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EXISTENCE OF NONOSCILLATORY SOLUTIONS OF

SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

B. ÇINA1, T. CANDAN2, M. T. ŞENEL3, §

Abstract. We obtain some sufficient conditions for the existence of nonoscillatory so-
lutions of nonlinear second order neutral differential equation with forcing term. Our
results improve and extend some existing results. Examples are also included to illustrate
our results.
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1. Introduction

In this work, we study the second-order neutral nonlinear differential equation(
r(t) (x(t)− p(t)x(t− τ))′

)′
+ f1(t, x(σ1(t)))− f2(t, x(σ2(t))) = g(t), (1)

where p, g ∈ C([t0,∞),R), τ > 0, r ∈ C([t0,∞), (0,∞)) and σi ∈ C([t0,∞),R) with
lim
t→∞

σi(t) =∞, i = 1, 2.

Throughout this paper, we assume that fi(t, x) ∈ C([t0,∞)× R,R) is a nondecreasing
in x for i = 1, 2, xfi(t, x) > 0 for x 6= 0, i = 1, 2, and satisfies

|fi(t, x)− fi(t, y)| ≤ qi(t)|x− y| for t ∈ [t0,∞) and x, y ∈ [a, b], (2)

where qi ∈ C([t0,∞),R+), i = 1, 2, and [a, b] (0 < a < b or a < b < 0) is any closed
interval. Furthermore, suppose that∫ ∞

t0

∫ s

t0

qi(u)

r(s)
duds <∞, i = 1, 2, (3)

∫ ∞
t0

∫ s

t0

|fi(u, d)|
r(s)

duds <∞ for some d 6= 0, i = 1, 2, (4)
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and ∫ ∞
t0

∫ s

t0

|g(u)|
r(s)

duds <∞ (5)

hold. The motivation of this paper comes from the work of Yang, Zhang and Ge in [10],
where they investigated the existence of nonoscillatory solutions of the following equations

(x(t)− p(t)x(t− τ))′′ + f1(t, x(σ1(t)))− f2(t, x(σ2(t))) = 0 (6)

and

(x(t)− p(t)x(t− τ))′′ + f1(t, x(σ1(t)))− f2(t, x(σ2(t))) = g(t), (7)

where fi(t, x), i = 1, 2 are nondecreasing in x. For the other works and related books con-
cerning existence of nonoscillatory solutions of neutral differential and difference equations,
we refer to [1–9] and references cited therein.

When we take r(t) = 1 and g(t) = 0, and r(t) = 1 in equation (1), we obtain (6) and
(7), respectively. That means the results in current paper is more general than the results
in [10].

The purpose of this paper is to present some new sufficient conditions for the existence
of nonoscillatory solutions of (1).

Let T0 = min{t1 − τ, inf
t≥t1

σ1(t), inf
t≥t1

σ2(t)} for t1 ≥ t0. By a solution of equation (1),

we mean a function x ∈ C([T0,∞),R) in the sense that both x(t) − p(t)x(t − τ) and
r(t)(x(t)− p(t)x(t− τ))′ are continuously differentiable on [t1,∞] and such that equation
(1) is satisfied for t ≥ t1.

As is customary, a solution of (1) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise the solution is called nonoscillatory.

Throughout this paper, we suppose that X is the set of all continuous and bounded
functions on [t0,∞) with the sup norm.

2. Main Results

Theorem 2.1. Assume that (3)-(5) hold and 0 ≤ p(t) ≤ p < 1. Then (1) has a bounded
nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Set

A = {x ∈ X : N1 ≤ x(t) ≤ d, t ≥ t0},
where N1 is a positive constant such that

N1 < (1− p)d.
It is clear that A is a closed, bounded and convex subset of X. In view of (3)-(5) there
exists a t1 > t0 sufficiently large such that t− τ ≥ t0, σ1(t) ≥ t0, σ2(t) ≥ t0 for t ≥ t1 and

p+ 2

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds ≤ θ1 < 1, i = 1, 2, (8)

where θ1 is a constant,∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds ≤ (1− p)d− α (9)

and ∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds ≤ α−N1, (10)
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where α ∈
(
N1, (1− p)d

)
. Define a mapping S : A −→ X as follows:

(Sx)(t) =


α+ p(t)x(t− τ) +

∫∞
t

1
r(s)

∫ s
t1

[f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds, t ≥ t1
(Sx)(t1), t0 ≤ t ≤ t1.

