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AN APPLICATION OF FACTORABLE SURFACES IN EUCLIDEAN

4−SPACE E4

S. BÜYÜKKÜTÜK1, G. ÖZTÜRK2, §

Abstract. In the present paper, we consider the factorable surfaces in Euclidean 4-space
E4. We characterize such surfaces in terms of their Gaussian curvature, Gaussian torsion
and mean curvature. Further, we classify flat, semiumbilical and minimal factorable
surfaces in E4.

Factorable surface, Euclidean 4-space, monge patch, minimal surface.
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1. Introduction

Let M be a smooth surface given with the patch X(u, v) : (u, v) ∈ D ⊂ E2 in E4. The
tangent space to M at an arbitrary point p = X(u, v) of M is spaned {Xu, Xv}. In the
chart (u, v) the coefficients of the first fundamental form of M are given by

E = 〈Xu, Xu〉 , F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉 ,

where 〈, 〉 is the Euclidean inner product. We assume that W 2 = EG − F 2 6= 0, i.e. the
surface patch X(u, v) is regular. For each p ∈ M, consider the decomposition TpE4 =

TpM ⊕ T⊥p M where T⊥p M is the orthogonal component of TpM in E4.

Let χ(M) and χ⊥(M) be the spaces of smooth vector fields tangent to M and normal
to M , respectively. Given any local vector fields X1, X2 tangent to M, consider the second
fundamental map h : χ(M)× χ(M)→ χ⊥(M);

h(Xi, Xj) =
∼
∇XiXj −∇XiXj 1 ≤ i, j ≤ 2. (1)

where ∇ and
∼
∇ are the induced connection of M and the Riemannian connection of E4,

respectively. This map is well-defined, symmetric and bilinear.
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The equation (1) is called Gaussian formula, and the following equation

h(Xi, Xj) =

2∑
k=1

ckijNk, 1 ≤ i, j ≤ 2.

is satisfied for any arbitrary orthonormal frame field {N1, N2} of M, where ckij are the

coefficients of the second fundamental form [5].
The Gaussian curvature and Gaussian torsion of a regular patch X(u, v) are given by

K =
1

W 2

2∑
k=1

(
ck11c

k
22 −

(
ck12

)2)
(2)

and

KN =
1

W 2

(
E
(
c112c

2
22 − c212c122

)
− F

(
c111c

2
22 − c211c122

)
+G

(
c111c

2
12 − c211c112

))
, (3)

respectively.
Further, the mean curvature vector of a regular patch X(u, v) is given by

→
H =

1

2W 2

2∑
k=1

(
ck11G+ ck22E − 2ck12F

)
Nk. (4)

The norm of the mean curvature vector

∥∥∥∥→H∥∥∥∥ is called the mean curvature of M.

A surface M is said to be flat (minimal) if its Gauss curvature (mean curvature vector)
vanishes identically [5]. In addition, a point p ∈M is semiumbilic if and only if KN (p) = 0
and a surface M immersed in E4 is said to be semiumbilical provided all its points are
semiumbilic [6].

A factorable surfaces (also known homotethical surfaces) in E3, which can be parametrized,
locally, as X(u, v) = (u, v, f(u)g(v)), where f and g are smooth functions [8]. Some au-
thors have considered factorable surfaces in Euclidean space and in semi-Euclidean spaces
[4, 7, 9]. In [8], Van de Woestyne proved that the only minimal factorable non-degenerate
surfaces in L3 are planes and helicoids.

Many studies can be found about surfaces in 4- dimensional Euclidean space E4 (see,
[1, 2, 3] .

In this work, we consider a factorable surface in Euclidean 4-space. We define the
surface which locally can be written as a monge patch

X(u, v) = (u, v, f1(u)g1(v), f2(u)g2(v)),

for some differentiable functions, fi(u), gi(v), i = 1, 2. We characterize such surfaces in
terms of their Gaussian curvature, Gaussian torsion and mean curvature functions and
give the conditions for such surfaces to become flat, semiumbilical, and minimal in E4.

