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NONEXISTENCE OF POSITIVE SOLUTIONS FOR A SYSTEMS OF

COUPLED FRACTIONAL BVPS WITH p-LAPLACIAN
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Abstract. We investigate the nonexistence of positive solutions for a system of nonlin-
ear Riemann-Liouville fractional differential equations with p-Laplacian two-point bound-
ary value problem.
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1. Introduction

In this paper, we consider the system of nonlinear Riemann-Liouville fractional order
differential equations with p-Laplacian

Dβ1
a+

(
φp(D

α1

a+
u(t))

)
= φp(λ)f(t, u(t), v(t)), t ∈ (a, b),

Dβ2
a+

(
φp(D

α2

a+
v(t))

)
= φp(µ)g(t, u(t), v(t)), t ∈ (a, b),

(1)

satisfying the two-point boundary conditions,

ξu(a)− ηu′(a) = 0, γu(b) + δu′(b) = 0, Dα1

a+
u(a) = 0

ξv(a)− ηv′(a) = 0, γv(b) + δv′(b) = 0, Dα2

a+
v(a) = 0

(2)

where φp(s) =| s |p−2 s, p > 1, φ−1
p = φq,

1
p + 1

q = 1, ξ, η, γ, δ are positive real numbers,

1 < αi ≤ 2, 0 < βi ≤ 1, f, g : [a, b] × [0,∞) × [0,∞) → [0,∞) are continuous functions,

and Dαi
a+
, Dβi

a+
for i = 1, 2 are the standard Riemann-Liouville fractional derivatives.

Differential equations with fractional order are a generalization of the ordinary differ-
ential equations to non-integer order. This generalization is not a mere mathematical
curiosity but rather has interesting applications in many areas of science and engineer-
ing such as electrochemistry, control, porous media, electromagnetism, etc. There has
been a significant development in the study of fractional differential equations in recent
years. In this theory, the most applicable operator is the classical p-Laplacian, given by
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φp(u) =| u |p−2, p > 1. Furthermore, several kinds of the high-order boundary value prob-
lems of fractional equations have been studied. The nonexistence of positive solutions of
boundary value problems associated with ordinary differential equations were studied by
many authors [11, 15]. Recently, researchers are concentrating on the theory of fractional
order boundary value problems [8]. In this paper we extend the work on fractional order
BVP with p-Laplacian.

We shall give sufficient conditions on λ, µ, f and g such that the FBVP (1)-(2) has no
positive solutions. By a positive solution of the FBVP (1)-(2), we mean a pair (u, v) ∈
[a, b]×[a, b] satisfying (1) and (2) with u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [a, b] and (u, v) 6= (0, 0).

Throughout this paper we assume that following conditions hold:

(A1) The functions f, g : [a, b]× [0,∞)× [0,∞)→ [0,∞) are continuous,
(A2) each of

fs0 = lim
u+v→0+

sup
f(t, u, v)

φp(u+ v)
, gs0 = lim

u+v→0+
sup

g(t, u, v)

φp(u+ v)
,

f i0 = lim
u+v→0+

inf
f(t, u, v)

φp(u+ v)
, gi0 = lim

u+v→0+
inf

g(t, u, v)

φp(u+ v)
,

fs∞ = lim
u+v→∞

sup
f(t, u, v)

φp(u+ v)
, gs∞ = lim

u+v→∞
sup

g(t, u, v)

φp(u+ v)
,

f i∞ = lim
u+v→∞

inf
f(t, u, v)

φp(u+ v)
, gi∞ = lim

u+v→∞
inf

g(t, u, v)

φp(u+ v)
,

exists as positive real numbers.

This paper is organized as follows, In Section 2, we present the necessary definitions
and properties from the fractional calculus and construct the Green’s function bounds
for the homogeneous FBVP. In Section 3, we prove some nonexistence results for the
positive solutions with respect to a cone for our FBVP (1)-(2). Finally, In Section 4, as
an application, we demonstrate our results with an example.

2. Preliminaries and Green’s function

In this section, we present here the definitions, some lemmas from the theory of frac-
tional calculus and established Green’s function and bounds of a homogeneous boundary
value problem that will be used to prove our main theorems.

