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EXISTENCE OF NONOSCILLATORY SOLUTIONS FOR

SECOND-ORDER NONLINEAR NEUTRAL DIFFERENTIAL

EQUATIONS WITH VARIABLE DELAYS

SHYAM SUNDAR SANTRA1, §

Abstract. In this work, an attempt is made to discuss the existence of nonoscillatory
solutions of second order nonlinear neutral differential equations with variable delays.
The main tools are Lebesgue’s dominated convergence theorem and Banach contraction
principle to obtain new sufficient conditions for the existence of nonoscillatory solutions.
This problem is considered in various ranges of the neutral coefficient. Further, two
illustrative examples showing applicability of the new results are included.
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1. Introduction

This article is concerned with sufficient conditions for existence of positive solutions of
a nonlinear neutral second-order delay differential equation

d

dt

[
r(t)

d

dt

[
x(t) + p(t)x(τ(t))

]]
+ q(t)G

(
x(σ(t))

)
= 0. (1)

Suppose that the following assumptions hold.

(A1) r ∈ C([t0,∞), (0,∞)), p ∈ C([t0,∞),R) and q ∈ C([t0,∞), (0,∞)), where q is not
identically zero;

(A2) G ∈ C(R,R) is nondecreasing such that xG(x) > 0 for x 6= 0;
(A3) τ, σ ∈ C([t0,∞), (0,∞)) such that σ(t), τ(t) ≤ t for t ≥ t0, σ(t), τ(t) → ∞ as

t→∞ with invertible τ when necessary.

Culakova et al. [1] considered (1) and studied existence of nonoscillatory solutions
when p ∈ C([t0,∞), (−∞, 0)). In [7], under various ranges of p, Santra studied oscillatory
behaviour of the solutions of the following neutral differential equations

d

dt

[
x(t) + p(t)x(t− τ)

]
+ q(t)G

(
x(t− σ)

)
= 0
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and

d

dt

[
x(t) + p(t)x(t− τ)

]
+ q(t)G

(
x(t− σ)

)
= f(t) (2)

Also, sufficient conditions are obtained for existence of bounded nonoscillatory solutions of
(2). The motivation of the present work come from the above studies. Hence, the objective
of this work is to study existence of positive solutions of (1) for any |p(t)| < +∞.

Oscillation and nonoscillation of functional differential equations have been studied in
recent years. For further work to this type of equations, one may follow [1, 2, 11, 12]
and the references cited therein. The existence of nonoscillatory solution of functional
differential equations received much less attention, which is mainly due to the technical
difficulties arising in its analysis.

By a solution of (1) we mean a continuously differentiable function x(t) which is defined
for t ≥ T ∗ = min{τ(t0), σ(t0)} such that x(t) satisfies (1) for all t ≥ t0. In the sequel, it
will always be assumed that the solutions of (1) exist on some half line [t1,∞), t1 ≥ t0.
A solution of (1) is said to be oscillatory, if it has arbitrarily large zeros; otherwise, it is
called nonoscillatory. Equation (1) is called oscillatory, if all its solutions are oscillatory.

2. Main Results

Theorem 2.1. Assume that (A1)–(A3) hold and p ∈ C(R+, [0, 1)). Furthermore assume
that G is Lipschitzian on the intervals of the form [a, b], 0 < a < b <∞. If

(A4)
∫∞
0

1
r(η)

[∫∞
η q(ζ)dζ

]
dη < +∞,

then (1) has a bounded nonoscillatory solution.

Proof. Let 0 ≤ p(t) ≤ p < 1, t ∈ R+ and p > 0. Due to (A4), it is possible to find T > T ∗

such that ∫ ∞
T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη <

1− p
5L

,

where L = max{L1, G(1)}, L1 is the Lipschitz constant of G on

[
7(1−p)

10 , 1

]
for t ≥ t0. Let

Y = BC([t0,∞),R) be the space of real valued continuous functions on [t0,∞]. Indeed,
Y is a Banach space with respect to supremum norm defined by

‖x‖ = sup{|x(t)| : t ≥ t0}.

Define

S =

{
v ∈ Y :

7(1− p)
10

≤ v(t) ≤ 1, t ≥ t0
}
.

Note that S is a closed and convex subspace of Y . Let Φ : S → S be such that

(Φx)(t) =

(Φx)(T ), t ∈ [t0, T ]

−p(t)x(τ(t)) + 9+p
10 −

∫∞
t

1
r(η)

[∫∞
η q(ζ)G(x(σ(ζ)))dζ

]
dη, t ≥ T.

