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SYMMETRIC BI-T -DERIVATION OF LATTICES

C. JANA1, K. HAYAT2, M. PAL1, §

Abstract. In this paper, the notion of a new kind of derivation is introduced for a lattice
(L,∨,∧), called symmetric bi-T -derivations on L as a generalization of derivation of lattices
and characterized some of its related properties. Some equivalent conditions provided for a
lattice L with greatest element 1 by the notion of isotone symmetric bi-T -derivation on L.
By using the concept of isotone derivation, we characterized the modular and distributive
lattices by the notion of isotone symmetric bi-T -derivation on L.

Keyword: Lattice, Derivation of lattice, Symmetric bi-T -derivation of lattice, Modular
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1. Introduction

The notion of lattice theory introduced by [1]. After the initiation of lattices many re-
searchers studied lattice theory in different point of view such as, Balbes and Dwinger [2]
gave the concept on distributive lattices and Hoffmann gave the notion of partially ordered
set (Poset). The application of lattice theory plays an important role in different areas such
as information theory by [3], information retrieval by Carpineto and Romano [4], informa-
tion access controls by [5] and cryptanalysis by [6]. Recently, the properties of lattices were
studied by some authors [7] in analytic and algebraic point of view.

Derivations is a very interesting research area in the theory of algebraic structure in math-
ematics. Posner [8] provided the concept of derivation on rings. Based on this concept Bell
and Kappea [9] studied that rings in which derivations satisfy certain algebraic conditions.
The notion of generalized derivation in ring introduced by Braser [10] and Hvala [11]. This
concept of derivation further carried out by many authors Argaç and Albas [12], Jana et
al. [20] studied derivation on KUS-algebras, Gölbaşi and Kaya [13] in prime rings and lie
ideal in prime rings. Jana et al. [14-19] have been studied lot of works on BCK/BCI/G-
algebras. The study of derivation in lattice theory is an important topic in application of
different mode. Xin et al. [22] introduced the notion of derivation in lattices and discussed
its properties. Thereafter, many authors generalized this idea in lattices such as, symmetric
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bi-derivation studied by Maksa [23, 24] many researchers introduced this concept to study
symmetric bi-derivation on rings and near-rings by Ozturk and Sapancy [25, 26, 27, 28]
and we focused to the study of symmetric bi-derivation on lattices and investigated some
properties on it by Çven [29].

In this article, we applied a new approach to the study of derivation in lattice theory
by the concept of t-derivation of complicated subtraction algebra is defined by Jana et al.
[21]. This work is enough to motivated us and best of our knowledge there is no work
available on symmetric bi-T -derivation of lattices. In this paper, the notion of symmetric
bi-T -derivation on lattices is introduced, which is a generalization of derivation in lattices is
introduced and studied some properties of it. We gave some equivalent condition for which a
derivation to be an isotone symmetric bi-T -derivation for a lattices with greatest element. We
characterized modular lattices and distributive lattices by the concept of isotone symmetric
bi-T -derivation.

2. Preliminaries

Definition 2.1. [1] Let L be a non-empty set endowed with operations ∧ and ∨. Then set
(L,∧,∨) is called lattices if for all x, y, z ∈ L satisfies the following conditions:
(L1) x ∧ x = x, x ∨ x = x
(L2) x ∧ y = y ∧ x, x ∨ y = y ∨ x
(L3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z)
(L4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x.

Definition 2.2. [1] A Lattice (L,∧,∨) is called distributive lattice if for all x, y, z ∈ L
satisfies the following conditions:
(L5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(L6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

It is notified that in a Lattice the conditions (L5) and (L6) are equivalent.

Definition 2.3. [1] Let (L,∧,∨) be a lattice. A binary relations (≤) on L defined by x ≤ y
is holds if and only if x ∧ y = x and x ∨ y = y.

Definition 2.4. [2] A lattice (L,∧,∨) is called a modular lattice if for all x, y, z ∈ L satisfies
the following conditions:
(L7) If x ≤ y implies x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Definition 2.5. [22] Let (L,∧,∨) be a lattice. Then the binary relation (≤) which is defined
in Definition 2.3. Then (L,≤) is a poset i.e. is a partially ordered set and for any x, y ∈ L,
x ∧ y is the g.l.b of {x, y}, and x ∨ y is the l.u.b of {x, y}.