Definition 2.1. The (left-sided) fractional integral of order α > 0 of a function f :
(0,∞)→ R is given by

(Iα0+f)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > 0,

provided the right-hand side is pointwise defined on (0,∞), where Γ(α) is the Euler gamma
function defined by Γ(α) =

∫∞
0 tα−1e−tdt, α > 0.

Definition 2.2. The Riemann-Liouville fractional derivative of order α ≥ 0 for a function
f : (0,∞)→ R is given by

(Dα
0+f)(t) =

( d
dt

)n
(In−α

0+
f)(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

0

f(s)

(t− s)α−n+1
ds, t > 0,

where n = [α] + 1, provided that the right-hand side is pointwise defined on (0,∞).
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The notation [α] stands for the largest integer not greater than α. We also denote the
Riemann-Liouville fractional derivative of f by Dα

0+f(t). If α = m ∈ N then Dm
0+f(t) =

f (m)(t) for t > 0, and if α = 0 then D0
0+f(t) = f(t) for t > 0.

Lemma 2.1 ([10]). a) If α > 0, β > 0 and f ∈ Lp(0, 1), (1 ≤ p ≤ ∞), then the relation

(Iα0+I
β
0+
f)(t) = (Iα+β

0+
f)(t) is satisfied at almost every point t ∈ (0, 1). If α + β > 1, then

the above relation holds at any point of [0, 1].
b) If α > 0 and f ∈ Lp(0, 1), (1 ≤ p ≤ ∞), then the relation (Dα

0+I
α
0+f)(t) = f(t) holds

almost everywhere on (0, 1).

c)If α > β > 0 and f ∈ Lp(0, 1), (1 ≤ p ≤ ∞), then the relation (Dβ
0+
Iα0+f)(t) = (Iα−β

0+
f)(t)

holds almost everywhere on (0, 1).

Lemma 2.2 ([10]). Let α > 0 and n = [α] + 1 for α /∈ N and n = α for α ∈ N ; that is,
n is the smallest integer greater than or equal to α. Then, the solutions of the fractional
differential equation Dα

0+u(t) = 0, 0 < t < 1, are

u(t) = c1t
α−1 + c2t

α−2 + ......+ cnt
α−n, 0 < t < 1,

where c1, c2, ....., cn are arbitrary real constants.

Lemma 2.3 ([10]). Let α > 0, n be the smallest integer greater than or equal to α (n−1 <
α ≤ n) and y ∈ L1(0, 1). The solutions of the fractional equation Dα

0+u(t) + y(t) = 0, 0 <
t < 1, are

u(t) =
−1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds+ c1t

α−1 + ......+ cnt
α−n, 0 < t < 1,

where c1, c2, ....., cn are arbitrary real constants.

Proof. By Lemma 2.1 b), the equation Dα
0+u(t) + y(t) = 0 can be written as

Dα
0+u(t) +Dα

0+(Iα0+y)(t) = 0 or Dα
0+(u+ Iα0+y)(t) = 0.

By using Lemma 2.2, the solutions for the above equation are

u(t) + Iα0+y(t) = c1t
α−1 + ......+ cnt

α−n ⇔
u(t) = −Iα0+y(t) + c1t

α−1 + ......+ cnt
α−n

=
−1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds+ c1t

α−1 + ......+ cnt
α−n, 0 < t < 1,

where c1, c2, ....., cn are arbitrary real constants. �

Let G1(t, s) be the Green’s function of a homogeneous boundary value problem

−Dα1

a+
u(t) = 0, t ∈ (a, b) (3)

ξu(a)− ηu′(a) = 0, γu(b) + δu′(b) = 0 (4)

Lemma 2.4. Let d = ξγ(b − a) + ξδ + γη > 0. If y ∈ C[a, b], then the fractional order
BVP

Dα1

a+
u(t) + y(t) = 0, a < t < b, (5)

with (4), has a unique solution,

u(t) =

∫ b

a
Gλ(t, s)y(s)ds
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where Gλ(t, s) is the Green’s function for the BVP (3)-(4) and is given by

Gλ(t, s) =


[
η(t−a)α1−2+ξ(t−a)α1−1

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
t ≤ s,

[
η(t−a)α1−2+ξ(t−a)α1−1

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
− (t−s)α1−1

Γ(α1) , s ≤ t,
(6)

Proof. Assume that u ∈ C [α1]+1[a, b] is a solution of fractional order BVP (5),(4) and is
uniquely expressed as Iα1

a+
Dα1

a+
u(t) = −Iα1

a+
y(t), so that

u(t) = −
∫ t

a

(t− s)α1−1

Γ(α1)
y(s)ds+ c1(t− a)α1−1 + c2(t− a)α1−2.