Clearly Sx is continuous. For every x ∈ A and t ≥ t1, using (9), we have

(Sx)(t) = α+ p(t)x(t− τ) +

∫ ∞
t

∫ s

t1

1

r(s)
[f1(u, x(σ1(u)))− f2(u, x(σ2(u)))− g(u)]duds

≤ α+ pd+

∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds

≤ d

and taking (10) into account, we have

(Sx)(t) = α+ p(t)x(t− τ) +

∫ ∞
t

∫ s

t1

1

r(s)
[f1(u, x(σ1(u)))− f2(u, x(σ2(u)))− g(u)]duds

≥ α−
∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds

≥ N1.

Then SA ⊂ A. Now we show that S is a contraction mapping on A. In fact, for x, y ∈ A
and t ≥ t1, in view of (2) and (8), we have

|(Sx)(t)− (Sy)(t)| ≤ p|x(t− τ)− y(t− τ)|

+
2∑
i=1

∫ ∞
t

1

r(s)

∫ s

t1

|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

≤ p|x(t− τ)− y(t− τ)|

+
2∑
i=1

∫ ∞
t1

1

r(s)

∫ s

t1

qi(u)|x(σi(u))− y(σi(u)))|duds

≤ ‖x− y‖
[
p+

2∑
i=1

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds

]
≤ θ1‖x− y‖,

where we used sup norm. Then it follows that

‖Sx− Sy‖ ≤ θ1‖x− y‖.
Since θ1 < 1, S is a contraction mapping on A. Consequently, S has the unique fixed point
x ∈ A such that Sx = x, which is obviously a positive solution of (1). This completes the
proof. �

Theorem 2.2. Assume that (3)-(5) hold and 1 < p1 ≤ p(t) ≤ p2 < ∞. Then (1) has a
bounded nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Set

A = {x ∈ X : N2 ≤ x(t) ≤ d, t ≥ t0},
where N2 is a positive constant such that

p2N2 < (p1 − 1)d.
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It is obvious that A is a closed, bounded and convex subset of X. In view of (3)-(5) there
exists a t1 > t0 sufficiently large such that σ1(t+ τ) ≥ t0, σ2(t+ τ) ≥ t0 for t ≥ t1 and

1

p1

[
1 + 2

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds

]
≤ θ2 < 1, i = 1, 2, (11)

where θ2 is a constant,

∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds ≤ α− p2N2 (12)

and ∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds ≤ (p1 − 1)d− α, (13)

where α ∈
(
p2N2, (p1 − 1)d

)
. Define a mapping S : A −→ X as follows:

(Sx)(t) =


1

p(t+τ)

[
α+ x(t+ τ)−

∫∞
t+τ

1
r(s)

∫ s
t1+τ [f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds
]
, t ≥ t1

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For every x ∈ A and t ≥ t1, using (13), we have

(Sx)(t) =
1

p(t+ τ)

[
α+ x(t+ τ)−

∫ ∞
t+τ

∫ s

t1+τ

1

r(s)
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds
]

≤ 1

p1

[
α+ d+

∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds

]
≤ d

and taking (12) into account, we have

(Sx)(t) =
1

p(t+ τ)

[
α+ x(t+ τ)−

∫ ∞
t+τ

∫ s

t1+τ

1

r(s)
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds
]

≥ 1

p(t+ τ)

[
α−

∫ ∞
t1+τ

∫ s

t1+τ

1

r(s)
[f1(u, d) + |g(u)|]duds

]
≥ 1

p2

[
α−

∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds

]
≥ N2.
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Then SA ⊂ A. Now we show that S is a contraction mapping on A. In fact, for x, y ∈ A
and t ≥ t1, in view of (2) and (11), we have

|(Sx)(t)− (Sy)(t)| ≤ 1

p(t+ τ)

[
|x(t+ τ)− y(t+ τ)|

+

2∑
i=1

∫ ∞
t+τ

1

r(s)

∫ s

t1+τ
|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

]
≤ ‖x− y‖

p1

[
1 +

2∑
i=1

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds

]
≤ θ2‖x− y‖,

where we used sup norm. This immediately implies that

‖Sx− Sy‖ ≤ θ2‖x− y‖.

