GLOBAL COLOR CLASS DOMINATION PARTITION OF A GRAPH

V. PRABA¹†, V. SWAMINATHAN², §

ABSTRACT. Color class domination partition was suggested by E. Sampathkumar and it was studied in [1]. A proper color partition of a finite, simple graph G is called a color class domination partition (or cd-partition) if every color class is dominated by a vertex. This concept is different from dominator color partition introduced in [2], [3] where every vertex dominates a color class. Suppose G has no full degree vertex (that is, a vertex which is adjacent with every other vertex of the graph). Then a color class may be independent from a vertex outside the class. This leads to Global Color Class Domination Partition. A proper color partition of G is called a Global Color Class Domination Partition if every color class is dominated by a vertex and each color class is independent of a vertex outside the class. The minimum cardinality of a Global Color Class Domination Partition is called the Global Color Class Domination Partition Number of G and is denoted by $\chi_{gcd}(G)$. In this paper a study of this new parameter is initiated and its relationships with other parameters are investigated.

Keywords: Color class domination partition, Global color class domination partition, Dominator color class partition, Global color class domination number.

AMS Subject Classification: 05C69

1. Introduction

Let G be a finite, simple and undirected graph. A proper color partition of G is a partition of $V(G)$ into independent sets of G. Several types of proper color partitions have been studied earlier. One of them is dominator coloring [2], [3]. In this coloring, each vertex dominates a color class. The minimum cardinality of a dominator color class partition is denoted by $\chi_d(G)$. A slight variation of this coloring is called a color class domination partition. In this partition, each color class is dominated by a vertex. In graphs without any full degree vertex, Global counter part of this concept can be defined. In this paper this new concept is introduced and studied.

¹ Department of Mathematics, Rajalakshmi Engineering college, Chennai-602 105, Tamilnadu, India. e-mail: prabasigc@yahoo.co.in; ORCID: https://orcid.org/0000-0003-0171-3777.
² Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai-625022, Tamilnadu, India. e-mail: swaminathan.sulanesri@gmail.com; ORCID: https://orcid.org/0000-0002-5840-2040.
§ Manuscript received: May 17, 2017; accepted: October 6, 2017. TWMS Journal of Applied and Engineering Mathematics, Vol.9, No.3 © Işık University, Department of Mathematics, 2019; all rights reserved.

681
2. Global color class domination partition

Definition 2.1. Let G be a finite, simple and undirected graph. Let $\Pi = \{V_1, V_2, \ldots, V_k\}$ be a proper color partition of G. Π is called a global color class domination partition if for every color class V_i, there exists a vertex u_i which dominates V_i and there exists a vertex $w_i \notin V_i$ which is independent of V_i, $1 \leq i \leq k$. The minimum cardinality of a Global color class domination partition is called the Global color class domination number of G and is denoted by $\chi_{gcd}(G)$.

If G does not have a full degree vertex, then $\Pi = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$ is a global color class domination partition of G.

3. $\chi_{gcd}(G)$ for Standard Graphs

(1) $\chi_{gcd}(K_n) = n$.
(2) $\chi_{gcd}(D_{r,s}) = 4$, $r, s \geq 1$.
(3) $\chi_{gcd}(K_{m,n}) = 4$, where $m, n \geq 2$.
(4) $\chi_{gcd}(P_n) = \begin{cases} 4 & \text{if } n = 4, 5 \\ \gamma_{cd}(P_n) & \text{if } n \geq 6 \end{cases}$
\begin{align*}
&\chi_{gcd}(P_2) \text{ and } \chi_{gcd}(P_3) \text{ do not exist.} \\
&\chi_{gcd}(C_n) = \begin{cases} 4 & \text{if } n = 4 \\ 5 & \text{if } n = 5 \\ \chi_{cd}(C_n) & \text{if } n \geq 6 \end{cases}
\end{align*}
\begin{align*}
&\chi_{gcd}(C_3) \text{ does not exist.} \\
&\chi_{gcd}(P) = 5 \text{ where } P \text{ is the Petersen graph.}
\end{align*}

Here $\{\{v_1, v_3\}, \{v_2, v_4\}, \{v_5, v_6\}, \{v_7, v_8\}, \{v_9, v_{10}\}\}$ is a minimum global color class domination partition of P.