2. An Application of Factorable Surfaces

In [2], the authors studied the surfaces given with the representation of the form

X(u, v) = (u, v, z(u, v), w(u, v)), (5)

where z and w are some smooth functions. The parametrization (5) is called a Monge
patch in E4. Now we define the factorable surface in E4 as follows:
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Definition 2.1. Let M be a surface in four dimensional Euclidean surface E4. If the
surface is denoted by z(u, v) = f1(u)g1(v) and w(u, v) = f2(u)g2(v) in (5) where f1, f2,
g1, g2 are differentiable functions, then the surface is called a factorable surface in E4.
Thus, the factorable surface is defined as a monge patch

X(u, v) = (u, v, f1(u)g1(v), f2(u)g2(v)). (6)

In [4], some calculations can be found about tangent vectors, normal vectors, first
and second fundamental form coefficients of the surface M . Hence, for classification of
semiumbilical, flat and minimal surfaces, we use Gaussian torsion, Gaussian curvature and
mean curvature functions.

Theorem 2.1. [4]Let M be a factorable surface in E4. Then the Gaussian curvature is
given by

K =

(
f ′′1 f1g

′′
1 g1 − f ′21 g′21

) ∼
G− (f ′′1 f2g1g

′′
2 + f1f

′′
2 g
′′
1 g2 − 2f ′1f

′
2g
′
1g
′
2)
∼
F +

(
f ′′2 f2g

′′
2 g2 − f ′22 g′22

) ∼
E

W 4
,

where
∼
E = 1+

(
f
′
1g1

)2
+
(
f1g

′
1

)2
,
∼
F = f ′1f

′
2g1g2+f1f2g

′
1g
′
2, and

∼
G = 1+

(
f
′
2g2

)2
+
(
f2g

′
2

)2
.

Theorem 2.2. Let M be a factorable surface in E4. If M has one of the following
parametrizations in E4, then it is flat:

(i)X(u, v) = (u, v, c1g1(v), c2g2(v)) ,

(ii)X(u, v) = (u, v, c1f1(u), c2f2(u)) ,

(iii)X(u, v) = (u, v, c1g1(v), c2f2(u)) ,

(iv) X(u, v) = (u, v, c1f1(u), c2g2(v)) ,

(v) X(u, v) = (u, v, c, exp(c1u+ d1) exp(c2v + d2)) ,

(vi) X(u, v) =

(
u, v, c, (c1u+ d1)

1
1−l1 (c2v + d2)

l1
l1−1

)
,

(vii) X(u, v) =

(
u, v, exp(c1u+ d1) exp(c2v + d2), exp(c3u+ d3) exp(c3

ci
cj
v + d4)

)
,

(viii) X(u, v) = (u, v, r(u) cos v, r(u) sin v),

the function r(u) satisfies

u = ±
∫ √

c1r2(u)− 1

r2(u) + 1
dr(u)

where i, j = 1, 2, i 6= j and ck, dk, k = 1, ..., 4 are real constants.

Proof. Let M be a factorable surface given with the parametrization (6) in E4.
If f ′1(u) = 0, f ′2(u) = 0 or g′1(v) = 0, g′2(v) = 0 or f ′1(u) = 0, g′2(v) = 0 or g′1(v) = 0,

f ′2(u) = 0, then we obtain the cases (i), (ii), (iii) and (iv), respectively.
If f ′1(u) = 0, g′1(v) = 0, then we have

f ′′2 f2g
′′
2g2 − f ′22 g′22 = 0. (7)

This differential equation has the solutions

f2(u) = exp(c1u+ d1), (8)

g2(v) = exp(c2v + d2),

and
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f2(u) = (c1u+ d1)
1

1−l1 , (9)

g2(v) = (c2v + d2)
l1

l1−1 ,

which gives the cases (v) and (vi).
Further, with the help of Gaussian curvature in Theorem 2.1, we can suppose the cases

f ′′1 f1g
′′
1g1 − f ′21 g′21 = 0, f ′′2 f2g

′′
2g2 − f ′22 g′22 = 0, (10)

∼
F = 0 (11)

and

f ′′1 f1g
′′
1g1 − f ′21 g′21 = 0, f ′′2 f2g

′′
2g2 − f ′22 g′22 = 0,

f ′′1 f2g1g
′′
2 + f1f

′′
2 g
′′
1g2 − 2f ′1f

′
2g
′
1g
′
2 = 0, (12)

where
∼
E 6= 0 and

∼
G 6= 0. Hence the equations (10) are congruent to equation (7). There-

fore, substituting

f1(u) = exp(c1u+ d1), f2(u) = exp(c3u+ d3),
g1(v) = exp(c2v + d2), g2(v) = exp(c4v + d4),

(13)

into (11) and (12), we obtain the case(vii).
On the other hand, if we suppose f1(u) = f2(u) = r(u) and g1(v) = cos v, g2(v) = sin v,

then by vanishing Gaussian curvature, we get

r′′(u)r(u)(1 + (r(u))2) + (r′(u))2(1 + (r′(u))2) = 0.

