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ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE

SYSTEM WITH UNRELIABLE DEVICES

T.M. ALIEV1, E.A. IBAYEV1, V.M. MAMEDOV1, §

Abstract. In the paper, the distribution is found for the process {ηt, ξt}, t ≥ 0, in the
terms of Laplace transformation. The considered process describes the queuing system
with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential
that the process {ηt, ξt}, t ≥ 0, for ξt ≥ n is a homogeneous with respect to the second
component Markov process. The results obtained in the paper are based on the theory
of matrices and solution of the system of linear integral equations.

Keywords: Poisson process, Laplace transformation, Generating function, Markov chain,
Homogeneous with respect to the second component.

AMS Subject Classification: 60A10, 60J25, 60G10.

1. Introduction

In solution of many problems of the theory of queuing systems, the principles of the
theory of controlled Poisson processes with or without boundaries are often used. This
principle indeed is:
Given controlled Poisson process with boundary i.e. the Markov chain {βt,mt}, t ≥ 0 in
the phase space T ×N+, where T = {α, β, ...}− is finite set, N+ = {0, 1, ...} and having
known transmission probability on the small interval (t, t+ ∆).

As a controlled Poisson process without boundary is understood as homogeneous with
respect to the second component Markov process {αt, nt, }, t ≥ 0, in the phase space
T ×N, N = {0,±1,±2, ...}..

Our aim is finding a relationship between the processes {βt,mt} and {αt, nt}.
Suppose that the local transition probabilities of the process {βt,mt}, t ≥ 0 depend on

such natural number c that for mt ≥ c the increment of the process {βt,mt} stochastically
equivalent to the increment of the process {αt, nt}. If mt ∈ [0, c−1], then evolution of the
process {βt,mt} is described by some auxiliary Markov chain with known local transition
probabilities.
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We assume that nt+0 − nt−0 ≥ −2, t ≥ 0 with probability 1. It means that with the
probability 1, the process nt does not have negative jumps different from -1, and for the
local characteristics, it is true that

qkαβ(t) = 0 (t ≥ 0; α, β ∈ T ; k ≤ −2).

Such processes in the case of integer phase is natural to be called as “lower continuous”
processes [1].

From the theoretical point of view, the problem is completely solved in [2]. In the
present work following to [2] in the terms of Laplace transformation the distribution of
the process {ηt, ξt}, t ≥ 0, is found describing the queuing system with nonhomogeneous
Poisson stream and no reliable devices. The similar problems are considered in [3], [4]. In
differ from those works, we use the principles of theory of controllable Poisson processes
with and without boundaries.

2. Main results

Let the queuing system gets the waiting nonhomogeneous Poisson stream of demands with
intensity.

λ =
∞∑
k=1

λk <∞.

Then, by ∆ ↓ 0 the probability that in the interval (t, t+∆) the system will get k demands
is equal to λk∆ + o(∆), k ≥ 1..

The service time has exponential distribution with parameter µ. Each device can be
broken with probability ν∆ + o(∆), during service in the interval (t, t + ∆) and then
repaired. The repairing time is exponential function with parameter π.

It is assumed that getting and service of the demand and breaking and repairing of the
devices are independent from each other.

Consider two dimensional random process

ξt = {ηt, ξt}, t ≥ 0,

where ηt ∈ {0, 1, ..., n}− is a number of broken devices at the time t, ξt ∈ {0, 1, 2, ..., }− is
a number of demands in the system at the moment t, nis a number of service devices.

To study ξt, we consider the random process {η∗t , ξ
|∗
t } in the phase space T × N, where

T = {0, 1, ..., n}, N = {0,±1,±2, ...}, and with the following transition probabilities by
∆ ↓ 0 :

(m, r)
∆−→


(m, r − 1) = (n−mµ∆ + o(∆)
(m− 1, r) = mπ∆ + o(∆)
(m, r) = 1− [λ+mπ + (n−m)(µ+ ν)]∆ + o(∆)
(m, r + k) = λk∆ + o(∆), k ≥ 1
(m+ 1, r) = (n−m)ν∆ + o(∆)

(1)

(m = 0, 1, ..., n; r = 0,±1, ...)

As one can see from (1) the process {η∗t , ξ∗t } is homogeneous with respect to the second
component Markov process [5].