4. Main Results

Theorem 4.1. $\max\{\chi_{cd}(G), \frac{\gamma_{cd}(G)}{2}\} \leq \chi_{gcd}(G)$

Proof. Let Π be a minimum global color class domination partition of G. Then Π is a color class domination partition of G. Therefore $\chi_{cd}(G) \leq \chi_{gcd}(G)$. Let $\Pi = \{V_1, V_2, \ldots, V_k\}$ be a minimum global color partition of G. Then there exist x_1, x_2, \ldots, x_k such that x_i dominates V_i, $(1 \leq i \leq k)$ and y_1, y_2, \ldots, y_k such that y_i is independent of V_i, $(1 \leq i \leq k)$.
Let $S = \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_k\}$. Then S is a global dominating set of G. Therefore
\[\gamma_g(G) \leq |S| \leq 2k, \quad \frac{\gamma_g(G)}{2} \leq k = \gamma_{cd}(G).\] Therefore $\max\{\gamma_{cd}(G), \frac{\gamma_g(G)}{2}\} \leq \gamma_{cd}(G)$. \hfill \Box

Remark 4.1. Let $G = P_6$. $\gamma_g(G) = 2$. $\chi_{cd}(G) = \frac{n+2}{2} = 4$. Therefore $\max\{\gamma_{cd}(G), \frac{\chi_{cd}(G)}{2}\} = 4 = \chi_{cd}(G)$.

Theorem 4.2. \(\min\{\Delta(G), \frac{n}{n-1-\delta(G)}\} \leq \chi_{cd}(G)\)

Proof. Let $\Pi = \{V_1, V_2, \ldots, V_k\}$ be a minimum global color partition of G. Since each V_i is dominated by a vertex say x_i.

\[\deg(x_i) \geq |V_i|, \quad (1 \leq i \leq k).\]

Therefore $|V_i| \leq \Delta(G)$, $(1 \leq i \leq k)$. That is, $\max\{|V_i|\} \leq \Delta(G)$. Since each V_i is independent of some y_i, $(1 \leq i \leq k)$, each V_i is dominated by y_i in \overline{G}, $(1 \leq i \leq k)$, therefore $|V_i| \leq \deg_{\overline{G}}(y_i) \leq \Delta(\overline{G})$.

\[\delta(G) \leq n - \Delta(\overline{G}) - 1. \quad \Delta(\overline{G}) \leq n - \delta(G) - 1.\]

Therefore $|V_i| \leq \min\{\Delta(G), |n - \delta(G) - 1\}$, $(1 \leq i \leq k)$. $n = |V_1| + |V_2| + \ldots + |V_k| \leq \min\{|V_1|\} + \min\{|V_2|\} + \ldots + \min\{|V_k|\}$. $n = k \min\{\Delta(G), n - \delta(G) - 1\}$. $\min\{\Delta(G), \frac{n}{n-1-\delta(G)}\} \leq k = \chi_{cd}(G)$.

Remark 4.2. The above bound is sharp. For: Let $G = P_6$. $\chi_{cd}(G) = 4$, $\Delta(G) = 2$, $\delta(G) = 1$. Therefore $\min\{\Delta(P_6), n-1-\delta(P_6)\} = \chi_{cd}(G)$. \hfill \Box

Observation 4.1. Let $G = C_{20}$. $\chi_{cd}(C_{20}) = \chi_{cd}(C_{20}) = 2$. $\gamma_{cd}(C_{20}) = 7$. Therefore $\chi(C_{20}) + \gamma_{cd}(C_{20}) = 2 + 7 = 9 < \chi_{cd}(G)$ where $G = C_{20}$.

Let $G = C_6$. $\chi_{cd}(C_6) = 3$. $\chi(C_6) = 2$ and $\gamma_{cd}(C_6) = 2$. Therefore $\chi(G) + \gamma_{cd}(G) = 2 + 2 = 4 \geq \chi_{cd}(G) = 6$. $\chi(C_6) = 6$.