Proposition 2.1. [22] Let L be a lattice and d be a derivation on L. Then for all x, y ∈ L,
the following are holds:

(1) d(x) ≤ x
(2) d(x) ∧ d(y) ≤ d(x ∧ y) ≤ d(x) ∨ d(y).

Definition 2.6. [22] Let L be a lattice and d be a derivation on L

(1) x ≤ y implies d(x) ≤ d(y), then d is called an isotone derivation
(2) If d is one-to-one, then d is called a monomorphic derivation
(3) If d is onto, then d is called an epimorphic derivation.

Definition 2.7. [29] Let (L,∧,∨) be a lattice. A function D(., .) : L × L → L is called
symmetric if satisfies the condition D(x, y) = D(y, x) for all x, y ∈ L.

Definition 2.8. [29] Let L be a lattice. A function d : L×L→ L defined by d(x) = D(x, x)
is called trace of D(., .), where D(., .) : L× L→ L is a symmetric function.
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Definition 2.9. [29] Let L be a lattice and Let D : L× L→ L be a symmetric function on
L. Then D is called symmetric bi-derivation on L if satisfies the following identity:

D(x ∧ y, z) = (D(x, z) ∧ y) ∨ (x ∧D(y, z))

for all x, y, z ∈ L. Also, A symmetric bi-derivation D satisfies the following relation

D(x, y ∧ z) = (D(x, y) ∧ z) ∨ (y ∧D(x, z))

for all x, y, z ∈ L.

3. Symmetric bi-T -derivations on lattices

In this section, the following definition introduced symmetric bi-T -derivation on a lattice.

Definition 3.1. Let L be a lattice. Then for any T ∈ L, we define a self-map DT : L×L→ L
by DT (x, y) = (x ∧ y) ∧ T for all x, y ∈ L.

Definition 3.2. Let L be a lattice. Then for any T ∈ L, a self-map DT : L × L → L is
defined as for any T ∈ L, DT (x, y) = (x∧y)∧T for all x ∈ L. Then function DT : L×L→ L
is called symmetric bi-T -derivation of L if satisfies the following condition:

DT (x ∧ y, z) = (DT (x, z) ∧ y) ∨ (x ∧DT (y, z))

for all x, y, z ∈ L. Also, A symmetric bi-T -derivation DT satisfies the following relation

DT (x, y ∧ z) = (DT (x, y) ∧ z) ∨ (y ∧DT (x, z))

for all x, y, z ∈ L.

Example 3.1. Let L = {0, a, b, 1} be a lattice shown by the Hasse diagram of Figure 1 Define
the mapping DT as follows:
for T = 0, DT (x, y) = 0 for all (x, y) ∈ L× L
for T = a, DT (x, y) = 0 for all (x, y) ∈ {(0, 0), (0, a), (a, 0), (b, 0), (0, b), (1, 0), (0, 1)}
DT (x, y) = a for all (x, y) ∈ {(a, a), (a, b), (b, a), (a, 1), (1, a), (b, b), (b, 1), (1, b), (1, 1)}
for T = b, DT (x, y) = 0 for all (x, y) ∈ {(0, 0), (a, 0), (0, a), (0, b), (b, 0), (1, 0), (0, 1)}, DT (x, y) =
a for all (x, y) ∈ {(a, a), (a, b), (b, a), (a, 1), (1, a)} and DT (x, y) = b for all (x, y) ∈ {(b, b), (b, 1), (1, b), (1, 1)}
For T = 1, DT (x, y) = 0 for all (x, y) ∈ {(0, 0), (0, a), (a, 0), (b, 0), (0, b), (1, 0), (0, 1)},
DT (x, y) = a for all (x, y) ∈ {(a, a), (a, b), (b, a), (a, 1), (1, a), DT (x, y) = b for all (x, y) ∈
{(b, b), (b, 1), (1, b)} and DT (x, y) = 1 for (x, y) = (1, 1). then it is verified that for each
T ∈ L, DT is a symmetric bi-T -derivation on L.

b

a

0

1

{
|
z

{

Figure 1. The lattice in example 3.3
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Proposition 3.1. Let L be a lattice with least element 0. Then For T = 0 ∈ L, we have
D0(x, y) = 0 for all x, y ∈ L.