Introduce the denotations

P ∗lm(t, r) = P{η∗t = m, ξ∗t = r/η∗0 = l, ξ∗0 = 0}
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Using (1) we get

P ∗lm(t+ ∆, r) = P ∗lm(t, r)[1− (λ+mπ + (µ+ ν)(n−m))∆]+

+(n−m)µP ∗lm(t, r + 1)∆ +
r−1∑
j=−∞

P ∗lm(t, j)λr−j+

(1− δmn)P ∗l,m+1(t, r)(m+ 1)π∆ + (1− δmo)(n−m+ 1)νP ∗l,m−1(t, r)∆ + o(∆).

From the last we obtain

dP ∗
lm(t,r)
dt = − [λ+mπ + (n−m)(µ+ ν)]P ∗lm(t, r) + (n−m)µP ∗lm(t, r + 1)+

+
r−1∑
j=−∞

λr−jP
∗
lm(t, j) + (1− δmn)(m+ 1)πP ∗l,m+1(t, r)+

+(1− δmo)(n−m+ 1)νP ∗l,m−1(t, r),

(2)

where δij is Kronecker’s symbol, l,m = 0, 1, ..., n; r = 0,±1,±2, ...
Let us introduce the generating function

ϕ∗lm(t, θ) =
+∞∑
r=−∞

P ∗lm(t, r)θr |θ| = 1

l,m = 0, 1, ..., n

Then the system (2) on the generating functions takes the form

∂ϕ∗
lm(t,∆)
∂t =

[
λ(θ)− λ+ (n−m)µ

(
1
θ − 1

)
−mπ − (n−m)ν

]
ϕ∗lm(t, θ)+

+(1− δmn)(m+ 1)πϕ∗l,m+1(t, θ) + (1− δmo)(n−m+ 1)νϕ∗l,m−1(t, θ)

(3)

Introducing the function

ψlm(t, θ) = e[λ−λ(θ)]tϕ∗lm(t, θ)

one can write the system (3) in the following form

∂ψlm(t,θ)
∂t =

[
(n−m)µ

(
1
θ − 1

)
−mπ − (n−m)ν

]
ψlm(t, θ)+

+(1− δmn)(m+ 1)πψl,m+1(t, θ)+
+(1− δmo)(n−m+ 1)νψl,m−1(t, θ)
l,m = 0, 1, ..., n

(4)

From (4) follows that if η∗t = m, then ξ∗t = ξ∗t (m) is a Poisson process with parameter

λ̃ = (n−m)µ. Denoting

γm(θ) = (n−m)µ

(
1

θ
− 1

)
−mπ − (n−m)ν, m = 0, 1, ..., n

~ψ(t, θ) = {ψl0(t, θ), ψl1(t, θ), ..., ψln(t, θ)} ,

Γ(θ) =


γ0(θ) π 0 ... 0
nν γ1(θ) 2π ... 0
... ... ... ... ...
0 0 ... ... νγn(θ)
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we can write the system (4) in the following matrix form

∂ ~ψ(t, θ)

∂t
= Γ(θ)~ψ(t, θ).

from this

~ψ(t, θ) = ~ψ(0, θ) exp{t,Γ(θ)},

where ~ψ(0, θ)is a known vector.

Finding ~ψ(t, θ) makes possible to find transition probabilities {P ∗lm(t, r)} of the process
{η∗t , ξ∗t }..

Now let us investigate the main process {ηt, ξt}, t ≥ 0..
By the description of the process {ηt, ξt}, t ≥ 0 it is easy to see that by ∆ ↓ 0 it has the
following transition probabilities

(m, r)
∆−→


(m, r − 1) = min(r, n−m)µ∆ + o(∆)
(m+ 1, r) = min(r, n−m)ν∆ + o(∆)
(m, r) = 1− [λ+ min(r, n−m)(µ+ ν) +mπ]∆ + o(∆)
(m, r + k) = λk∆ + o(∆), k ≥ 1
(m− 1, r) = mπ∆ + o(∆)

(5)

m = 0, 1, .., n; r = 0, 1, 2, ...

As one can see from (5) the process {ηt, ξt}, t ≥ 0 for ξt ≥ n is homogeneous with respect
to the second component Markov process.
Let us denote

Pm,r(t) = P{ηt = m, ξt = r},
m = 0, 1, ..., n; r = 0, 1, 2, ...

