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HYDRODYNAMIC LIMIT OF THE BOLTZMANN-MONGE-AMPERE

SYSTEM

F.BEN BELGACEM1, §

Abstract. This paper investigates the hydrodynamic limit of the Boltzmann-Monge-
Ampere system in the so-called quasineutral regime and more precisely the convergence
of the Boltzmann-Monge-Ampere system to the Euler equation by using the relative
entropy method.

Keywords: Boltzman equation, Monge-Ampère equation, Euler equations of the incom-
pressible fluid.

AMS Subject Classification: AMS Subject Classification: 35F20, 35B40, 82D10

1. Introduction

The behavior of dilute charged particules when the magnetic forces are neglected is
described by the Vlasov-Poisson-Boltzman (VPB) system defined by

∂tf
ε + ξ.∇xf ε +∇xϕε.∇ξf ε = Q(f ε, fε) (1)

ε24ϕε = ρε − 1 (2)

where

ρε(t, x) =

∫
Rd
f ε(t, x, ξ)dξ (3)

and f ε(t, x, ξ) ≥ 0 is the electronic density at time t ≥ 0 point x ∈ [0, 1]d = Td, and with a
velocity ξ ∈ Rd. The periodic electric potential ϕε is coupled with f ε through the Poisson
equation (2).The quantities ε > 0 and Q(f ε, fε) denote respectively the vacum electric
permitivity and the Boltzman collision integral. This latter, is given by (see([4],[9]))

Q(f ε, fε)(t, x, ξ) =

∫ ∫
Sd−1
+ ×Rd

(
(f ε)′ (f ε1 )′ − f εf ε1

)
b (ξ − ξ1, σ) dσdξ1,

where the terms f ε1 , (f ε)′ and (f ε1 )′ define, respectively the values f ε(t, x, ξ1), f
ε(t, x, ξ′)

and f ε(t, x, ξ′1) with ξ′ and ξ′1 given in terms of ξ, ξ1 ∈ Rd,
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and σ ∈ Sd−1+ =
{
σ ∈ Sd−1/σ.ξ ≥ σ.ξ1

}
by

ξ′ =
ξ + ξ1

2
+
ξ − ξ1

2
σ, ξ′1 =

ξ + ξ1
2
− ξ − ξ1

2
σ.

The VPB system, has been investigated many authors. In [6] DiPerna and Lions showed
the existence of renormalized solution. Desvilletes and Dolbeault [8] are interested in the
long-time behavior of the weak solutions of the VPB system for the initial boundary prob-
lem. In [10] Guo established the global existence of smooth solutions to the VPB system
in periodic boundary condition case. For more references for this subject, Boltzmann
equation or Vlasov–Poisson system, one can see ([1],[4],[5],[7],[8],[12], [13])

Consider the Boltzman-Monge-Ampere system (BMA)

∂tf
ε + ξ.∇xf ε +∇xϕε.∇ξf ε =Q(f ε, fε), (4)

det
(
Id + ε2D2ϕε

)
=ρε, (5)

where Id is the identity matrix.
By linearising the determinant about the identity matrix Id,

det
(
Id + ε2D2ϕε

)
= 1 + ε24ϕε +O

(
ε4
)
.

Formally, as ε is small, the BVP and BMA systems asymptotically approach each other
up to order O

(
ε4
)
.

In [11] L. Hsiao and al. studied the convergence of the VPB system to the Incompressible
Euler Equations. It is clear that the case Q(f ε, fε) = 0 corresponds to the the Vlasov-
Monge-Ampère(VMA). This problem, was been considered by Y. Bernier and Grégoire
[2]. They showed that weak solution of VMA converge to a solution of the incompressible
Euler equations when the parameter ε goes to 0.

This article studies the hydrodynamical limit of the BMA.
First, Note that∫

Rd
Q(f ε, fε)dξ =

∫
Rd
ξiQ(f ε, fε)dξ =

∫
Rd
|ξ|2Q(f ε, fε)dξ = 0, i = 1, 2, ..., d.

The conservation of total energy reads

1

2

∫
Rd

∫
Td
|ξ|2 f ε (t, x, ξ) dxdξ +

ε

2

∫
Td
|∇ϕε (t, x)|2 dx = E0 (6)

where

E0 =
1

2

∫
Rd

∫
Td
|ξ|2 f ε0 (x, ξ) +

ε

2

∫
Td
|∇ϕε (0, x)|2 dx

Denote

Jε (t, x) =

∫
Rd
ξf ε (t, x, ξ) dξ. (7)

The conservation laws of mass and momentum are

∂tρ
ε +∇.Jε = 0 (8)

and

∂tJ
ε +∇x.