Using the boundary condition (4), we can determine c1 and c2 as

c1 =
ξ

d

[ γ

Γ(α1)

∫ b

a
(b− s)α1−1y(s)ds+

δ

Γ(α1 − 1)

∫ b

a
(b− s)α1−2y(s)ds

]
and

c2 =
η

d

[ γ

Γ(α1)

∫ b

a
(b− s)α1−1y(s)ds+

δ

Γ(α1 − 1)

∫ b

a
(b− s)α1−2y(s)ds

]
.

Hence, the unique solution of (3)-(4) is

u(t) =
−1

Γ(α1)

∫ t

a
(t− s)α1−1y(s)ds+

ξ(t− a)α1−1

d

[ γ

Γ(α1)

∫ b

a
(b− s)α1−1y(s)ds

+
δ

Γ(α1 − 1)

∫ b

a
(b− s)α1−2y(s)ds

]
+
η(t− a)α1−2

d

[ γ

Γ(α1)

∫ b

a
(b− s)α1−1y(s)ds

+
δ

Γ(α1 − 1)

∫ b

a
(b− s)α1−2y(s)ds

]
=

∫ t

a

[
−(t− s)α1−1

Γ(α1)
+

(
η(t− a)α1−2 + ξ(t− a)α1−1

d

)(
γ(b− s)α1−1

Γ(α1)
+
δ(b− s)α1−2

Γ(α1 − 1)

)]
y(s)ds

+

∫ b

t

(
η(t− a)α1−2 + ξ(t− a)α1−1

d

)(
γ(b− s)α1−1

Γ(α1)
+
δ(b− s)α1−2

Γ(α1 − 1)

)
y(s)ds

=

∫ b

a
Gλ(t, s)y(s)ds, where Gλ(t, s) is given in (6).

�

Lemma 2.5. Let 1 < α1 ≤ 2, 0 < β1 ≤ 1. Then the boundary value problem of the
fractional differential equation

Dβ1
a+

(
φp
(
Dα1

a+
u(t)

))
+ y(t) = 0, a < t < b, (7)

with (2) has a unique solution,

u(t) =

∫ b

a
Gλ(t, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
y(τ)dτ

)
ds

where Gλ(t, s) is defined as (6).

Proof. An equivalent integral equation for (7) is given by

φp

(
Dα1

a+
u(t)

)
= −

∫ t

a

(t− τ)β1−1

Γ(β1)
y(τ)dτ + c1(t− a)β1−1.
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By Dα1

a+
u(a) = 0, we have c1 = 0. So, Dα1

a+
u(t) + φq

( ∫ t
a

(t−τ)β1−1

Γ(β1) y(τ)dτ
)

= 0. Thus, the

boundary value problem (7) is equivalent to the following problem:

Dα1

a+
u(t) + φq

(∫ t

a

(t− τ)β1−1

Γ(β1)
y(τ)dτ

)
= 0, a < t < b,

ξu(a)− ηu′(a) = 0, γu(b) + δu′(b) = 0.

Lemma 2.4 implies that boundary value problem (7) has a unique solution,

u(t) =
∫ b
a Gλ(t, s)φq

( ∫ s
a

(s−τ)β1−1

Γ(β1) y(τ)dτ
)
ds. �

Lemma 2.6. The Green’s function Gλ(t, s) defined by (6) is continuous on [a, b]× [a, b].
Assume that η >

(
α1−1
2−α1

)
(b− a)ξ, then Gλ(t, s) also has the following properties:

(i) Gλ(t, s) ≥ 0, for all (t, s) ∈ [a, b]× [a, b]
(ii) Gλ(t, s) ≤ Gλ(s, s), for all (t, s) ∈ [a, b]× [a, b],
(iii) Gλ(t, s) ≥ m1Gλ(s, s), for all (t, s) ∈ [a, b]× [a, b], where m1 = min{λ1, λ2}.