Then using (5) we obtain

dPmr(t)
dt = − [λ+mπ + min(r, n−m)µ+ min(r, n−m)ν]Pm,r(t)+

+ min(r, n−m+ 1)νPm−1,r(t) + (m+ 1)πPm+1,r(t)+

+ min(r + 1, n−m)µPm,r+1(t) +
r∑
i=1

Pm,r−i(t)− λi,

m = 0, 1, ..., n− 1; r = 0, 1, 2, ...

(6)

dPn0(t)

dt
= −(λ+ nπ)Pn0(t), (7)

dPnr(t)

dt
= −(λ+ nπ)Pnr(t) + νPn−1,r(t) +

r∑
i=1

λiPn,r−i(t). (8)

Considering transition function

ϕm(t, θ) =
∞∑
r=0

Pm,r(t)θ
r |θ| ≤ 1

Multiplying both sides of (6) by θrand taking a sum from 0 to ∞we get
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∞∑
r=0

dPmr(t)
dt θr = −(λ+mπ)

∞∑
r=0

Pmr(t)θ
r−

−(ν + µ)
∞∑
r=0

min(r, n−m)Pm,r(t)θ
r + ν

∞∑
r=0

min(r, n−m+ 1)Pm−1,r(t)θ
r+

+(m+ 1)π
∞∑
r=0

Pm+1,r(t)θ
r + µ

∞∑
r=0

min(r + 1, n−m)Pm,r+1(t)θr+

+
∞∑
r=0

r∑
i=1

Pm,r−i(t)λiθ
r, m = 0, 1, ..., n− 1.

(9)

We assume that P−1,r(t) ≡ 0 for any r ≥ 0. Note that

∞∑
r=0

min(r, n−m)Pmr(t)θ
r = (n−m)ϕm(t, θ) +

n−m−1∑
r=0

(r − n+m)Pmr(t)θ
r.

Considering this from (9) we have

∂ϕm(t,θ)
∂t = (n−m+ 1)νϕm−1(t, θ) +

[
λ(θ) + µ

θ (n−m)− (λ+mπ)− (n−m)(ν + µ)
]
ϕm(t, θ)+

(m+ 1)πϕm+1(t, θ) + ν
n−m∑
r=0

(r − n+m− 1)Pm−1,r(t)θ
r − (ν + µ)

n−m−1∑
r=0

(r − n+m)Pmr(t)θ
r+

+µ
θ

n−m−1∑
r=0

(r − n+m)Pmr(t)θ
r, (m = 0, 1, ..., n− 1)

where λ(θ) =
∞∑
r=1

λkθ
k |θ| ≤ 1

By the similar way from the equations (7) and (8) one can get

∂ϕm(t, θ)

∂t
= νϕn−1(t, θ) + [λ(θ)− λ− nπ]ϕn(t, θ)− νPn−1,0(t).

Introduce

qm(θ) = λ(θ) + µ
θ (n−m)− (λ+mπ)− (n−m)(ν + µ),

ψm(t, θ) =
(µ
θ − µ− ν

) n−m−1∑
r=0

(r − n+m)Pmr(t)θ
r + ν

n−m∑
r=0

(r − n+m− 1)Pm−1,r(t)θ
r,

(m = 0, 1, ..., n)

Suppose that

−1∑
r=0

rPmr(t)θ
r ≡ 0.

As a result we get the following system of differential equations
∂ϕ0(t,θ)

∂t = q0(θ)ϕ0(t, θ) + πϕ1(t, θ) + ψ0(t, θ)
∂ϕ1(t,θ)

∂t = nνϕ0(t, θ) + q1(θ)ϕ1(t, θ) + 2πϕ2(t, θ) + ψ1(t, θ)
.....................................................................................
∂ϕn(t,θ)

∂t = νϕn−1(t, θ) + qn(θ)ϕn(t, θ) + ψn(t, θ).

(10)

Introducing the denotations
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~ϕ(t, θ) =


ϕ0(t, θ)
ϕ1(t, θ)
...

ϕn(t, θ)

 , ~ψ(t, θ) =


ψ0(t, θ)
ψ1(t, θ)
...