Proof: For T = 0 ∈ L, we have D0(x, y) = (D0(x∧ x, y) = (D0(x, y)∧ x)∨ (x∧D0(x, y))
= (((x ∧ y) ∧ 0) ∧ x) ∨ ((x ∧ ((x ∧ y) ∧ 0)))
= (0 ∧ x) ∨ (x ∧ 0) = 0 ∨ 0 = 0. �

Theorem 3.1. Let L be a lattice and dT be a trace of symmetric bi-T -derivation DT . Then
following conditions are hold for all x, y ∈ L.

(1) DT (x, y) ≤ x and DT (x, y) ≤ y
(2) DT (x, y) ∧DT (w, y) ≤ DT (x ∧ w, y) ≤ DT (x, y) ∨DT (w, y)
(3) DT (x ∧ w, y) ≤ x ∨ y
(4) DT (x, y) ≤ x ∧ y
(5) dT (x) ≤ x
(6) d2T (x) = dT (x).

Proof:

(1) Since DT (x, y) = DT (x ∧ x, y) = (DT (x, y) ∧ x) ∨ (x ∧ DT (x, y)) = x ∧ DT (x, y)
from which we get DT (x, y) ≤ x. In similar manner we shown DT (x, y) ≤ y for all
x, y ∈ L.

(2) Since DT (x, y) ≤ x and DT (w, y) ≤ w. Then, we have DT (x, y) ∧ DT (w, y) ≤
x ∧DT (w, y), and from (1) DT (x, y) ∧DT (w, y) ≤ w ∧DT (x, y) for all x, y, w ∈ L.
Hence, DT (x, y) ∧ DT (w, y) ≤ (x ∧ DT (w, y)) ∨ (w ∧ DT (x, y)) = DT (x ∧ w, y).
Also, since x ∧ DT (w, y) ≤ DT (w, y) and w ∧ DT (x, y) ≤ DT (x, y), and obtained
(x∧DT (w, y))∨(w∧DT (x, y) ≤ DT (x, y)∨DT (w, y). Thus, DT (x∧w, y) ≤ DT (x, y)∨
DT (w, y).

(3) Since DT (x, y) ∧ w ≤ w and x ∧ DT (w, y) ≤ x. Therefore, (DT (x, y) ∧ w) ∨ (x ∧
DT (w, y)) ≤ x ∨ w. Hence, DT (x ∧ w, y) ≤ x ∨ w.

(4) From (1) it is clear that DT (x, y) ≤ x ∧ y for all x, y ∈ L.
(5) Since dT (x) = DT (x ∧ x, x) = (DT (x, x) ∧ x) ∨ (x ∧DT (x, x)) = x ∧DT (x, y) from

which we obtained dT (x) ≤ x for all x ∈ L.
(6) From (5) it is seen that d2T (x) = dT (dT (x)) ≤ dT (x) ≤ x and also from (1) gives

DT (x, dT (x)) ≤ dT (x). Then, we have d2T (x) = dT (dT (x)) = dT (x ∧ dT (x))
= DT (x, dT (x)) ∨ (x ∧ d2T (x)) ∨ (dT (x) ∧ x)
= DT (x, dT (x)) ∨ d2T (x) ∨ dT (x) = DT (x, dT (x)) ∨ dT (x). �

Corollary 3.1. Let L be a lattice and DT be a symmetric bi-T -derivation on L with least
element 0 and greatest element 1. Then DT (0, x) = 0 and DT (1, x) ≤ x for all x ∈ L.

Proof: The proof of the corollary is trivial by Proposition 3.1(1). �

Theorem 3.2. Let L be a lattice and DT be symmetric bi-T -derivation of L and dT be the
trace of symmetric bi-T -derivation DT . Then, dT (x∧y) = DT (x, y)∨(x∧dT (y))∨(y∧dT (x))
for all x, y ∈ L.