Let $G = P_4$: $\chi_{cd}(P_4) = 4$. $\chi((P_4) = 2$ and $\gamma_{cd}(P_4) = 2$. Therefore $\chi(G) + \gamma_{cd}(G) = 2 + 2 = 4 = \chi_{cd}(G)$ where $G = P_4$. There is therefore no relationship between $\chi_{cd}(G)$ and $\chi(G) + \gamma_{cd}(G)$.

Observation 4.2. Let G be the disjoint union of connected graphs G_1, G_2, \ldots, G_k. Then $\chi_{cd}(G) = \chi_{cd}(G_1) + \chi_{cd}(G_2) + \ldots + \chi_{cd}(G_k)$.

Theorem 4.3. Let G have isolates. Then $\chi_{cd}(G) = \chi_{cd}(G)$.

Proof. Let u_1, u_2, \ldots, u_k be the isolates of G. Let Π be a minimum color class domination partition of G. Since u_i, $(1 \leq i \leq k)$, are isolates, $\{u_1\}, \{u_2\}, \ldots, \{u_k\}$ all belong to Π. Therefore Π is also a global color class domination partition of G. Therefore $\chi_{cd}(G) \leq |\Pi| = \chi_{cd}(G)$. But $\chi_{cd}(G) \leq \chi_{cd}(G)$.

Theorem 4.4. Let G be a bipartite graph without isolates and the cardinalities of the bipartite sets of G are ≥ 2. Then $\gamma(G) = \gamma_g(G) = \chi_{cd}(G) = \chi_{cd}(G)$ if $N(u_i) \neq Y$ for any u_i in X and $N(v_i) = X$ for some v_i in Y.

If $N(u_i) = Y$ for any u_i in X and $N(v_i) = X$ for some v_i in Y, then $\gamma(G) = \gamma_g(G) = \chi_{cd}(G) = 2$ and $\chi_{cd}(G) = 4$.

If $N(u_i) = Y$ for any u_i in X and $N(v_i) = X$ for some v_i in Y, then $\gamma(G) = \gamma_g(G) = \chi_{cd}(G) = k + 1$ and $\chi_{cd}(G) = k + 2$.

Proof. Let G be a bipartite graph without isolates and let X, Y be the bipartite sets of G. Let $|X| \geq 2$, $|Y| \geq 2$. Since G is bipartite without isolates, $G = K_x \cup K_y$. Any subset of $V(G)$ containing a vertex from X and a vertex from Y is a dominating set of \overline{G}. Any dominating set of G contains at least one vertex from X and at least one vertex from Y. Therefore any dominating set of G is also a dominating set of \overline{G}. Therefore $\gamma(G) = \gamma_g(G)$.