ψn(t, θ),



Q(θ) =


q0(θ) π 0 ... 0
nν q1(θ) 2π ... 0
... ... ... ... ...
0 0 0 qn−1(θ) nπ
0 0 ... ν qn(θ).


We can write the system (10) in the following matrix form

∂~ϕ(t, θ)

∂t
= Q(θ)~ϕ(t, θ) + ~ψ(t, θ),

from this we have [6]

~ϕ(t, θ) = ~ϕ(0, θ)etQ(θ) +

∫ t

0
e(t−τ)Q(θ) ~ψ(τ, θ)dτ, (11)

where ~ϕ(0, θ) is an initial solution that is assumed known.
From the theory of homogeneous with respect to the second component Markov processes
is known the following representation for etQ(θ):

etQ(θ) = ‖rij(t, θ)‖ni,j=0 ,

where rij(t, θ) (i, j = 0, 1, ..., n)−is a generating function for the Markov process {η∗t , ξ∗t },
that is homogeneous with respect to the second component.

Since the behavior of the process {η∗t , ξ∗t } is as the process {ηt, ξt} by ξt ≥ n, then

rij(t, θ) =
+∞∑

k=−∞
gij(t, k)θk, |θ| = 1

gij(t, k) = P{η∗t = j, ξ∗t = k/η∗0 = i, ξ∗0 = 0}
(i, j = 0, 1, ..., n)

Taking equal the corresponding components at the right and left sides of the equality (11)
we obtain

ϕk(t, θ) =

n∑
i=0

rki(t, θ)ϕi(0, θ) +

∫ t

0

[
n∑
i=0

rki(t− τ, θ)ψi(τ, θ)

]
dτ

In the last passing to the expressions for ϕk, ψk and rkiwe get

∞∑
j=0

Pkj(t)θ
j =

n∑
i=0

(
∞∑
j=0

Pij(θ)θ
j

)(
+∞∑

m=−∞
gki(t,m)θm

)
+

+
n∑
i=0

∫ t
0

[(µ
θ − µ− ν

) n−i−1∑
r=0

(r − n+ i)Pir(τ)θr
] [

+∞∑
m=−∞

gki(t− τ,m)θm
]
dτ+

+
n∑
i=0

∫ t
0 ν

[
n−i∑
r=0

(r − n+ i− 1)Pi−1,r(τ)θr
] [

+∞∑
m=−∞

gki(t− τ,m)θm
]
dτ,

(12)

where Pij(0) -is a known initial distribution. It is easy to check that
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n∑
i=0

(
∞∑
j=0

Pij(θ)θ
j

)(
+∞∑

m=−∞
gki(t,m)θm

)
=
∞∑
j=0

(
n∑
i=0

dk,j(i, t)

)
θj+

+
∞∑
j=0

∞∑
r=1

(
n∑
i=0

Pij(0)gki(t,−r)
)
θj−r,

(13)

where

dk,j(i, t) =

j∑
m=0

Pim(0)gki(t, j −m), (k = 0, 1, ....n).

Denoting

ajr(k, t) =
n∑
i=0

Pij(0)gki(t,−r).

we have

∞∑
j=0

∞∑
r=1

ajr(k, t)θ
j−r =

∞∑
j=0

∞∑
m=1

aj+m,m(k, t)θj+

+
∞∑
j=0

∞∑
r=j+1

ajr(k, t)θ
j−r.

(14)

Now let’s deal with the second expression under the sign of integral in the left hand side
of (12). Using the representation

∞∑
m=−∞

gki(t,m)θm =
∞∑
m=0

gki(t,m)θm +
∞∑
m=1

gki(t,−m)θ−m, (|θ| = 1)

we obtain

(µ
θ
− µ− ν

) ∞∑
m=−∞

gki(t,m)θm =
∞∑
m=0

qki(t,m)θm +
∞∑
m=1

qki(t,−m)θ−m,

where

qki(t,m) = µgki(t,m+ 1)− (µ+ ν)gki(t,m).

Now it is easy to show that[(µ
θ − µ− ν

) ∞∑
m=−∞

gki(t− τ,m)θm
] [

n−i−1∑
r=0

(r − n+ i)Pir(τ)θr
]

=

=
∞∑
j=0

αki(t− τ, j)θj +
∞∑
j=1

αki(t− τ,−j)θ−j ,
(15)

where

αki(t− τ, j) =
n−i−1∑
r=0

εi,r(τ)qki(t− τ, j − r),

εi,r(τ) = (r − n+ i)Pir(τ).