For every x ∈ S, (Φx)(t) ≤ 9+p
10 < 1 and

(Φx)(t) ≥ −p+
9 + p

10
− 1− p

5
=

7

10
(1− p)
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implies that Φx ∈ S. For x1, x2 ∈ S, it follows that

|(Φx1)(t)− (Φx2)(t)| ≤ p|x1(τ(t))− x2(τ(t))|

+

∫ ∞
t

1

r(η)

[∫ ∞
η

q(ζ)|G
(
x1(σ(ζ))

)
−G

(
x2(σ(ζ))

)
|dζ
]
dη,

≤ p‖x1 − x2‖+ ‖x1 − x2‖L1

∫ ∞
t

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη

≤
(
p+

1− p
5

)
‖x1 − x2‖

=
4p+ 1

5
‖x1 − x2‖.

Therefore, ‖Φx1−Φx2‖ ≤ 4p+1
5 ‖x1−x2‖ implies that Φ is a contraction. By using Banach’s

fixed point theorem, it follows that Φ has a unique fixed point x(t) in

[
7(1−p)

10 , 1

]
. This

completes the proof of the theorem. �

Theorem 2.2. Assume that (A1)–(A4) hold and 1 < p1 ≤ p(t) ≤ p2 <∞, where p21 ≥ p2
for t ∈ R+. Furthermore assume that G be Lipschitzian on the intervals of the form [α, β],
0 < α < β <∞. Then (1) has a bounded nonoscillatory solution.

Proof. Due to (A4), it is possible to find T > T ∗ such that∫ ∞
T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη <

p1 − 1

3L
,

where L = max{L1, L2}, L1 is the Lipschitz constant of G on [α, β], L2 = G(β) with

α =
3λ(p21 − p2)− p2(p1 − 1)

3p12p2

β =
p1 − 1 + 3λ

3p1
, λ >

p2(p1 − 1)

3(p12 − p2)
> 0.

Let Y = BC([t0,∞),R) be the space of real valued functions defined on [t0,∞). Indeed,
Y is a Banach space with respect to supremum norm defined by

||x|| = sup{|x(t)| : t ≥ t0}.
Define

S =

{
u ∈ Y : α ≤ u(t) ≤ β, t ≥ t0

}
.

Let Φ : S → S be such that

(Φx)(t) =

(Φx)(T ), t ∈ [t0, T ]

−x(τ−1(t))
p(τ−1(t))

+ λ
p(τ−1(t))

+ 1
p(τ−1(t))

∫ τ−1(t)
T

1
r(η)

[∫∞
η q(ζ)G

(
x(σ(ζ))

)
dζ

]
dη, t ≥ T.

For every x ∈ S,

(Φx)(t) ≤ G(β)

p(τ−1(t))

∫ τ−1(t)

T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη +

λ

p(τ−1(t))

≤ G(β)

p(τ−1(t))

∫ ∞
T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη +

λ

p(τ−1(t))

≤ 1

p1

[
p1 − 1

3
+ λ

]
= β
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and

(Φx)(t) ≥ −x(τ−1(t))

p(τ−1(t))
+

λ

p(τ−1(t))
− β

p1
+
λ

p2
= α

implies that Φx ∈ S. For x1, x2 ∈ S, it follows that

|(Φx1)(t)− (Φx2)(t)| ≤
1

|p(τ−1(t))|
|x1(τ−1(t))− x2(τ−1(t))|

+
L1

|p(τ−1(t))|

∫ τ−1(t)

T

1

r(η)

[∫ ∞
η

q(ζ)|x1(σ(ζ))− x2(σ(ζ))|dζ
]
dη,

≤ 1

p1
||x1 − x2||+

L1

p1
||x1 − x2||

∫ τ−1(t)

T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη

<
1

p1
||x1 − x2||

(
1 +

p1 − 1

3

)
,

that is,

||Φx1 − Φx2|| ≤
(

1

p1
+
p1 − 1

3p1

)
||x1 − x2||.