Proof: Using the Proposition 3.1 (1) and (5), we have

dT (x ∧ y) = DT (x ∧ y, x ∧ y)

= (DT (x ∧ y, x) ∧ y) ∨ (DT (x ∧ y, y) ∧ x)

= DT (x ∧ y, x) ∨DT (x ∧ y, y)

= ((dT (x) ∧ y) ∨ (x ∧DT (x, y))) ∨ ((DT (x, y) ∧ y) ∨ (x ∧ dT (y)))

= ((dT (x) ∧ y) ∨DT (x, y)) ∨ (DT (x, y) ∨ (x ∧ dT (y)))

= DT (x, y) ∨ (x ∧ dT (y)) ∨ (y ∧ dT (x)).
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Corollary 3.2. Let L be a lattice and DT be symmetric bi-T -derivation of L and dT be the
trace of symmetric bi-T -derivation dT . Then followings are hold: for all x, y ∈ L

(1) DT (x, y) ≤ dT (x ∧ y)
(2) x ∧ dT (y) ≤ dT (x ∧ y)
(3) y ∧ dT (x) ≤ dT (x ∧ y)
(4) dT (x) ∧ dT (y) ≤ dT (x ∧ y).

Proof: The proof of (1),(2) and (3) are trivial by Theorem 3.2. (4) can be proved by
using (2), (3) and Proposition 3.1(5). �

Corollary 3.3. Let L be a lattice with least element 0 and greatest element 1, and DT be
symmetric bi-T -derivation of L and dT be the trace of symmetric bi-T -derivation dT , then
followings are hold:

(1) If x ≥ dT (1), then dT (x) ≥ dT (1)
(2) If x ≤ dT (1), then dT (x) = x
(3) If x ≤ y and dT (y) = y, then dT (x) = x.

Proof: Straight forward. �

Theorem 3.3. Let L be a lattice with greatest element 1 and let dT be a trace of a symmetric
bi-T -derivation DT . Then following conditions are equivalent:

(1) dT is an isotone mapping
(2) dT (x) = x ∧ dT (1)
(3) dT (x ∧ y) = dT (x) ∧ dT (y)
(4) dT (x) ∧ dT (y) ≤ dT (x ∨ y).

Proof: Proof of theorem is straight forward. �

Theorem 3.4. Let L be a lattice with greatest element 1 and dT be a trace of symmetric
bi-T -derivation DT . Then followings are equivalent for all x, y, z ∈ L

(1) dT is isotone
(2) dT (x) = x ∧ dT (1)
(3) dT (x ∧ y) = dT (x) ∧ dT (y)
(4) dT (x) ∧ dT (y) ≤ dT (x ∨ y).

Proof:

(1) (1) ⇒ (2). Since dT is isotone and x ≤ 1, we have x ≤ dT (1) and by Theorem 3.1
(5), dT (x) ≤ x, and so obtained dT (x) ≤ x ∧ dT (1). Also, by Corollary 3.2, we get
x ∧ dT (1) ≤ dT (x). Therefore, dT (x) = x ∧ dT (1) for all x ∈ L.

(2) (2)⇒ (3). Let dT (x) = x ∧ dT (1).
Then dT (x ∧ y) = (x ∧ y) ∧ dT (1)
= (x∧y)∧ (dT (1)∧dT (1)) = (x∧dT (1))∧ (y∧dT (1)) = dT (x)∧dT (y) for all x, y ∈ L.

(3) (3) ⇒ (1). Let dT (x ∧ y) = dT (x) ∧ dT (y) and x ≤ y and so, dT (x) = dT (x ∧ y) =
dT (x) ∧ dT (y). Hence, dT (x) ≤ dT (y).

(4) (1)⇒ (4). Let dT be isotone. Since x ≤ x∨y and y ≤ x∨y. Then dT (x) ≤ dT (x∨y)
and dT (y) ≤ dT (x ∨ y). Thus, dT (x) ∧ dT (y) ≤ dT (x ∨ y).