Proof. The Green’s function Gλ(t, s) is given (6).
For a ≤ t ≤ s ≤ b,

Gλ(t, s) =

[
η(t− a)α1−2 + ξ(t− a)α1−1

d

][
γ(b− s)α1−1

Γ(α1)
+
δ(b− s)α1−2

Γ(α1 − 1)

]
≥ 0

For a ≤ s ≤ t ≤ b

Gλ(t, s) =
[η(t− a)α1−2 + ξ(t− a)α1−1

d

][γ(b− s)α1−1

Γ(α1)
+
δ(b− s)α1−2

Γ(α1 − 1)

]
− (t− s)α1−1

Γ(α1)

≥
[((t− a)α1−2(η + ξ)

d

)( γ

Γ(α1)
+
δ(b− bs)−1

Γ(α1 − 1)

)
bα1−1 − tα1−1

Γ(α1)

]
(1− s)α1−1 ≥ 0.

Hence, the inequality (i) is proved.
For a ≤ t ≤ s ≤ b
∂Gλ(t,s)

∂t =
[

(α1−2)η(t−a)α1−3+(α1−1)ξ(t−a)α1−2

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
≥ 0.

Therefore Gλ(t, s) is increasing in t, which implies Gλ(t, s) ≤ Gλ(s, s).
For a ≤ s ≤ t ≤ b
∂Gλ(t, s)

∂t
=
[(α1 − 2)η(t− a)α1−3 + (α− 1)ξ(t− a)α1−2

d

][γ(b− s)α1−1

Γ(α1)
+
δ(b− s)α1−2

Γ(α1 − 1)

]
− (α1 − 1)(t− s)α1−2

Γ(α1)

≤ 1

dΓ(α1)

[(
(α1 − 2)η(b− a)α1−3 + (α1 − 1)ξ(b− a)α1−2

)(
γ(b− s) + (α1 − 1)δ

)
− d(α1 − 1)

]
(b− s)α1−2 ≤ 0.

Therefore Gλ(t, s) is decreasing in t, for s ∈ [a, b] which implies that Gλ(t, s) ≤ Gλ(s, s).
Hence the inequality (ii) is proved. Now we establish the inequality (iii).
For a ≤ t ≤ s ≤ b

Gλ(t, s)

Gλ(s, s)
=

[
η(t−a)α1−2+ξ(t−a)α1−1

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
[
η(s−a)α1−2+ξ(s−a)α1−1

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
≥

4ξγδ
[
(α1 − 2)(b− a)ξ + (α1 − 1)η

][
(α1 − 1)ξδ + ξγ(a+ b)− γη

]2
+ 4ξγ

[
(η − aξ)(γb+ δ(α1 − 1))

] = λ1.
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For a ≤ s ≤ t ≤ b

Gλ(t, s)

Gλ(s, s)
=

[
η(t−a)α1−2+ξ(t−a)α1−1

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
− (t−s)α1−1

Γ(α1)[
η(s−a)α1−2+ξ(s−a)α1−1

d

][
γ(b−s)α1−1

Γ(α1) + δ(b−s)α1−2

Γ(α1−1)

]
≥

4ξηγδ
[
(α1 − 2)(b− a)ξ + (α1 − 1)η

][
(α1 − 1)ξδ + ξγ(a+ b)− γη

]2
+ 4ξγ

[
(η − aξ)(γb+ δ(α1 − 1))

] = λ2.

�

We can also formulate the same results as Lemma 2.4-2.6 above for the following FBVP
with p-laplacian

−Dα2

a+
v(t) = 0, t ∈ (a, b) (8)

ξv(a)− ηv′(a) = 0, γv(b) + δv′(b) = 0 (9)

the results of the Green’s function Gµ(t, s) and constant m2 for the homogeneous BVPs
corresponding to the fractional differential equation (8)-(9) and define in a similar manner
as Gλ(t, s).
Remark: Consider the following
Gλ(t, s) ≥ mGλ(s, s) and Gµ(t, s) ≥ mGµ(s, s) for all (t, s) ∈ [a, b] × [a, b], where m =
min{m1,m2}.