∫
Rd

(ξ ⊗ ξ) f εdξ +∇ϕε +
ε

2
∇
(
|∇ϕε|2

)
− ε∇. (∇ϕε ⊗∇ϕε) = 0 (9)

with

ε24ϕε = ρε − 1.
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The periodic boundary problem of Euler equations to the incompressible fluid is defined
by

∇.u = 0, t > 0, x ∈ Td (10)

∂tu+ (u.∇)u+∇p = 0 t > 0, x ∈ Td (11)

u (0, x) = u0 (x) ∈ Hs, (12)

where the function space Hs is given by Hs =
{
u ∈ Hs

(
Td
)
, ∇.u = 0

}
. At the end of

this introduction define the modulated energy functional

Hε (t) =
1

2

∫
Rd

∫
Td
|ξ − u (x)|2 f ε (t, x, ξ) dxdξ +

ε

2

∫
Td

∣∣∇ϕ2 (t, x)
∣∣2 dx.

Elementary calculations lead to

d
dtHε (t) = −

∫
d (u) (t, x) : (ξ − u (t, x))⊗ (ξ − u (t, x)) f (t, x, ξ) dxdξ

+ε

∫
d (u) (t, x) : ∇ϕ (t, x)⊗∇ϕ (t, x) dx

+

∫
A (u) (t, x) . (ρ (t, x)u (t, x)− J (t, x)) dx

where d (u) is the symmetrized gradient of u defined by

dij (u) =
1

2

(
∂xiuj + ∂xjui

)
and A (u) is the acceleration operator given by

A (u) = ∂tu+ (u.∇)u.

It follows that

d

dt
Hε (t) ≤ 2 ‖d (u (t))‖Hε (t) +

∫
A (u) (ρεu− Jε) dx,

where ‖d (u (t))‖ is the supremum in x of the spectral radius of d (u) (t, x) . Integrating in
t,

Hε (t) ≤ Hε (0) exp
(∫ t

0 2 ‖d (u (s))‖ ds
)

+
∫ t
0 exp

(∫ t
s 2 ‖d (u (θ))‖ dθ

) (∫
A (u) (s, x) . (ρεu− Jε) (s, x)

)
dsdx.

In the case u = 0, the total energy bound is recovered

1

2

∫
|ξ|2 f (t, x, ξ) dxdξ +

ε

2

∫
|∇ϕ (t, x)|2 dx ≤ E0.

2. Main results

Theorem 2.1. Let 0 < T < T ∗ and u0 in Hs
(
s > 1 + d

2

)
, Zd periodic in x. Assume that

f ε0 (x, ξ) ≥ 0 to be smooth, Zd periodic in x, and f ε0 decays fast as ξ → ∞. In addition,
assume that ∫

Rd
f ε0 (x, ξ) dξ = 1 + o

(
ε

1
2

)
, as ε→ 0,

in the strong sense of the space H−1
(
Td
)

and

1

2

∫
Rd

∫
Td
|ξ − u0 (x)|2 f ε0 (x, ξ) dxdξ +

ε

2

∫
Td

∣∣∇φ2 (0, x)
∣∣2 dx→ 0 as ε→ 0.
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Let f ε be any nonnegative smooth solution of (4)-(5). Then, up to the extraction of
a subsequence, the current Jε converges weakly to the unique solution u (x, t) of the
Euler equations (10)-(11)-(12). Moreover, the divergence free part of f converges to u in
L∞

(
[0, T ] , L2

(
Td
))
.

3. Proof of the theorem 2.1

The proof will be given only for d = 2. For d > 2, one can operate differently. We recall
(see [3]) a result of existence of smooth solutions to (5) for Hölder continuous, positive
right-hand sides. This result gives us the a priori bound needed to prouve the Lemma 3.1.

Theorem 3.1. Let ρ be a probability density over Td such that m ≤ ρ ≤M for some pair
(m,M) > 0. Let u : Td → R be solution of det

(
Id +D2u

)
= ρ, with u+|.|2 /2 convex. Then

there exists a non- decreasing function Hm,M such that, ‖u‖C2,α(Td) ≤ Hm,M
(
‖ρ‖Cα(Td)

)
.

In the sequel the following two Lemmas are needed

Lemma 3.1. Under the hypothesis of the Theorem 2.1, one has up to the extraction
of a sequence, ρε converges to 1 in C0

(
[0, T ] ,D′

(
Td
))
, the current Jε converges to J

in L∞
(
[0, T ] ,D′

(
Td
))
, J ∈ L∞

(
[0, T ] , L2

(
Td
))
, and the divergence free parts of Jε

converges to J in C0
(
[0, T ] ,D′

(
Td
))
.

Proof. For d = 2, one decompose

det
(
I + ε2D2ϕε

)
= 1 + ε24ϕε + ε4 detD2ϕε. (13)

For η ∈ C∞0
(
Td
)
,∫

(ρε (t, x)− 1) η (x) dx =

∫ (
det
(
I + ε2D2ϕε

)
− 1
)
η (x) dx

=

∫ (
ε24ϕε + ε4 detD2ϕε

)
η (x) dx.