(5) (4)⇒ (1). Let x ≤ y. Then dT (x) = dT (x ∨ y) ≤ dT (y). Hence, dT (x) ≤ dT (y). �

Proposition 3.2. Let L be a lattice with greatest element 1 and DT be a symmetric bi-T -
derivation. Then followings are holds.

(1) If x ≤ DT (1, y), then DT (x, y) = x
(2) If x ≥ DT (1, y), then DT (x, y) ≥ DT (1, y).

Proof:
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(1) Let x ≤ DT (1, y), then DT (x, y) = DT (x ∧ 1, y) = (DT (x, y) ∧ 1) ∨ (x ∧DT (1, y)) =
DT (x, y) ∨ x. Hence, x ≤ DT (x, y) and DT (x, y) = x by

(2) Let x ≥ DT (1, y). Then, DT (x, y) = DT (x∧ 1, y) = (DT (x, y)∧ 1)∨ (x∧DT (1, y)) =
DT (x, y) ∨DT (1, y). Thus, DT (1, y) ≤ DT (x, y) for all x, y ∈ L. �

Proposition 3.3. Let L be a lattice and DT be a symmetric bi-T -derivation on L. Then
following condition is hold:
(1) If DT is an symmetric bi-T -derivation on L, then DT (x, y) = DT (x, y)∨(DT (x∨s, y)∧x)

Proof: Let DT be an isotone symmetric bi-T -derivation. Then,

DT (x, y) = DT ((x ∨ s) ∧ x, y)

= (DT (x ∨ s, y) ∧ x) ∨ ((x ∨ s) ∧DT (x, y))

= (DT (x ∨ s, y) ∧ x) ∨DT (x, y).

As, DT (x, y) ≤ DT (x ∨ s, y) ≤ (x ∨ s). �

Theorem 3.5. Let L be a lattice with greatest element 1 and DT be a symmetric bi-T -
derivation on L. Then followings are equivalent:

(1) DT is isotone symmetric bi-T -derivation
(2) DT (x, y) ∨DT (s, y) ≤ DT (x ∨ s, y)
(3) DT (x, y) = x ∧DT (1, y)
(4) DT (x ∧ s, y) = DT (x, y) ∧DT (s, y)

Proof:

(1) (1)⇒ (2). We assume that DT is a symmetric bi-T -derivation on L. Since x ≤ x∨ s
and s ≤ x ∨ s, and so DT (x, y) ≤ DT (x ∨ s, y) and DT (s, y) ≤ DT (x ∨ s, y). Hence,
DT (x, y) ∨DT (s, y) ≤ DT (x ∨ s, y)

(2) (2) ⇒ (1). Suppose that DT (x, y) ∨ DT (s, y) ≤ DT (x ∨ s, y) and x ≤ s. Then, we
get DT (x, y) ≤ DT (x, y) ∨DT (s, y) ≤ DT (x ∨ s, y) = DT (s, y). Therefore, DT is an
isotone symmetric bi-T -derivation on L.

(3) (1) ⇒ (3). Suppose DT is an isotone symmetric bi-T -derivation on L. Since,
DT (x, y) ≤ DT (1, y), we have DT (x, y) ≤ x ∧ DT (1, y) by Theorem 3.1 (1). Us-
ing Proposition 3.3 and by s = 1, we get

DT (x, y) = (DT (1, y) ∧ x) ∨DT (x, y)

= DT (1, y) ∧ x.

(4) (3) ⇒ (4). Assume that DT (x, y) = x ∧ DT (1, y), then DT (x ∧ s, y) = (x ∧ s) ∧
DT (1, y) = x ∧ s ∧DT (1, y) = (x ∧DT (1, y)) ∨ (s ∧DT (1, y)) = DT (x, y) ∧DT (s, y)

(5) (4) ⇒ (1). Let DT (x ∧ s, y) = DT (x, y) ∧ DT (s, y) and x ≤ s. Then, DT (x, y) =
DT (x ∧ s, y) = DT (x, y) ∧DT (s, y). Hence, DT (x, y) ≤ DT (s, y). �

Theorem 3.6. Let L be a modular lattice and DT be a symmetric bi-T -derivation on L.
Then, followings are hold.