As a result of this equation, we have a solution. Thus, we get the case (viii). �

Theorem 2.3. [4]Let M be a factorable surface in E4. Then the Gaussian torsion is given
by

KN =
E (f ′1f2g

′
1g
′′
2 − f1f ′2g′′1 g′2)− F (f ′′1 f2g1g

′′
2 − f1f ′′2 g′′1 g2) +G (f ′′1 f

′
2g1g

′
2 − f ′1f ′′2 g′1g2)

W 4
. (14)

where E = 1 + (f
′
1g1)

2 + (f
′
2g2)

2, F = f ′1f1g
′
1g1 + f

′
2f2g

′
2g2, G = 1 + (f1g

′
1)

2 + (f2g
′
2)

2 are
the first fundamental form coefficients of the surface M .

Corollary 2.1. Let M be a factorable surface with the parametrization (6) in E4. If the
functions f1(u), f2(u), g1(v) and g2(v) are linear polinomials, then M is a semiumbilical
surface.

Proposition 2.1. Let M be a factorable surface with the parametrization (6) in E4. If
the functions f1(u), f2(u), g1(v) and g2(v) satisfy the equations

f ′2(u) = f1(u),
g′2(v) = g1(v),

(15)

then the Gaussian curvature K coincides with the Gaussian torsion KN .

Proof. Let M be a factorable surface with the parametrization (6) in E4. Suppose that,

the equation (15) is satisfied, then we get E =
∼
E, F =

∼
F , G =

∼
G. Further, by the use of

Theorem 2.1 and Theorem 2.3, we obtain K = KN . This completes the proof. �
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Example 2.1. For the surface given with the parametrization

M1 : X(u, v) =

(
u, v,

−1

u
sin v, lnu cos v

)
, (u 6= 0) (16)

Gaussian curvature K coincides with the Gaussian torsion KN .

Theorem 2.4. [4]Let M be a factorable surface in E4. Then the mean curvature vector is
given by

→
H =

f ′′1 g1G+ f1g
′′
1E − 2f ′1g

′
1F

2

√
∼
EW 2

→
N1

+

∼
E (f ′′2 g2G+ f2g

′′
2E − 2f ′2g

′
2)−

∼
F (f ′′1 g1G+ f1g

′′
1E − 2f ′1g

′
1)

2

√
∼
EW 3

→
N2.

Theorem 2.5. Let M be a factorable surface in E4. Then M is a minimal surface if and
only if

f ′′i giG+ fig
′′
i E − 2f ′ig

′
iF = 0, i = 1, 2. (17)

Proof. Let M be a factorable surface in 4−dimensional Euclidean space E4. If the surface

is minimal then by the use of the previous theorem the mean curvature vector
→
H vanishes.

Since the mean curvature vector can be written as
→
H = H1

→
N1 + H2

→
N2, then we have

H1 = H2 = 0. Thus, we get the equation (17). The converse statement is trivial. �

Theorem 2.6. Let M be a factorable surface in E4. If M has one of the following
parametrizations in E4, then it is minimal:

(i) X(u, v) = (u, v, (c1u+ c2) d1, (c3u+ c4) d2),

(ii) X(u, v) = (u, v, c1 (d1v + d2) , c2 (d3v + d4)),

(iii) X(u, v) = (u, v, (c1u+ c2) d1, c3 (d3v + d4)),

(iv) X(u, v) = (u, v, c, (u+ d1) tan(c2v + d2)),

(v) X(u, v) = (u, v, c, tan(c1u+ d1) (v + d2)),

(vi) X(u, v) = (u, v, r(u) cos v, r(u) sin v) :

r(u) =
1

2c1

(
c21e
± 2(u+c2)

c1 + c21 − 1

)
e
± (u+c2)