Since

(
1
p1

+ p1−1
3p1

)
< 1, then Φ is a contraction mapping of S into S. Note that S is a

closed convex subset of Y and hence we apply Banach’s fixed point to S. So, we conclude
that Φ has a unique fixed point on [α, β]. It is easy to verify that

x(t) =

(Φx)(T ), t ∈ [t0, T ]

−x(τ−1(t))
p(τ−1(t))

+ λ
p(τ−1(t))

+ 1
p(τ−1(t))

∫ τ−1(t)
T

1
r(η)

[∫∞
η q(ζ)G

(
x(σ(ζ))

)
dζ

]
dη, t ≥ T.

is a positive bounded solution of (1) on [α, β]. This completes the proof of the theorem. �

Theorem 2.3. Assume that (A1)–(A3) hold and −1 < −p ≤ p(t) ≤ 0, where p > 0,
t ∈ R+. Furthermore assume that

(A5) R(t) =
∫ t
0

dη
r(η) and limt→∞R(t) = +∞

(A6)
∫∞
0 q(η)G(εR(σ(η)))dη < +∞ for every ε > 0

hold, then (1) has a unbounded nonoscillatory solution.

Proof. Due to (A6), it is possible to find ε > 0 such that∫ ∞
T

q(η)G(εR(σ(η)))dη ≤ ε

3
, T ≥ T ∗.

Let’s consider

M =

{
x : x ∈ C([t0,+∞),R), x(t) = 0 for t ∈ [t0, T ] and

ε

3
[R(t)−R(T )] ≤ x(t) ≤ ε[R(t)−R(T )]

}
and define Φ : M → C([t0,+∞),R) such that

(Φx)(t) =

0, t ∈ [t0, T )

−p(t)x(τ(t)) +
∫ t
T

1
r(η)

[
ε
3 +

∫∞
η q(ζ)G

(
x(σ(ζ)))dζ

]
dη, t ≥ T.
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For every x ∈M ,

(Φx)(t) ≥
∫ t

T

1

r(η)

[
ε

3
+

∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη

≥ ε

3

∫ t

T

dη

r(η)
=
ε

3
[R(t)−R(T )]

and x(t) ≤ εR(t) implies that

(Φx)(t) ≤ −p(t)x(τ(t)) +
2ε

3

∫ t

T

dη

r(η)

≤ pε[R(τ(t))−R(T )] +
2ε

3
[R(t)−R(T )]

≤ pε[R(t)−R(T )] +
2ε

3
[R(t)−R(T )]

=

(
p+

2

3

)
ε[R(t)−R(T )]

≤ ε[R(t)−R(T )]

implies that (Φx)(t) ∈M . Define vn : [T − ρ,+∞)→ R by the recursive formula

vn(t) = (Φvn−1)(t), n ≥ 1,

with the initial condition

v0(t) =

{
0, t ∈ [t0, T )
ε
3 [R(t)−R(T )], t ≥ T.

Inductively, it is easy to verify that

ε

3
[R(t)−R(T )] ≤ vn−1(t) ≤ vn(t) ≤ ε[R(t)−R(T )].

for t ≥ T . Therefore, for t ≥ t0, limn→∞ vn(t) exists. Let limn→∞ vn(t) = v(t) for t ≥ t0.
By the Lebesgue’s dominated convergence theorem v ∈M and (Φv)(t) = v(t), where v(t)

is a solution of (1) on [t0,∞) such that v(t) > 0. Note that limt→∞
z(t)
R(t) = ε

3 , where

z(t) = x(t) + p(t)x(τ(t)). This completes the proof. �

Theorem 2.4. Assume that (A1) − (A4) hold and p ∈ C(R+, (−1, 0]). Then (1) admits
a bounded nonoscillatory solutions.

Proof. Let −1 < −p ≤ p(t) ≤ 0, p > 0 for t ∈ R+. Due to (A4),

G(ε)

∫ ∞
T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη ≤ ε

3
, T ≥ T ∗,

where ε > 0 is a constant. Consider

M =

{
x ∈ C([t0,+∞),R) : x(t) =

ε

3
, t ∈ [t0, T ];

ε

3
≤ x(t) ≤ ε for t ≥ T

}
and let Φ : M →M be defined by

(Φx)(t) =


ε
3 , [t0, T ]

−p(t)x(τ(t)) + ε
3 +

∫ t
T

1
r(η)

[∫∞
η q(ζ)G

(
x(σ(ζ))

)
dζ

]
dη, t ≥ T.
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For every x ∈M , (Φx)(t) ≥ ε
3 and

(Φx)(t) ≤ pε+
ε

3
+G(ε)

∫ t

T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη

≤ pε+
ε

3
+
ε

3
=

(
p+

2

3

)
ε ≤ ε

implies that Φx ∈M . The rest of the proof follows from Theorem 2.3.
�

Theorem 2.5. Assume that (A1)− (A4) hold and −∞ < −p1 ≤ p(t) ≤ −p2 < −1, where
p1, p2 > 0 such that 3p2 > p1 for t ∈ R+. Furthermore assume that G is Lipschitzian
on the interval of the form [a, b], 0 < a < b < ∞. Then equation (1) has a bounded
nonoscillatory solution.