Let the Banach space B = E ×E , where E = {u : u ∈ C[a, b]} be endowed with the norm
‖(u, v)‖ = ‖u‖+ ‖v‖, for (u, v) ∈ B and ‖u‖ = maxt∈[a,b] | u(t) | . Define a cone P ⊂ B by

P =

{
(u, v) ∈ B : u(t) ≥ 0, v(t) ≥ 0 ∀t ∈ [a, b] and min

t∈[a,b]
{u(t) + v(t)} ≥ m‖(u, v)‖

}
,

where m = min{m1,m2}.
It is well known that the system of fractional order boundary value problem (1)-(2) is

equivalent to

u(t) = λ

∫ b

a
Gλ(t, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

v(t) = µ

∫ b

a
Gµ(t, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
g(τ, u(τ), v(τ))dτ

)
ds

.

We define the operators Tλ, Tµ : P → E as

Tλ(u, v)(t) = λ

∫ b

a
Gλ(t, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

Tµ(u, v)(t) = µ

∫ b

a
Gµ(t, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
g(τ, u(τ), v(τ))dτ

)
ds

and an operator T : P → B as

T (u, v) =
(
Tλ(u, v), Tµ(u, v)

)
, for (u, v) ∈ B. (10)

It is clear that the existence of a positive solution to the system (1)-(2) is equivalent to
the existence of fixed points of the operator T.

Lemma 2.7. T : P → P is completely continuous
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Proof. By using standard arguments, we can easily show that, the operator T is completely
continuous and we need only to prove T (P) ⊂ P, we have

min
t∈[a,b]

Tλ(u, v)(t) = min
t∈[a,b]

λ

∫ b

a
Gλ(t, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

≥ mλ
∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds ≥ m‖Tλ(u, v)‖.

Similarly, mint∈[a,b] Tµ(u, v)(t) ≥ m‖Tµ(u, v)‖. Therefore,

min
t∈[a,b]

{
Tλ(u, v)(t) + Tµ(u, v)(t)

}
≥ m‖Tλ(u, v)‖+m‖Tµ(u, v)‖

= m
(
‖Tλ(u, v)‖+ ‖Tµ(u, v)‖

)
= m‖

(
Tλ(u, v), Tµ(u, v)

)
‖ = m‖T (u, v)‖.

Hence, T (P) ⊂ P. Let (u, v) ∈ P and ε > 0 be given. By the continuity of f and g, there
exists δ > 0 such that | f(t, u, v) − f(t, u′, v′) |< ε, | g(t, u, v) − g(t, u′, v′) |< ε, whenever
| u− u′ |< δ, | v − v′ |< δ for all t ∈ [a, b].

| Tλ(u, v)(t)− Tλ(u′, v′)(t) | = λ

∫ b

a
Gλ(t, s) | f(s, u, v)− f(s, u′, v′) | ds

≤ ελ
∫ b

a
Gλ(t, s)ds.

Thus, ‖ Tλ(u, v)(t)− Tλ(u′, v′)(t) ‖≤ ελ
∫ b
a Gλ(t, s)ds. In a similar manner ‖ Tµ(u, v)(t)−

Tµ(u′, v′)(t) ‖≤ εµ
∫ b
a Gµ(t, s)ds and T is continuous. Now, let {(un, vn)} be a bounded

sequence in P. Since f and g are continuous, there exists N > 0 such that | f(t, un, vn) |≤
N, | g(t, un, vn) |≤ N for all un, vn ∈ [0,∞). Then, for each t ∈ [a, b] and for each n,

| Tλ(un, vn)(t) | =| λ
∫ b

a
Gλ(t, s)f(s, un, vn)ds |

≤ λ

∫ b

a
| Gλ(b, s) || f(s, un, vn) | ds

≤ Nλ
∫ b

a
Gλ(b, s)ds.

In a similar manner | Tµ(un, vn)(t) |≤ Nµ
∫ b
a Gµ(b, s)ds. By choosing successive sub-

sequences, there exists a subsequence {T (unj , vnj )} which converges uniformly on [a, b].
Hence T is completely continuous. �

3. Main result

In this, we shall give sufficient conditions on λ, µ, f and g such that positive solutions
with respect to a cone for our problem (1)-(2) exist.

For convenience of the reader, we denote

A =

∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
dτ
)
ds;B =

∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
dτ
)
ds,

C = m2

∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
dτ
)
ds;D = m2

∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
dτ
)
ds.