Since θ2 < 1, S is a contraction mapping on A. Consequently, S has the unique fixed point
x ∈ A such that Sx = x, which is obviously a positive solution of (1). This completes the
proof. �

Theorem 2.3. Assume that (3)-(5) hold and −1 < −p ≤ p(t) ≤ 0. Then (1) has a
bounded nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Set

A = {x ∈ X : N3 ≤ x(t) ≤ d, t ≥ t0},

where N3 is a positive constant such that

N3 + pd < d.

It is clear that A is a closed, bounded and convex subset of X. In view of (3)-(5) there
exists a t1 > t0 sufficiently large such that t− τ ≥ t0, σ1(t) ≥ t0, σ2(t) ≥ t0 for t ≥ t1 and

p+ 2

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds ≤ θ3 < 1, i = 1, 2, (14)

where θ3 is a constant,∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds ≤ d− α (15)

and ∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds ≤ α−N3 − pd, (16)

where α ∈
(
N3 + pd, d

)
. Define a mapping S : A −→ X as follows :

(Sx)(t) =


α+ p(t)x(t− τ) +

∫∞
t

1
r(s)

∫ s
t1

[f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds, t ≥ t1
(Sx)(t1), t0 ≤ t ≤ t1.
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Clearly, Sx is continuous. For every x ∈ A and t ≥ t1, using (15), we have

(Sx)(t) = α+ p(t)x(t− τ) +

∫ ∞
t

∫ s

t1

1

r(s)
[f1(u, x(σ1(u)))− f2(u, x(σ2(u)))− g(u)]duds

≤ α+

∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds

≤ d

and taking (16) into account, we have

(Sx)(t) = α+ p(t)x(t− τ) +

∫ ∞
t

∫ s

t1

1

r(s)
[f1(u, x(σ1(u)))− f2(u, x(σ2(u)))− g(u)]duds

≥ α− pd−
∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds

≥ N3.

Then SA ⊂ A. Now we show that S is a contraction mapping on A. In fact, for x, y ∈ A
and t ≥ t1, in view of (2) and (14), we have

|(Sx)(t)− (Sy)(t)| ≤ |p(t)||x(t− τ)− y(t− τ)|

+
2∑
i=1

∫ ∞
t

1

r(s)

∫ s

t1

|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

≤ p‖x− y‖+

2∑
i=1

∫ ∞
t1

1

r(s)

∫ s

t1

qi(u)|x(σi(u))− y(σi(u)))|duds

≤ ‖x− y‖
[
p+

2∑
i=1

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds

]
≤ θ3‖x− y‖,

where we used sup norm. This implies that

‖Sx− Sy‖ ≤ θ3‖x− y‖.

Since θ3 < 1, S is a contraction mapping on A. Consequently, S has the unique fixed point
x ∈ A such that Sx = x, which is obviously a positive solution of (1). This completes the
proof. �

Theorem 2.4. Assume that (3)-(5) hold and −∞ < −p1 ≤ p(t) ≤ −p2 < −1. Then (1)
has a bounded nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Set

A = {x ∈ X : N4 ≤ x(t) ≤ d, t ≥ t0},

where N4 is a positive constant such that

p1N4 + d < p2d.