Let $\{u_1, u_2, \ldots, u_r\}$ be a γ-set of G. Let $u_1, u_2, \ldots, u_k \in X$ and $u_{k+1}, u_{k+2}, \ldots, u_r \in Y$.
Consider $V_i = N(u_i) - \bigcup_{j=1}^{i-1} N(u_j)$. If $u_i \in X$, then $V_i \subseteq Y$. If $u_i \in Y$, then $V_i \subseteq X$. Let u_{i_1} and $u_{i_2} \in X$. Without loss of generality $i_1 < i_2$. Then $V_{i_2} \cap V_{i_1} = \emptyset$. Therefore V_1, V_2, \ldots, V_r are mutually disjoint. If $u_i \in X$, $V_i \subseteq Y$, then V_i is independent. Therefore $\Pi = \{V_1, V_2, \ldots, V_r\}$ is a partition of G into independent sets. V_i is dominated by u_i, $1 \leq i \leq k$. If $N(u_i) = Y$, then V_2, V_3, \ldots, V_k are empty. If $N(u_{k+1}) = X$, then $V_{k+2}, V_{k+3}, \ldots, V_r$ are empty. Therefore $\{u_1, u_{k+1}\}$ is a minimum dominating as well as a global dominating set of G, that is, $\gamma(G) = \gamma_g(G) = 2$. Let $\Pi = \{V_1 - \{u_1\}, V_2 - \{u_r\}, \{u_k\}, \{u_r\}\}$ is a minimum global color class domination partition of G. Therefore $\chi_{gcd}(G) = 4$. $\Pi_1 = \{V_1, V_{k+1}\}$ is a minimum global color class domination partition of G. Therefore $\chi_{gcd}(G) = 2$. Suppose $N(u_1) \subseteq X$. But $N(u_{k+1}) = X$. Therefore $V_1 \not\subseteq Y$. Suppose $V_2 = N(u_2) - N(u_1) = \emptyset$. Then $N(u_2) \subseteq N(u_1)$. Therefore $D = \{u_1, u_3, \ldots, u_r\}$ is a dominating set of G. There $\gamma(G) < r$, a contradiction. Therefore $V_2 \neq \emptyset$. A similar argument shows that V_3, V_4, \ldots, V_r are empty. Since $V_{k+1} = X, V_{k+2}, \ldots, V_r = \emptyset$, therefore $\Pi = \{V_1, \ldots, V_k, V_{k+1} - \{u_k\}, \{u_r\}\}$ is a minimum global color class domination partition. Therefore $\chi_{cd}(G) = k + 2$. Since $V_{k+1} = X$, $D = \{u_1, u_2, \ldots, u_k, u_{k+1}\}$ is a minimum global color class domination partition. Therefore $\chi_{gcd}(G) = k + 2$. Since $V_{k+1} = X$, $D = \{u_1, u_2, \ldots, u_k, u_{k+1}\}$ is a minimum dominating set of G. $|D| = k + 1 < r$. Therefore $\gamma(G) = k + 1$. $\gamma_g(G) = k + 1$. $\chi_{gcd}(G) = k + 2$. Suppose $N(u_1) \not\subseteq Y$, $N(u_{k+1}) \not\subseteq X$. Then $V_2, V_3, V_{k+2}, \ldots, V_r$ are non-empty. $\Pi = \{V_2, \ldots, V_k, V_{k+2}, \ldots, V_r\}$ is a minimum global color class domination partition of G. It is also a minimum color class domination partition of G. Therefore $\gamma(G) = \gamma_g(G) = \chi_{gcd}(G) = \chi_{gcd}(G) = r$.

Proposition 4.1. $\chi_{gcd}(G) = 2$ iff $G = \overline{K_2}$.

Proof. Suppose $\chi_{gcd}(G) = 2$. Let $\Pi = \{V_1, V_2\}$ be a χ_{gcd}-partition of G. V_1 is dominated by a vertex of V_2 or V_1 is a singleton. Since there exists a vertex in V_1 which is not adjacent with any vertex of V_2, V_1 is a singleton. Similarly V_2 is a singleton. Let $V_1 = \{u\}, V_2 = \{v\}$. If u and v are adjacent, then $G = K_2$ and hence G has a full degree vertex, a contradiction. Therefore u and v are not adjacent. Therefore $G = \overline{K_2}$.

The converse is obvious.

Theorem 4.5. $2 \leq \chi_{gcd}(G) \leq n$.

Theorem 4.6. Let G be disconnected. Then $\chi_{gcd}(G) = n$ iff $G = K_{r_1} \cup K_{r_2} \ldots \cup K_{r_k}$.

Proof. Let $\chi_{gcd}(G) = n$. By hypothesis, G is disconnected. Let G_1, G_2, \ldots, G_k be the components of G. Suppose G_i has two independent points u, v such that they are adjacent with a common vertex. Then $\{u, v\}$ is an element of a χ_{gcd}-partition. Therefore $\chi_{gcd}(G) \leq n$, a contradiction. Hence either G_i is complete or any two independent vertices of G_i has no common adjacent vertex. In the latter case, there exists a path of length at least three between u and v. Let $u = u_1, u_2, \ldots, u_n = v$ be a shortest path between u and v of length at least three. Then u and u_3 are independent and have a common vertex, a contradiction. Therefore G_i is complete. Therefore $G = K_{r_1} \cup K_{r_2} \ldots \cup K_{r_k}$.

