5].
On the other hand, at the lowest order, the amplitude
and the width of the wave are expressed in terms of
the unknown perturbed velocity, which is also used as
the smallness parameter. This causes some ambiguity
over the correction terms. Another attempt to remove
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such secularities was made by Kraenkel and Manna [6]
for long water waves by use of the multiple time scale
expansion but they could not obtain explicitly the cor-
rection terms to the speed of the wave. In order to re-
move some possible secularities, He [7, 8] presented
the “homotopy perturbation method” and “modified
Lindstedt-Poincare method” and applied them success-
fully to certain one-dimensional problems. For other
perturbation methods the readers are referred to [9, 10].

In order to remove these ambiguities, Malfliet and
Wieers [11] presented a dressed solitary wave ap-
proach, which is based on the assumption that the
field variables admit localized travelling wave solu-
tions. Then, for the longwave limit, they expanded the
field variables and the wave speed into a power series
of the wave number, which is assumed to be the only
smallness parameter, and obtained the explicit solu-
tion for various order terms in the expansion. However,
this approach can only be used when one studies pro-
gressive wave solutions to the original nonlinear equa-
tions, and it does not give any idea about the form of
evolution equations governing the various order terms
in the perturbation expansion. In our previous paper
[12], we have presented the so-called “modified re-
ductive perturbation method” to examine the contribu-
tions of higher-order terms in the perturbation expan-
sion and applied it to weakly dispersive ion-acoustic
plasma waves and solitary waves in a fluid-filled elas-
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tic tube [13]. In these works, we have shown that the
lowest-order term in the perturbation expansion is gov-
erned by the nonlinear Korteweg – de Vries equation,
whereas the higher-order terms in the expansion are
governed by the degenerate Korteweg – De Vries equa-
tion with the nonhomogeneous term. By employing the
hyperbolic tangent method a progressive wave type of
solution was sought and the possible secularities were
removed by selecting the scaling parameter in a spe-
cial way. The basic idea in this method was the inclu-
sion of higher-order dispersive effects through the in-
troduction of the scaling parameter g, to balance the
higher-order nonlinearities with dispersion. The negli-
gence of higher-order dispersive effects in the classi-
cal reductive perturbation method leads to the imbal-
ance between the nonlinearity and dispersion, which
resulted in some secular terms in the solution of evolu-
tion equations. As a matter of fact, the renormalization
method presented by Kodama and Taniuti [4] is dif-
ferent but rather involved the formulation of the same
idea.

In the present work, we extended the application of
“the modified reductive perturbation method” to long
water waves and obtained the equations of KdV hierar-
chy. Seeking for localized progressive wave solutions
to these equations we determined the scale parameter
g1 so as to remove the possible secularities that might
occur. To indicate the power and the elegance of the
present method, we studied the same problem by use
of the “dressed solitary wave method” and obtained
exactly the same result. The present method appears
to be fairly simple and practical as compared to the
renormalization method of Kodama and Taniuti [4] and
the multiple scale expansion method of Kraenkel and
Manna [6].

2. Modified Reductive Perturbation Formalism for
the Boussinesq Equation

The one-dimensional form of the Boussinesq equa-
tion may be given by

∂2
u

∂t2
− ∂2

u

∂x2
+

∂4
u

∂x4
− 3

∂2

∂x2
(u2) = 0. (1)

The dispersion relation of the linearized equation of (1)
reads

ω = k(1 + k2)1/2. (2)

For the longwave limit, the frequency may be ex-

pressed as follows:

ω = k

(
1 +

1
2
k2 − 1

8
k4 +

1
24

k6 − . . .

)
. (3)

Motivated with this dispersion relation, it is convenient
to introduce the stretched coordinates

ξ = ε1/2(x − t), τ = ε3/2gt, (4)

where ε ∼ k2 is the smallness parameter characterizing
the longwave length and g is a scale parameter to be
determined from the solution.

Inserting the transformation (4) into the field equa-
tion (1) we have

−ε

(
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)
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(5)

We shall further assume that the field variable u and
the scale parameter g can be expanded into asymptotic
series as

u = εu0 + ε2u1 + ε3u2 + . . . ,

g = 1 + εg1 + ε2g2 + . . . .
(6)

Introducing the expansion (6) into (5) and setting the
coefficients of similar powers ε equal to zero we obtain
the following set of differential equations:
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O(ε2) equation:
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O(ε3) equation:
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2.1. O(ε) Equation

From the integration of (7) we get

∂u0

∂τ
+ 3u0

∂u0

∂ξ
− 1

2
∂3

u0

∂ξ3
= f(τ), (10)

where f(τ) is an arbitrary function of its argument and
can be chosen to be zero. Then, it follows the conven-
tional Korteweg – de Vries equation

∂u0

∂τ
+ 3u0

∂u0

∂ξ
− 1

2
∂3

u0

∂ξ3
= 0. (11)

We shall seek a travelling wave solution to (11) of the
form

u0 = F (ζ), ζ = α(ξ − βτ), (12)

where α and β are two constants to be determined
from the solution and F (ζ) is an arbitrary function of
its argument. Introducing the proposed solution (12)
into (11) we have

−βF ′ + 3FF ′ − α2

2
F ′′′ = 0, (13)

where a prime denotes the differentiation of the corre-
sponding quantity with respect to ζ.