It is obvious that A is a closed, bounded and convex subset of X. In view of (3)-(5) there
exists a t1 > t0 sufficiently large such that σ1(t+ τ) ≥ t0, σ2(t+ τ) ≥ t0 for t ≥ t1 and

1

p2

[
1 + 2

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds

]
≤ θ4 < 1, i = 1, 2, (17)
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where θ4 is a constant,∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds ≤ p2d− α (18)

and ∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds ≤ α− p1N4 − d, (19)

where α ∈
(
p1N4 + d, p2d

)
. Define a mapping S : A −→ X as follows:

(Sx)(t) =


− 1
p(t+τ)

[
α− x(t+ τ) +

∫∞
t+τ

1
r(s)

∫ s
t1+τ [f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds
]
, t ≥ t1

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. For every x ∈ A and t ≥ t1, using (18), we have

(Sx)(t) = − 1

p(t+ τ)

[
α− x(t+ τ) +

∫ ∞
t+τ

∫ s

t1+τ

1

r(s)
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds
]

≤ 1

p2

[
α+

∫ ∞
t1

∫ s

t1

1

r(s)
[f1(u, d) + |g(u)|]duds

]
≤ d

and taking (19) into account, we have

(Sx)(t) = − 1

p(t+ τ)

[
α− x(t+ τ) +

∫ ∞
t+τ

∫ s

t1+τ

1

r(s)
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds
]

≥ − 1

p(t+ τ)

[
α− d−

∫ ∞
t1+τ

∫ s

t1+τ

1

r(s)
[f2(u, d) + |g(u)|]duds

]
≥ 1

p1

[
α− d−

∫ ∞
t1

∫ s

t1

1

r(s)
[f2(u, d) + |g(u)|]duds

]
≥ N4.

Then SA ⊂ A. Now we show that S is a contraction mapping on A. In fact, for x, y ∈ A
and t ≥ t1, in view of (2) and (17), we have

|(Sx)(t)− (Sy)(t)| ≤ 1

|p(t+ τ)|

[
|x(t+ τ)− y(t+ τ)|

+
2∑
i=1

∫ ∞
t+τ

1

r(s)

∫ s

t1+τ
|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

]
≤ ‖x− y‖

p2

[
1 +

2∑
i=1

∫ ∞
t1

∫ s

t1

qi(u)

r(s)
duds

]
≤ θ4‖x− y‖,

where we used sup norm. This implies that

‖Sx− Sy‖ ≤ θ4‖x− y‖.



B. ÇINA, T. CANDAN, M. T. ŞENEL: EXISTENCE OF NONOSCILLATORY SOLUTIONS ... 673

Since θ4 < 1, S is a contraction mapping on A. Consequently, S has the unique fixed
point Sx = x, which obviously a positive solution of (1). This completes the proof. �

Example 2.1. Consider the equation

(t2(x(t)− 1

t
x(t− 1))′)′ +

t− 3

(t− 4)2
x(t− 3)− 2t

(t− 2)3
x3(t− 1) =

1

t− 4
, t0 > 4. (20)

Note that r(t) = t2, p(t) = 1
t , τ = 1, σ1(t) = t − 3, σ2(t) = t − 1, f1(t, x) = t−3

(t−4)2
x,

f2(t, x) = 2t
(t−2)3

x3 and g(t) = 1
t−4 . It is easy to verify that the conditions of Theorem 2.1

are all satisfied and x(t) = 1− 1
t is a nonoscillation solution of (20).

Example 2.2. Consider the equation

(exp(t)(x(t)− (exp(−t) + 2)x(t− 1))′)′ + exp(−t− 2)x(t− 2)− exp(−t− 3)x(t− 3)

= − exp(−t− 3)(2 exp(4)− exp(1) + 1). (21)

Note that r(t) = exp(t), p(t) = exp(−t) + 2, τ = 1, σ1(t) = t− 2, σ2(t) = t− 3, f1(t, x) =
exp(−t − 2)x, f2(t, x) = exp(−t − 3)x and g(t) = − exp(−t − 3)(2 exp(4) − exp(1) + 1).
We can check that the conditions of Theorem 2.2 are all satisfied and x(t) = exp(−t) + 1
is a nonoscillation solution of (21).
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