Similarly for the third expression under the sign of integral in the right hand side of (12)
we get
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[
n−i∑
r=0

(r − n+ i− 1)Pi−1,r(τ)θr
] [ ∞∑

m=−∞
gki(t− τ,m)θm

]
=

=
∞∑
j=0

γki(t− τ, j)θj +
∞∑

j=−1
γki(t− τ,−j)θ−j ,

(16)

where

γki(t− τ, j) =

n−i∑
r=0

εi−1.r(τ)gki(t− τ, j − r).

Denoting

mk,j(t) =
n∑
i=0

dk,j(i, t),

bk,j(t) =
∞∑
m=1

aj+m,m(k, t).

On the base of (13)-(16) we obtain

∞∑
j=0

Pk,j(t)θ
j =

∞∑
j=0

mk,j(t)θ
j +

∞∑
j=0

bk,j(t)θ
j+

+
∞∑
j=0

∞∑
r=j+1

aj,r(k, t)θ
j−r +

∞∑
j=0

(
n∑
i=0

∫ t
0 αki(t− τ, j)dτ

)
θj+

+
∞∑
j=1

(
n∑
i=0

∫ t
0 αki(t− τ,−j)dτ

)
θ−j+

+
∞∑
j=0

(
ν

n∑
i=0

∫ t
0 γki(t− τ, j)dτ

)
θj +

n∑
i=0

(
n∑
i=0

∫ t
0 γki(t− τ,−j)dθ

)
θ−j

(k = 0, 1, ..., n)

Taking equal the coefficients at the same degrees of θin the last relations we get

Pk,j(t) = mk,j(t) + bk,j(t) +

n∑
i=0

∫ t

0
αki(t− τ, j)dτ + ν

n∑
i=0

∫ t

0
γki(t− τ, j)dτ,

or

Pk.j(t) = fk,j(t) +
n∑
i=0

∫ t

0
βki(t− τ, j)dτ,

where

fk,j(t) = mk,j(t) + bk,j(t),
βki(t, j) = αki(t, j) + νγki(t, j)

.

Considering the expressions for αki and γki for βki we obtain

βki(t− τ, j) =
n−i∑
r=0

[νεi−1,r(τ)gki(t− τ, j − r) + εi,r(τ)qki(t− τ, j − r)] =

=
n−i∑
r=0

[ν(r − n+ i− 1)gki(t− τ, j − r)P (τ) + (r − n+ i)qki(t− τ, j − r)Pir(τ)].

Finally we have
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Pk,j(t) = fk,j(t)+

+
n∑
i=0

n−i∑
r=0

∫ t
0 [ν(r − n+ i− 1)gki(t− τ, j − r)Pi−1,r(τ) + (r − n+ i)qki(t− τ, j − r)Pir(τ)] dτ

k = 0, 1, ..., n, j = 0, 1, 2, ....
(17)

To find Pk,j(t), (k = 0, 1, ..., n, j = 0, 1, 2, ...) it is sufficient to solve the system (17) for
given values of k.j = 0, 1, ..., n− 1. .
In the case of n = 1 according to (17) we get the system

Pk,j(t) = fk,j(t) +
∫ t

0 Fk,j(t− τ)P0,0(τ)dτ,
(k = 0, 1; j = 0, 1, ...)

(18)

where

Fk,j(t) = (µ+ ν)gk0(t, j)− νgk1(t, j)− µgk0(t.j + 1).

Assuming k = 0 and j = 0 in (18) one can have

P0,0(t) = f0,0(t) +

∫ t

0
F0,0(t− τ)P0,0(τ)dτ

or in the terms of Laplace transformation

P̃0,0(t) = f̃0,0(t) + F̃0,0(t)P̃0,0(t),

from which follows

P̃0,0(t) =
f̃0,0(t)

1− F̃0,0(t)
.

Knowing P0,0(t) on the base of (18) it is possible to find the distribution {Pk,j(t)} for the
values k = 0, 1 ; j = 0, 1, ... .

In the general case solution of the system of linear integral equations (17) does not meet
any difficulties. [7].
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