c1 ,

(vii) X(u, v) = (u, v, (u+ d1) tan(c2v + d2), (u+ d1) tan(c2v + d2)),

(viii) X(u, v) = (u, v, tan(c1u+ d1) (v + d2) , tan(c1u+ d1) (v + d2)),

(ix) X(u, v) = (u, v, c, f2(u)g2(v)),

(x) X(u, v) = (u, v, f1(u)g1(v), f1(u)g1(v)),

the functions fi(u) and gi(v) satisfy the equations (i = 1, 2)

u =

∫
dfi(u)√

2k ln fi(u) + c1
, v =

∫
dgi(v)√

c2g4i (v)− m
2

,

u =

∫
dfi(u)√

c2f4i (u)− k
2

, v =

∫
dgi(v)√

2m ln gi(v) + c2
,

u =

∫
dfi(u)√

c1f
2(1+c)
i (u)− c2

, v =

∫
dgi(v)√

c3g
2(1−c)
i (v)− c4

,
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where k,m, c, c1, c2, c3, c4 are real constants.

Proof. Let M be a factorable surface with the parametrization (6) in E4. By the use of
(17) with first fundamental coefficients, we get,

f ′′1 g1
(
1 + f ′21 g

2
1+f ′22 g

2
2

)
+f1g

′′
1

(
1 + f21g

′2
1 +f22g

′2
2

)
−2f ′1g

′
1

(
f ′1f1g

′
1g1+f

′
2f2g

′
2g2
)

=0, (18)

f ′′2 g2
(
1 + f ′21 g

2
1+f ′22 g

2
2

)
+f2g

′′
2

(
1 + f21g

′2
1 +f22g

′2
2

)
−2f ′2g

′
2

(
f ′1f1g

′
1g1+f

′
2f2g

′
2g2
)

=0. (19)

If g′1(u) = 0, g′2(u) = 0 or f ′1(u) = 0, f ′2(u) = 0 we obtain the cases (i) and (ii),
respectively.

If f ′2(u) = 0, g′1(v) = 0, we obtain the case (iii).
If f ′1(u) = 0, g′1(v) = 0, the equality (18) holds and from (19), we get

f ′′2 (u)

f2(u)
+
g′′2(v)

g2(v)
+
(
f ′′2 (u)f2(u)− f ′22 (u)

)
g′22 (v) +

(
g′′2(v)g2(v)− g′22 (v)

)
f ′22 (u) = 0. (20)

If f ′′2 (u) = 0 or g′′2(v) = 0 in (20), we obtain the cases (iv) and (v).
If f ′′2 (u)g′′2(v) 6= 0 in (20), differentiating (20) with respect to u and v, we have(

f ′′2 (u)f2(u)− f ′22 (u)
)′(

f ′22 (u)
)′ = −

(
g′′2(v)g2(v)− g′22 (v)

)′(
g′22 (v)

)′ = c. (21)

If c = 1, c = −1 and c 6= ±1, then, we obtain the case (ix).
Also, if f1(u) = f2(u) = r(u) and g1(u) = cos v, g2(v) = sin v, then we have

r′′(u)
(
1 + (r(u))2

)
− r(u)

(
1 + (r′(u))2

)
= 0.

As a result of this equation, we have a solution. Thus, we get the case (vi).
If f1(u) = f2(u), g1(v) = g2(v) in (18), the equation (18) coincides with (19). Then we

find

f ′′1 (u)

f1(u)
+
g′′1(v)

g1(v)
+
(
f ′′1 (u)f1(u)− f ′21 (u)

)
2g′21 (v) +

(
g′′1(v)g1(v)− g′21 (v)

)
2f ′21 (u) = 0. (22)

If f ′′1 (u) = 0 or g′′1(v) = 0 in (22), we obtain the cases (vii) and (viii), respectively. Also,
if f ′′2 (u)g′′2(v) 6= 0, again we obtain the case (x). �

Example 2.2. By choosing the constants c1 = c2 = 1 in case (vi) of the previous theorem,
the surface given with the parametrization

M2 : X(u, v) = (u, v, e3u+3 cos v, e3u+3 sin v) (23)

is congruent to a factorable minimal surface. We can plot the projection of the surfaces
with maple command: plot3d([s, t, z + w], s = a..b, t = c..d)

Figure 1. Factorable surface M1 satisfying K = KN and Factorable min-
imal surface M2
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