In the present work we shall be concerned with a lo-
calized travelling wave solution, i. e. F and its various
order derivatives vanish as ζ → ∓∞. Integrating (13)
with respect to ζ and utilizing the localization condi-
tion we obtain

−βF +
3
2
F 2 − α2

2
F ′′ = 0. (14)

This nonlinear ordinary differential equation admits a
solution of the form

F = −a sech2ζ, (15)

where a is the wave amplitude. Introducing (15) into
(14) and setting the coefficients powers of sechζ equal
to zero we obtain

α =
(a

2

)1/2

, β = −a. (16)

2.2. O(ε2) Equation

To obtain the solution for this order equation we
need the expression of ∂2

u0/∂τ2. Using (11) we obtain

the following identity:
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Introducing the expression (17) into (8) we have
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Integrating (18) with respect to ξ we obtain
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(19)

where g(τ) is an arbitrary function of τ . Without loos-
ing the generality of the problem we may take g(τ)
to be equal to zero. Eliminating ∂u0/∂τ from the ex-
pression of (19), by use of (11), we get the evolution
equation

∂u1

∂τ
+ 3

∂
∂ξ

(u0u1)− 1
2

∂3
u1

∂ξ3
=

∂
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S0(u0), (20)

where the function S0(u0) is defined by
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(21)

Here we notice that (20) is the degenerate Korteweg –
de Vries equation with a nonhomogeneous term.

Now, we shall seek a travelling wave solution to (20)
of the following form:

u = G(ζ). (22)

Introducing (15) and (22) into (20) and (21) we obtain

−βG′ + 3(FG)′ − α2

2
G′′′ = S′

0(F ). (23)
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Integrating (23) and utilizing the localization condition
we have

G′′ + (12sech2ζ − 4)G = −4
a
S0(F ), (24)

where S0(F ) is given by

S0(F ) = a2
(
g1 − a

2

)
sech2ζ. (25)

The term on the right-hand side causes the secularity
in the solution. In order to remove such a secularity we
must have

g1 − a

2
= 0, or g1 =

a

2
. (26)

As a matter of fact, this result is equivalent to S0(u0) =
0 for the case of a travelling wave solution. Thus, with-
out loosing the generality of the problem we may take
S0(u0) = 0. Thus (20) reduces to

∂u1

∂τ
+ 3

∂
∂ξ

(u0u1) − 1
2

∂3
u1

∂ξ3
= 0. (27)

In this work we shall assume that the solution of the
homogeneous equation (27) is zero, i. e. u1 = 0.

2.3. O(ε3) Equation

To obtain the solution for this order equation, in (9)
we set u1 = 0 and get the following equation:

∂
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]
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Inserting the expression ∂2
u0/∂τ2 from (17) into (28)

we have
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]
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[
3u3

0 −
3
4

(
∂u0

∂ξ

)2

− 3u0
∂2

u0

∂ξ2
+

1
4

∂4
u0
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]
,

or, integrating the result with respect to ξ, we have
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2
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∂
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∂
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[
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]
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Noticing that S0(u0) = 0 for such a travelling wave
solution, (29) becomes

∂u2

∂τ
+ 3

∂
∂ξ

(u0u2) − 1
2

∂3
u2

∂ξ3
=

∂S1(u0)
∂ξ

, (30)

where S1(u0) is defined by

S1(u0) = −3g2
1u

2
0+g2

1

∂2
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+

3
2
g2u

2
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2
∂2

u0

∂ξ2
. (31)

In order to remove the secularity of the solution we
must have

g2 = 2g2
1 =

a2

2
. (32)

Thus, the solution takes the form

u = −ε a sech2ζ (33)

with

ζ = ε1/2
(a

2

)1/2
[
x − t + εat + ε2

a2t

2

+ ε3
a3

2
t + . . .

]
.