The converse is obvious.

Corollary 4.1. If each K_{r_i} is a singleton, then $G = \overline{K_n}$.

Remark 4.3. Let G be a connected graph without full degree vertex. Suppose $|V(G)| = 3$. Then there exists no graph without full degree vertex. Let $|V(G)| = 4$. Then P_4 and C_4 are the only connected graphs without full degree vertex such that $\chi_{gcd}(G) = 4$. Let $|V(G)| = 5$. Let $G_i, 1 \leq i \leq 4$ be the graphs given below:
Then these are the four graphs without full degree vertex on five vertices such that $\chi_{gcd}(G) = 5$.

Definition 4.1. Let G be a connected graph. Define $N_i(G)$ as follows: A vertex set of $N_i(G)$ is same as $V(G)$. Two vertices in $N_i(G)$ are adjacent if they are independent and they have a common adjacent vertex.

Example 4.1. Let $G = C_4$ and $N_i(G)$ be the graphs given below:

\[
\begin{align*}
G & \quad N_i(G) \\
v_1 & \quad v_2 \quad v_1 & \quad v_2 \\
v_4 & \quad v_3 \quad v_4 & \quad v_3
\end{align*}
\]

Theorem 4.7. Let G be a connected graph without a full degree vertex. Then $\chi_{gcd}(G) = n$ iff for any edge uv in $N_i(G)$, $\{u, v\}$ is a maximal independent set in G.

Proof. Suppose for any edge xy in $N_i(G)$, $\{x, y\}$ is a maximal independent set in G. Since G is connected and G has no full degree vertex, there exist two independent vertices which have a common adjacent vertex. (For : if u and v are independent and $d(u, v) = 2$, then u and v have a common vertex. Suppose $d(u, v) \geq 3$. Let $u = u_1, u_2, \ldots, u_k = v$ be a shortest path between u and v. Clearly $k \geq 4$. Then u, u_3 are independent and have a common vertex u_2). Hence $N_i(G)$ has at least one edge. Let uv be an edge of $N_i(G)$. Then $\{u, v\}$ is a maximal independent set of G. Therefore there exists no vertex w in G such that w is non-adjacent with u and v. Therefore $\chi_{gcd}(G) = n$. Conversely, let G be connected without full degree vertex and $\chi_{gcd}(G) = n$. Let xy be an edge in $N_i(G)$. Then x and y have a common adjacent vertex in G. Since $\chi_{gcd}(G) = n$, x and y do not have a common non-adjacent vertex. Hence $\{x, y\}$ is a maximal independent set in G. \qed

Example 4.2. Let $G = C_4$ and $N_i(G)$ be the graphs given below:

\[
\begin{align*}
G & \quad N_i(G) \\
v_1 & \quad v_2 \quad v_1 & \quad v_2 \\
v_4 & \quad v_3 \quad v_4 & \quad v_3
\end{align*}
\]

Also $\{v_1, v_3\}$ is a maximal independent set in G as well as $\{v_2, v_4\}$. Therefore $\chi_{gcd}(G) = 4$.

REFERENCES

Mrs. V. Praba received her Masters degree in 1990 and M.Phil. degree in 1994 from Bharathidhasan University. She has completed GRAD(OR) course from ORSI, Kolkata in 2005 and is an associate life member of the society. She is currently working as an Associate Professor of Mathematics in Rajalakshmi Engineering College, Chennai. She has 25 years of teaching experience. Her research interest includes Operations Research and Graph Theory.

Dr. V. Swaminathan received his Masters degree in 1968 from University of Madras, M.Phil. (1978) degree from Madurai University and Ph.D degree in 1982 from Andhra University. He is currently working as Coordinator, Ramanujan Research Center in Mathematics, S.N. College, Madurai, India. He has published more than 50 research articles. He has 45 years of teaching experience and 25 years of research experience. His research interest include Boolean like rings, Analysis and Graph Theory. He is also a reviewer of American Mathematical society.