Theorem 3.1. Assume that (A1) and (A2) hold. If fs0 , f
s
∞, g

s
0, g

s
∞ < ∞ then there exist

positive constants λ0, µ0 such that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the boundary value
problem (1)-(2) has no positive solution.
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Proof. Since fs0 , f
s
∞ < ∞, which are finite, we deduce that there exist M ′1,M

′′
1 , r1, r

′
1 >

0, r1 < r′1 such that

f(t, u, v) ≤ φp(M ′1)φp(u+ v),∀u, v ≥ 0, u+ v ∈ [0, r1]

f(t, u, v) ≤ φp(M ′′1 )φp(u+ v),∀u, v ≥ 0, u+ v ∈ [r′1,∞).

We consider M1 =
{
M ′1,M

′′
1 ,maxr1≤u+v≤r′1

f(t,u,v)
φp(u+v)

}
> 0, then we obtain

f(t, u, v) ≤ φp(M1)φp(u+ v), ∀u, v ≥ 0.

Since gs0, g
s
∞ <∞, which are finite, we deduce that there exist M ′2,M

′′
2 , r2, r

′
2 > 0, r2 < r′2

such that
g(t, u, v) ≤ φp(M ′2)φp(u+ v),∀u, v ≥ 0, u+ v ∈ [0, r2]

g(t, u, v) ≤ φp(M ′′2 )φp(u+ v),∀u, v ≥ 0, u+ v ∈ [r′2,∞].

We consider M2 =
{
M ′2,M

′′
2 ,maxr2≤u+v≤r′2

g(t,u,v)
φp(u+v)

}
> 0, then we obtain

g(t, u, v) ≤ φp(M2)φp(u+ v),∀u, v ≥ 0.

We define λ0 = 1
2M1A

, µ0 = 1
2M2B

. We shall show that for every λ ∈ (0, λ0) and µ ∈ (0, µ0),

FBVP (1)-(2) has a no positive solution.
Let λ ∈ (0, λ0) and µ ∈ (0, µ0). We suppose that (1)-(2) has a positive solution

(u(t), v(t)), t ∈ [a, b]. Then by using lemma 2.6, we obtain

u(t) =
(
Tλ(u, v)

)
(t) = λ

∫ b

a
Gλ(t, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

≤ λ
∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

≤ λM1

∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
φp
(
u(τ) + v(τ)

)
dτ
)
ds

≤ λM1

∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
dτ
)
ds
(
‖ u ‖ + ‖ v ‖

)
= λM1A ‖ (u, v) ‖, ∀t ∈ [a, b].

Therefore, we conclude

‖ u ‖≤ λM1A ‖ (u, v) ‖< λ0M1A ‖ (u, v) ‖= 1

2
‖ (u, v) ‖ (11)

In a similar manner, we obtain

v(t) =
(
Tµ(u, v)

)
(t) = µ

∫ b

a
Gµ(t, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
g(τ, u(τ), v(τ))dτ

)
ds

≤ µ
∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
g(τ, u(τ), v(τ))dτ

)
ds

≤ µM2

∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
φp
(
u(τ) + v(τ)

)
dτ
)
ds

≤ µM2

∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
dτ
)
ds
(
‖ u ‖ + ‖ v ‖

)
= µM2B ‖ (u, v) ‖, ∀t ∈ [a, b].
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Therefore, we conclude

‖ v ‖≤ µM2B ‖ (u, v) ‖< µ0M2B ‖ (u, v) ‖= 1

2
‖ (u, v) ‖ . (12)

Hence, by (11) and (12), we conclude

‖ (u, v) ‖=‖ u ‖ + ‖ v ‖< 1

2
‖ (u, v) ‖ +

1

2
‖ (u, v) ‖=‖ (u, v) ‖

which is a contradiction, so the FBVP (1)-(2) has no positive solution. �

Theorem 3.2. Assume that (A1) and (A2) hold. If f i0, f
i
∞ > 0 and f(t, u, v) > 0 for all

t ∈ [a, b], u ≥ 0, v ≥ 0, u + v > 0, then there exists a positive constant λ̃0 such that for

every λ > λ̃0 and µ > 0, the boundary value problem (1)-(2) has no positive solution.