(1) If DT is an isotone symmetric bi-T -derivation on L if and only if DT (x ∧ s, y) =
DT (x, y) ∧DT (s, y)

(2) If DT is an isotone symmetric bi-T -derivation and DT (x, y) = x, then DT (x∨s, y) =
DT (x, y) ∨DT (s, y).

Proof:
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(1) Let DT be a symmetric bi-T -derivation on L. Since x ∧ s ≤ x and x ∧ s ≤ s, then
DT (x ∧ s, y) ≤ DT (x, y) ∧DT (s, y). Therefore,

DT (x, y) ∧DT (s, y) = (DT (x, y) ∧DT (s, y)) ∧ (x ∧ s)

= (DT (x, y) ∧ s) ∧ (DT (s, y) ∧ s)

≤ (DT (x, y) ∧ s) ∨ (DT (s, y) ∧ x)

= DT (x ∧ s, y).

Conversely, let DT (x ∧ s, y) = DT (x, y) ∧ DT (s, y) and x ≤ s. Thus, DT (x, y) =
DT (x∧ s, y) = DT (x, y)∧DT (s, y), and hence DT (x, y) ≤ DT (s, y) for all x, y, s ∈ L.

(2) Let DT be a symmetric bi-T -derivation on L and DT (x, y) = x. Then, by Proposition
3.3 and since L is a modular lattice, thus, DT (s, y) = (DT (s, y)∨DT (x∨ s, y))∧ s =
s ∧DT (x ∨ s, y). Thus,

DT (x, y) ∨DT (s, y) = DT (x, y) ∨ (s ∧DT (x ∨ s, y))

= (DT (x, y) ∨ s) ∧DT (x ∨ s, y)

= (x ∨ s) ∧DT (x ∨ s, y)

= DT (x ∨ s, y).

�

Theorem 3.7. Let L be a distributive lattice and DT be a symmetric bi-T -derivation on L.
Then, following conditions are hold.

(1) If DT is an isotone symmetric bi-T -derivation on L, then DT (x∧ s, y) = DT (x, y)∧
DT (s, y)

(2) If DT is an isotone symmetric bi-T -derivation on L if and only if DT (x ∨ s, y) =
DT (x, y) ∨DT (s, y).

Proof:

(1) Since, DT is an isotone symmetric bi-T -derivation and DT (x ∧ s, y) = DT (x, y) ∧
DT (s, y). By Theorem 3.1 (1), we have

DT (x, y) ∧DT (s, y) = ((DT (x, y) ∧ x) ∧ ((s ∧DT (s, y))

= (DT (x, y) ∨ s) ∧ (x ∧DT (s, y)

≤ (DT (x, y) ∧ s) ∨ (x ∧DT (s, y)

= DT (x ∧ s, y).

Therefore, DT (x ∧ s, y) = DT (x, y) ∧DT (s, y) for all x, y, s ∈ L.
(2) Let DT be an isotone symmetric bi-T -derivation. Then, using Theorem 3.1(A) and

Proposition 3.3, we have

DT (s, y) = (DT (s, y) ∨ (s ∧DT (x ∨ s, y))

= (DT (s, y) ∧ s) ∧ (DT (s, y) ∨DT (x ∨ s, y))

= s ∧DT (x ∨ s, y).

In similar way, DT (x, y) = x ∧DT (x ∨ s, y). Thus,

DT (x, y) ∨DT (s, y) = (x ∧DT (x ∨ s, y)) ∨ (s ∧DT (x ∨ s, y))

= (x ∨ s) ∧DT (x ∨ s, y)

= DT (x ∨ s, y).
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Conversely, let DT (x∨s, y) = DT (x, y)∨DT (s, y) and x ≤ s, then obtained DT (s, y) =
DT (x∨s, y) = DT (x, y)∨DT (s, y), which imply DT (x, y) ≤ DT (s, y) for all x, y, s ∈ L.
�
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