(34)

The exact solution of the Boussinesq equation exists in
the literature and is given by

u = −2b2 sech2
[
b
(
x −

√
1 − 4b2

)
t
]
, (35)

where b is a constant. Comparing the solutions given
in (33) and (35) we have

b = ε
1
2

(a

2

) 1
2

, (36)

and the solution (35) becomes

u = −ε a sech2
[
ε

1
2

(a

2

) 1
2 (

x −√
1 − 2εa

)
t
]
. (37)

Expanding
√

1 − 2εa into a Maclaurin series in ε we
obtain

√
1 − 2εa = 1− εa− ε2

2
a2 − ε3

a3

2
− . . . . (38)
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Hence, the exact solution, up to ε3 order terms, takes
the form

u = −ε a sech2

[
ε1/2

(a

2

)1/2

·
(

1 − t + εat + ε2
a2

2
t + ε3

a3

2

)]
t.

(39)

This solution is exactly the same to that obtained by
us via the use of the modified reductive perturbation
method.

3. Dressed Solitary Wave Formalism for the
Boussinesq Equation

In order to see the novelty of the present formula-
tion we shall study the same problem by use of the
so called “dressed solitary wave formalism”. For that
purpose, we shall examine a solution of (1) of the fol-
lowing type:

u = F (ξ), ξ = k(x − V t), (40)

where k is the wave number and V is the speed of prop-
agation. Introducing (40) into (1) we have

V 2 d2F

dξ2
− d2F

dξ2
+k2 d4F

dξ2
−3

d2

dξ2
(F 2) = 0. (41)

In this work we are concerned with a localized travel-
ling wave solution, i. e., the function F (ξ) and its var-
ious order derivatives vanish as ξ → ∓∞. Integrat-
ing (41) with respect to ξ twice and using the localiza-
tion condition we obtain

(V 2 − 1)F + k2 d2F

dξ2
− 3F 2 = 0. (42)

In this work, we shall assume that the wavelength is
large, i. e., the wave number k is small. We shall further
assume that the wave speed and the wave function F
can be expanded into asymptotic series as follows:

F = k2F0 + k4F1 + k6F2 + . . . ,

V = 1 + V0(k2 + k4V1 + k6V2 + . . .).
(43)

Introducing (43) into (42) and setting the coefficients
with similar powers of k equal to zero, we obtain the
following the set of differential equations:

O(k2) equation:

2V0F0 +
d2F0

dξ2
− 3F 2

0 = 0; (44)

O(k4) equation:

(V 2
0 +2V0V1)F0+2V0F1+

d2F1

dξ2
−6F0F1 = 0; (45)

O(k6) equation:

2(V0V2 + V 2
0 V1)F0 + (V 2

0 + 2V0V1)F1

+ 2V0F2 +
d2F2

dξ2
− 3(F 2

1 + 2F0F2) = 0.
(46)

For the differential equation (44) we shall propose a
solution of the form

F0 = −a sech2ζ, ζ = αξ, (47)

where a is the amplitude of the solitary wave and α is
a constant to be determined from the solution. Intro-
ducing (47) into (44) and setting the coefficients with
similar powers of sechζ equal to zero we obtain

α =
(a

2

)1/2

, V0 = −a. (48)

Introducing the solutions (47) and (48) into (45) we
have

d2F1

dζ2
+4(sech2ζ−1)F1 = 2a(a−2V1)sech2ζ. (49)

The term on the right-hand side is the one that causes
the secularities. If we choose (a − 2V1) = 0, the sec-
ularity will disappear. Thus, we obtain the correction
term to the speed as

V1 =
a

2
. (50)

Hence, without loosing the generality of the problem
we may take F1 = 0.

Introducing (47) into (46) and keeping in mind that
F1 is chosen to be zero, we have

d2F2

dζ2
+4(3sech2ζ−1)F2 = 4

(
V2−a2

2

)
sech2ζ. (51)

Again, the term on the right-hand side causes the secu-
larity. In order to remove the secularity, we must have

V2 =
a2

2
. (52)

Without loosing the generality of the problem we may
set F2 = 0. Thus, the solution takes the form

u = −k2 a sech2ζ, (53)
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with

ζ = k
(a

2

) 1
2
[
x−t+k2at+k4 a2

2
t+k6 a3

2
t

]
. (54)

Here, we see that this solution is exactly the same pre-
sented by us in equations (33) and (34).

4. Conclusion

The study of effects of higher-order terms in the
perturbation expansion of the field variables through
the use of the classical reductive perturbation method

leads to some secularities. To eliminate such seculari-
ties various methods, like the renormalization method
of Kodama and Taniuti [4] and the multiple scale ex-
pansion method by Kraenkel and Manna [6], have been
presented in the current literature. The results of the
present work and of those given in [12] and [13] proved
that the “modified reductive perturbation method”, pre-
sented by us, is the most simple and effective one. The
present problem has been studied by Kraenkel et al.
[14] but the method they used is quite complicated
compared to ours. The presented method is rather sim-
ple and it is based on the idea of balancing higher-order
nonlinearities with higher-order dispersive effects.
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