Proof. Since f i0, f
i
∞ > 0, we deduce that there exist M ′3,M

′′
3 , r3, r

′
3 > 0, r3 < r′3 such that

f(t, u, v) ≥ φp(M ′3)φp(u+ v),∀u, v ≥ 0, u+ v ∈ [0, r3]

f(t, u, v) ≥ φp(M ′′3 )φp(u+ v),∀u, v ≥ 0, u+ v ∈ [r′3,∞).

We consider M3 =
{
M ′3,M

′′
3 ,maxr3≤u+v≤r′3

f(t,u,v)
φp(u+v)

}
> 0, then we obtain

f(t, u, v) ≥ φp(M3)φp(u+ v), ∀u, v ≥ 0.

We define λ̃0 = 1
M3C

. We shall show that, λ > λ̃0 and µ > 0 for every FBVP (1)-(2) has
a no positive solution.

Let λ > λ̃0 and µ > 0. We suppose that (1)-(2) has a positive solution (u(t), v(t)), t ∈
[a, b]. Then by using lemma 2.6, we obtain

u(t) =
(
Tλ(u, v)

)
(t) = λ

∫ b

a
Gλ(t, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

≥ λ
∫ b

a
mGλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
f(τ, u(τ), v(τ))dτ

)
ds

≥ λmM3

∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
φp
(
u(τ) + v(τ)

)
dτ
)
ds

≥ λm2M3

∫ b

a
Gλ(s, s)φq

(∫ s

a

(s− τ)β1−1

Γ(β1)
dτ
)
ds
(
‖ u ‖ + ‖ v ‖

)
= λM3C ‖ (u, v) ‖, ∀t ∈ [a, b].

Then, we conclude ‖ u ‖≥ λM3C ‖ (u, v) ‖> λ̃0M3C ‖ (u, v) ‖=‖ (u, v) ‖ and so,
‖ (u, v) ‖=‖ u ‖ + ‖ v ‖≥‖ u ‖>‖ (u, v) ‖, which is a contradiction. Therefore the
boundary value problem (1)-(2) has no positive solution. �

Theorem 3.3. Assume that (A1) and (A2) hold. If gi0, g
i
∞ > 0 and g(t, u, v) > 0 for all

t ∈ [a, b], u ≥ 0, v ≥ 0, u + v > 0, then there exists a positive constant µ̃0 such that for
every µ > µ̃0 and λ > 0, the boundary value problem (1)-(2) has no positive solution.

Proof. Since gi0, g
i
∞ > 0, we deduce that there exist M ′4,M

′′
4 , r4, r

′
4 > 0, r4 < r′4 such that

g(t, u, v) ≥ φp(M ′4)φp(u+ v), ∀u, v ≥ 0, u+ v ∈ [0, r4]

g(t, u, v) ≥ φp(M ′′4 )φp(u+ v),∀u, v ≥ 0, u+ v ∈ [r′4,∞).

We consider M4 =
{
M ′4,M

′′
4 ,maxr4≤u+v≤r′4

g(t,u,v)
φp(u+v)

}
> 0, then we obtain

g(t, u, v) ≥ φp(M4)φp(u+ v),∀u, v ≥ 0.
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We define µ̃0 = 1
M4D

. We shall show that, for every µ > µ̃0 and λ > 0 the FBVP (1)-(2)
has a no positive solution.

Let µ > µ̃0 and λ > 0. We suppose that (1)-(2) has a positive solution (u(t), v(t)), t ∈
[a, b]. Then by using lemma 2.6, we obtain

v(t) =
(
Tµ(u, v)

)
(t) = µ

∫ b

a
Gµ(t, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
g(τ, u(τ), v(τ))dτ

)
ds

≥ µ
∫ b

a
mGµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
g(τ, u(τ), v(τ))dτ

)
ds

≥ µM4

∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
φp
(
u(τ) + v(τ)

)
dτ
)
ds

≥ µm2M4

∫ b

a
Gµ(s, s)φq

(∫ s

a

(s− τ)β2−1

Γ(β2)
dτ
)
ds
(
‖ u ‖ + ‖ v ‖

)
= µM4D ‖ (u, v) ‖, ∀t ∈ [a, b].