Proof. Due to (A4), it is possible to find T > T ∗ such that∫ ∞
T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη <

p2 − 1

3L
,

where L = max{L1, G(1)}, L1 is the Lipschitz constant of G on (α, 1), α = (p2−1)(3p2−p1)
3p1p2

.

Let Y = BC([t0,∞),R) be the space of real valued continuous functions defined on [t0,∞).
Indeed, Y is a Banach space with the supremum norm defined by

||x|| = sup{|x(t)| : t ≥ t0}.

Define

S =

{
v ∈ Y : α ≤ v(t) ≤ 1, t ≥ t0

}
.

and note that S is a closed and convex subspace of Y . Let Ψ : S → S be such that

(Ψx)(t) =

(Ψx)(T ), t ∈ [t0, T ]

−x(τ−1(t))
p(τ−1(t))

− p2−1
p(τ−1(t))

+ 1
p(τ−1(t))

∫ τ−1(t)
T

1
r(η)

[∫∞
η q(ζ)G

(
x(σ(ζ))

)
dζ

]
dη, t ≥ T.

For every x ∈ S,

(Ψx)(t) ≤ −x(τ−1(t))

p(τ−1(t))
− p2 − 1

p(τ−1(t))
≤ 1

p2
+
p2 − 1

p2
= 1

and

(Ψx)(t) ≥ − p2 − 1

p(τ−1(t))
+

1

p(τ−1(t))

∫ τ−1(t)

T

1

r(η)

[∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη

≥ p2 − 1

p1
+

G(1)

p(τ−1(t))

∫ τ−1(t)

T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη

≥ p2 − 1

p1
− G(1)

p2

∫ ∞
T

1

r(η)

[∫ ∞
η

q(ζ)dζ

]
dη

≥ p2 − 1

p1
− p2 − 1

3p2
= α
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implies that Ψx ∈ S. For x1, x2 ∈ S, it follows that

|(Ψx1)(t)− (Ψx2)(t)| ≤
1

|p(τ−1(t))|
|x1(τ−1(t))− x2(τ−1(t))|

+
L1

|p(τ−1(t))|

∫ τ−1(t)

T

1

r(η)

[∫ ∞
η

q(ζ)|x1(σ(ζ))− x2(σ(ζ))|dζ
]
dη,

≤ 1

p2
||x1 − x2||+

p2 − 1

3p2
||x1 − x2||

= µ||x1 − x2||,

where µ = 1
p2

(
1 + p2−1

3

)
< 1. Therefore, Ψ is a contraction. Hence, by Banach’s fixed

point theorem Ψ has a unique fixed point x ∈ S. It is easy to see that limt→∞ x(t) 6= 0.
This completes the proof of the theorem. �

3. Examples and Open Problem

Example 3.1. Consider the equation

d

dt

[
et
d

dt

[
x(t)− e−(t+1)x(t− 1)

]]
+

2

e
e−

2
3
t
(
x(t− 3)

) 1
3 = 0, t ≥ 3, (3)

and note that r(t) = et, p(t) = −e−(t+1), q(t) = 2
ee
− 2

3
t, τ(t) = t − 1, σ(t) = t − 3 and

G(x) = x
1
3 . A straightforward verification yields that the conditions of Theorem 2.4 are

satisfied. We note that x(t) = e−t is a nonoscillatory solution of (3).

Example 3.2. Consider the equation

d

dt

[
e−3t

d

dt

[
x(t)− e−7tx(t− 2)

]]
+ 28e−10t

(
x(t− 2)

)3
= 0, t ≥ 2, (4)

and note that r(t) = e−3t, p(t) = −e−7t, q(t) = 28e−10t, τ(t) = t − 2, σ(t) = t − 2 and
G(x) = x3. Clearly all conditions of Theorem 2.3 are satisfied. In particular, x(t) = e3t

is a positive unbounded solution of (4).

Remark 3.1. It is interesting to study the necessary and sufficient conditions for the
oscillation of (1) for any |p(t)| < +∞ .
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