But

detD2ϕε =
1

2
tr
((

cofD2ϕε
)
D2ϕε

)
=

1

2
div
((

cofD2ϕε
)
∇ϕε

)
,

it follows by integrating by parts that∫
(ρε (t, x)− 1) η (x) dx = ε2

∫
∇ϕε∇η (x) dx+

ε4

2

∫
div
((

cofD2ϕε
)
∇ϕε

)
η (x) dx

= ε2
∫
∇ϕε∇η (x) dx− ε4

2

∫ (
cofD2ϕε

)
∇ϕε.∇η (x) dx.

Thus, by the Hölder inequality one has

∫
(ρε (t, x)− 1) η (x) dx ≤ ε

3

2

(
ε

∫
|∇ϕε|2

)1

2
(∫
|∇η|2

)1

2 +

+
ε4

2

∥∥cofD2ϕε
∥∥
L2 ‖∇ϕε‖L2 ‖∇η‖L2 .

From Theorem 3.1, one can deduce that∥∥cofD2ϕε
∥∥
L2 ≤ Cε−2,
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So, by the conservation of the energy∣∣∣∣∫ (ρε (t, x)− 1) η (x) dx

∣∣∣∣ ≤ C0ε

3

2 ‖∇η‖L2 + C.ε2 ‖∇ϕε‖L2 ‖∇η‖L2 .

≤ C0ε

3

2 ‖∇η‖L2 + C.ε

3

2 ‖∇η‖L2

≤ Cε
3

2 ‖∇η‖L2 .

Which shows that ρε → 1 in C0
(
[0, T ] ,D′

(
Td
))
.

Moreover, using the total energy equality (6)

∫
|Jε (t, x)| dx ≤

(∫ ∫
|ξ|2 f ε (t, x, ξ) dxdξ

)1

2
(∫ ∫

f ε (t, x, ξ) dxdξ

)1

2 ≤ C. (14)

Thus Jε is bounded in L∞
(
[0, T ] , L1

(
Td
))
. Up to extracting a subsequence, assume that

Jε has a limit J in the sens of (Radon) measures on [0, T ]× Rd

Zd
= Td. Finally, define as in

[11], for each non-negative function z (t) ∈ C0 ([0, T ]) , the convex functional of a (Radon)
measure

K (ρε, Jε) =

∫ T

0

|Jε (t, x)|2

2ρε (t, x)
z (t) dxdt

= sup
b

∫ T

0

{
−1

2
|b (t, x)|2 ρε (t, x) + b (t, x) Jε (t, x)

}
z (t) dt.

where b belongs to the space of all continuous functions from [0, T ]×Td to Rd. From (14)
and since the functional K is lower semi-continuous with respect to the convergence of
measure, it follows that∫ T

0
z (t)

(∫
|J (t, x)|2 dx

)
dt ≤ C

∫ T

0
z (t) dt,

which means that J ∈ L∞
(
[0, T ] , L2

(
Td
))
.

From (8) and (7), one writes

∂tρ
ε = ∂tdet

(
I + ε2D2ϕε

)
= −∇Jε,

thus

∇Jε = −ε∂t4φε − ε2∂t detD2φε.

Next, note that, for η ∈ C∞0
(
Td
)
,∫

∇Jεη (x) dx = −ε
∫
∂t (4φεη) dx− ε2

∫
∂t detD2φεηdx,

thus J is divergence free in x in the sense of distribution. By (7), it follows that ∂tJ is
bounded in L∞

(
[0, T ] , D′

(
Td
))
. So, we obtain that up to the exraction of a subsequance,

J ∈ C0
(
[0, T ] , L2

(
Td
)
− w

)
.

In the same way , the divergence -free part of Jε converges to J in C0
(
[0, T ] , D′

(
Td
))
.

�

Since Jε converges to J , it remains to show that J = u in L∞
(
[0, T ] , L2

(
Td
))
. For

this, it suffies to use the next Lemma (see [11])
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Lemma 3.2. Let u be the unique solution of the Euler equations (10)-(11) with initial
datum and u0 and the hypotheses of theorem 1 hold. Then, for any t ∈ (0, T ] , Hε (t)→ 0
as ε→ 0.

To end the proof of the Theorem 2.1 , let

hε (t) =

∫
|Jε (t, x)− ρε (t, x)u (t, x)|2

2ρε (t, x))
dx. (15)

With b belongs to the space of all continuous functions from Td to Rd. By the Cauchy-
Shwarz inequality,

hε (t) ≤ 1

2

∫
|ξ − u (t, x)|2 f ε (t, x, ξ) dxdξ ≤ Hε (t) .

Since ρε → 1, Jε → J and from the convexity of the functional defined by (15), one
concludes that ∫

|J (t, x)− u (t, x)|2 dx ≤ 2 lim
ε→0

hε (t) ≤ 2 lim
ε→0

Hε (t) = 0.

This finishes the proof of Theorem 2.1.

4. Conclusions

The convergence of the BMA system to the incompressible Euler equations has been
shown by using the entropy method. The proof is based on the decomposition 13, which
is valid only in 2d. For d > 2 one operates differently.
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