Then, we conclude ‖ v ‖≥ µM4D ‖ (u, v) ‖> µ̃0M4D ‖ (u, v) ‖=‖ (u, v) ‖ and so,
‖ (u, v) ‖=‖ u ‖ + ‖ v ‖≥‖ v ‖>‖ (u, v) ‖, which is a contradiction. Therefore the
boundary value problem (1)-(2) has no positive solution. �

Theorem 3.4. Assume that (A1) and (A2) hold. If f i0, f
i
∞, g

i
0, g

i
∞ > 0 and f(t, u, v) >

0, g(t, u, v) > 0 for all t ∈ [a, b], u ≥ 0, v ≥ 0, u + v > 0, then there exists a positive

constants λ̃0 and µ̃0 such that, for every λ > λ̃0 and µ > µ̃0, the boundary value problem
(1)-(2) has no positive solution.

Proof. From the assumptions of the theorem, we deduced that there exist M3,M4 > 0
such that

f(t, u, v) ≥ φp(M3)φp(u+ v), g(t, u, v) ≥ φp(M4)φp(u+ v)

for all t ∈ [a, b] and u, v ≥ 0. We define λ̂0 = 1
2M3C

, µ̂0 = 1
2M4D

. Then, for every λ > λ̂0

and µ > µ̂0, problem (1)-(2) has a positive solution (u(t), v(t)), t ∈ [a, b]. In a similar
manner to that used in the proofs of theorem 3.2 and 3.3, we obtain

‖ u ‖≥ λM3C ‖ (u, v) ‖, ‖ v ‖≥ µM4D ‖ (u, v) ‖

and so
‖ (u, v) ‖ =‖ u ‖ + ‖ v ‖≥ λM3C ‖ (u, v) ‖ +µM4D ‖ (u, v) ‖

> λ̂0M3C ‖ (u, v) ‖ +µ̂0M4D ‖ (u, v) ‖

=
1

2
‖ (u, v) ‖ +

1

2
‖ (u, v) ‖=‖ (u, v) ‖,

which is a contradiction. Therefore, the boundary value problem (1)-(2) has no positive
solution. �

4. Example

In this section, we demonstrate our result with an example.
Let a = 0, b = 1, α1 = 3

2 , α2 = 5
4 , β1 = β2 = 1

2 , ξ = γ = δ = 1
2 , η = 1, p = 2. We consider

the system of fractional order differential equations with p-Laplacian operator

D0.5
0+

(
φp
(
D1.5

0+u(t)
))

= φp(λ)f(t, u(t), v(t)), t ∈ (0, 1)

D0.5
0+

(
φp
(
D1.25

0+ v(t)
))

= φp(µ)g(t, u(t), v(t)), t ∈ (0, 1)
(13)
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with the boundary conditions

1

2
u(0)− u′(0) = 0,

1

2
u(1) +

1

2
u′(1) = 0, D1.5

0+u(1) = 0,

1

2
v(0)− v′(0) = 0,

1

2
v(1) +

1

2
v′(1) = 0, D1.25

0+ v(1) = 0,

(14)

where the functions f and g are given by

f(t, u, v) =
2
√
t(u+ v)[800(u+ v) + 1](9 + sin v)

u+ v + 1
,

g(t, u, v) =

√
1− t(u+ v)[400(u+ v) + 1](18 + cosu)

u+ v + 1
.

By a simple calculation, we obtain m = 0.32, fs0 = f i0 = 9, f s∞ = 8000, f i∞ = 6400, gs0 =
gi0 = 19, gs∞ = 7600, gi∞ = 6800, A = 0.1645, B = 0.05546, C = 0.0168448, D =
0.0009343. We obtain fs0 = 9, gs0 = 19, fs∞ = 8000, gs∞ = 7600, we can apply theorem
3.1 then we conclude that there exist λ0, µ0 > 0 such that, for every λ ∈ (0, λ0) and
µ ∈ (0, µ0), the boundary value problem (13)-(14) has no positive solution.

We obtain f i0 = 9, f i∞ = 6400, we can apply theorem 3.2 then there exists λ0 > 0 such

that, for every λ > λ̃0 and µ > 0, the boundary value problem (13)-(14) has no positive
solution. We obtain gi0 = 19, gi∞ = 6800, we can apply theorem 3.3 then there exists
µ0 > 0 such that, for every µ > µ̃0 and λ > 0, the boundary value problem (13)-(14) has
no positive solution.
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